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 A B S T R A C T

Retrosynthetic analysis is highly significant in chemistry, biology, and materials science, providing essential 
support for the rational design, synthesis, and optimization of compounds across diverse Artificial Intelligence 
for Science (AI4S) applications. Retrosynthetic analysis focuses on exploring pathways from products to 
reactants, and this is typically conducted using deep learning-based generative models. However, existing 
retrosynthetic analysis often overlooks how reaction conditions significantly impact chemical reactions. This 
causes existing work to lack unified models that can provide full-cycle services for retrosynthetic analysis, and 
also greatly limits the overall prediction accuracy of retrosynthetic analysis. These two issues cause users to 
depend on various independent models and tools, leading to high labor time and cost overhead.

To solve these issues, we define the boundary conditions of chemical reactions based on the Evaluatology 
theory and propose BigTensorDB, the first tensor database which integrates storage, prediction generation, 
search, and analysis functions. BigTensorDB designs the tensor schema for efficiently storing all the key 
information related to chemical reactions, including reaction conditions. BigTensorDB supports a full-cycle 
retrosynthetic analysis pipeline. It begins with predicting generation reaction paths, searching for approximate 
real reactions based on the tensor schema, and concludes with feasibility analysis, which enhances the 
interpretability of prediction results. BigTensorDB can effectively reduce usage costs and improve efficiency 
for users during the full-cycle retrosynthetic analysis process. Meanwhile, it provides a potential solution to 
the low accuracy issue, encouraging researchers to focus on improving full-cycle accuracy.
1. Introduction

Retrosynthetic analysis is an important method for exploring ef-
ficient synthetic pathways for target molecules. It holds significant 
importance in fields such as chemistry, materials science, and pharma-
ceuticals [1]. The main goal of retrosynthetic analysis is to identify the 
appropriate reactants and reaction conditions for the efficient synthesis 
of the target molecule. For example, when a target product is inputted, 
the work aims to obtain the correct reactants, reaction conditions, and 
multiple pathways for its synthesis.

People are always committed to developing efficient and user-
friendly tools to help scientists conduct retrosynthetic analysis more 
quickly and conveniently. Since the 1960s, computer-aided synthesis 
planning (CASP) has been a key tool in this area [2]. Particularly, in 
today’s era of rapid development of artificial intelligence (AI), AI for 
Science (AI4S) brings about significant changes in many fields. It also 
injects new vitality into retrosynthetic analysis technology.
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More and more machine learning-based methods, especially deep 
learning models, are being used in the field of retrosynthetic anal-
ysis. These AI technologies significantly improve the efficiency and 
accuracy of it [3–10]. In 2022, Liu et al. [11] first highlighted three 
major contradictions facing machine learning in materials science: data 
characteristics, model interpretability, and result authenticity [12–15]. 
These also apply to retrosynthetic analysis. On further analysis, existing 
prediction models are found to treat reactants and reaction conditions 
as separate factors, which gives rise to two key issues as follows:

a. Lacking a unified model that can provide full-cycle service 
for retrosynthetic analysis. The full-cycle service for retrosyn-
thetic analysis involves a step-by-step prediction of reactants 
and reaction conditions, ultimately yielding complete candidate 
chemical reaction equations that are ready for direct experi-
mental validation. Current research on AI-based retrosynthetic 
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Fig. 1. The entire process of retrosynthetic analysis involves a step-by-step prediction 
of reactants and reaction conditions. The prediction of reactants requires a target 
molecule as input, while the prediction of reaction conditions requires a reaction 
equations without reaction conditions. We choose model RetroTRAE [16] as model 
A for reactants prediction and model Parrot [17] as model B for reaction conditions 
prediction. For detailed experimental descriptions and workload information, please 
refer to Sections 4.3.2 and 3.2. The figure indicates that the individual accuracies of 
Model A and Model B are quite low, at 58.3% and 24%, respectively. When Model A’s 
output is used as input for Model B, the combined accuracy of the prediction results 
(Model A + B) drops even further to a mere 12%. This represents a significant decrease 
of 79% for Model A and 50% for Model B compared to their original accuracies. Given 
these substantial declines in performance, there is an urgent need for a unified model 
to improve the overall accuracy.

analysis models mainly focuses on one direction of single-step 
or multi-step prediction of synthetic routes. These directions can 
be categorized into two types based on their prediction targets, 
which usually include reactants and reaction conditions. How-
ever, when scientists use retrosynthetic analysis tools, they hope 
to directly obtain a set of complete reaction equation candidates. 
Therefore, it is necessary to design a full-cycle service that can 
provide a set of complete reaction equation candidates, including 
both reactants and reaction conditions.

b. Significant bottleneck in the prediction accuracy of full-cycle 
retrosynthetic analysis. We have noticed that the accuracy of in-
dividual prediction models is often low, and when used together, 
their combined accuracy tends to decrease even more. For each 
prediction models, the prediction accuracy is defined as the pro-
portion of correct results among the Top-k generated predictions. 
However, as shown in Fig.  1, when the Top-1 accuracy of the 
reactant prediction model RetroTRAE [16] (A) is 58.3% and that 
of the reaction condition prediction model Parrot [17] (B) is 24%, 
the overall Top-1 accuracy of the final predicted result (A+B) 
is only 12%. Therefore, optimizing the accuracy of a specific 
type of model is insufficient for full-cycle retrosynthetic analysis. 
And there is an urgent need for new work focusing on overall 
prediction accuracy.

To address above issues, this paper proposes BigTensorDB. BigTen-
sorDB is the first tensor database designed to provide full-cycle service 
for retrosynthetic analysis. It integrates storage, prediction generation, 
search and analysis functions. Its main contributions are summarized 
as follows:

(1) We design a tensor format for storing chemical reactions. This 
format efficiently stores all key information related to chemical reac-
tions, including reactants, products, and reaction conditions (such as 
solvents and reagents). We provide users with services for storing and 
retrieving chemical reactions.

(2) We integrate multiple retrosynthetic analysis prediction models 
including reactants prediction and reaction conditions prediction. We 
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also integrate SMILES embedding models. These integrations offer full-
cycle retrosynthetic analysis services to users. Our work reduces usage 
costs and improves the pipeline’s efficiency.

(3) We provide search and analysis services. Through these ser-
vices, we re-rank and analyze the final prediction results. At the same 
time, we provide real reaction equations similar to the predicted re-
sults for user reference. These works can enhance the accuracy and 
interpretability of the final outcomes.

2. Background and related work

2.1. Background

Retrosynthetic analysis was established by E.J. Corey [2]. It involves 
identifying target molecules, deconstructing them in a reverse manner, 
and devising synthetic routes to achieve the desired synthesis. The 
purpose of retrosynthetic analysis is to assist scientists in finding more 
efficient synthetic routes to synthesis more useful molecules. The target 
molecules often originate from diverse application scenarios. They typi-
cally cannot be synthesized via known reactions or have very inefficient 
existing synthetic pathways. Thus, there is a need to explore new and 
more efficient synthetic routes by retrosynthetic analysis.

To solve this problem, scientists usually need to search through a 
vast space of possible transformations of the target molecules. This can 
be done either by hypothetically disconnecting bonds or by converting 
one functional group into another which goal is to match existing 
reaction templates. However, this process demands that scientists have 
a rich knowledge base and extensive synthetic experience. Additionally, 
it requires significant time and material costs for experiments to verify 
the correctness of hypotheses.

