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 A B S T R A C T

Tail Quality, as a metric for evaluating AI inference performance in critical scenarios, reveals the extreme 
behaviors of AI inference systems in real-world applications, offering significant practical value. However, 
its adoption has been limited due to the lack of systematic theoretical support. To address this issue, this 
paper analyzes AI inference system evaluation activities from the perspective of Evaluatology, bridging the gap 
between theory and practice. Specifically, we begin by constructing a rigorous, consistent, and comprehensive 
evaluation system for AI inference systems, with a focus on defining the evaluation subject and evaluation 
conditions. We then refine the Quality@Time-Threshold (Q@T) statistical evaluation framework by formalizing 
these components, thereby enhancing its theoretical rigor and applicability. By integrating the principles of 
Evaluatology, we extend Q@T to incorporate stakeholder considerations, ensuring its adaptability to varying 
time tolerance. Through refining the Q@T evaluation framework and embedding it within Evaluatology, we 
provide a robust theoretical foundation that enhances the accuracy and reliability of AI system evaluations, 
making the approach both scientifically rigorous and practically reliable. Experimental results further validate 
the effectiveness of this refined framework, confirming its scientific rigor and practical applicability. The 
theoretical analysis presented in this paper provides valuable guidance for researchers aiming to apply 
Evaluatology in practice.
1. Introduction

With the rapid advancement of artificial intelligence (AI) technolo-
gies, evaluating AI inference systems has become increasingly critical. 
These systems operate in dynamic and unpredictable environments, 
ranging from the online deployment of large-scale language models 
such as ChatGPT [1,2] to real-time applications in autonomous driv-
ing [3–5] and smart healthcare [6,7]. The increasing reliance on AI 
in these critical domains introduces significant challenges. For in-
stance, online real-time recommendation systems are crucial in e-
commerce and content streaming platforms, directly affecting user 
engagement and satisfaction. Delays in inference can lead to user 
impatience and churn, impacting the overall effectiveness of these 
systems. Similarly, autonomous driving, a safety-critical domain, re-
quires real-time decision-making for tasks such as object detection and 
lane detection [8], with even minor errors posing catastrophic risks to 
safety [9,10]. These challenges necessitate the development of reliable 
and objective methods to evaluate the inference performance of AI 
systems.
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However, traditional evaluation methods often face two major is-
sues. First, evaluations frequently rely on isolated metrics, such as 
accuracy or inference throughput, without accounting for the complex 
interactions between various factors [11]. These single-dimensional 
evaluations fail to capture the true performance of AI inference sys-
tems, especially when real-world, dynamic conditions are taken into 
account. Second, AI inference system evaluation remains a complex 
and uncertain process due to the inherent intricacies of computer sys-
tems [12] and the absence of well-established, interpretable theories—
particularly for systems equipped with neural networks [13,14]. With-
out clear, theoretically grounded evaluation criteria, existing methods 
often fall short, relying on industry standards without comprehensive 
theoretical analysis [15–18]. This theoretical gap poses challenges for 
researchers trying to evaluate AI inference systems, often leading to 
questions about the reliability of existing evaluation methods.

To address the issues, Quality@Time-Threshold (Q@T) was intro-
duced by Yang et al. [11] as a metric designed to measure how an AI 
inference system’s quality fluctuates under strict time constraints. By 
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considering both inference time and quality, Q@T provides a statistical 
evaluation framework that captures the ‘‘Tail Quality’’ phenomenon—
extreme fluctuations in inference quality that are often overlooked by 
traditional methods [15,18]. This is especially crucial in critical ap-
plications such as autonomous driving and medical diagnostics, where 
poor performance could lead to severe consequences [11]. While Q@T 
offers an important step forward in AI evaluation, it still faces chal-
lenges due to the absence of a solid theoretical foundation, particularly 
the lack of guidance from Evaluatology. This theoretical gap raises con-
cerns about the reliability and rigor of Q@T, especially when applied in 
diverse scenarios. Furthermore, Q@T’s applicability is limited in con-
texts where flexible time constraints are necessary, as it is more suited 
for strict time thresholds. Thus, the need for a more robust theoretical 
framework becomes evident, one that can guide the evaluation process 
in a scientifically grounded way.

