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A B S T R A C T

Parkinson’s disease (PD) is a progressive neurodegenerative disorder that affects movement and cognition, 
impacting millions of people worldwide. The diagnosis of PD primarily relies on clinical tests, which can often 
result in delayed identification of the disease. Recent advancements in data-driven methods using deep learning 
have demonstrated potential for improving early diagnosis by utilizing clinical and vocal inputs. This study 
conducted a comparative analysis of five deep learning models: Multilayer Perceptron (MLP), Recurrent Neural 
Networks (RNN), Gated Recurrent Units (GRU), Autoencoder, and Generative Adversarial Network (GAN), 
specifically for the detection of PD using vocal biomarkers. Among these models, the MLP achieved the highest 
predictive accuracy at 97.4 %. The RNN, GRU, and Autoencoder models attained a similar accuracy rate of 87.2 
%. In contrast, the GAN model yielded an accuracy of only 76.9 %. The UCI vocal dataset from Kaggle was 
utilized in this research, along with extensive data preprocessing techniques to address missing values. Perfor
mance evaluation was conducted using multiple metrics. The results indicate that deep learning models can 
effectively diagnose PD using voice data, suggesting their potential to enhance diagnostic accuracy and support 
clinical decision-making. Furthermore, these models are feasible for large-scale integration into clinical 
workflows.

1. Introduction

Currently after Alzheimer’s disease, Parkinson’s disease (PD) is 
considered the second most prevalent chronic and rapidly progressing 
neurodegenerative disorder, affecting millions of people worldwide. 
Despite receiving a diagnosis, many individuals succumb to the disease. 
Over time, the number of new cases has continued to rise, as research 
predicts by 2040, over 17 million individuals will be impacted by (PD) 
[1].

Besides, the disease causes profound damage to the brain cells that 
produce dopamine, a very critical neurotransmitter that is in charge of 
movement and coordination [2]. The neuronal damage is followed by a 
loss in dopamine, ultimately leading to motor and non-motor symptoms 
[3].

The motor symptoms typically become evident many years after the 
onset of the disease after experiencing a prodromal period with non- 
motor symptoms [4]. The disease targets particular regions of the 
brain, the substantia nigra and the superior colliculus in the midbrain 
[5]. (See Fig. 1). The superior colliculus, is another region of the 

midbrain that handles visual information and eye movement, this re
duces the quality of life considerably. Interestingly enough, early iden
tification is crucial for the management of the disease and provision of 
more treatments that would slow down the progression [6]. With this, 
having more advanced diagnostic tools for medical practitioners in 
order to detect the disease earlier before progressing to advanced stages 
are absolutely essential. In the same way, detection in the prodromal 
stage rather than the postmotor stage would allow effective neuro
protection with the objective of delaying advanced motor symptoms. It 
is important to note that reducing the disease burden is eventually 
capable of increasing the quality of life in the patient for a more 
extended period by enabling early detection [7].

Conventional techniques particularly Machine Learning (ML) for PD 
detection heavily depends on clinical evaluation with limited data and 
motor symptoms. These symptoms are effective for later stages of PD but 
not as sensitive for detection of the disease in early stages. This occurs 
as motor symptoms appear following significant damage in the dopa
minergic cells of the brain with approximately 50–70 % of dopaminergic 
cells in the substantia nigra being destroyed [8]. Early diagnosis is thus 
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challenging with ML, prompting diagnostic tools that can diagnose the 
disease at preclinical or early stages by using deep learning (DL) mo
dalities [9]. This is a highly specific technique in terms of equipment. 
Moreover while, DL provide some diagnostic assistance in detecting PD, 
early diagnosis of this disease remains a problem. Because non-motor 
symptoms become apparent after a long period, most patients receive 
a diagnosis after a considerable portion of the dopaminergic brain sys
tem is affected.