The earliest computer-aided tools work by first enumerating pos-
sible reaction types for the target molecule. Then, they use search 
algorithms to recursively enumerate and search for potential reaction 
pathways. This process continues until viable starting materials are 
identified. However, these methods essentially do not create new reac-
tions but rather rearranged existing knowledge. Today, with the rapid 
development of AI, an increasing number of machine learning-based 
models are being applied to retrosynthetic analysis. This helps scientists 
become more creative in their retrosynthetic analysis works.

These machine learning models, particularly deep learning models, 
mainly fall into two categories: prediction reactants and prediction 
reaction conditions. In real-world scenarios, scientists must select from 
a wide range of models first. Then they use the chosen reactant pre-
diction model to generate a set of reaction equations without reaction 
conditions. It is essential to emphasize that the reaction conditions play 
an important role in chemical reactions. The same reactants can un-
dergo different reactions under different conditions, leading to different 
products. Therefore, scientists must also select a reaction condition pre-
diction model for another round of predictions. Afterward, they need 
to conduct theoretical analysis and experimental verification manually. 
Each experimental verification of a reaction requires substantial time 
and material costs. Thus, the accuracy of prediction models is vital 
for real experiments. It also determines the efficiency of retrosynthetic 
analysis.

2.2. CASP’s related work

2.2.1. Prediction models
Researchers have developed the Simplified Molecular Input Line 

Entry System [18] (SMILES) notation, a text-based method that encodes 
molecular graphs into simple, human-readable character sequences. 
Some prediction models extract functional groups from SMILES expres-
sions to analyze a target molecule’s reaction-related structural, spatial, 
and functional group features, achieving prediction. Others ignore re-
action structures, spatial configurations, and functional groups, instead 
directly using SMILES for sequence-to-sequence [19–25] (Seq2Seq) 
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prediction. Generative AI, including the Seq2Seq method, is crucial for 
discovering new substances or materials. It enables predictive models 
to transcend existing knowledge and create new knowledge. However, 
these models show lower prediction accuracy on United States Patent 
and Trademark Office (USPTO) datasets. Notably, some models achieve 
high accuracy and better user-friendliness by calling large language 
model Application Programming Interfaces (APIs) or fine-tuning these 
models [26] to generate products and recommend reaction conditions. 
As discussed earlier, deep learning-based machine learning models 
in this field can be categorized into reactants prediction models and 
reaction condition prediction models. We will detail these models based 
on this classification.

From the perspective of the methods used, reactant prediction 
models can be classified as template-based, template-free, and semi-
template-based models [27,28].

Template-based methods play an important role in retrosynthe-
sis prediction. These methods employ reaction templates extracted 
from chemical databases to guide the retrosynthesis process through 
template-target molecule matching. The templates, which can be manu-
ally curated or automatically generated, enable models to identify opti-
mal chemical transformations [29]. Multiple approaches [30–33] have 
been developed for template prioritization [29]: RetroSim [30] ranks 
candidate templates using molecular fingerprint comparisons, Neural-
Sym [31] employs a deep neural network classifier, and GLN [32] eval-
uates template-reactant compatibility with a conditional graph logic 
network. While template-based models provide interpretability and en-
sure molecule validity, their practical applications [34] are constrained 
by limited generalization capability and scalability [29].

Template-free methods aim to eliminate dependency on predefined 
templates. It achieves retrosynthesis prediction through data-driven or 
innovative architectural design, opening up a new direction of explo-
ration in this field. Most existing methods turn the task into a Seq2Seq 
problem [19–25], using the SMILES [18] format to represent molecules. 
This is first to use by Liu et al. [19] who proposed a long short-term 
memory [35] (LSTM)-based Seq2Seq model to change the SMILES of 
a product into the SMILES of reactants. Meanwhile, there are some 
studies treat this task as a graph-to-sequence problem, using molecular 
graphs as input [36]. For example, Graph2SMILES [36] combined a 
graph encoder with a Transformer decoder to keep SMILES order the 
same. However, in recent studies, such as MEGAN [37], MARS [38], 
and Graph2Edits [39], end-to-end molecular graph editing model is 
widely used. These models represent chemical reactions as a series of 
changes to molecular graphs. Fang et al. [40] created a way to decode 
at the substructure level by finding parts of product molecules that 
stay the same. Although template-free methods are entirely data-driven, 
they face challenges related to the interpretability, chemical validity, 
and diversity of the molecules they generate [29,34].

Semi-template-based methods involve a two-stage strategy. The 
first stage decomposes target molecules into synthons via reactive site 
identification, while the second stage converts synthons to reactants 
through techniques like leaving group selection [27], graph genera-
tion [41], or SMILES generation [1,42]. RetroXpert [42] first identified 
the reaction center of the target molecule using an edge-enhanced 
graph attention network to obtain synthons. Then it generated the 
corresponding reactants based on these synthons. RetroPrime [1] in-
corporated the chemist’s retrosynthesis strategy, which finely split 
the retrosynthesis process into decomposing the synthetic moiety and 
adding an appropriate leaving group to finally generate the reactant. 
These methods better match the intuitive problem-solving approach of 
scientists. However, the two stages in the framework are independent. 
This increases computational complexity. Moreover, it is challenging 
to transfer the knowledge and insights gained from predicting reactive 
sites to the completion of reactants [29].

Reaction condition prediction typically involves inputting a com-
plete SMILES-formatted equation and outputting suitable reaction con-
ditions. However, recommending conditions from scratch is a challeng-
ing and under-explored problem that heavily depends on the knowl-
edge and experience of chemists. Neural network models can predict 
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the chemical environment, including catalysts, solvents, and reagents, 
as well as the most suitable temperature for any given organic reac-
tion [17,43]. There are also some works [26] based on large language 
models that can also achieve reaction condition recommendation and 
prediction. MM-RCR [26] model is a text-enhanced multimodal large 
language model that learns a unified reaction representation by multi-
source information from SMILES, reaction graphs, and text corpora. It 
also demonstrated strong generalization capabilities on out-of-domain 
and high-throughput experimental datasets, providing new momentum 
for high-throughput reaction condition screening.

2.2.2. Automated feature engineering
Data quality critically impacts machine learning model perfor-

mance. High-quality data can greatly boost a model’s predictive accu-
racy and reliability. In contrast, low-quality data may degrade perfor-
mance and lead to results conflicting with domain-expert understand-
ing [44–49]. Thus, ensuring the effectiveness of data augmentation and 
feature extraction for retrosynthetic analysis tools is extremely impor-
tant [50–52]. So, here we introduce the Automated feature engineering 
models related to our works.

SMILES [18] (simplified molecular input line entry system) are 
text-based representations that encode a molecular graph in a simple, 
human-readable sequence of characters [53,54]. Transformer models 
are effective in cheminformatics for processing SMILES strings and 
extracting molecular representations, benefiting from bidirectional con-
text for enhanced understanding of chemical environments, transfer 
learning, and fine-tuning.