In this paper, we aim to address these challenges by analyzing 
Q@T from the perspective of Evaluatology, a formal science of eval-
uation. Evaluatology offers a systematic methodology for modeling 
and understanding complex systems, providing a theoretical foundation 
for improving evaluation methods. By applying Evaluatology’s five 
core axioms and standard evaluation methodology, we redefine and 
clarify the core components of the evaluation system in Q@T—namely, 
the evaluation subject and evaluation conditions. This approach helps 
overcome the limitations of Q@T, ensuring that it is both scientifi-
cally rigorous and adaptable to different application scenarios, such as 
autonomous driving, healthcare, and e-commerce.

This paper’s main contributions are as follows:

• Theoretical Validation of Q@T: We integrate Evaluatology’s 
principles with Q@T to provide a stronger theoretical foundation 
for evaluating AI inference systems.

• Bridging Theory and Practice: We bridge the gap between the-
oretical foundations (Evaluatology) and the practical evaluation 
of AI systems (Q@T).

• Refining Q@T: We refine the Q@T framework by introducing 
a more flexible approach that incorporates stakeholder needs 
and time constraints, enhancing its versatility across real-world 
applications.

2. Background

This section introduces two key aspects: Evaluatology [19–21] and 
Q@T [11]. Section 2.1 introduces the five core axioms of Evaluatology 
and the standard evaluation methodology. Section 2.2 briefly intro-
duces the definition of the Q@T evaluation metric and the statistical 
evaluation framework for assessing Q@T in AI inference systems.

2.1. Evaluatology

This section introduces the five core axioms of Evaluatology and 
the standard evaluation methodology. These are the two most funda-
mental components of Evaluatology, providing a rigorous theoretical 
foundation for evaluating complex systems such as AI inference sys-
tems. Applying these principles, we can reanalyze Q@T and ensure its 
evaluation framework is scientifically sound and practically applicable.

2.1.1. The five core axioms of Evaluatology
The five core axioms of Evaluatology form the foundation of its 

evaluation methodology, detailed as follows:

• The Axiom of the Essence of Composite Evaluation Metrics: A 
composite evaluation metric either has inherent physical meaning 
or is defined by a value function that combines base quantities.

• The Axiom of True Evaluation Outcomes: For a well-defined 
evaluation system, when well-defined evaluation conditions are 
applied to a well-defined evaluation subject, its evaluation out-
comes must possess true values.
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• The Axiom of Evaluation Traceability: For the same evaluation 
subject, differences in evaluation outcomes can be attributed to 
variations in the evaluation conditions (ECs), ensuring traceabil-
ity and interpretability of evaluation outcomes.

• The Axiom of Comparable Evaluation Outcomes Evaluation 
outcomes are comparable only evaluation subjects are evaluated 
under equivalent evaluation conditions (EECs).

• The Axiom of Consistent Evaluation Outcomes: Evaluation 
outcomes from different samples within a population of evalua-
tion conditions consistently converge toward the true evaluation 
outcomes of the entire population.

By adhering to these axioms, the evaluation methodology provides 
a rigorous, reliable, and comparable framework for evaluating com-
plex systems, including AI inference systems, ensuring consistency, 
accuracy, and reliability across various application scenarios.

