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 A B S T R A C T

Despite current advances, cancer remains one of the biggest health challenges globally, and diagnosis must 
be made earlier to begin treatment. In this work, we introduce a hybrid deep learning-based framework for 
accurate cancer type and subtype identification by using pre-trained convolutional neural networks, custom 
deep learning networks, and traditional machine learning classifiers. I have achieved accurate results on more 
complex cancer datasets using advanced architectures of CNN + LSTM and attention-based models, along 
with the pre-trained models of VGG19, Xception, and AmoebaNet. Model reliability and interpretability are 
further improved using ensemble techniques such as confidence-based and XOR fusion. Experimental results 
in multiple multimodal datasets demonstrate the effectiveness of our hybrid approach by improving precision, 
recall, and F1 scores in various types of cancer. However, they have promising results and remain challenging 
to deploy for rare cancer subtypes or explain to gain clinical adoption. The proposed framework provides a 
basis for personalized cancer by developing machine learning innovations to advance precision medicine.
, 
1. Introduction

Cancer remains one of the leading causes of mortality worldwide 
due to its diverse subtypes and complex molecular heterogeneity. Early 
and precise classification of cancer types and subtypes is critical for per-
sonalized treatment planning and improving patient outcomes. How-
ever, conventional diagnostic methods, including histopathology and 
genomic profiling, are often limited by observer variability, inter-
pretability issues, and delayed results. These gaps require robust, au-
tomated, and interpretable solutions to support oncologists in making 
timely and accurate decisions.

Despite recent advances in AI, existing models are mostly unimodal, 
focused on imaging or genomic features, and often do not generalize 
to different types of cancer and clinical settings [1–3]. They typi-
cally operate as black-box systems with poor interpretability, hindering 
clinical adoption [4]. Moreover, existing ensemble- or fusion-based 
methods are underexplored, often lacking mechanisms to manage pre-
diction uncertainty, which is crucial in borderline diagnostic cases [5,
6]. Scalability, explainability, and multimodal data integration remain 
persistent challenges in the field.

To overcome these limitations, we present a hybrid deep learning 
framework that integrates pre-trained convolutional neural networks 
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(CNNs) such as VGG19, Xception and AmoebaNet to extract visual fea-
tures from histopathological images [1,2]; custom architectures includ-
ing CNN+LSTM and Attention-based CNNs to model spatial–temporal 
dependencies and focus on informative regions [3,4]; and traditional 
machine learning models (e.g., SVM, Random Forest, XGBoost) to 
efficiently handle structured genomic and clinical data [7]. We also 
propose two ensemble fusion strategies, XOR fusion and confidence-
based fusion, guided by entropy-based uncertainty analysis [5]. This 
adaptive fusion mechanism improves prediction reliability, particularly 
in ambiguous or low-confidence scenarios, aligning with real-world 
clinical needs.

The framework is validated using the Kaggle Multicancer Dataset [8]
which includes eight types of cancer and 21 subtypes across multiple 
data modalities. Our approach demonstrates significant improvements 
in classification accuracy, interpretability, and robustness. The best-
performing ensemble model achieved a precision of 96. 1% for the main 
cancer type and 88. 4% for the subtypes. Furthermore, interpretability 
is improved through explainable AI (XAI) methods such as SHAP 
and Grad-CAM [9], providing transparency into model decisions and 
allowing clinical validation.
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In summary, our unified hybrid framework leverages the strengths 
of deep learning, traditional ML, and adaptive fusion to deliver a scal-
able, interpretable, and high-performance solution for cancer type and 
subtype classification, addressing both technical and clinical demands.

The remainder of this paper is organized as follows: Section 2 
reviews related work in deep learning and multimodal fusion for cancer 
classification. Section 3 presents the proposed hybrid framework in 
detail, including the model architectures, fusion strategies, and theoret-
ical formulation. Section 3.1 introduces the dataset and pre-processing 
steps. Section 4 discusses experimental settings, evaluation metrics, and 
comparative performance analysis along with key findings and practical 
implications. Finally, Section 5 concludes the paper and outlines future 
research directions.

2. Literater survey

Deep learning applications to identify types and subtypes of cancer 
have attracted increasing attention in recent years and resulted in the 
design of numerous models and methodologies to improve diagnostic 
precision and patient outcomes.

Comparative table for cancer type classification

Although significant progress has been made in the classification 
of cancer type and subtype, current research suffers from some crucial 
limitations that prevent it from being translated into clinical settings. 
However, a significant gap remains in integrating multimodal data, 
as studies predominantly deal with singular data types (e.g., imaging, 
omics data), ignoring the synergetic use of multiple data types. Some 
multimodal approaches exist, although they are often difficult to scale 
and use many computational resources (see Table  1).

Another pressing problem is that the models are not generalizable. A 
significant body of work, including those employing transfer learning, 
is explicitly aimed at specific cancers/datasets and is thus unsuitable 
when deployed in more general real-world settings. In addition, the 
underrepresentation of rare cancers, with which few share a common 
experience, is exacerbated by the lack of universality. The small size 
and biased data composition typical of many cancer datasets also create 
problems for fairness and inclusion.