BERT [55] is a pioneering model that captures bidirectional con-
text from SMILES strings, making it suitable for tasks like property 
prediction and drug discovery, though it has high computational and 
memory demands. MOLBERT [56] is a chemistry-specific adaptation of 
BERT that excels in predicting physicochemical properties and molec-
ular interactions, but it requires large labeled datasets for optimal 
performance. SMILES-BERT [57] is designed to learn molecular repre-
sentations directly from SMILES strings without extensive feature engi-
neering, making it effective for predicting molecular properties, though 
it also demands significant computational resources. ChemBERTa [58] 
and ChemBERTa-2 [59] enhance BERT [60] with domain-specific train-
ing for a variety of property predictions, improving accuracy while 
maintaining high complexity and resource demands. The RoBERTa-
based Model [61] refines BERT by using more data and longer se-
quences for better property prediction and molecular classification, 
although it increases computational requirements for training and infer-
ence. Mol-BERT [62] and MolRoPE-BERT [63] are BERT-based models 
for predicting molecular properties from SMILES, differing mainly in 
their position embedding approaches, with MolRoPE-BERT using rotary 
PE to address limitations of absolute PE in Mol-BERT.

2.3. Tensor retrieval related work

In the fields of data science and artificial intelligence, the demand 
for managing high-dimensional vector data is growing rapidly, driven 
mainly by the rapid development of unstructured data and machine 
learning technologies [64].

For vector similarity search, some systems have been put into 
application, such as Alibaba’s AnalyticDB-V [65] and PASE (Post-
greSQL) [66]. However, they do not support multi-vector queries. 
Vearch [67,68] is another system designed specifically for vector 
search, but it is not efficient in handling large-scale data and also does 
not support multi-vector queries. However, as a data management sys-
tem specifically built for the needs for more efficient and flexible vector 
data management, Milvus focuses on the storage and search of large-
scale vector data, supporting various query types, including vector 
similarity search and multi-vector query processing. In particular, the 
Milvus 2.5 version introduced the Sparse-BM25 algorithm, achieving 
hybrid search of sparse and dense vectors, further improving search 
efficiency.
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Fig. 2. Valid Evaluation Condition (EC) configurations [69].

3. System architecture of BigTensorDB

3.1. Methodology

The development of BigTensorDB is predicated on a meticulous 
evaluation of the existing work on retrosynthetic analysis. Our work 
is the first tensor database designed to provide full-cycle service for 
retrosynthetic analysis. To demonstrate BigTensorDB’s performance, 
we evaluate its effectiveness in the retrosynthetic analysis process. 
Inspired by the Evaluatology mentioned in the  [69], we conduct a 
comprehensive survey of the current predictive efforts in retrosynthetic 
analysis, covering the entire process, including reactants prediction and 
reaction conditions prediction. Through developing the valid and well-
defined Evaluation Condition (EC) configurations, we establish a solid 
foundation for the motivation of our works.

As shown in Fig.  2, we construct an evaluation condition configura-
tions for the retrosynthetic analysis task inspired by the methodology in 
[69]. We first clarify that the problem task of our work is retrosynthetic 
analysis (𝐸′). The specific task instance (𝐸) is the concrete problem 
that needs to be solved in the process of retrosynthetic analysis, such 
as reactants prediction (𝐸1) based on the target product, reaction 
conditions prediction (𝐸2) based on the reaction equation and whole 
reaction pathway prediction (𝐸3). Under the task instances, we find 
different algorithms (𝐴′) to solve them, which mainly include template-
based, semi-template-based, and template-free models method. The 
specific algorithm instance (𝐴) is each concrete predictive model itself. 
Each algorithm (𝐴′) has its corresponding algorithm instance (𝐴). For 
example, the template-based models method (𝐴′

1) includes instances 
such as RetroSim (𝐴11), NeuralSym (𝐴12) and GLN (𝐴13).

3.2. Dataset sources and workload choices

There are many open-source datasets of chemical reaction expres-
sions in the field of retrosynthetic analysis, such as USPTO-50K and 
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REACTION INDEX SYSTEM (REAXYS). However, none of these datasets 
completely include the reaction conditions in the chemical equations. 
Obtaining a dataset containing reaction conditions requires a lot of 
work.

Parrot [17] has organized two large datasets, USPTO-Condition 
and Reaxys-TotalSyn-Condition, which record reaction equations and 
reaction conditions, including solvents, reagents, catalysts, etc. They 
used the reaction classifier to subdivide the dataset categories, and 
designed an external verification experiment. Therefore, we select the 
USPTO-Condition dataset. We remove the data with more than two 
reactants and merge the reaction conditions according to our boundary 
settings. We finally establish a workload consisting of a training set 
with 490,398 data entries and a test set with 100 data entries.

3.3. BigTensorDB design and implementation

The design of BigTensorDB is divided into four layers, as shown in 
Fig.  3. We aim to provide a one-stop, full-cycle service for retrosyn-
thetic analysis, in order to improve user efficiency, reduce costs, and 
explore ways to overcome the performance bottlenecks in overall pre-
diction accuracy. Users only need to input a target molecule and select 
the desired models for reactants prediction and reaction conditions 
prediction. They then can receive a re-ranked prediction candidate set 
containing complete reaction equations and real reactions for reference.

We are committed to reordering and referencing prediction candi-
dates by retrieving similar templates from a large-scale real chemical 
reaction database. To achieve this, we have designed the following four 
layers. In the storage layer, we carefully select feature extraction tools 
to extract features from chemical reaction datasets and store them in 
tensor format. In the prediction generation layer, we integrate multiple 
prediction models and provide them with a unified interface. In the 
search and analysis layer, we provide similarity retrieval and analysis 
processing services. The four layers mentioned earlier will be detailed 
in Sections 3.3.1 3.3.2 3.3.3 3.3.4.

3.3.1. Storage layer
In the storage layer, we determine a tensor format boundary for 

chemical reaction equations. A complete chemical equation involves 
reactants, products, and many reaction conditions, including temper-
ature, reagents, solvents, and so on. If we use vector format to store 
this information, we need to embed all the above information into 
one vector, which will cause a huge loss in the dimension of chemical 
information. Therefore, we hope to use a tensor composed of multi-
ple vectors to preserve all the information in the chemical reaction 
equation.

Based on Evaluatology described in [69], we define reactants, prod-
ucts, solvents and reagents as the four-dimensional parameters of each 
tensor. We also specify that the dimension size within each dimension 
of the tensor is 384. Using the feature extraction tool ChemBERTa-77M-
MLM model, we convert the chemical equations from SMILES format 
to 384 dimensional vectors. They then are stored in the tensor format, 
thereby establishing a tensor-based knowledge base of known chemical 
equations.

3.3.2. Prediction generation layer
In the prediction generation layer, the user-input target molecule 

serves as the input for the models. Predictions and generations are car-
ried out step-by-step according to the user-selected reactant prediction 
model and reaction condition prediction model. We assume the input 
target molecule is 𝑇 , the selected reactant prediction model is 𝐴, and 
the selected reaction condition prediction model is 𝐵. By inputting the 
target molecule 𝑇  into model 𝐴, we obtain a set of reactant predic-
tion candidates 𝑆1 without reaction conditions. We then input each 
candidate from 𝑆1 into model 𝐵 to obtain a set of complete chemical 
equation prediction candidates 𝑆2. Assuming that models 𝐴 and 𝐵
generate 𝑛 and 𝑚 prediction candidates for each input, respectively, the 
size of the complete reaction prediction set 𝑆  is 𝑛 ∗ 𝑚.
2
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Fig. 3. Overview of the BigTensorDB workflow.
3.3.3. Search layer
In the search layer, we utilize the multi-vector search and apply a 

weighted ranker to set weights for multi-vector searches. We perform 
similarity searches for each prediction candidates in the set 𝑆2 against 
the database of real reactions, obtaining search scores and the similar 
real reactions. Here, we have designed a preliminary experiment to test 
the effectiveness of different weight allocations for tensor dimensions 
during retrieval.