However, the highly subjective nature of current clinical observa
tions and the insensitivity in imaging the identification of early neuronal 
loss indicate a crucial necessity [10]. With these cutting-edge techniques 
of using Artificial intelligence (AI), specifically DL algorithms, as a 
means of obtaining more and better diagnostic tools, AI is among the 
novel methods that can help fill gaps in early diagnosis of PD using 
clinical data analysis. DL revolutionized the ML field in recent times this 
is no longer a secret, as it has made it possible for anyone to be able to 
design models that can process large and complex sets of information, 
also it has been an innovative technology in medical diagnosis with 
enhanced precision in PD identification in all data modalities [11]. Deep 
learning models, which can analyze progressively higher amounts of 
information, primarily imaging and clinical parameters, can do so in a 
way that associates them with PD illnesses with a remarkably high level 
of precision in clinical diagnosis. In the previous few years, a class 
of deep learning architectures, e.g., convolutional neural networks 
(CNNs), are brilliant in learning how to automatically extract features 
from raw points instead of engineering them. In PD diagnosis, this is 
especially critical as human experts argue that the detection of subtle 
patterns in the imaging or clinical data should give rise to significant 
improvements in early detection[12]. Although traditional ML models 
have demonstrated promising results in PD detection, but DL have 
exhibited superior performance, particularly in handling large and 
complex datasets. Deep learning models have the advantage of auto
matic feature extraction, reducing the reliance on manual feature en
gineering and has the capacity and ability to handle highly complex 
architectures, often comprising hundreds or even thousands of layers.

The main goal of this study is to analyse deep learning models for PD 
detection, even before the onset of motor symptoms. It aims to create 
diagnostic models that match or surpass existing methods in accuracy. 
Additionally, the study analyse five deep learning models for PD 
detection using voice data, in other to identify the most accurate and 
robust model. Furthermore, it focuses on building a scalable model that 
can be effectively deployed across diverse healthcare settings while 
maintaining high accuracy. Various aspects of model performance 
evaluation were considered by ensuring that the model is robust enough 
to function well with any patient dataset [13]. Another way to frame this 
work is ensuring that the model is robust enough to behave well on any 
configuration of patient dataset. The goal is to ensure that the model 
works equally well on different patient types, providing a level of 
confidence one can have in diagnosis regardless of patient population 
beyond the one in which it trained.

The structure of the study is elaborated as: Section II. Describes 
related work, Section III describes methods used and dataset pre- 

processing. Results and discussion in Section IV, and lastly Section V, 
encloses conclusion and future directions.

2. RELATED WORK

Recently research efforts has been put on detecting Parkinson’s 
disease (PD) by using clinical data, voice data and MRI image data based 
on machine learning (ML) and deep learning (DL) techniques. This is 
because, these non-traditional methods hold promise for spotting stable 
warning signs which often escapes detection via traditional diagnostic 
means. In this regard, the diagnosis of PD has traditionally relied on 
clinical evaluations involving motor function assessments, speech and 
gait analysis, and neuroimaging techniques. However, these conven
tional methods often lack sensitivity, particularly in detecting early- 
stage PD when timely intervention is most beneficial [14]. In recent 
years, ML and DL techniques have shown promise in enhancing diag
nostic accuracy by leveraging diverse clinical datasets. Early applica
tions of ML for PD detection primarily focused on voice data, as vocal 
impairments are common among PD patients. Various studies have 
demonstrated the effectiveness of ML models when combined with 
feature selection techniques. For instance, Saeed et al. [15] uses feature 
selection techniques based on filters and wrappers to process voice re
cordings, achieving an accuracy of 88.33 % with k-nearest neighbors 
(KNN). Another study [16] illustrate using DL techniques on clinical 
data, specifically voice signals for the early diagnosis of PD and 
improved diagnostic accuracy. Similarly, Singh et al. [17] applied de
cision trees, random forests, and logistic regression to voice-based fea
tures, reinforcing the potential of ML-based techniques as cost-effective 
and non-invasive tools for PD detection. Beyond voice analysis, recent 
research has expanded the scope of clinical data used in PD detection. 
Lin et al. [18] employed motion data collected via inertial measurement 
units (IMUs) to develop neural network models capable of distinguish
ing healthy individuals from PD patients. Their study achieved detection 
rates of 92.72 % for advanced-stage PD and 99.67 % for early-stage 
cases, highlighting the growing role of gait analysis in early diagnosis.