Second, deep learning models are still not interpretable. Although 
most models place accuracy first, they tend to remain unintelligible, 
making it difficult to adopt and use them in clinical settings where 
explainability is critical. Specifically, this challenge is heightened for 
custom deep learning and fusion techniques that are such powerful 
tools but are often ’black boxes’ that require little insight into their 
decision-making.

Some fusion techniques have shown promise but are underexplored 
and, in many cases, computationally expensive, rendering them diffi-
cult to deploy on a large scale. More importantly, benchmarking across 
standard datasets and defining universal evaluation metrics still need 
to be met, and these are the causes of inconsistencies in performance 
comparison among studies. There are also insufficient ethical and 
regulatory considerations addressing patient data privacy and compli-
ance with legal frameworks, which act as barriers to adopting these 
technologies.

In particular, current research lacks robust, interpretable, and scal-
able models that integrate diverse data modalities to these ends, are 
generalizable between cancer types, and are designed with fairness 
and ethical concerns at the core. Closing these gaps will be critical 
to moving cancer classification systems forward and ensuring their 
deployment in a real-world clinical setting.
2 
3. Proposed methodology

Contribution scope and novelty justification

While the proposed framework does not introduce a new theoret-
ical learning algorithm, its novelty comes from the systematic fusion 
of independently powerful but methodologically diverse models. This 
integration leverages the complementary strengths of pretrained con-
volutional neural networks, custom deep learning architectures (such 
as CNN+LSTM and attention-based CNNs), and traditional machine 
learning classifiers (e.g., SVM, XGBoost) to construct a comprehensive 
and cohesive ensemble system.

Unlike existing studies that typically focus on unimodal data, our 
hybrid approach holistically integrates histopathological images, ge-
nomic profiles, and clinical metadata. This multimodal data fusion 
enables finer-grained classification and enhances the generalizability of 
the system between different types and subtypes of cancer.

The early and accurate classification of cancer remains one of the 
most complex and pressing challenges in clinical oncology. Cancer is a 
leading cause of death globally, and its timely diagnosis significantly 
influences treatment outcomes and patient survival rates. With the 
advent of machine learning (ML) and deep learning (DL), particularly in 
recent years, there has been a substantial leap in the ability to classify, 
detect, and identify subtypes of cancer with enhanced precision.

Cancer data sets often present significant complexity due to their 
high dimensionality, multimodal structure (imaging, genomics, clinical 
data), and inherent variability. Addressing these complexities requires 
sophisticated models capable of robust feature extraction, adaptability, 
and clinical interpretability. We propose a hybrid approach that unifies 
pre-trained deep learning models, custom deep learning architectures, 
traditional machine learning classifiers, and fusion techniques to build 
a resilient cancer classification framework (Fig.  3).

Comparative overview of classification techniques

Cancer classification models vary in structure and scope, each with 
distinct strengths, data affinities and architectural focus areas. Fig.  1 
summarizes the comparative landscape in four dominant categories:

Pre-trained Deep Learning: Leverages large-scale image datasets. 
Models like VGG19, Inception-ResNet, and AmoebaNet are optimized 
for extracting spatial features from histopathology images, excelling in 
tasks where visual granularity is essential.

Custom Deep Learning: Tailored to dynamic and multimodal data 
input (e.g., hybrid CNN + LSTM for imaging genetics). These models 
adapt to temporal dependencies, subclass variations, and longitudinal 
cancer behavior.

Traditional Machine Learning: Logistic regression, SVM, and XG-
Boost thrive on structured data such as patient demographics and 
clinical records, offering interpretability and fast execution.

Fusion Techniques: Aggregate outputs of different models (e.g. X-
OR Fusion, Confidence-based Fusion) to reduce prediction variability 
and increase robustness.

Challenges in cancer classification

Despite technological progress, multiple bottlenecks remain (Fig.  2):
Data Complexity: Cancer data is often high-dimensional and het-

erogeneous, making feature extraction and model generalization diffi-
cult.

Computational Demands: Many DL models have high inference la-
tency and resource requirements, impeding real-time clinical adoption.

Model Limitations: Pre-trained models may lack specificity, while 
custom models demand extensive tuning. Fusion techniques, although 
robust, introduce architectural complexity and interpretability issues.

Clinical Application: Real-world integration requires model trans-
parency, reliability, and consistent performance of the model in diverse 
data sets.
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Table 1

 Year Study Category Method /Model Dataset Key Findings Performance Metrics Limitations  
 2024 Tan et al. (2024) 

Joint-Individual 
Fusion 
Link

Fusion Techniques Fusion Attention 
Module

Dermatological 
images, metadata

Integrated patient 
metadata and 
images for improved 
skin cancer 
classification.

Accuracy: 94%, 
F1-score: 92%

Computationally 
intensive due to 
fusion attention 
module; requires 
large, high-quality 
multimodal datasets.

 

 2024 Huang et al. (2024) 
Adaptive Fusion 
Link

Custom Deep 
Learning Models

Multi-head 
Attentional Fusion 
Model

Radiomics, CT scans Adaptively fused 
radiomics and deep 
features for lung 
adenocarcinoma 
subtype recognition.

Accuracy: 89%, 
AUC: 0.92

Requires extensive 
hyperparameter 
tuning; lacks 
explainability for 
clinical deployment.