3.3.4. Analysis layer
In the analysis layer, we re-rank the reaction prediction candidate 

set 𝑆2 based on the search scores obtained in the search layer. The 
search results return the top 5 real reactions with the highest similarity 
scores and their corresponding search scores. Our re-ranking strategy 
prioritizes candidates that achieve higher similarity scores during the 
search. Through preliminary experiments, we have selected the optimal 
weight sequence for re-ranking: 𝑎1 = 0.3, 𝑎2 = 0.9, and 𝑎3 = 𝑎4 =
0.1. According to this ranking information, we output to users a re-
ranked prediction candidate set with improved accuracy, along with 
corresponding similar real reactions as reference suggestions.

4. Performance evaluation

4.1. Experiment setup

The server is equipped with 2 Intel Xeon 5218R CPUs running at 
2.10 GHz, 512 GB of memory, and an NVIDIA V100-PCIE-16 GB GPU 
connected via PCIe 3.0. Each CPU has 20 physical cores with hyper-
threading enabled, resulting in a total of 80 hardware threads, all of 
which were utilized. The operating system is Ubuntu 20.04 with the 
Linux kernel version 5.15.0. The GPU driver version is 535, and CUDA 
12.2 is used for GPU computing. All experiments were conducted using 
Python 3.10 and Docker 26.1.
5 
4.2. Experiment design

Our experiments include validating the research motivation and 
assessing our work’s performance. The research motivation validation 
consists of theoretical analysis and experimental verification, with 
the latter providing the baseline model’s performance metrics. The 
performance assessment of our work involves two main comparisons: 
one for retrosynthetic analysis and another for database performance. 
For retrosynthetic analysis, we focus on two key metrics: predictive 
accuracy and time cost. In the tensor database field, we evaluate tensor 
retrieval recall and throughput.

4.3. Motivation verification

4.3.1. Theoretical analysis
As shown in Fig.  4, we assume the input target molecule is 𝑇 , the 

selected reactant prediction model is 𝐴, the selected reaction condition 
prediction model is 𝐵, the Top-k accuracy of model 𝐴 is 𝐸𝐴(𝑘) and the 
Top-k accuracy of model 𝐵 is 𝐸𝐵(𝑘).

By inputting the target molecule 𝑇  into Model 𝐴, we obtain a 
reactant prediction candidate set 𝑆1 without reaction conditions, with a 
size of 𝑛. Taking one candidate reaction equation 𝑖 from 𝑆1 as input into 
Model 𝐵, we obtain a complete reaction equation prediction candidate 
set 𝑆 𝑖

2 with a size of 𝑚. By inputting each candidate reaction equation 
from 𝑆1 into Model 𝐵, we obtain the final reaction equation prediction 
candidate set 𝑆2 with a size of 𝑛 ∗ 𝑚. The Top-k accuracy of the 
candidate reaction equations in 𝑆2 can be obtained as:
𝐸(𝑘) = 𝐸𝐴(𝑖) ∗ 𝐸𝐵(𝑗), 𝑘 = 𝑚 ∗ (𝑖 − 1) + 𝑗

It is easy to see that 𝐸𝐴(𝑖) < 1 and 𝐸𝐵(𝑗) < 1. Given 𝑘 = 𝑚 ∗ (𝑖−1)+𝑗, 
we can deduce that 𝑖 ≤ 𝑘 and 𝑗 ≤ 𝑘. Moreover, since 𝐸𝐴 and 𝐸𝐵 are 
non-decreasing functions, it follows that:
𝐸(𝑘) = 𝐸𝐴(𝑖) ∗ 𝐸𝐵(𝑗) < 𝐸𝐴(𝑖) ≤ 𝐸𝐴(𝑘)

𝐸(𝑘) = 𝐸𝐴(𝑖) ∗ 𝐸𝐵(𝑗) < 𝐸𝐵(𝑗) ≤ 𝐸𝐵(𝑘)

Thus, there is a significant bottleneck in the prediction accuracy of 
full-cycle retrosynthetic analysis.
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Fig. 4. Model 𝐴 for reactants prediction, Top-k accuracy is 𝐸𝐴(𝑘), candidate set 𝑆1 ’s size is 𝑛. Model 𝐵 for reaction conditions prediction, Top-k accuracy is 𝐸𝐵 (𝑘), candidate set 
𝑆 𝑖
2 ’s size is 𝑚.
Table 1
Full cycle prediction accuracy of inverse synthesis analysis.
 k 1 3 5 10  
 Accuracy (%) 0.12 0.16 0.19 0.2 

4.3.2. Experiment verification
We choose model RetroTRAE [16] as model 𝐴 for reactants pre-

diction and model Parrot [17] as model 𝐵 for reaction conditions 
prediction. Then we use the workload built in Section 3.2.

We first generate 𝑛 = 10 candidate reaction equations without 
reaction conditions per test. Then we input each candidate to model 
𝐵 to generate 𝑚 = 15 candidate reaction equations including reaction 
conditions per input. At the end, we get totally 12096 candidate 
complete chemical equations for 100 tests. We then calculate the Top-k 
accuracy is shown in Table  1. Also as shown in Fig.  1, compared with 
the original accuracies, each Top-k accuracy decreases sharply.

4.4. Performance results

4.4.1. Retrosynthetic analysis performance comparison
According to Section 3.1, our work is the first tensor database 

designed to provide full-cycle service for retrosynthetic analysis. So 
we evaluate BigTensorDB’s effectiveness in the retrosynthetic analysis 
process to demonstrate BigTensorDB’s performance without conducting 
comparative experiments with other database system.

Based on Evaluatology, we select reactants, products, solvents and 
reagents as the storage format for chemical equations. We choose the 
ChemBERTa-77M-MLM model to embed SMILES. This model converts 
SMILES into 384-dimensional vectors through a neural network. After 
generating predictions for the test set, we embed the result set and 
conduct similarity searches. We select the multi-vector search algo-
rithm from the Milvus vector database, using the IVF-Flat index and 
Euclidean distance metric. We perform retrieval experiments under 
different weights. Based on the search results, we re-rank the candidate 
set and recalculate the Top-k accuracy. As shown in Fig.  5, we define 
four variables as the parameter weights for retrieval ranking. Among 
them, 𝑎1 corresponds to the reactants, 𝑎2 corresponds to the products, 
and 𝑎3 and 𝑎4 correspond to the solvents and reagents, respectively.