Chintalapudi et al. [19] compared three DL architectures RNN, MLP, 
and LSTM on voice features of PD patients. Their findings revealed that 
the LSTM model achieving an accuracy of 99 %. This study underscores 
the ability of DL models, particularly LSTM, to effectively process 
nonlinear and complex data such as speech recordings. In contrast, 
traditional ML models require extensive preprocessing and manual 
feature selection, which can be labor-intensive and less scalable. Simi
larly Kurmi et al. [20] implemented an ensemble of CNN models, 
including VGG16, ResNet50, Inception-V3, and Xception, to analyze 
DaTscan images, achieving a classification accuracy of 98.45 %. Their 
study highlights the potential of CNN-based architectures in improving 
diagnostic precision through multi-model integration with DL that has 
been effectively applied to medical imaging for PD detection. Despite 
the advantages of DL, traditional ML approaches remain relevant, 
particularly when computational resources are limited or when datasets 
are small. For instance, Govindua et al. [21] compared random forests, 
SVM, and logistic regression for PD detection using voice data, achieving 
an accuracy of 91.83 %. While DL excels in large-scale datasets, ML 
techniques can still deliver competitive results when optimized with 
feature selection techniques. Another study by [22] explores ML and DL 
models for classifying PD using speech data. The results indicate that DL 
models outperform traditional ML approaches, with ML achieving an 
accuracy of 92.18 %, while the most effective DL model attains the 
highest accuracy of 95.41 %.

Neural networks (NN), particularly CNNs and LSTMs, have been 
extensively used in medical diagnostics due to their ability to model 
complex patterns in diverse clinical datasets, including images, time- 
series data, and auditory signals. Several studies have leveraged LSTM 
and CNNs [23,24] to analyse different data types such as gait, speech, 
and handwriting for PD detection. Similarly NN has also been used in 
multimodal data, where different types of clinical measurements were 

Fig. 1. Substantia nigra in the midbrain.
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integrated into providing a more comprehensive diagnostic model. 
Taleb et al. [25] used CNN-BLSM architectures on motion HandPD_
MultiMC_data collected via wearable sensors, achieving 97.62 % for PD 
stage classification. These findings emphasize the efficacy of ensemble 
models in enhancing diagnostic accuracy by capturing both static and 
dynamic characteristics of PD symptoms. Furthermore, LSTMs on the 
other hand, have been widely adopted for sequential data modeling, 
making them particularly suitable for voice and motion analysis in PD 
detection. Neural networks have also been integrated into multimodal 
frameworks, where multiple clinical data sources are combined for more 
comprehensive diagnostic models. CNNs have been applied to EEG data 
analysis for PD classification. Sugden and Diamandis [26] developed a 
channel-wise CNN model that achieved an accuracy of 80.4 %, this study 
highlights CNN’s has the ability to extract spatial patterns from EEG 
data, which could be extended to other clinical modalities. Furthermore 
Majhi et al. [27] explored Hybrid DL models including Grey Wolf 
Optimization (GWO) optimization, which applied to two images data
sets, these metaheuristic algorithm achieved 99.94 % accuracy. Another 
study by Islam et al. [28] conduct Extensive review for PD detection, 
their review concluded that voice and handwriting dataset integration 
significantly enhances diagnostic accuracy, especially in early-stage PD 
detection rather than just using images data. A study by [29] employed 
lightweight, pre-trained DL models with two-fold training and merged 
ideal features for hand-drawn Parkinson’s disease screening. Similarly, 
Keles et al. [30] used Part-Aware Residual Network (PARNet), retrained 
from a COVID-19 model, and applied to SPECT images for PD detection. 
Al-Tam et al. [31] used Ensemble learning with stacking and bagging 
applied to two benchmark PD datasets to Enhance PD diagnosis through 
stacking ensemble-based ML approach, the technique seeks to improve 
generalisation performance, rectify dataset class imbalances, and raise 
the overall accuracy of PD detection. Furthermore, Ismail and Osman 
[32] performed a Classification of scalograms using AlexNet, GoogleNet, 
and ResNet50, followed by a hybrid system based on majority voting. 
Also, DenseNet and NasNet are used for different classifications. Hongyi 
et al. [33] Used brain images and radiomics-based automated hybrid 
approach targeting midbrain for early PD detection. Table 1. Presents a 

comprehensive assessment of research studies on PD detection using ML 
and DL techniques. Building on existing studies, our focus is to 
demonstrate that voice data can effectively identify PD in its early 
stages.