 

 2024 Li et al. (2024) 
Transfer Learning 
Study 
Link

Deep Learning 
Models

Transfer learning 
with attention 
mechanisms

Skin lesion images Improved 
generalizability and 
robustness for skin 
cancer classification 
across multiple 
datasets.

Accuracy: 92%, 
Specificity: 91%

Limited to 
image-based data; 
may not perform 
well on diverse 
multi-omics 
datasets.

 

 2023 Tan et al. (2023) 
PG-MLIF 
Link

Fusion Techniques Low-Rank 
Interaction Fusion 
Framework

Patient survival 
datasets

Multimodal fusion 
of clinical and 
genomic data for 
precise survival 
prediction.

Accuracy: 87%, 
Concordance Index: 
0.83

Low-rank 
approximation may 
lose subtle 
biological 
information; limited 
scalability for large 
datasets.

 

 2023 Zhao et al. (2023) 
DeepKEGG 
Link

Custom Deep 
Learning Models

Deep learning with 
biological pathways

Multi-omics datasets Leveraged KEGG 
pathways for cancer 
subtype discovery 
and improved 
interpretability.

Accuracy: 88%, 
Precision: 85%

Pathway 
information is 
limited to curated 
databases, which 
may not cover all 
cancer mechanisms.

 

 2023 Huang et al. (2023) 
Benchmark Study 
Link

Deep Learning 
Models

Evaluated 16 deep 
learning methods

Multi-omics datasets Highlighted feature 
fusion’s role in 
capturing complex 
biological 
interactions for 
cancer analysis.

Average Accuracy: 
85%, F1-score: 87%

Focused on feature 
fusion only; lacks 
robust testing across 
diverse cancers.

 

 2022 Liu et al. (2022) 
Multi-modal Fusion 
Link

Fusion Techniques Multi-task 
Correlation Learning 
Framework

Histopanthological 
images, mRNA data

Enhanced survival 
prediction and 
cancer grade 
classification 
through multi-modal 
data fusion.

Accuracy: 92%, 
AUC: 0.95

Requires high 
computational 
resources; limited 
application to rare 
cancer types.

 

 2021 Li et al. (2021) 
Feature Fusion CNN 
Link

Custom Deep 
Learning Models

Feature Fusion CNN Breast cancer 
images

Enhanced accuracy 
using 
computer-aided 
convolutional neural 
networks for 
classification.

Accuracy: 91%, 
Recall: 90%

Limited to 
image-based 
classification; lacks 
integration of 
clinical and 
genomic data.

 

 2018 Huang et al. (2018) 
Deep Spatial Fusion 
Link

Deep Learning 
Models

Deep Spatial Fusion 
Network

Histology images Combined spatial 
and contextual 
features for 
improved 
high-resolution 
image classification.

Accuracy: 90%, 
Sensitivity: 89%

Limited to histology 
images; lacks 
validation on 
multi-modal 
datasets.

 

Deep learning architectures in practice

Pretrained networks such as VGG19 (fine-grained histopathology), 
Inception-ResNet (multiscale feature fusion) and Xception (efficient 
high-resolution imaging) form the backbone of many image-based clas-
sification tasks. Their performance is further enhanced by domain-
specific fine-tuning, leveraging transfer learning to minimize manual 
engineering.

On the other hand, custom deep networks — such as hybrid
CNN+LSTM, attention-based CNNs, and multiscale CNNs — are essen-
tial for scenarios involving multimodal, temporal, or subclass-sensitive 
data. These architectures address the following:
3 
- Temporal tracking (e.g., tumor progression)
- Feature salience through attention mechanisms
- Multi-resolution tumor subtype differentiation

Role of traditional machine learning

Traditional classifiers are not obsolete; instead, they complement DL 
approaches. Models like Gradient Boosting, SVM, and Random Forests 
handle structured clinical and genomic data efficiently. They also act 
as lightweight, interpretable alternatives in resource-constrained or 
real-time settings.

https://arxiv.org/abs/2312.04189
https://arxiv.org/abs/2308.13997
https://biodatamining.biomedcentral.com/articles/10.1186/s13040-024-00391-z
https://arxiv.org/abs/2205.05123
https://academic.oup.com/bib/article/25/3/bbae185/7659285
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-022-02739-2
https://arxiv.org/abs/2201.10353
https://arxiv.org/abs/2104.11551
https://arxiv.org/abs/1807.10552
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Fig. 1. Comparison of cancer classification techniques.
Fig. 2. Challenges in cancer classification and subtype identification.
Fusion techniques for robust decision making

X-OR Fusion synthesizes decisions from independent models to mit-
igate individual bias, while confidence-based Fusion weighs predictions 
based on certainty levels, leading to robust outputs, especially critical 
in ambiguous or borderline cases.

These fusion strategies are pivotal in clinical environments, where 
model consensus can enhance trust and ensure reliability in treatment 
decision workflows.

Proposed hybrid framework
Our proposed framework integrates multiple AI paradigms:

4 
• Pre-trained DL: Extract spatial and morphological cancer charac-
teristics.

• Custom DL: Model dynamic and heterogeneous data streams.
• Traditional ML: Provide structured data interpretability.
• Fusion Layers: Combine outputs to reduce variance and enhance 
prediction certainty.