In Figs.  5(a) and 5(b), we conduct controlled variable experiments 
for parameters 𝑎1 and 𝑎2, respectively. In Fig.  5(a), we set 𝑎2 = 0.2, 𝑎3 =
𝑎4 = 0.2 and 𝑎1 to different values. Then we observe the re-ranked Top-k 
accuracy. The results shows that the performance is better when 𝑎1 is 
in the range of 0.2 to 0.4. In Fig.  5(b), we set 𝑎1 = 0.2, 𝑎3 = 𝑎4 = 0.2 and 
𝑎2 to different values. Then we observe the re-ranked Top-k accuracy. 
The results shows that the performance is better when 𝑎2 is 0.9.

Then, we set 𝑎1 = 0.2, 0.3, 0.4, 𝑎2 = 0.9, 0.95 to conduct controlled 
variable experiments for parameters 𝑎  and 𝑎 . The results are shown in 
3 4
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Table 2
Comparison of prediction accuracy between BigTensorDB and the baseline.
 Model Top-1 Top-5 Top-10 Top-50 Top-100 
 Model(A+B)’s accuracy 0.12 0.19 0.20 0.26 0.26  
 BigTensorDB’s accuracy 0.12 0.18 0.18 0.24 0.26  

Fig.  6. The Figs.  6(a) 6(b) and 6(c) shows the results of 𝑎1 = 0.2, 0.3, 0.4
respectively, where 𝑎2 = 0.9. The Figs.  6(d) 6(e) and 6(f) shows 𝑎2 =
0.95’s results. We can find out the performance is better when 𝑎3 and 
𝑎4 is 0.1.

Therefore, We currently find that the re-ranking performance is 
better when 𝑎1 is 0.3, 𝑎2 is 0.9, 𝑎3 and 𝑎4 is 0.1. However, more 
fine-grained experiments are still needed.

After exploring the parameter space, we conducted comparison 
experiments to compare our work with the baseline model.

We first compared the top-k accuracy of BigTensorDB’s re-ranking 
strategy with that of the original A + B baseline model, and the results 
are shown in the Table  2. The baseline model’s results were reported 
in Table  1 in Section 4.3.2. BigTensorDB’s prediction accuracy does not 
surpass the baseline models. This stable accuracy shows our work does 
not degrade the original prediction models, providing a solid base for 
further development.

In BigTensorDB, time consumption involves several parts: data 
cleaning for Model A, (Model A training), running Model A, organiz-
ing the results of Model A into the data format required for Model 
B, (Model B training), running Model B, combining the results of 
Model A and Model B, retrieving and re-ranking the results, and 
finally outputting the results. Under the workload from Section 3.2, 
we recorded BigTensorDB’s total experimental time consumption, with 
the following results. The parts in bold represent the extra overhead 
from the BigTensorDB system.

As shown in the Table  3, BigTensorDB’s extra time cost accounts 
for less than 5% of the entire process. Thus, when providing full-
cycle services, BigTensorDB does not bring extra time consumption that 
cannot be tolerated.

4.4.2. Tensor database performance comparison
The recall and throughput of Milvus-IVFFlat based multi-vector 

search in this task scenario are 72% and 45 vectors per second, re-
spectively. This performance is sub-par for vector search and indicates 
significant bottlenecks. The reason is that Milvus multi-vector search 
relies on weighted sorting after single-vector search rather than a 
genuine tensor index.
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Fig. 5. Controlled variable experiments results of 𝑎1 and 𝑎2.
Fig. 6. Controlled variable experiments results of 𝑎3 and 𝑎4.
Table 3
The time cost of each link in BigTensorDB.
 Operation Data cleaning (A) Model A Data cleaning (B) Model B Search Re-rank and output 
 Time (h) 1 10 1 10 1 0.01  
5. Lessons and future directions

5.1. Limitations of BigTensorDB

In our work, despite conducting meticulous experiments and careful 
theoretical analysis, we still identify certain shortcomings:

(1) The selection of prediction models is not diverse enough. There 
are only 2 models for reactant prediction and 4 models for reaction 
conditions prediction in our study.

(2) The accuracy of the top-k results after re-ranking still has 
significant space for improvement.
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5.2. Future work of BigTensorDB

In our future work, we will primarily focus on the following four 
directions:

Firstly, we will expand and explore more prediction models. Our 
goal is to integrate more state-of-the-art and advanced prediction mod-
els. These models will include those for predicting reactants and pre-
dicting reaction conditions. By integrating different prediction models, 
we are committed to provide users with a unified and standardized 
environment. We will offer a broader one-stop selection space.

Secondly, we need to further explore the boundary conditions of 
the storage structure. In the current work of this study, the boundary 
conditions of the reaction equation are stored as four parts: reactants, 
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products, solvents and reagents. Given the vast variety and diverse 
types of chemical reaction conditions, the boundary definition of these 
conditions still requires more rigorous experimental analysis. Moving 
forward, Our goal is to determine whether using these conditions as 
the key conditions for the reaction equation is accurate. We plan 
to continue applying methods from evaluation science. We will also 
deploy more comparative experiments.

Thirdly, we need to conduct more diversified explorations of the 
embedding models that convert reaction equations from SMILES format 
to vectors. Currently, we have chosen ChemBERTa-77M-MLM as the 
embedding model. However, related work shows that there are many 
other embedding options available. We plan to deploy richer com-
parative experiments to explore the embedding models that can best 
preserve chemical information. We aim to ensure that the embedding 
models we use accurately reflect all the chemical information contained 
in the reaction equations. This will enable our vector retrieval work to 
be accurate and efficient.

Lastly, within the retrieval layer, we still need to explore the more 
fine-grained weight parameters corresponding to different conditions 
to maximize the accuracy after re-ranking. This is crucial because 
the corresponding weights can significantly enhance the accuracy and 
reliability of the final outcomes.

6. Conclusion

This paper proposes the first tensor database system, BigTensorDB, 
to help scientists in retrosynthetic analysis field. Our work effectively 
addresses the critical issues of the absence of a unified model capable 
of providing full-cycle service for retrosynthetic analysis and the signif-
icant bottleneck in the prediction accuracy of full-cycle retrosynthetic 
analysis.

Specifically, BigTensorDB designs an innovative tensor format that 
efficiently stores all key information related to chemical reactions, 
including reactants, products, and reaction conditions such as solvents 
and reagents. This format not only provides users with robust services 
for storing and retrieving chemical reactions but also lays the founda-
tion for more accurate and comprehensive analysis. Additionally, the 
integration of multiple retrosynthetic analysis prediction models, in-
cluding those for reactants and reaction conditions, along with SMILES 
embedding models, offers a seamless full-cycle retrosynthetic analysis 
service to users. This integration significantly reduces usage costs and 
enhances the efficiency of the entire pipeline. Moreover, by providing 
advanced search and analysis services, this work re-ranks and analyzes 
the final prediction results, offering real reaction equations similar to 
the predicted results for user reference. These efforts collectively en-
hance the accuracy and interpretability of the final outcomes, thereby 
advancing the state of the art in AI-based retrosynthetic analysis.

CRediT authorship contribution statement

Xueya Zhang: Writing – original draft, Visualization, Validation, 
Software, Project administration, Methodology, Formal analysis, Con-
ceptualization. Guoxin Kang: Writing – review & editing, Methodol-
ogy, Conceptualization. Boyang Xiao: Writing – original draft, Valida-
tion, Resources. Jianfeng Zhan: Writing – review & editing, Method-
ology, Conceptualization.