2.1.2. The standard evaluation methodology
In Evaluatology, the standardized evaluation methodology consists 

of four key steps. These are summarized as follows:
Defining and characterizing the subject:. The first step is clearly defining 
and describing the subject to be evaluated. A well-defined subject 
is essential for valid comparisons between different instances of the 
same subject definition. This stage also involves modeling the subject, 
which includes outlining its detailed structure. A rigorous definition 
and consensus on the subject’s model among stakeholders are crucial 
for ensuring the validity of the evaluation process.
Defining and clarifying the evaluation system (ES):. The second step 
is constructing a minimal yet complete Evaluation System (ES) that 
operates autonomously. This is a crucial component of the evaluation 
process and must meet two main criteria: it must function indepen-
dently and encompass all the essential factors needed for the evaluation 
task. It is important to note that any changes to the independent factors 
in the ES will impact the final evaluation results. Defining the ES 
comprehensively is challenging because too many factors can lead to 
excessive evaluation costs, while too few may fail to capture all the 
critical influences on the results.
Acquiring the evaluation conditions (ECs):. Once the ES is defined, the 
next step is establishing Evaluation Conditions (ECs). These conditions 
are derived by isolating the subject from the ES. Defining these condi-
tions ensures the evaluation process is based on realistic and controlled 
parameters.

Determining the evaluation methodologies:. After defining the ES and 
ECs, the final step is to analyze the nature of the ES and determine the 
appropriate evaluation methodologies. The key goal in this phase is to 
ensure that the evaluation methods meet the standards of Evaluatol-
ogy’s five core axioms, ensuring the comprehensiveness and reliability 
of the evaluation process.

In conclusion, the standardized evaluation methodology in Evalu-
atology involves clearly defining the evaluation subject, establishing 
the evaluation system, defining the evaluation conditions, and selecting 
the appropriate evaluation methods. These steps ensure that complex 
systems, such as AI inference systems, are evaluated rigorously and sys-
tematically. The evaluation process can produce consistent, accurate, 
and comparable results by following these steps.

2.2. Q@T and tail quality

The Quality@Time-Threshold (Q@T) metric was proposed to mea-
sure the ability of an AI inference system to maintain stable high 
inference quality under strict time constraints. This is of practical 
significance, as an AI inference system with high-quality predictions 
should achieve high and stable inference quality even under lower time 
thresholds.
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2.2.1. Definition of Q@T
Q@T evaluates AI inference systems by balancing inference qual-

ity and time constraints. Given a dataset 𝐷 = {𝑥𝑖, 𝑦𝑖}𝑛𝑖=1, where 𝑥𝑖
represents the input and 𝑦𝑖 represents the ground truth, the model 
𝑀 generates prediction 𝑦′𝑖 = 𝑀(𝑥𝑖). The overall inference quality 
𝑞 is determined by comparing 𝑌 ′ = {𝑦′𝑖}

𝑛
𝑖=1 with the ground truth 

𝑌 = {𝑦𝑖}𝑛𝑖=1 using a quality evaluation function (e.g., accuracy or F-
score). To account for the impact of inference time, the validity of each 
inference result is determined by whether the inference time exceeds 
a specified time threshold 𝜃. This leads to the following equation for 
Q@T: 
𝑞𝜃 = evaluate({𝑀(𝑥𝑖) ⋅ 𝟏𝜃 + 𝚎𝚛𝚛𝚘𝚛 ⋅ (1 − 𝟏𝜃)}𝑛𝑖=1, {𝑦𝑖}

𝑛
𝑖=1), (1)

where 𝟏𝜃 is an indicator function that returns 1 if the inference of 𝑥𝑖
completes within the threshold 𝜃, and 0 otherwise. The placeholder
error denotes a default output substituted when the inference time 
exceeds the threshold, thereby effectively invalidating the correspond-
ing model output. The function evaluate(⋅, ⋅) computes a quality metric 
— such as accuracy — between the (potentially error-substituted) 
model outputs and the corresponding ground-truth labels.

Q@T offers a comprehensive evaluation that is especially useful for 
real-time applications where quality and time are critical.

2.2.2. Statistical evaluation framework for Q@T
In AI inference systems, inference time can vary significantly due 

to factors such as hardware configurations, deep learning frameworks, 
and data processing pipelines. This variability impacts the estimation of 
Q@T, as fluctuations in inference time influence quality under specific 
time constraints.