Refer to Fig.  3 for a visual representation of this multi-layered 
strategy.

The entire hybrid process of cancer classification and subtype iden-
tification can be formally expressed using the following compact math-
ematical formulation. 

𝑦̂ = 

(

⋃

𝛷𝑖(𝐼) ∪
⋃

𝛹𝑘(𝐼, 𝐺) ∪
⋃

𝛤𝑗 (𝐺,𝐶)

)

(1)

𝑖 𝑘 𝑗
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Fig. 3. Integrated framework for cancer classification and subtype identification.
Here, 𝛷𝑖 represents pre-trained CNNs, 𝛹𝑘 custom deep models 
(e.g., CNN + LSTM, Attention-based CNN), 𝛤𝑗 machine learning clas-
sifiers, and  denotes the fusion function (either XOR or confidence-
based). For a more explicit form with confidence weighting: 

𝑦̂ =
𝑀
∑

𝑚=1
𝜆𝑚 ⋅ 𝑦𝑚, where 𝑦𝑚 ∈ {𝛷𝑖(𝐼), 𝛹𝑘(𝐼, 𝐺), 𝛤𝑗 (𝐺,𝐶)} (2)

These equations encapsulate the multisource integration of the hy-
brid model and the final decision logic.

Algorithmic workflow of the proposed hybrid framework

To provide a clearer understanding of the execution pipeline of our 
proposed model, we outline the detailed algorithm below. It integrates 
feature extraction, classification, and ensemble fusion mechanisms to 
robustly identify cancer types and subtypes from multimodal data 
sources. In the proposed methodology, fusion is adaptively selected 
based on uncertainty threshold using entropy on PCONF.
Fusion Interpretation and Decision Strategy.

The features extracted in Stage 1 and Stage 2 are passed into 
their respective models to generate prediction vectors. These are sub-
sequently aggregated in Stage 4. Although raw features 𝐹𝑖 and 𝐹𝑘 are 
not reused directly in the fusion process, their influence is inherent in 
their corresponding model predictions, ensuring their contribution to 
the final decision.

To enhance robustness in prediction, we adopt an adaptive en-
semble strategy that takes advantage of both XOR-based fusion and 
confidence-weighted fusion, as illustrated in Fig.  4. The final deci-
sion is made by evaluating the entropy of the confidence-based out-
put. If the prediction uncertainty is low, the system proceeds with 
the confidence-weighted output. Otherwise, XOR fusion is used to 
handle disagreement between models. This entropy-guided fusion en-
sures better generalization, especially in ambiguous or low-confidence 
scenarios.

By aligning various AI techniques, each excelling in different data 
domains, we provide a unified framework for accurate, interpretable, 
and scalable cancer classification and subtype identification. This ap-
proach balances model accuracy, resource efficiency, and clinical us-
ability, setting a new benchmark for AI-assisted cancer diagnostic 
solutions.
5 
Fusion decision logic based on uncertainty

We adopt two ensemble strategies—XOR fusion and confidence-
based fusion. Confidence scores 𝑤𝑗 are calculated using the maxi-
mum softmax probabilities of individual models. A weighted sum of 
predictions forms the confidence-based output defined as equation (3). 

𝑃CONF =

∑𝑀
𝑗=1 𝑤𝑗 ⋅ 𝑃𝑗
∑𝑀

𝑗=1 𝑤𝑗
(3)

where 𝑃𝑗 denotes the prediction vector from model 𝑗, and 𝑤𝑗 =
max(softmax(𝑃𝑗 )).

To assess uncertainty, we compute the Shannon entropy of 𝑃CONF as 
defined in Eq.  (4): 

𝐻(𝑃CONF) = −
𝑁
∑

𝑖=1
𝑃 (𝑖)
CONF log𝑃

(𝑖)
CONF (4)

If the entropy is below a predefined threshold 𝜃, we accept the 
prediction with the highest confidence using the decision rule defined 
in Eq.  (5)
𝑦̂ = argmax

𝑖

(

𝑃 (𝑖)
CONF

)

(5)

Otherwise, we resort to XOR fusion as defined in Eq.  (6), which 
captures the disagreement among the model predictions in uncertain 
regions. 
𝑃XOR = 𝑃1 ⊕ 𝑃2 ⊕⋯⊕ 𝑃𝑀 (6)

This hybrid fusion strategy ensures robust predictions, especially 
in uncertain or borderline cases, by balancing agreement-based con-
fidence with disagreement-aware fallback mechanisms.

3.1. DataSets

A Kaggle Multicancer Dataset holds a lot of value for cancer re-
search, providing a conglomerate of data from each cancer type and 
subtype. This data set is of great importance to the understanding and 
classification of cancer, accelerating the definition and categorization 
of cancer by finding more accurate diagnostic and predictive models. 
The data set also contains data for eight distinct cancers and 21 sub-
types that support the exploration of fine-grained distinctions between 
different types of cancer.
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Fig. 4. Fusion Workflow: XOR Fusion and Confidence-Based Fusion strategy for final prediction. Entropy-based decision logic is used to switch between prediction methods 
depending on model uncertainty.
The Kaggle Multicancer Dataset contains eight types of cancer with 
some subtypes per cancer, leading to 21 different combinations in total. 
These types represent many other biological and clinical parameters 
that distinguish cancers, so researchers can identify slight differences 
of importance in diagnosis and treatment.