Declaration of competing interest

The author Jianfeng Zhan is an Editor-in-Chief for BenchCouncil 
Transactions on Benchmarks, Standards and Evaluations and was not 
involved in the editorial review or the decision to publish this article.

The other authors declare that they have no known competing 
financial interests or personal relationships that could have appeared 
to influence the work reported in this paper.
8 
Acknowledgments

This work was supported by the Innovation Funding of Institute 
of Computing Technology Chinese Academy of Sciences, China under 
Grant No. E461070 and Beijing Municipal Natural Science Foundation 
of Beijing Municipal Science and Technology Commission and Zhong-
guancun Science Park Administrative Committee, China under Grant 
No. QY24378.

References

[1] X. Wang, Y. Li, J. Qiu, G. Chen, H. Liu, B. Liao, C.-Y. Hsieh, X. Yao, RetroPrime: 
A diverse, plausible and transformer-based method for single-step retrosynthesis 
predictions, Chem. Eng. J. (2021) 129845.

[2] E.J. Corey, A.K. Long, S.D. Rubenstein, Computer-assisted analysis in organic 
synthesis, Science 228 (4698) (1985) 408–418.

[3] A. Heifets, I. Jurisica, Construction of New Medicines Via Game Proof Search, 
AAAI Press, 2012.

[4] M.H.S. Segler, M. Preuss, M.P. Waller, Planning chemical syntheses with deep 
neural networks and symbolic AI, Nature 555 (2017) 604–610.

[5] A. Kishimoto, B. Buesser, B. Chen, A. Botea, Depth-First Proof-Number Search 
with Heuristic Edge Cost and Application to Chemical Synthesis Planning, Curran 
Associates Inc., Red Hook, NY, USA, 2019.

[6] J.S. Schreck, C.W. Coley, K.J.M. Bishop, Learning retrosynthetic planning through 
simulated experience, ACS Central Sci. 5 (6) (2019) 970–981.

[7] K. Lin, Y. Xu, J. Pei, L. Lai, Automatic retrosynthetic route planning using 
template-free models, Chem. Sci. 11 (2020) 3355–3364.

[8] B. Chen, C. Li, H. Dai, L. Song, Retro*: Learning retrosynthetic planning with 
neural guided a* search, in: I.. Hal Daumé, A. Singh (Eds.), Proceedings of the 
37th International Conference on Machine Learning, vol. 119, PMLR, 2020, pp. 
1608–1616.

[9] J. Kim, S. Ahn, H. Lee, J. Shin, Self-improved retrosynthetic planning, in: M. 
Meila, T. Zhang (Eds.), Proceedings of the 38th International Conference on 
Machine Learning, vol. 139, PMLR, 2021, pp. 5486–5495.

[10] S. Ishida, K. Terayama, R. Kojima, K. Takasu, Y. Okuno, AI-driven synthetic 
route design incorporated with retrosynthesis knowledge, J. Chem. Inf. Model. 
62 (2022) 1357–1367.

[11] L. Yue, Z. Xinxin, Y. Zhengwei, S. Siqi, Machine learning embedded with 
materials domain knowledge, J. Chinese Ceramic Soc. 50 (3) (2022) 863–876.

[12] Y. Liu, L. Ding, Z. Yang, et al., Domain knowledge discovery from abstracts of 
scientific literature on nickel-based single crystal superalloys, Sci. China Technol. 
Sci. 66 (2023) 1815–1830.

[13] Y. Liu, Z. Yang, Z. Yu, Z. Liu, D. Liu, H. Lin, M. Li, S. Ma, M. Avdeev, S. Shi, 
Generative artificial intelligence and its applications in materials science: Current 
situation and future perspectives, J. Mater. 9 (4) (2023) 798–816.

[14] Y. Liu, T. Zhao, W. Ju, S. Shi, Materials discovery and design using machine 
learning, J. Mater. 3 (3) (2017) 159–177, High-throughput Experimental and 
Modeling Research toward Advanced Batteries.

[15] S. Siqi, T. Zhangwei, Z. Xinxin, S. Shiyu, Y. Zhengwei, L. Yue, Applying data-
driven machine learning to studying electrochemical energy storage materials, 
Energy Storage Sci. Technol. 11 (3) (2022) 739–759.

[16] U.V. Ucak, I. Ashyrmamatov, J. Ko, J. Lee, Retrosynthetic reaction pathway 
prediction through neural machine translation of atomic environments, Nat. 
Commun. 13 (2022).

[17] X. Wang, C.-Y. Hsieh, X. Yin, J. Wang, Y. Li, Y. Deng, D. Jiang, Z. Wu, 
H. Du, H. Chen, Y. Li, H. Liu, Y. Wang, P. Luo, T. Hou, X. Yao, Generic 
interpretable reaction condition predictions with open reaction condition datasets 
and unsupervised learning of reaction center, Research 6 (2023) 0231.

[18] D. Weininger, SMILES, a chemical language and information system. 1. Introduc-
tion to methodology and encoding rules, J. Chem. Inf. Comput. Sci. 28 (1988) 
31–36.

[19] B. Liu, B. Ramsundar, P. Kawthekar, J. Shi, J. Gomes, Q.L. Nguyen, S. Ho, J.L. 
Sloane, P.A. Wender, V.S. Pande, Retrosynthetic reaction prediction using neural 
sequence-to-sequence models, ACS Central Sci. 3 (2017) 1103–1113.

[20] S. Zheng, J. Rao, Z. Zhang, J. Xu, Y. Yang, Predicting retrosynthetic reactions 
using self-corrected transformer neural networks, J. Chem. Inf. Model. (2019).

[21] I.V. Tetko, P. Karpov, R.V. Deursen, G. Godin, State-of-the-art augmented NLP 
transformer models for direct and single-step retrosynthesis, Nat. Commun. 11 
(2020).

[22] E. Kim, D. Lee, Y. Kwon, M.S. Park, Y.-S. Choi, Valid, plausible, and diverse 
retrosynthesis using tied two-way transformers with latent variables, J. Chem. 
Inf. Model. 61 (1) (2021) 123–133.

[23] S. Seo, Y.Y. Song, J.Y. Yang, S. Bae, H. Lee, J. Shin, S.J. Hwang, E. Yang, GTA: 
Graph truncated attention for retrosynthesis, in: AAAI Conference on Artificial 
Intelligence, 2021.