Numerous research studies, including those cited in references 
[14–16] and [19–20], have explored the application of machine 
learning (ML) and deep learning (DL) techniques for detecting Parkin
son’s disease (PD) through voice data. These studies often utilize models 
such as K-Nearest Neighbors (KNN), Support Vector Machines (SVM), 
Recurrent Neural Networks (RNN), and Long Short-Term Memory net
works (LSTM), typically examining either individual architectures or 
making pairwise comparisons. However, there is a significant gap in the 
literature regarding systematic comparative analyses of multiple deep 
learning models assessed under consistent experimental conditions. This 
study aims to fill that gap by comparing five distinct deep learning 
models within a unified evaluation framework, assessing their perfor
mance on a standardized voice dataset.

Our interpretations focused on both the classification accuracy itself 
and the potential operationalization of the systems, which bring impli
cations for future clinical integration. Therefore, this study conducts a 
comparative analysis of five deep learning models applied to voice data 
for Parkinson’s disease detection.

3. METHODOLOGY

The proposed method was implemented on the Google Colab plat
form using Python programming and incorporates five models to predict 
whether the patient has Parkinson’s disease or not. To ensure validation 
of the model on unseen data and avoid fitting the training data too well, 
the dataset was divided into training sets, validation sets, and test sets.

3.1. Dataset and preprocessing

This study employs a publicly available voice dataset derived from 
the UCI Repository, which is also available on Kaggle, comprising the 
collected acoustic characteristics that are utilised to identify PD. The 

Table 1 
A summary of research studies focused on Parkinson’s Diseases.

Ref. Study Focus Dataset Used Model(s) Used Best Performance

Al-Nefaie et al. 
[14]

Highlights the effectiveness of ML classifiers 
with vice data

UCI Voice dataset KNN, SVM, RF and LR SVM and RF achieve 
95.00 %

Faisal et al. [15] Voice data for PD detection Voice recordings KNN with feature selection 88.33 %
Awais et al. [16] DL on voice signals for PD Clinical voice signals Deep Learning models 86.00 %
Shikha et al. [17] ML models on voice-based features Voice recordings Decision Tree, RF, Logistic Regression 92.00 %
Lin et al. [18] Motion data analysis using IMUs Motion sensor data Neural Networks 99.67 %
Chintalapudi et al. 

[19]
Comparison of DL models on voice Voice features RNN, MLP, LSTM 99.00 %

Kurmi et al. [20] DaTscan image analysis DaTscan images CNN Ensemble (VGG16, ResNet50, etc.) 98.45 %
Alshammri et al. 

[21]
ML model comparison using voice Voice data RF, SVM, Logistic Regression 91.83 %

Rahman et al. [22] ML vs DL on speech data Speech recordings ML and DL models 95.41 %
Govindu et al. [23] Use of ML in Telemedicine MDVP Audio data SVM, RF, KNN and LR 91.83 %
Rehman et al. [24] Multimodal data (speech, gait, handwriting) Various clinical datasets Hybrid LSTM-GRU 98.00 %
Taleb et al. [25] CNN-BLSM on Handwriten data HandPD_MultiMC_data CNN-BLSM 97.62 %
Sugden et al. [26] EEG analysis with CNN EEG recordings Channel-wise CNN 80.04 %
Majhi et al. [27] PD Diagnosis using hybrid deep learning and 

metaheuristic optimization
(T1, T2-weighted) MRI & SPECT 
DaTscan

DenseNet, InceptionV3, LSTM, Grey Wolf 
Optimization (GWO), VGG16,

99.94 %

Islam et al. [28] ML/DL models for PD detection using 
handwriting and voice data