To evaluate Q@T accurately, the statistical framework models 
inference time as a random variable 𝑇 , which follows an unknown dis-
tribution  and is influenced by various system components. The Q@T 
metric becomes a random variable 𝑄 dependent on 𝑇  and the system 
components 𝑖, expressed as a conditional probability distribution:
𝑄𝜃 = 𝑓 (𝑇 ∣ 𝜃,1,2,…), 𝑇 ∼ . (2)

The framework uses the Monte Carlo simulation to collect inference 
time samples and Kernel Density Estimation (KDE) to estimate the 
distribution of these times. This non-parametric approach avoids as-
sumptions about the form of the distribution. Convergence is monitored 
using Jensen–Shannon Divergence (JSD), stopping the simulation when 
the distribution stabilizes.

The steps include:

• Sampling Inference Time: Collect inference time samples using 
Monte Carlo simulations across multiple rounds.

• Kernel Density Estimation (KDE): Apply KDE to estimate the 
probability density function 𝑓 (𝑡) of inference time.

• Convergence Check using Jensen–Shannon Divergence (JSD):
Calculate the JSD between distributions from different sample 
sizes, stopping when the JSD is sufficiently small, indicating 
convergence.

After convergence is achieved, the framework performs 𝑁 indepen-
dent evaluation trials to quantify the quality metric under the stabilized 
distribution. Each trial produces a sample 𝑞𝑖 from the random variable 
𝑄, resulting in a set of observations {𝑞𝑖}𝑁𝑖=1. 

The final Q@T metric is computed as a statistical characterization 
of 𝑄𝜃 when the time threshold is set to 𝜃 = T, based on these samples: 
Q@T = 𝜃=T({𝑞𝑖}𝑁𝑖=1), 𝑞𝑖 ∼ 𝑄𝜃=T, (3)

where 𝜃=T(⋅) denotes a set of statistical characteristics such as the 
sample mean, variance, and quantiles. This formulation enables a com-
prehensive representation of inference quality under time constraints, 
going beyond reliance on a single observation or the expected value 
alone. 

Once a reliable distribution is obtained, the framework computes 
the final Q@T values, reflecting both the variability in inference time 
and the extreme fluctuations in inference quality.
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2.2.3. The extreme tail quality phenomenon
The Tail Quality phenomenon arises from the statistical evaluation 

framework in Q@T, which generates a distribution of inference quality 
values instead of a single-point estimate. Tail Quality specifically refers 
to the extremely low-quality values observed at the tail of this distribu-
tion. This highlights how Q@T can reveal performance variations that 
traditional evaluation methods might overlook.

This phenomenon underscores the importance of Q@T in evaluating 
AI systems, especially in critical or real-time applications, where such 
extreme deviations could have serious consequences. This makes Q@T 
a valuable tool for assessing AI systems, it provides a more comprehen-
sive understanding of the system’s inference ability under strict time 
constraints.

However, a limitation of Q@T is that it is focused on evaluat-
ing systems within a predefined time threshold. In cases where time 
constraints are less stringent, Q@T may not be as applicable. This 
limitation will be addressed in Section 4, where potential extensions 
and improvements to the Q@T framework are discussed, making it 
more versatile and suitable for a wider range of scenarios.

3. Reanalyzing AI inference evaluation from the perspective of 
evaluatology

In the context of Evaluatology, an evaluation system (ES) is defined 
as the smallest autonomous, self-contained system capable of operating 
automatically. The evaluation system can be broken down into two 
parts: evaluation subject and evaluation conditions. The evaluation 
subject refers to the ‘‘thing’’ being evaluated [20], which can be either 
an individual or a system. This is the core of the entire evaluation 
framework [19]. By precisely defining the subject, we can distinguish 
which part of the evaluation system the final evaluation outcomes 
belong to. The evaluation conditions, on the other hand, encompass all 
factors of the evaluation system other than the subject, serving as the 
primary determinants that influence the evaluation outcomes. When 
evaluating AI inference systems, defining both the evaluation subject 
and conditions presents challenges due to the inherent complexity of AI 
and computer systems. Therefore, in this section, we will follow a pro-
cess where we first clearly define the evaluation system (Section 3.1), 
then separate the evaluation subject from the system (Section 3.2), and 
finally, establish the evaluation conditions (Section 3.3).