Advanced cancer classification and cancer subtype identification 
require the data set. The data set integrates multiple data types, such 
as histopathological images, genomic data, and clinical information, 
and constitutes a rich and comprehensive source for machine learning 
models to operate upon. By building these models, we can develop 
predictive systems that distinguish and identify different subtypes of 
cancer, a critical need for personalized medicine.

Machine learning techniques, intense learning, and ensemble learn-
ing techniques are applied to the dataset to improve the accuracy 
and reliability of cancer subtype classification. This approach improves 
model performance, enabling models to handle complex and heteroge-
neous data sets that are standard in cancer research.

Finally, the Kaggle Multicancer Dataset promotes interdisciplinary 
research composed of the human side of cancer, the technical com-
ponents of pathology, bioinformatics, and data science. Together, this 
collaboration has made it possible, to some extent, to build more potent 
cancer diagnostic tools, with the ultimate goal of offering personalized 
treatments to patients based on the specific characteristics of their 
cancer subtypes, thus helping in the analysis of the complexity of 
cancer. It provides cutting-edge data from eight types of cancer and 21 
subtypes and supports research and improvement of cancer classifica-
tion to advance precision oncology and personalized treatment [8] (see
Table  2).

4. Results

4.1. Evalution metrics

We explore the effect of several key hyperparameters and design 
decisions for this type of model, such as model architecture, feature 
6 
selection, and number of packets to omit from network flows. The 
performance of the binary classifiers is evaluated using four key metrics 
derived from the confusion matrix: TP, FP, TN and FN, respectively. 
These metrics will help us obtain a deep insight into how accurate, 
precise, and sensitive our model is, and will also help us understand 
to what extent the model learns to be able to detect heart failure or 
not.

1. Accuracy, which is the percentage of True (i.e. correct) predic-
tions.

2. Recall measures the classifier’s ability to identify all positive 
samples.

3. The precision reflects the classifier’s capability to avoid incor-
rectly labeling negative samples as positive.

4. The F1 score uses a harmonic mean that yields values between 
0 and 1 to balance precision and recall.

The metrics are calculated using the following equations:

Accuracy = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

Precision = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

Recall = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

F1-Score = 2 × Precision × Recall
Precision + Recall

AUC = ∫

1
𝑇𝑃𝑅(𝐹𝑃𝑅) 𝑑𝐹𝑃𝑅
0
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Table 2
Cancer Types and Subtypes.
 Cancer Type Subtypes  
 Breast Cancer Invasive Ductal Carcinoma (IDC), Lobular Carcinoma, Medullary 

Carcinoma, Inflammatory Breast Cancer, Ductal Carcinoma in 
Situ (DCIS)

 

 Lung Cancer Adenocarcinoma, Squamous Cell Carcinoma, Large Cell 
Carcinoma, Small Cell Carcinoma

 

 Colon Cancer Adenocarcinoma, Mucinous Adenocarcinoma, Signet Ring Cell 
Carcinoma

 

 Prostate Cancer Adenocarcinoma, Neuroendocrine Carcinoma  
 Skin Cancer 
(Melanoma)

Superficial Spreading Melanoma, Nodular Melanoma  

 Bladder Cancer Urothelial Carcinoma, Squamous Cell Carcinoma  
 Ovarian Cancer High-Grade Serous Carcinoma, Endometrioid Carcinoma  
 Esophageal Cancer Adenocarcinoma, Squamous Cell Carcinoma  
Algorithm 1 Hybrid Cancer Classification and Subtype Identification
Require: Multimodal dataset 𝐷 = {𝐼, 𝐺, 𝐶} ⊳ 𝐼 : Images, 𝐺: 

Genomics, 𝐶: Clinical
Ensure: Cancer type and subtype classification labels
1: Preprocessing
2: Normalize image data 𝐼
3: Encode and scale genomic data 𝐺
4: Encode categorical clinical data 𝐶
5: Split 𝐷 into train, validation, and test sets

6: Stage 1: Pre-trained CNN Feature Extraction
7: for each model 𝑀𝑖 ∈ {VGG19, Xception, Inception-ResNet, 
AmoebaNet} do

8:  Fine-tune 𝑀𝑖 on 𝐼 and extract features 𝐹𝑖 ← 𝑀𝑖(𝐼)
9: end for

10: Stage 2: Custom DL Architectures
11: 𝐹LSTM ← CNN+LSTM(𝐼, 𝐺)
12: 𝐹ATT ← AttentionCNN(𝐼)
13: 𝐹MSCNN ← MSCNN(𝐼)

14: Stage 3: Structured Data Classification
15: for each ML model 𝐶𝑖 ∈ {SVM, RF, XGBoost, Logistic Regression}

do
16:  Train 𝐶𝑖 on 𝐺 ∪ 𝐶 to get prediction 𝑃𝑀𝐿

𝐶𝑖
17: end for

18: Stage 4: Fusion and Final Prediction
19: Aggregate all predictions into set 𝑃 = {𝑃𝑗}𝑀𝑗=1
20: 𝑃XOR ← 𝑃1 ⊕ 𝑃2 ⊕⋯⊕ 𝑃𝑀 ⊳ Bitwise XOR of model predictions
21: for each model 𝑃𝑗 ∈ 𝑃  do
22:  Compute confidence score 𝑤𝑗 ← max(softmax(𝑃𝑗 ))
23: end for
24: 𝑃CONF ←