Handwriting & Voice Various ML & DL models 95.41 %

Rajinikanth et al. 
[29]

Hand-Sketch-based PD screening using pre- 
trained DL models

Hand-Sketch Wave Data MobileNet, KNN 100 %

Keles et al. [30] PD detection using a retrained COVID-19 
model on SPECT images

SPECT Imaging PARNet, ResNet 95.43 %

Al-Tam et al. [31] Stacking ensemble ML models for PD 
detection

PD Benchmark Datasets Random Forest, SVM, Gradient Boosting, 
Logistic Regression

96.18 %

Ismail and Osman 
[32]

Scalogram-based PD detection with deep 
learning

Speech Signals AlexNet, GoogleNet, ResNet50, DenseNet, 
NasNet

95.00 %

Hongyi et al. [33] Radiomics-based deep learning for early PD 
detection

MRI (Midbrain & Substantia 
Nigra)

YOLO v5, LeNet 96.03 %
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dataset contains 195 voice recordings from PD positive and neg
ative participants. It comprises 21 attributes extracted from voice re
cords; the features are describe in (Table 2) [22], they provide full 
information about vocal patterns to allow effective classification. For 
example, Srinivasan et al. [34] have used the UCI dataset and voice 
samples of matched controls and PD patients to classify subjects based 
on voice feature changes using supervised machine learning 
methodologies.

The dataset was separated into target labels (y) and input features 
(x). Using train_test_split, a stratified split was carried out, with 20 % 
going to testing and 80 % going to training. The target variable indicates 
whether the subject is PD-positive (1) or healthy (0) [22]. (Fig. 2) il
lustrates the typical process that are followed, it explains how the 
dataset was splits into training and test data, train five models on the 
dataset, and validate the results using test data.

Min-Max Scaling was used to normalise the features to a [0, 1] range 
prior to model training. In order to express time-steps for recurrent 
models (LSTM and GRU), the input was transformed into a three- 
dimensional format.

During pre-processing, particularly when working with clinical data 
it is essential to address the Outliers and values that are missing. If these 
issues are not properly addressed, it can result in a shortage of accurate 
models and exacerbate future challenges. A study by [36], 
applied different approaches to solve this problem enabling a complete 
dataset to train the model. Multiple imputation techniques were applied 
to handle the missing clinical assessment data, and subsequently, the 
duplicate value was also addressed. Another study by [37] identified the 
requirement for the identification of outliers in speech data and their 
exclusion as they play a major role in the estimation of a model with 
undesirable or abnormal values; data was normalized with the z-score 
and visually inspected for outliers and marked accordingly. After the 
exclusion of outliers, highly correlated features were identified with the 
correlation coefficient validating their appropriateness. (Fig. 3) below 

illustrates the correlation of the dataset features when outliers are 
excluded [35].

3.2. Multilayer perceptron (MLP)

The MLP model was implemented with Scikit-learn’s MLPClassifier 
with two hidden layers, with (100, and 50) neurons respectively, used 
ReLU as an activation function and Adam as the optimizer, this consti
tutes a deep neural network by definition, we recognize that it is rela
tively shallow compared to modern deep learning architectures such as 
CNNs or LSTMs. This configuration was selected to evaluate how well a 
simple deep model could perform on the voice dataset for Parkinson’s 
Disease detection. The model was trained up to 500 epochs. The eval
uation metrics like accuracy, precision, recall and F1-score were 
computed based on predicted values on the test set [38].

For visualization, confusion matrices and heatmaps were used. A 
heatmap of the classification report was also generated to give a more 
visual summary of the performance metrics across the two classes.

3.3. RNN-LSTM model

The LSTM based RNN is built with TensorFlow’s Keras API. The 
architecture consisted of one LSTM layer (with 50 units) followed by 
Dense output layer with sigmoidal activation for binary classification. 
Binary cross-entropy was used as the loss function [39], and the Adam 
optimizer was used to compile the model and it trained for 50 epochs 
with a batch size of 32.