3.1. Clarifying primary components constitute evaluation system

This section provides a detailed discussion and analysis of the 
components that make up the evaluation system (ES) in the context of 
evaluating AI inference systems. The primary purpose of AI inference 
systems is to make predictions across various AI inference activities. 
Therefore, the key to constructing the evaluation system (ES) is to 
understand the structure of these inference activities. AI inference 
activities are complex and multifaceted, involving various components 
that interact with one another. These activities are hierarchical and 
require several components to work in concert to produce accurate 
predictions. This inherent complexity is a central challenge in evalu-
ating AI inference systems. Below, we provide a concrete definition of 
the evaluation system, the primary framework we use to define the 
evaluation systems for AI inference tasks. Fig.  1 also illustrates the 
general structure of the entire framework.

Application Scenarios & Tasks: First, we must define the highest 
level of the evaluation system, which involves clarifying the problem 
definition for the AI inference activities. This includes identifying the 
application scenario and the tasks the AI inference activities are ex-
pected to perform. The definition of the application scenario and tasks 
is crucial in determining the evaluation criteria and metrics for the 
entire evaluation. For example, in e-commerce applications, the most 
important task for the AI inference system is often recommendation, 
where recommendation accuracy and latency are the core evaluation 



Z. Yang BenchCouncil Transactions on Benchmarks, Standards and Evaluations 5 (2025) 100203 
Fig. 1. An overview of the main components that make up the evaluation system in 
the context of evaluation AI inference systems. The diagram illustrates a hierarchical 
relationship, progressing from application scenarios and tasks (top left) to algorithmic 
definitions (top right) and then to specific model instances (middle right) and their 
execution environments (bottom). Each layer influences the instantiation of the next: 
application requirements determine which tasks are relevant, which in turn guide 
the selection of algorithmic approaches and models. The arrow labeled ‘‘Determine’’ 
indicates downward decisions or constraints, while the arrow labeled ‘‘Support’’ de-
notes foundational infrastructure (e.g., hardware/software platforms supporting model 
execution). ‘‘Coupling’’ highlights tight interdependencies between components, such 
as how models and algorithms must adapt to the capabilities and constraints of the 
hardware/software stack. This structure underscores the complexity of defining the 
evaluation subject, where inference performance emerges from interactions across all 
layers.

metrics [22]. However, in autonomous driving, the evaluation system 
must account for real-time tasks such as object detection, drivable area 
segmentation, and lane line detection [8]. Given the critical nature 
of real-time decision-making in this scenario, time constraints become 
particularly important, and the evaluation system must emphasize the 
inference time.

Algorithmic Definition: After identifying the AI inference system’s 
application scenario and tasks, the next step is to clarify the algorithmic 
definition required to accomplish these tasks. This is a critical layer 
in the evaluation system as the algorithms form the foundation for 
the system’s inference capabilities. Since this evaluation is focused 
on assessing the inference level of AI systems, we concentrate on 
neural network-based algorithms. Additionally, these algorithms must 
be clearly defined, including the input and output data requirements, 
which are typically influenced by both the application scenario and the 
specific tasks.

For example, in the driver assistance scenario, the system needs 
to identify abnormalities in the driver’s facial expressions and voice 
to prevent potential accidents [23,24]. In the smart healthcare sce-
nario, emotion recognition might focus on monitoring the patient’s 
bioelectrical signals to avoid unforeseen incidents during medical pro-
cedures [23,25]. In both cases, while the emotion recognition remains 
the same, the specific data sources and algorithmic needs vary due to 
the differing application contexts.