[24] Y. Jiang, Y. Wei, F. Wu, Z. Huang, K. Kuang, Z. Wang, Learning chemical rules 
of retrosynthesis with pre-training, in: AAAI Conference on Artificial Intelligence, 
2023.

http://refhub.elsevier.com/S2772-4859(25)00029-8/sb1
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb1
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb1
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb1
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb1
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb2
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb2
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb2
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb3
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb3
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb3
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb4
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb4
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb4
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb5
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb5
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb5
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb5
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb5
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb6
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb6
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb6
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb7
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb7
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb7
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb8
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb8
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb8
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb8
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb8
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb8
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb8
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb9
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb9
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb9
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb9
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb9
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb10
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb10
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb10
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb10
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb10
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb11
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb11
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb11
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb12
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb12
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb12
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb12
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb12
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb13
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb13
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb13
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb13
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb13
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb14
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb14
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb14
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb14
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb14
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb15
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb15
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb15
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb15
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb15
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb16
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb16
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb16
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb16
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb16
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb17
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb17
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb17
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb17
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb17
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb17
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb17
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb18
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb18
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb18
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb18
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb18
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb19
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb19
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb19
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb19
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb19
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb20
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb20
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb20
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb21
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb21
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb21
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb21
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb21
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb22
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb22
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb22
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb22
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb22
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb23
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb23
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb23
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb23
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb23
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb24
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb24
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb24
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb24
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb24


X. Zhang et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 5 (2025) 100216 
[25] Z. Zhong, J. Song, Z. Feng, T. Liu, L. Jia, S. Yao, M.-Y. Wu, T. Hou, M. Song, 
Root-aligned SMILES: A tight representation for chemical reaction prediction, 
Chem. Sci. 13 (2022) 9023–9034.

[26] Y. Zhang, R. Yu, K. Zeng, D. Li, F. Zhu, X. Yang, Y. Jin, Y. Xu, Text-augmented 
multimodal LLMs for chemical reaction condition recommendation, 2024, ArXiv 
abs/2407.15141.

[27] V.R. Somnath, C. Bunne, C.W. Coley, A. Krause, R. Barzilay, Learning graph 
models for retrosynthesis prediction, NIPS ’21, Curran Associates Inc., Red Hook, 
NY, USA, 2021.

[28] Y. Wan, C.-Y. Hsieh, B. Liao, S. Zhang, Retroformer: Pushing the limits of 
end-to-end retrosynthesis transformer, in: K. Chaudhuri, S. Jegelka, L. Song, 
C. Szepesvari, G. Niu, S. Sabato (Eds.), Proceedings of the 39th International 
Conference on Machine Learning, vol. 162, PMLR, 2022, pp. 22475–22490.

[29] Y. Han, et al., Retrosynthesis prediction with an iterative string editing model, 
Nat. Commun. (2024).

[30] C.W. Coley, L. Rogers, W.H. Green, K.F. Jensen, Computer-assisted retrosynthesis 
based on molecular similarity, ACS Central Sci. 3 (2017) 1237–1245.

[31] M.H.S. Segler, M.P. Waller, Neural-symbolic machine learning for retrosynthesis 
and reaction prediction, Chemistry 23 25 (2017) 5966–5971.

[32] H. Dai, C. Li, C.W. Coley, B. Dai, L. Song, Retrosynthesis Prediction with 
Conditional Graph Logic Network, Curran Associates Inc., Red Hook, NY, USA, 
2019.

[33] S. Chen, Y. Jung, Deep retrosynthetic reaction prediction using local reactivity 
and global attention, JACS Au 1 (10) (2021) 1612—1620.

[34] J. Dong, M. Zhao, Y. Liu, Y. Su, X. Zeng, Deep learning in retrosynthesis planning: 
datasets, models and tools, Brief. Bioinform. (2021).

[35] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput. 9 
(1997) 1735–1780.

[36] Z. Tu, C.W. Coley, Permutation invariant graph-to-sequence model for 
template-free retrosynthesis and reaction prediction, J. Chem. Inf. Model. (2021).

[37] M. Sacha, M. Blaz, P. Byrski, P. Wlodarczyk-Pruszynski, S. Jastrzebski, Molecule 
edit graph attention network: Modeling chemical reactions as sequences of graph 
edits, J. Chem. Inf. Model. (2020).

[38] J. Liu, C. chao Yan, Y. Yu, C. Lu, J. Huang, L. Ou-Yang, P. Zhao, MARS: A 
motif-based autoregressive model for retrosynthesis prediction, Bioinformatics 40 
(2022).

[39] W. Zhong, Z. Yang, C.Y.-C. Chen, Retrosynthesis prediction using an end-to-end 
graph generative architecture for molecular graph editing, Nat. Commun. 14 
(2023).

[40] L. Fang, J. Li, M. Zhao, L. Tan, J.-G. Lou, Single-step retrosynthesis prediction 
by leveraging commonly preserved substructures, Nat. Commun. 14 (2023).

[41] C. Shi, M. Xu, H. Guo, M. Zhang, J. Tang, A graph to graphs framework 
for retrosynthesis prediction, in: International Conference on Machine Learning, 
2020.

[42] C. chao Yan, Q. Ding, P. Zhao, S. Zheng, J. Yang, Y. Yu, J. Huang, RetroXpert: 
Decompose retrosynthesis prediction like a chemist, 2020, ArXiv arXiv:2011.
02893.

[43] H. Gao, T.J. Struble, C.W. Coley, Y. Wang, W.H. Green, K.F. Jensen, Using 
machine learning to predict suitable conditions for organic reactions, ACS Central 
Sci. 4 (2018) 1465–1476.

[44] Y. Liu, Z. Yang, X. Zou, S. Ma, D. Liu, M. Avdeev, S. Shi, Data quantity 
governance for machine learning in materials science, Natl. Sci. Rev. 10 (7) 
(2023) nwad125–.

[45] Y. Liu, X. Ge, Z. Yang, S. Sun, D. Liu, M. Avdeev, S. Shi, An automatic descriptors 
recognizer customized for materials science literature, J. Power Sources 545 
(2022) 231946.

[46] S. Siqi, SUN, M. Shuchang, Z. Xinxin, Q. Quan, L. Yue, Detection method on 
data accuracy incorporating materials domain knowledge, J. Inorg. Mater. 37 
(12) (2022) 1311–1320.

[47] L. Yue, Y. Wenxuan, L. Dahui, D. Lin, Y. Zhengwei, L. Wei, Y. Tao, S. Siqi, Named 
entity recognition driven by high-quality text data accelerates the knowledge 
discovery of nickel-based single crystal superalloys, Acta Metall. Sin. 60 (10) 
(2024) 1429–1438.
9 
[48] L. Yue, L. Da-Hui, G. Xian-Yuan, Y. Zheng-We, M. Shu-Chang, Z.Z. Yi, S.S.-Q. 2, 
A high-quality dataset construction method for text mining in materials science, 
Acta Phys. Sin. 72 (7) (2023) 41–54.

[49] L. Yue, M. Shuchang, Y. Zhengwei, Z. Xinxin, S. Siqi, A data quality and quantity 
governance for machine learning in materials science, J. Chinese Ceramic Soc. 
51 (2) (2023) 427–437.

[50] Y. Liu, J.M. Wu, M. Avdeev, S.Q. Shi, Multi-layer feature selection incorporating 
weighted score-based expert knowledge toward modeling materials with targeted 
properties, Adv. Theory Simul. 3 (2) (2020).

[51] Q. Zhao, L. Zhang, B. He, A. Ye, M. Avdeev, L. Chen, S. Shi, Identifying 
descriptors for li+ conduction in cubic li-argyrodites via hierarchically encoding 
crystal structure and inferring causality, Energy Storage Mater. 40 (2021) 
386–393.

[52] Y. Liu, X. Zou, S. Ma, M. Avdeev, S. Shi, Feature selection method reducing 
correlations among features by embedding domain knowledge, Acta Mater. 238 
(2022) 118195.

[53] H. Öztürk, A. Özgür, P. Schwaller, T. Laino, E. Ozkirimli, Exploring chemical 
space using natural language processing methodologies for drug discovery, Drug 
Discov. Today (2020).

