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 A B S T R A C T

AICB (Artificial Intelligence Communication Benchmark) is a benchmark for evaluating the communication 
subsystem of GPU clusters, which includes representative workloads in the fields of Large Language Model 
(LLM) training. Guided by the theories and methodologies of Evaluatology, we simplified the real-workload 
LLM training systems through AICB that maintain good representativeness and usability. AICB bridges the 
gap between application benchmarks and microbenchmarks in the scope of LLM training. In addition, we 
constructed a new GPU-free evaluation system that helps researchers evaluate the communication system of 
the LLM training systems. To help the urgent demand on this evaluation subject, we open-source AICB and 
make it available at https://github.com/aliyun/aicb.
1. Introduction

The AI infrastructure is in rapid development with the flourishing 
of Artificial Intelligence [1,2]. For example, the explosion of the Large 
Language Model(LLM) applications leads to the fast evolution of the 
training frameworks [3–5], collective communication algorithms [6], 
network transports [7], and scale-out and scale-up network archi-
tectures [8]. Due to the large number of parameters in LLM, data 
is distributed across different GPUs for computation, requiring syn-
chronization between these GPUs. Therefore, in LLM training, besides 
computation, communication also affects training efficiency. Conse-
quently, evaluating the performance of the communication subsystem 
is a critical subject, that is, ensuring foundational technologies evolve 
in a manner that is both responsible and conducive to the continued 
progress in the field.

Some benchmarks are designed to evaluate the communication 
subsystem of a physical GPU cluster with high-performance scale-up 
and scale-out networks, including microbenchmarks and application 
benchmarks. However, the microbenchmarks are designed to evaluate 
the low-level peer-to-peer or collective communication operations un-
der various message sizes and scales, while the application benchmarks 
only focus on the end-to-end performance. To bridge the gap, the com-
munity demands a new benchmark that produces workloads that mirror 
real-world LLM tasks, but focuses on the communication subsystem. In 
response to this demand, we built AICB and constructed the evaluation 
system using the methods proposed in [9].
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The three essences of evaluating the communication subsystem of 
GPU clusters are as follows: (1) The Evaluation System (ES) is defined 
as a full-stack GPU cluster that LLM tasks can run. It includes the GPUs, 
the network infrastructure, and the software components running on it. 
The Evaluation Conditions should include all the capabilities and con-
figurations of the hardware and software components that are tuned for 
the LLM training tasks that stakeholders concern. To be more specific, 
the Reference Evaluation System(RES) of AICB specifically targets the 
endpoint communication behavior through the end-to-end process of 
LLM training. (2) AICB provides measurement and testing tools that can 
generate and reproduce typical workloads in the Reference Evaluation 
System (RES) and ES. (3) The Value Function is the performance 
numbers output by AICB. It should give a clear quantified outcome of 
the comparison between different ECs, such as, the different collective 
algorithms, different parallel parameters, etc..

We construct the Pragmatic Evaluation System in two ways: (1) 
Rather than directly using all workloads from the real-world services, 
AICB is simplified to be more pragmatic. We elaborately select the 
workloads that can reflect the real-world behaviors with the criteria 
of spanning from the typical communication operations, message sizes, 
parallel parameters, optimization skills, and scales. (2) For researchers 
who lack GPUs, which is not uncommon in both industry and academia, 
we developed a GPU-free Evaluation System for the same evaluation 
subject. The NCCL(NVIDIA Collective Communication Library [6]) is 
hijacked to run on GPU-free cluster, but produces the same traffic. 
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Fig. 1. Design of AICB with Megatron as an example. AICB gets the communication operation through Mocked Model, Workload Generator and Workload Replayer.
Meanwhile, the computation patterns are still kept in the evaluation, 
as we can collect them by running a specific computation tool on real 
GPU and afterwards they are embedded in the AICB workloads.

The main contributions of this paper are as follows:
(1) Guided by the principles of Evaluatology, we propose AICB, a 

benchmark to evaluate AI communication systems. By ‘‘hijacking’’ the 
training framework, we construct a pragmatic Evaluation System and 
develop a GPU-Free system through simulation.