The reshaping of inputs was performed in a way suitable for the 
LSTM model as 3D tensors. Accuracy, classification reports and confu
sion matrices were used to evaluate performance.

Table 2 
Dataset Features [35].

Feature Name Description

Average Fundamental Frequency 
(Fo)

Mean vocal fundamental frequency measured 
in Hertz (Hz).

Maximum Fundamental 
Frequency (Fhi)

Highest recorded vocal fundamental 
frequency (Hz).

Minimum Fundamental 
Frequency (Flo)

Lowest recorded vocal fundamental frequency 
(Hz).

Jitter ( %) Percentage-based measure of frequency 
variation.

Jitter (Abs) Absolute measurement of frequency 
instability.

Relative Average Perturbation 
(RAP)

Short-term variation in fundamental 
frequency.

Pitch Period Perturbation 
Quotient (PPQ)

Measure of long-term frequency variations.

Jitter: DDP Three-point average of absolute jitter values.
Shimmer Quantifies amplitude variation in the voice 

signal.
Shimmer (dB) Measurement of amplitude fluctuation in 

decibels (dB).
Amplitude Perturbation 

Quotient (APQ3)
Average of amplitude variations over three 
cycles.

Amplitude Perturbation 
Quotient (APQ5)

Average of amplitude variations over five 
cycles.

MDVP: APQ Measures overall amplitude perturbation 
across the signal.

Shimmer: DDA Three-point averaged shimmer calculation.
Noise-to-Harmonics Ratio (NHR) Ratio of non-harmonic noise to harmonic 

components.
Harmonics-to-Noise Ratio (HNR) Ratio measuring harmonic signal strength 

relative to noise.
Correlation Dimension (D2) Nonlinear measure of signal complexity.
Fractal Scaling Exponents Quantifies the self-similarity and complexity 

of the signal.

Fig. 2. Proposed flow of our approaches.
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3.4. Gated recurrent unit (GRU) network

The GRU-based model had a similar structure as LSTM architecture, 
but used a GRU layer instead of LSTM layer. It only had a GRU layer 
with 50 hidden units followed by a dense layer with sigmoid as an 
activation function. All recurrent models were trained with the same 
configuration (same optimizer, loss function and evaluation metrics) to 
maintain consistency.

3.5. Autoencoder for feature extraction

To learn compressed representations of the input voice features, an 
unsupervised autoencoder was built. An input layer, a 14-neuron 
encoding layer (dimensionality reduction), and a decoding layer that 
tried to reconstruct the input were all included in the Autoencoder 
model. The encoded representations were extracted following the 
Autoencoder’s training on the training set with Mean Squared Error 
(MSE) loss.

The encoded test data was used to train a Logistic Regression clas
sifier to accomplish Parkinson’s classification. After that, performance 
was assessed using common classification metrics.

3.6. Generative adversarial network (GAN)

In this work we employ a GAN that is composed by two neural 
networks: a Generator and a Discriminator, which are trained against 
each other. The Generator takes as input a 100-dimensional random 
noise vector, takes it through two fully connected layers (with 64 and 
128 neurons with ReLU activation) and finally reshapes the output to the 
original voice feature vector. The output adopts the tanh activation 
function to produce synthetic feature vectors with normalized entries.

The Discriminator is a binary classifier that takes a 21-dimensional 
input vector and processes it through two dense layers, 128 and 64 
neurons, both with ReLU activation, and a final output neuron with 
sigmoid activation function to differentiate between real and generated 
samples.

The models are trained adversarially in a loop for 10 epochs with a 
batch size equal to 32. In each iteration:

The Generator takes as input noise and generate fake samples.
The Discriminator is trained over a mixed batch of real and 

fake data, using binary cross-entropy loss with label noise (eg, a small 
amount of random noise is added to the labels for better generalisation).

The Generator is in turn updated so that it is effective at convincing 
the Discriminator that the generated samples came from the data.

Both networks are optimized using Adam with a learning rate of 1e- 
4. Once trained, the discriminator is used here as a classifier in its own 

Fig. 3. The Correlation matrix.
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right to classify the samples in the test set between Parkinson’s and 
healthy. Its performance is measured by accuracy, precision, recall and 
confusion matrix representation.