[54] X. Li, D. Fourches, SMILES pair encoding: A data-driven substructure tokenization 
algorithm for deep learning, J. Chem. Inf. Model. 61 (4) (2021) 1560–1569.

[55] I. Lee, H. Nam, Infusing linguistic knowledge of SMILES into chemical language 
models, 2022, ArXiv abs/2205.00084.

[56] B. Fabian, T. Edlich, H. Gaspar, M.H.S. Segler, J. Meyers, M. Fiscato, M. Ahmed, 
Molecular representation learning with language models and domain-relevant 
auxiliary tasks, 2020, ArXiv abs/2011.13230.

[57] S. Wang, Y. Guo, Y. Wang, H. Sun, J. Huang, SMILES-BERT: Large scale 
unsupervised pre-training for molecular property prediction, in: Proceedings 
of the 10th ACM International Conference on Bioinformatics, Computational 
Biology and Health Informatics, 2019.

[58] S. Chithrananda, G. Grand, B. Ramsundar, ChemBERTa: Large-scale self-
supervised pretraining for molecular property prediction, 2020, ArXiv abs/2010.
09885.

[59] W. Ahmad, E. Simon, S. Chithrananda, G. Grand, B. Ramsundar, ChemBERTa-2: 
Towards chemical foundation models, 2022, ArXiv abs/2209.01712.

[60] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, BERT: Pre-training of deep bidi-
rectional transformers for language understanding, in: North American Chapter 
of the Association for Computational Linguistics, 2019.

[61] T. Tran, C. Ekenna, Molecular descriptors property prediction using transformer-
based approach, Int. J. Mol. Sci. 24 (2023).

[62] Y. Liu, R. Zhang, T. Li, J. Jiang, J. Ma, P. Wang, MolRoPE-BERT: An enhanced 
molecular representation with rotary position embedding for molecular property 
prediction, J. Mol. Graph. 118 (2022) 108344.

[63] Y. Liu, R. Zhang, T. Li, J. Jiang, J. Ma, P. Wang, MolRoPE-BERT: An enhanced 
molecular representation with rotary position embedding for molecular property 
prediction, J. Mol. Graph. 118 (2022) 108344.

[64] J. Wang, X. Yi, R. Guo, H. Jin, P. Xu, S. Li, X. Wang, X. Guo, C. Li, X. Xu, K. Yu, 
Y. Yuan, Y. Zou, J. Long, Y. Cai, Z. Li, Z. Zhang, Y. Mo, J. Gu, R. Jiang, Y. Wei, 
C. Xie, Milvus: A purpose-built vector data management system, in: Proceedings 
of the 2021 International Conference on Management of Data, 2021.

[65] C. Wei, B. Wu, S. Wang, R. Lou, C. Zhan, F. Li, Y. Cai, AnalyticDB-V: A hybrid 
analytical engine towards query fusion for structured and unstructured data, 
Proc. VLDB Endow. 13 (12) (2020) 3152–3165.

[66] W. Yang, T. Li, G. Fang, H. Wei, PASE: Postgresql ultra-high-dimensional 
approximate nearest neighbor search extension, in: Proceedings of the 2020 ACM 
SIGMOD International Conference on Management of Data, 2020.

[67] Vearch: A distributed system for embedding-based retrieval, 2020, URL: https:
//github.com/vearch/vearch.

[68] J. Li, H.-F. Liu, C. Gui, J. Chen, Z. Ni, N. Wang, Y. Chen, The design and 
implementation of a real time visual search system on jd E-commerce platform, 
in: Proceedings of the 19th International Middleware Conference Industry, 2018.

[69] J. Zhan, L. Wang, W. Gao, H. Li, C. Wang, Y. Huang, Y. Li, Z. Yang, G. Kang, 
C. Luo, H. Ye, S. Dai, Z. Zhang, Evaluatology: The science and engineering of 
evaluation, BenchCouncil Trans. Benchmarks, Stand. Eval. 4 (1) (2024) 100162.

http://refhub.elsevier.com/S2772-4859(25)00029-8/sb25
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb25
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb25
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb25
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb25
http://arxiv.org/abs/2407.15141
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb27
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb27
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb27
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb27
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb27
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb28
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb28
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb28
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb28
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb28
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb28
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb28
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb29
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb29
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb29
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb30
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb30
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb30
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb31
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb31
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb31
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb32
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb32
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb32
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb32
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb32
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb33
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb33
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb33
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb34
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb34
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb34
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb35
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb35
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb35
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb36
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb36
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb36
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb37
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb37
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb37
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb37
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb37
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb38
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb38
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb38
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb38
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb38
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb39
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb39
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb39
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb39
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb39
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb40
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb40
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb40
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb41
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb41
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb41
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb41
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb41
http://arxiv.org/abs/2011.02893
http://arxiv.org/abs/2011.02893
http://arxiv.org/abs/2011.02893
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb43
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb43
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb43
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb43
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb43
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb44
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb44
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb44
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb44
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb44
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb45
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb45
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb45
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb45
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb45
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb46
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb46
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb46
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb46
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb46
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb47
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb47
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb47
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb47
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb47
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb47
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb47
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb48
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb48
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb48
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb48
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb48
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb49
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb49
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb49
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb49
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb49
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb50
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb50
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb50
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb50
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb50
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb51
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb51
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb51
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb51
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb51
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb51
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb51
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb52
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb52
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb52
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb52
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb52
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb53
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb53
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb53
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb53
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb53
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb54
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb54
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb54
http://arxiv.org/abs/2205.00084
http://arxiv.org/abs/2011.13230
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb57
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb57
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb57
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb57
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb57
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb57
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb57
http://arxiv.org/abs/2010.09885
http://arxiv.org/abs/2010.09885
http://arxiv.org/abs/2010.09885
http://arxiv.org/abs/2209.01712
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb60
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb60
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb60
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb60
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb60
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb61
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb61
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb61
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb62
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb62
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb62
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb62
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb62
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb63
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb63
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb63
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb63
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb63
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb64
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb64
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb64
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb64
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb64
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb64
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb64
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb65
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb65
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb65
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb65
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb65
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb66
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb66
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb66
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb66
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb66
https://github.com/vearch/vearch
https://github.com/vearch/vearch
https://github.com/vearch/vearch
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb68
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb68
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb68
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb68
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb68
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb69
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb69
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb69
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb69
http://refhub.elsevier.com/S2772-4859(25)00029-8/sb69

	Tensor databases empower AI for science: A case study on retrosynthetic analysis
	Introduction
	Background and Related Work
	Background
	CASP's related work
	Prediction models
	Automated feature engineering

	Tensor retrieval related work

	System Architecture of BigTensorDB
	Methodology
	Dataset sources and workload choices
	BigTensorDB design and implementation
	Storage layer
	Prediction generation layer
	Search layer
	Analysis layer


	Performance Evaluation
	Experiment setup
	Experiment Design
	Motivation verification
	Theoretical analysis
	Experiment verification

	Performance Results
	Retrosynthetic Analysis Performance Comparison
	Tensor Database Performance Comparison


	Lessons and Future Directions
	Limitations of BigTensorDB
	Future work of BigTensorDB

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