(2) We use the end-to-end real elapsed time of every specific 
workload as metrics to evaluate the LLM communication subsystem. 
Through the assessment of case studies, we demonstrate the practicality 
of AICB in evaluating corresponding communication performance.

(3) Beyond the communication behavior, AICB can output the LLM 
training communication workload, serving as input for [10] to simulate 
the overall performance of the cluster training.

2. Related works

Existing benchmarks for evaluating physical GPU clusters can be 
mainly divided into microbenchmarks and application benchmarks. 
Microbenchmarks focus on assessing specific parts of the GPU cluster 
framework. For example, Nccl-test [11], developed by NVIDIA, is used 
to test and verify the performance and correctness of NCCL operations. 
It is specifically designed for NVIDIA GPUs and fully leverages the 
parallel processing capabilities. However, it has high dependencies 
on GPU hardware and CUDA environments. Perftest [12] provides a 
series of performance microbenchmarks based on Infiniband Verbs for 
hardware or software tuning and functional testing, but it requires 
specific hardware support.

Application benchmarks focus on evaluating the performance of 
model training. MLPerf [13] defines model architectures and train-
ing procedures for each benchmark, addressing ML evaluation chal-
lenges such as training randomness and significant time differences. 
AIBench [14] systematically refines and abstracts real-world applica-
tion scenarios into scene, training, inference, micro, and synthetic AI 
benchmarks based on MLPerf. While these efforts have advanced ML 
training benchmark to some extent, there is a lack of overall focus on 
communication operations during LLM training.

AICB addresses this issue by providing precise evaluations of the 
communication subsystems. Instead of directly modifying these popu-
lar frameworks, AICB extract information through delicate monitoring 
tools and critical components.
2 
3. AICB design

In the context of AI communication evaluation, a pragmatic compos-
ite evaluation system is needed to accurately represent common perfor-
mance in AI training environments. When we design AICB, the commu-
nication system of LLM training is regarded as the evaluation subject 
with huge EC configurations, which is the input description module 
in AICB. The input contains a range of parameters to meet the expec-
tations of stakeholders, such as different training models (e.g., GPT, 
LLaMA) with different scale of neural network, training configuration, 
popular training framework (e.g., Megatron, DeepSpeed [15]) with 
relative parallelism and aspects related to collective communication 
libraries like NCCL. These parameters can also be different Reference 
Evaluation Conditions(RECs) to compare AI training communication 
performance.

The core of AICB is implemented by ‘‘hijacking’’ the training frame-
work. Fig.  1 illustrates the working principles of AICB using Megatron 
framework as an example to training models. Megatron is a highly 
scalable language model that improves training efficiency and speed 
through parallel processing of LLM. In practice, the Megatron struc-
ture starts from the input tokens, passing through multiple Trans-
former layer and norm layers, and ultimately reaching a linear layer 
to generate the model’s output.

Instead of directly modifying frameworks, AICB extracts informa-
tion through constructing critical components. Mocked Megatron is 
a simulated version of Megatron designed to simplify the complex 
model training process. Through the definitions of Mocked Embedding 
and Mocked Transformer Layer, it includes module of the Attention 
mechanism and the Multi-Layer Perceptron (MLP), implementing Col-
umn Linear and Row Linear calculations for each. Mocked Megatron 
approximates actual large model operations through these simulated 
components, aiming to create a simplified yet approximate training 
process model for subsequent communication system which enhancing 
the efficiency of simulating and testing communication patterns.

The primary purpose of the Workload Generator is to generate 
a list of communication workloads during the training process. It 
sequentially executes the training process according to the Mocked 
Model module. For example, during the Megatron training, it includes 
steps such as model initialization, forward propagation and backward 
propagation. During initialization, the focus is on model setup and data 
notification, with key operations including All-reduce, All-gather, and 
Broadcast, correspondingly choosing All-reduce for PP communication 
based on PP settings. Communication operations in model forward 
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Fig. 2. Communication Distribution of LLaMA with under different scale and framework.
propagation mainly focus on TP, using All-reduce for DP commu-
nication when calculating loss. In the backward propagation stage, 
All-gather and Reduce-scatter update parameters among TP groups, 
and finally, during the step phase, DP synchronization prepares for the 
next round of training. Simulation of these steps gives a clear analysis 
of relations between each step of model training and communication 
groups with operations.