3.7. Experimental environment

The experiments were run in Python using TensorFlow, Keras, and 
Scikit-learn. Matplotlib and Seaborn were used for data visualisation. 
Experiments were run on a GPU-accelerated machine to minimize 
training time and increase computing efficiency.

4. RESULTS AND discussion

The classification performances were visualized in the form of 
heatmaps for confusion matrices and rich metric overviews. These vi
sualizations facilitated identification of misclassification trends, and 
each model’s robustness. The performance of the proposed study 
is compared and analysed as shown in (Fig. 4), the results for each 
model clearly reflect the efficiency, with Multilayer Perceptron (MLP) 
attaining the highest accuracy (97.4 %). In the below (Fig. 5): The MLP 
model’s classification performance yielded 32 true positives, 6 true 
negatives, 1 false positive, and 0 false negatives [40]. This demonstrates 
the strong prediction of the model with minimum misclassification er
rors. The performance of the Recurrent Neural (RNN-LSTM) model is 
given in (Fig. 6), where the model achieved 30 true positives and 4 true 
negatives. But it had 3 false positives and 2 false negatives as well, less 
accurate than the MLP model. Likewise, (Fig. 7) shows the classification 
results of the Gated Recurrent Unit (GRU) model that achieved 30 true 
positives and 4 true negatives. It had 3 false positives and 2 false neg
atives, showing performance similar to the RNN-LSTM model. The 
classification results of the Autoencoder model, as presented in the 
(Fig. 8), are composed of 31 true positives, 3 true negatives, 4 false 
positives and 1 false negative. However, as a large number of 
false-positive predictions are present, it indicates that it is probably 
incorrect for predicting certain instances. Lastly, (Fig. 9) shows the ac
curacy of the GAN model, which had 30 true positive cases but no true 
negatives. It had 7 False Positives and 2 False Negatives, showing that 
the model detects all true positive cases, but has lower specificity due to 

no true negative classifications.
Though MLP turned out to be a promising performer, however, the 

performances of RNN, GRU, Autoencoder, as well as GAN models, were 
simplistic or less in classification. This could be because the dataset is 
just not very friendly to architectures with strong temporal or generative 
structure like they prod and therefore is not taking advantages of some 
of those features.

Several factors may contribute to better results of the Multilayer 
Perceptron (MLP) model. First of all, in UCI voice dataset, it is tabu
larized (structured, non-sequential) features coming from vocal signal 
processing (jitter, shimmer and fundalmental frequency, etc.), which are 
better modeled by fully connected layers instead of RNN structures. 
MLPs are indeed quite effective at extracting patterns from such feature- 
rich inputs that are not fundamentally based on temporality. On the 
other hand, models like RNN/LSTM/GRU are specifically for sequen
tial time series data, and they may not perform better when the data has 

Fig. 4. Performance comparison of different methods.

Fig. 5. MLP Confusion Matrix.
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mostly independent observations. Also, MLP’s simple structure is less 
prone to overfitting, especially on smaller data sets, and can achieve 
faster convergence during training. On the other hand, deeper models 
such as GANs and Autoencoders may require larger datasets or regu
larization techniques to achieve similar generalization.

While the voice features employed in this study are not structured as 
sequential time frames, we have also included RNN, and GRU based 
models to evaluate the possibility of them capturing any intrinsic or 
hidden temporal dependencies that may be present in the speech pat
terns. Such architectures are usually beneficial for modeling time-series 
or sequential data, however trying them here provided us with an op
portunity to evaluate their flexibility and capability in non- 
conventional domains. From the results; although they did not outper
form MLP, they show that their incorporation gives a wider perception 
on how the different model types perform on voice datasets in a feature 
vector form as opposed to a sequence. This guides future researchers in 
making a choice of models according to the data structure and the 
modality.