Model Instances: Next, the core implementation of the algorithm 
must be defined. This involves specifying which neural network model 
will implement the task objectives. The choice of neural network 
model directly impacts how the algorithm processes input and output 
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data. The chosen model must also account for environmental factors 
and data variances in real-world applications. For instance, if the 
system encounters rain or snow in autonomous driving, the model 
trained on a general dataset might require additional complex data 
processing for the images captured by the vehicle’s cameras. However, 
suppose the model is trained using a specialized dataset that includes 
weather-related variations [5,26,27]. It may not require these addi-
tional processing steps and could still achieve accurate object detection 
in adverse weather conditions.

Hardware & Software Systems: Finally, to support the algorithm’s 
functioning, complete hardware and software infrastructure are neces-
sary to run the neural network model efficiently. The hardware con-
figuration typically includes CPUs, GPUs, and potentially specialized 
hardware such as FPGA or TPU. In real-time performance evaluations, 
hardware is critical because it directly affects the inference speed. 
For instance, an AI model might perform well on a powerful GPU 
but may face delays on a CPU, especially in time-sensitive applica-
tions [28]. Furthermore, hardware selection must also consider other 
factors such as energy consumption, size, and form factor, particularly 
for embedded systems. On the software side, this includes libraries, 
frameworks, and operating systems that facilitate the execution of AI 
models, such as TensorFlow [29], PyTorch [30], and others. These 
frameworks optimize the computation processes of the neural network 
model but interact directly with the hardware, and variations in the 
specific configurations and versions used can result in differences in 
accuracy and performance [31].

In summary, we have analyzed several primary factors the eval-
uation system contains: the application scenario, evaluation metrics, 
data processing, algorithm selection, and computer hardware/software 
infrastructure. These factors are interdependent and form a complete 
evaluation system for AI inference activities [15,32]. However, a key 
challenge remains in clearly delineating the boundaries between the 
evaluation subject and the evaluation conditions. This is a critical issue 
for understanding how different components of the evaluation system 
interact and how their influence on the final evaluation outcome can 
be isolated and measured.

3.2. Defining and identifying evaluation subject

Clarifying the evaluation subject is essential for a rigorous eval-
uation, as it directly determines the boundaries within which the 
evaluation outcomes will be interpreted. However, this task is not 
trivial in AI inference systems evaluation. This is particularly evident 
in the work of Yang et al. [11], where the definition of the AI inference 
system itself is somewhat ambiguous. This lack of a clear and univer-
sally agreed-upon definition poses challenges in accurately assessing 
the performance of AI inference systems in complex environments.

The reason for this ambiguity stems from the inherent complexity 
of the evaluation system [12,32]. As shown in Fig.  1, the evaluation 
system comprises multiple interrelated components, each of which af-
fects the system’s overall performance. A neural network model can be 
seen as an instantiation of an algorithm designed to solve a particular 
task and as a component that must be integrated seamlessly with the 
computational hardware and software environment. The interaction 
between these components creates a complex, tightly coupled system. 
Therefore, a central question in evaluatology for AI inference systems 
is whether or not the neural network model should be considered part 
of the evaluation subject.

3.2.1. Definition of evaluation subject: Excluding model instance
One potential approach to defining the evaluation subject is to 

exclude the neural network model instance and treat only the compu-
tational hardware and software system as the subject being evaluated. 
As illustrated in Fig.  2, the model instance is considered an input to the 
evaluation subject, which processes it within a defined task.
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Fig. 2. The composition of the Evaluation System, including the Primary Factors as 
Evaluation Conditions, the Hardware and Software system as the Evaluation Subject, 
and the Model Instance, which may be considered part of the Subject or the Condition, 
depending on the specific evaluation objectives.

From this perspective, the evaluation is directed at understanding 
the general capability of the AI inference system to perform inference 
tasks rather than measuring the specific performance of the neural 
network model and a computer system. This means that different 
implementations of the same task — such as two distinct models solving 
the same problem — would not affect the evaluation, as the focus is on 
the hardware–software system and its ability to process data efficiently. 
For example, in autonomous driving, the evaluation would focus on the 
system’s ability to process input data from sensors and generate timely 
decisions independent of the specific model implementation used for 
object detection.