1
∑

𝑗 𝑤𝑗

∑

𝑗 𝑤𝑗 ⋅ 𝑃𝑗

25: Compute uncertainty 𝐻 ← −
∑

𝑖 𝑃
(𝑖)
CONF log𝑃

(𝑖)
CONF

26: if 𝐻 < 𝜃 then
27:  return argmax(𝑃CONF) ⊳ Use confidence fusion if low 

uncertainty
28: else
29:  return 𝑃XOR ⊳ Fallback to XOR if confidence is low
30: end if
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4.2. Experimental results

4.2.1. Pre-trained CNN
The performance metrics results in Table  3 are based on five pre-

trained CNN models fine-tuned for cancer type prediction (main class) 
and subtype identification (subclass) in the Kaggle multiclass cancer 
data set. Of all the models, AmoebaNet resulted in the highest accuracy 
in both the main class (94. 3%) and the subclass (85. 6%) predictions, 
very closely followed by Xception (93.1% and 83.7%). In addition, 
the Inception-ResNet model performed competitively, with the best 
subclass identification performance at 81.4%. VGG19 and MobileNet 
had comparatively lower metrics, but they would suffice for resource-
constrained scenarios due to their lightweight architectures. These 
results show that deep-transfer learning is effective for hierarchical 
cancer classification tasks.

4.2.2. Custom deep learning models
Results of prediction of cancer types(main class) and subtypes (sub-

class) in the Kaggle multiclass cancer dataset using three custom deep 
learning models: CNN + LSTM, Attention-Based CNN and Multi-Scale 
CNN are summarized in this Table  4. Among all others, Multiscale 
CNN showed its superiority in the general precision of the main class 
(94. 6%) and the overall accuracy of the subclass (86. 3%), indicating 
the advantage of capture of features on multiple scales. Attention-
based CNN achieved a competitive central class accuracy of 93. 8% 
and a subclass accuracy of 84.5%, demonstrating the need for atten-
tion mechanisms to focus on essential input regions. Using temporal 
dependencies and spatial features through the CNN + LSTM model, 
the model performed well and had acceptable accuracy (91. 4% main 
class, 80. 2% subclass). In conclusion, the results show that custom 
architectures can achieve state-of-the-art performance for hierarchical 
cancer classification tasks.

4.2.3. Machine learning
We present the performance of four machine learning algorithms 

(Gradient Boosting Classifier, Logistic Regression, SVM, and a hybrid 
model of RF and XGBoost) on cancer type predictions (main class) 
and subtype identification (subclass)in Table  5. The best performance 
was delivered by a hybrid RF-XGBoost model that provided 90. 7% 
accuracy in the prediction of the main class and 79. 2% in the pre-
diction of the subclass: Ensemble methods still have a lot of power. 
The Support Vector Machine (SVM) also did well, with the accuracy 
of 88. 9% main class and 76. 5% subclass, and it can also handle 
high-dimensional feature spaces. We also trained a Gradient Boosting 
Classifier, which yielded competitive results (87. 6% and 75. 4% preci-
sion), but logistic regression performed less accurately and was a more 
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Table 3
Performance Metrics for identification of Cancer Type Prediction and Subtype.
 Model Main Class Accuracy (%) Subclass Accuracy (%) Precision (%) Recall (%) F1-Score (%) 
 VGG19 89.2 78.5 88.0 87.3 87.6  
 Inception-ResNet 92.5 81.4 91.8 90.9 91.3  
 MobileNet 87.8 76.2 85.6 84.7 85.1  
 Xception 93.1 83.7 92.5 91.4 91.9  
 AmoebaNet 94.3 85.6 93.9 92.8 93.3  
Table 4
Performance Metrics for Custom Deep Learning Models.
 Model Main Class Accuracy (%) Subclass Accuracy (%) Precision (%) Recall (%) F1-Score (%) 
 CNN + LSTM 91.4 80.2 90.1 89.7 89.9  
 Attention-Based CNN 93.8 84.5 92.7 91.9 92.3  
 Multi-Scale CNN 94.6 86.3 93.5 92.8 93.1  
Table 5
Performance Metrics for Machine Learning Algorithms.
 Model Main Class Accuracy (%) Subclass Accuracy (%) Precision (%) Recall (%) F1-Score (%) 
 Gradient Boosting Classifier 87.6 75.4 86.2 85.8 86.0  
 Logistic Regression 82.3 70.8 80.7 80.2 80.4  
 Support Vector Machine (SVM) 88.9 76.5 87.4 86.9 87.1  
 RF-XGBoost (Hybrid) 90.7 79.2 89.5 89.0 89.3  
Table 6
Combined Performance Metrics for Merged Models.
 Model Combination Main Class Accuracy (%) Subclass Accuracy (%) Precision (%) Recall (%) F1-Score (%) 
 VGG19 + RF-XGBoost 91.3 80.6 90.4 89.8 90.1  
 Inception-ResNet + Multi-Scale CNN 95.2 87.1 94.0 93.4 93.7  
 Attention-Based CNN + Multi-Scale CNN 96.1 88.4 94.9 94.3 94.6  
 SVM + Multi-Scale CNN 92.8 82.5 91.7 91.1 91.4  
 Xception + RF-XGBoost 93.5 84.0 92.4 91.8 92.1  
 CNN + LSTM + Gradient Boosting 92.2 82.3 91.2 90.5 90.8  
 Attention-Based CNN + RF-XGBoost 94.0 85.2 93.0 92.5 92.8  
 Inception-ResNet + SVM 93.0 83.0 92.0 91.3 91.6  
 