The task of the Workload Replayer is to apply the communication 
workload generated in the previous step to actual communication 
operations. By calling torch.dist with corresponding communication 
operations, it simulates the behavior of the workload, ensuring that the 
simulated communication load accurately reflects the communication 
overhead in the actual training process. Additionally, it measures com-
munication operators, message sizes, and corresponding bandwidths on 
rank 0 of each step.

Notably, to more accurately replicate the communication assess-
ment in LLM training, AICB offers an optional AIOB(Artificial Intel-
ligence Operation Benchmark) mode, which is used to obtain the 
computation time for each operation of the actual model, accounting 
for the overlapping of multiple communication streams. Specifically, 
we break down the most computation-intensive parts, Attention and 
MLP, according to CUDA operations and extract the corresponding 
operations in the source code. This division not only facilitates the 
acquisition of computation time but also aids in the subsequent analysis 
of timing across different computational cores. Simulating multiple 
GPUs on a single GPU leverages the symmetry of GPU computation 
tasks and model training parameters are distilled to extract components 
that impact computation time. Parameters related to communication 
are used to slice the input calculation matrices and readjust weights 
according to the respective segments, simulating the model’s division 
process. This ensures that the dimensions of the multiplied matrices 
during computation match those in real execution, allowing us to 
obtain accurate computation times for a partitioned model which is 
light weight but high accuracy.

4. Case study

4.1. Communication distribution

For the same cluster, AICB can be used to evaluate different dis-
tributions of AI training communication operation with composite ECs. 
Fig.  2 gives an example of the communication characteristics of LLaMA 
model with different model scales and parallelism strategies. In prac-
tice, DeepSpeed are mainly used to focus on data parallelism for 
synchronization, the DP-Group constitutes the majority within the com-
munication group. Under ZeRO2, models have massive initialization 
3 
stage which leads to an amount of broadcast operations for data no-
tification for the first epoch. As model size increases, communication 
operations for the backward and step stage also increase, resulting in 
an increased reliance on All-gather and All-reduce. In ZeRO3, model 
parameters are integrated into the synchronization process, leading to 
a higher proportion of forward and backward operations compared 
to ZeRO2, with All-gather becoming the predominant communication 
method. In terms of message size, large traffic represents approximately 
70%–80% and gradually increases with model scale. The distribution 
of communication operations provides a clear reflection of distributed 
frameworks in AI cluster training tasks and can be used to validate the 
communication differences of various RECs deployment.

4.2. Performance evaluation

We compared the workload generated by AICB with the actual 
training of the Megatron framework, integrating the data from com-
munication groups, communication operation type and communication 
volume. Table  1 presents the communication results between AICB and 
realistic training. We tested GPT-7B under the Megatron framework 
with two A100 nodes, adopting TP = 8, PP = 1, DP = 2 as the parallel 
configuration. We gather and analyze communication characteristics 
of the workload generated by AICB and the actual Megatron training. 
It can be seen that both are quite similar in terms of communication 
features. Therefore, AICB’s workload can represent the communication 
conditions of Megatron-GPT’s actual training effectively, allowing AICB 
to be used for assessing the model’s communication subsystem.

In addition to demonstrating the distribution of the communication 
subsystem, we have compiled models commonly used and selected 
those reflecting real-world LLM training workloads, forming a bench-
mark suite. We use elapsed time as an important baseline metric for 
evaluating communication system and output the detailed information 
for each specific communication collective operation.