4.1. Computational efficiency and resource usage

Besides classification accuracy, we also compared the computation 
time of different models, which are crucial for real clinical-like setting. 
All experiments were run using the Google Colab on an NVIDIA Tesla T4 
and 12 GB of RAM. The MLP model needed around 28 s of training, 
which was surprising, since the architecture is simple. The Autoencoder 
took 45 s, better in addition of dimensionality.

On the other hand, sequential models, such as RNN-LSTM and GRU, 
were slow and each took about 2–3 min due to temporal voice data 
processing. The GAN model takes the most time to train (approximately 
5 min) because of its dual-network structure and the adversarial training 
loop.

These findings illustrate that although complex models (e.g., GANs) 
could offer new insights, simpler architectures such as MLP offer 
significantly faster training times and may be more suitable for time- 
sensitive clinical environments where resources are limited.

Below (Table 3) gives an overview of the estimated training times 
and hardware used and the compute requirements of all the deep 
learning models we employed in this study. These observations assist in 

Fig. 6. RNN_LSTM Confusion Matrix.

Fig. 7. GRU Confusion Matrix.

Fig. 8. Autoencoder Confusion Matrix.

Fig. 9. GAN Confusion Matrix.
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assessing their applicability for clinical use.

4.2. Comparative analysis

In general, the MLP model outperformed other deep learning models 
attaining the best accuracy with the fewest classification errors. (Fig. 4) 
compares each of the five models. The importance of temporal model
ling in speech-based PD detection is highlighted by the consistent su
perior performance of RNN_LSTM and GRU over the other three. Despite 
not being the greatest performers, autoencoder and GAN provided 
valuable insights into generative and feature extraction techniques.

4.3. Limitations and future work

There are some limitations that should be considered with this work 
although the results of this study show that deep learning models are 
effective in diagnosing PD based voice data. First, the study is restricted 
to the voice data of a unique modality, which may not represent all 
aspects of PD. Second, there are only 195 samples and no demographic 
diversity in the dataset that can limit the global generalization of our 
model. Third, some models (especially LSTM and GAN) demand more 
computational resources as well as training time, which probably re
stricts their use in the low-resource clinical setting. We will further 
investigate multimodal fusion, including handwriting, gait, imaging 
etc., and the scalability of the proposed models with other datasets of 
different scales and modalities in our future work.

Although RNN and GRU models are designed for time-series data, in 
this study, they were applied to non-sequential input vectors containing 
21 voice features per sample. As such, their temporal modelling 
strengths were not fully utilized. This is recognized as a limitation, and 
future work will explore the use of time-dependent feature sequences to 
better align with the nature of RNN and GRU architectures.

The RNN and GRU architectures used in this study are generally 
designed for sequential or time-series data, yet the voice dataset in this 
study comprises statistical feature vectors rather than raw temporal 
sequences. Similarly, GANs are a leading example of a model that does 
well at generating images, or raw audio, but was only able to be applied 
here for generative tasks involving structured features. Our goal, how
ever, was to evaluate all models under the same conditions to establish 
a benchmark comparison. In the future, it would be interesting to 
look into finding more compelling ways to manipulate the data so that 
each model’s natural advantages might be exploited, as providing RNNs 
with raw audio features or using GANs for data augmentation.

5. Conclusion

This work, which uses five deep learning techniques, demonstrates 
encouraging advancements in the early identification and treatment of 
Parkinson’s disease using voice data. Under this condition, the 
results indicate the performance varies among the deep learning arch
tictures, the MLP model has the best result out of the models that were 
tried, with 97.4 % accuracy. These results underscore the potential for 
the use of deep learning models in clinical applications to facilitate early 
PD diagnosis. Future research should explore the transformer-based 
models dedicated to audio processing, such as Audio Spectrogram 

Transformer (AST), SHAP (SHapley Additive exPlanations) and LIME 
(Local Interpretable Model-agnostic Explanations) to imbue faith into 
AI-based diagnostic tools. They will aid to identify which vocal features 
contribute the most to classification, rendering the models mor
e interpretable and more clinically relevant. Also to achieve better 
classification performance. This extend have the opportunity to evaluate 
temporal and contextual properties in more details and to compare their 
performance with the models discussed.
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