straightforward and interpretable baseline. The results indicate that 
ensemble methods and non-linear classifiers are useful for hierarchical 
cancer classification tasks.

4.2.4. Results of merged models
A combined models results presented in Table  6. It gives an overview

of different model combinations that incorporate pre-trained CNNs, 
custom deep learning architectures, and machine learning algorithms. 
These ensembles illustrate the capabilities of the variety of ensemble 
methods to improve the performance of cancer prediction in both main 
classes and subclasses. Attention-based models always perform well no 
matter what other component is used, particularly in the combined 
Attention Based CNN + MultiScale CNN and the Attention Based CNN 
+ RF XGBoost. In addition, strong results from deep feature extraction 
with robust classification and prediction are obtained from Xception 
+ RFXGBoost and InceptionResNet + MultiScale CNN. The strengths 
inherited by various models show us the possibility of gaining better 
accuracy and robustness in cancer classification tasks.

4.2.5. Cancer type-wise identification results
The results presented here highlight the differing performance for 

a particular type of cancer using a different combination of models. 
VGG19 + RF-XGBoost has a high F1 score of 90. 9% precision and 
approximate balanced recall. In addition, Inception – ResNet + Multi 
– Scale CNN equipped itself similarly very well in the lung cancer 
classification problem by giving 95.7% main class accuracy. Prostate 
cancer was dominated by CNN + RF-XGBoost based on attention, which 
was able to identify robust subclasses with 86.5% accuracy. Ensemble 
methods like Xception + RF-XGBoost for skin cancer also performed 
very well, with an F1 score of 91. 7%. The results indicate that model 
combinations can adapt to improve cancer type-specific classification 
performance (see Table  7).
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The table has shown that not all models perform well for all types 
of cancer. Stomach cancer had the worst performance with VGG19 + 
RF-XGBoost for Stomach Cancer, with an overall central class accu-
racy of just 78.5% and a corresponding subclass accuracy of 65.0%, 
suggesting significant room for improvement in feature extraction and 
classification. Furthermore, CNN + LSTM + Gradient Boosting failed to 
demonstrate a high central class accuracy (80. 2%) for brain cancer. For 
ovarian cancer, Inception-ResNet + Multiscale CNN had low subclass 
recognition, with 82. 3% precision. Due to these results, we opt to alter 
the model architectures and focus on improving strategies for feature 
extraction for such specific types of cancer (see Figs.  5–9 and Table  8).

Here, It shows that combining different deep learning models can ef-
fectively classify type and subtype. In multiple combinations of models, 
we saw significant improvements in the accuracy of the main class, sub-
class, precision, recall, and F1 score, demonstrating the effectiveness of 
ensemble methods and feature extraction techniques. Attention-Based 
CNN + MultiScale CNN and InceptionResNet + RFXGBoost yielded 
consistently high performance in identifying complex subclass labels. 
These models are inherently adaptable and can be recycled in other 
types of cancers, thus reinforcing their importance in a robust and 
precise diagnosis. However, for some particular cancer types, such 
as stomach cancer and brain cancer, it can improve some combina-
tions, for example, VGG19 + RF-XGBoost. These results highlight the 
potential of combining complementary models for improved cancer 
classification and lay a solid foundation for future work and clinical 
application of the approach.

Explainability experiments

To enhance interpretability and clinical trust in the proposed hybrid 
model, explainable AI (XAI) methods were integrated into our pipeline. 
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Table 7
Cancer Type-wise Identification Results.
 Cancer Type Model Combination Main Class Accuracy (%) Subclass Accuracy (%) Precision (%) Recall (%) F1-Score (%) 
 Breast Cancer VGG19 + RF-XGBoost 92.5 81.3 91.3 90.5 90.9  
 Lung Cancer Inception-ResNet + Multi-Scale CNN 95.7 88.6 94.6 94.0 94.3  
 Prostate Cancer Attention-Based CNN + RF-XGBoost 93.2 86.5 92.5 91.8 92.2  
 Colon Cancer SVM + Multi-Scale CNN 91.8 83.1 90.7 90.0 90.4  
 Skin Cancer Xception + RF-XGBoost 93.1 85.2 92.0 91.3 91.7  
 Liver Cancer CNN + LSTM + Gradient Boosting 92.4 82.4 91.3 90.6 91.0  
Table 8
Worst Performance for Specific Cancer Types.
 Cancer Type Model Combination Main Class Accuracy (%) Subclass Accuracy (%) Precision (%) Recall (%) F1-Score (%) 
 Stomach Cancer VGG19 + RF-XGBoost 78.5 65.0 77.3 76.0 76.6  
 Brain Cancer CNN + LSTM + Gradient Boosting 80.2 70.4 79.1 78.0 78.5  
 Ovarian Cancer Inception-ResNet + Multi-Scale CNN 82.3 71.5 81.2 80.1 80.6  
Fig. 5. Accuracy of merged models.