In our experiments involving fixed collective communication oper-
ations, algorithm bandwidth is used to evaluate the performance of 
the cluster in Fig.  3. Similarly to the physical significance of other 
types of bandwidth, algorithm bandwidth is calculated based on the 
actual amount of data transmitted and the time required to complete 
these transmissions, as shown in (1). During the actual model training, 
the collective communication library selects the appropriate collec-
tive communication algorithm adaptively based on physical topology, 
communication patterns, and other relevant factors. Consequently, al-
gorithm bandwidth can, to some extent, reflect the ability of the 
communication library to adapt its operations to the cluster. Higher 
algorithm bandwidth indicates that the communication library is able 
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Fig. 3. Performance Evaluation for different cluster scale, message size and communication type.
Fig. 4. Practical AICB simulation result of LLaMA 65B with different cluster scale.
Table 1
Comparison of communication between real training and AICB workload with megatron-GPT7B.
 Comm type Comm group Real training AICB workload
 Message size Number of comms Message size Number of comms 
 All-gather dp-group 1.57 GB 10 1.55 GB 10  
 All-gather tp-group 32 MB 33280 32 MB 30720  
 All-reduce all 4B 10 4B 10  
 All-reduce dp-group 4B 192 4B 160  
 All-reduce tp-group 16 KB 576 16 KB 480  
 All-reduce tp_group 3.03 MB 10 1 MB 10  
 All-reduce tp-group 32 MB 192 32 MB 320  
 Reduce-scatter dp-group 3.13 GB 10 3.09 GB 10  
 Reduce-scatter tp-group 32 MB 22688 32 MB 20480  
to utilize hardware resources more effectively, achieving more efficient 
data transmission. 
algbw (GB/s) = Size (GB)

time (s) (1)
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⎪

⎪

⎩

𝑏𝑢𝑠𝑏𝑤all_reduce = 𝑎𝑙𝑔𝑏𝑤 ⋅
2(𝑛 − 1)

𝑛
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𝑛

𝑏𝑢𝑠𝑏𝑤reduce_scatter = 𝑎𝑙𝑔𝑏𝑤 ⋅
(𝑛 − 1)

𝑛

(2)

It is evident that as the size of the cluster increases, the value 
of algorithm bandwidth tends to decrease. To eliminate the influence 
of the number of GPUs on bandwidth, [11] introduces the concept 
of bus bandwidth, which serves as a metric to assess the efficiency 
of hardware utilization. This metric is derived by applying a specific 
calculation formula to the algorithm bandwidth, as shown in (2), to 
reflect the speed of inter-GPU communication irrespective of the cluster 
size, i.e., the number of GPUs used. By using this bus bandwidth, we can 
compare it against the hardware’s theoretical peak bandwidth, thereby 
assessing the actual utilization efficiency of the hardware resources.
4 
In the practical training simulation using the LLaMA65B model, we 
filtered the collective communication library operations corresponding 
to the DP group and the message sizes to evaluate the correspond-
ing bus bandwidth. It is evident from Fig.  4 that as the cluster size 
increases, the bus bandwidth tends to decrease, aligning with the 
observed performance in Fig.  3. Due to the larger message volume, 
both the Reduce-scatter and All-gather operations generate higher bus 
bandwidth. We extracted and calculated the variance of the bus band-
width for these two operations. It is clearly that the All-gather operation 
exhibits greater jitter. Intuitively, All-gather involves each participating 
process collecting data from all other processes, which entails a larger 
data volume and higher synchronization requirements. In contrast, 
Reduce-scatter performs partial reduction followed by the scattering 
of data, resulting in relatively lower synchronization demands and 
reduced pressure from network condition changes.

4.3. Workload for SimAI

SimAI [10] is a simulator we developed to evaluate complete GPU 
clusters, including components such as communication subsystems, 
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computing systems, and network architectures. The workload gener-
ated by AICB can serve as input for SimAI to simulate the conditions of 
model training, including various stages of model training, the size of 
communication data, communication operations, and the computation 
time corresponding to each stage. SimAI can form a comprehensive 
simulation evaluation system based on workload input, network topol-
ogy information, and related network configurations, making it an 
important tool for evaluating large model infrastructure.

5. Conclusion

In this paper, we introduce AICB, a benchmark for evaluating 
the communication subsystem of LLM Training clusters. AICB focuses 
on communication subsystems in large-scale AI training clusters and 
defines appropriate ranges for RC to construct ES. By ‘‘hijacking’’ 
distributed training frameworks, it simulates specific collective commu-
nication operations. In addition to visualizing communication distribu-
tion, AICB uses bus bandwidth as a metric to evaluate the compatibility 
with specified clusters. AICB offers precise simulation and accurate 
evaluation of collective communications, providing substantial support 
for simulating and evaluating LLM training.
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