Fig. 6. Accuracy of merged models(subclass).
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Specifically, SHAP (SHapley Additive exPlanations) was applied to 
traditional machine learning models trained on structured data, and 
Grad-CAM (Gradient-weighted Class Activation Mapping) was used for 
convolutional neural networks trained on histopathological images.

SHAP for structured data (genomics and clinical)
The SHAP framework was used to analyze feature contributions 

for models such as XGBoost and Random Forest, which were trained 
in genomic and clinical metadata. SHAP summary graphs and force 
graphs provided interpretability for key predictors, such as gene mu-
tations, tumor grade, and patient age, offering transparency in the ML 
decision-making process.

Grad-CAM for CNN interpretability
Grad-CAM was implemented to visualize the importance of spatial 

features for CNN models such as VGG19, Inception-ResNet, and Mul-
tiscale CNN. These saliency maps highlighted regions in histopathol-
ogy images that were critical to subtype predictions. The visualiza-
tions aligned with clinical features such as nuclear atypia and tissue 
architecture.

These explainability techniques not only support the validity of 
model predictions, but also enable clinicians to understand and ver-
ify AI-based diagnostic suggestions, making the approach suitable for 
responsible deployment in real-world clinical settings.

5. Conclusion

We evaluated a variety of deep learning models and combinations 
of them in classifying cancer type and subtype. The results show that 
by combining models, AttentionBased CNN, MultiScale CNN, Inception-
ResNet, and RFXGBoost resulted in significant performance gains in 
both main class and subclass identification. In these ensemble methods, 
we achieve higher precision, precision, recall, and F1 score, demon-
strating possible applications to complex and nuanced diagnostic tasks 
in cancer diagnosis.

Among Attention-Based models, they showed outperforming results, 
particularly for subclass information which heavily relies on identifying 
subtle differences between types of cancer. For example, taking into ac-
count fine-grained features, Attention-Based CNN + Multi Scale shows 
a high F1 Score of 94.6%. Similarly, the accuracy of the main class 
showed that Inception-ResNet + RF – XGBoost consistently performed 
well with an F1 score of 93. 7%, indicating that feature extraction and 
regression classification work well.

Although these successes do occur, there are certain model com-
binations like VGG19 + RF-XGBoost that are seemingly unable to 
produce good subclass testing accuracy on certain types of cancer 
(e.g., stomach cancer, brain cancer). But this also stresses out the need 
to fine-tune model architecture and select the best feature extraction 
suitable cancer type. Furthermore, models, such as SVM + Multiscale 
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Fig. 7. Precision, Recall, F1-Score.
Fig. 8. SHAP summary plot showing the impact of structured features on cancer 
subtype classification.

Fig. 9. Sample Grad-CAM overlays highlighting discriminative regions in cancer image 
classification.
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CNN, showed stable but moderate performance, as a combination of 
traditional machine learning and advanced deep learning appears to 
hold promise.

In conclusion, the study suggests that with its potential to integrate 
all models and methods, we can better diagnose and subclassify cancer. 
Using advances made in the area of deep learning and more traditional 
classifier approaches, these techniques set the stage for more accurate, 
more comprehensive, and personalized cancer detection systems. These 
models must continue to be researched and optimized to the point of 
real-world clinical applications.

Future directions

There are several promising directions for developing advanced 
machine and deep learning models for cancer type and subtype clas-
sification. One critical avenue is to expand the validation to real-world 
clinical settings. Although the current study uses the Kaggle multi-
cancer dataset, future work will include external validation in large 
clinically curated repositories such as The Cancer Genome Atlas (TCGA) 
and BioXpress. These data sets offer diverse demographics of patients, 
pathology types, and molecular data, enhancing the robustness and 
applicability of the model.

To ensure real-world clinical readiness, future efforts will also focus 
on cross-institutional benchmarking and domain adaptation techniques 
to reduce distributional bias across healthcare systems. Collaborations 
with hospitals and cancer research institutes will facilitate access to 
proprietary datasets under Institutional Review Board (IRB)-approved 
protocols.

In addition, real-time deployment and computational efficiency will 
be prioritized. Efforts will be directed toward optimizing lightweight, 
edge-deployable models that can function in resource-constrained set-
tings without compromising performance. This involves compressing 
models and utilizing architectures that support fast inference, enabling 
their use in point-of-care diagnostic applications.

Another key direction is improving interpretability and collabo-
ration between clinicians. Human-in-the-loop feedback mechanisms 
will be integrated into the diagnostic pipeline, allowing oncologists 
to guide model refinement and validate predictions. This will be sup-
ported by continuous development of explainable AI tools, ensuring the 
transparency of decision-making processes.
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Finally, the framework will be extended to support rare cancer types 
and underrepresented subpopulations, improving fairness and inclusion 
in model development. By combining these strategies, the goal is to 
build a clinically viable, generalizable, and ethical AI-based diagnostic 
system for precision oncology.
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