3.2.2. Definition of evaluation subject: Including model instance
The second definition of the evaluation subject involves treating 

both the neural network model and the hardware/software system 
as part of the evaluation subject, as shown in Fig.  2. Here, the spe-
cific model implementation (e.g., a particular deep learning network) 
becomes a key factor in determining the system’s ability to execute 
inference tasks. In this case, the evaluation would measure the system’s 
overall inference capability, including inference quality and inference 
time, while considering the effects of different model implementations. 
This does not mean that the first definition cannot measure the system’s 
overall performance, but rather that eliminating the impact of model in-
stances would require greater costs to measure the overall performance 
that is universally applicable under specific tasks. For example, a model 
trained with a specialized dataset for handling weather-related changes 
in autonomous driving would perform differently than a model trained 
on a generic dataset.

3.3. Establishing evaluation conditions

According to Evaluatology, evaluation conditions (ECs) are deter-
mined by isolating the evaluation subject within the evaluation system. 
ECs encompass all external factors that influence the performance 
of the AI inference system. Therefore, in this study, the evaluation 
conditions (ECs) naturally include practical application scenarios, tasks, 
algorithmic definitions, and the model itself, depending on whether the 
model instance is considered part of the evaluation subject. Specifically, 
based on the analysis in Section 3.1, these components define the 
primary factors that must be considered within the EC, as detailed in 
the following sections.

Operational Environment: In autonomous driving applications, 
factors such as weather (rain, snow, fog), traffic density, and road 
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conditions can significantly affect the evaluation outcomes. The system 
must process complex sensor data in real time while also meeting the 
computational demands of the model’s inference, partly due to the 
intrinsic complexity of the subject itself. To address this, by isolat-
ing the subject and removing confounding factors through statistical 
methods within the ECs, we can focus on understanding how specific 
environmental factors impact the evaluation results. As a result, ECs 
must account for these environmental variations and simulate different 
conditions to assess the system’s robustness.

Data Definition: In real-world applications, AI systems must handle 
data that can be multimodal, noisy, or incomplete. For example, in 
autonomous driving, the system may receive data from multiple sen-
sors, such as cameras and LiDAR systems. Thus, the ECs must clearly 
define the form of input data in the evaluation process, ensuring that 
data quality is consistently considered. How data from each sensor is 
processed, combined, and interpreted is crucial for accurately assessing 
the system’s overall outcomes.

Task-Oriented Constraints: Tasks like object detection in
autonomous driving have strict real-time performance requirements, 
whereas tasks like clinical diagnostics may not have stringent time 
constraints but must still meet high-precision standards. In the context 
of Q@T, the time threshold 𝜃 is a central evaluation condition used 
to determine whether the system’s inference time is acceptable. If the 
inference time exceeds this threshold, the system’s performance may 
still be considered inadequate, even if the inference quality is high. 
Therefore, ECs must include these real-time constraints, which may 
vary depending on the application’s requirements.

Scope of Tasks: Additionally, we propose that the scope of tasks 
for evaluation should be appropriately limited. While some researchers 
may wish to assess the general inference capability of an AI system 
across all possible tasks, doing so would result in an explosion of the 
EC space, significantly increasing evaluation costs. Moreover, we argue 
that evaluating an AI inference system’s general processing ability 
across a broad range of tasks does not align with real-world application 
needs. Instead, focusing on specific, well-defined tasks relevant to the 
system’s intended deployment is more practical and efficient.

Algorithmic Definition: ECs should specify the AI inference algo-
rithm used, including whether it is based on transfer learning, reinforce-
ment learning, or other approaches. The choice of algorithm signifi-
cantly influences how input data is processed and how inference results 
are generated. Therefore, it is essential to include this information in 
the ECs to ensure consistency and comparability when evaluating the 
system’s performance under different algorithmic conditions.

Model Instances: Lastly, if the model instance is not included in the 
evaluation subject, the ECs must be designed to eliminate the effects 
of variations in model instances on evaluation outcomes. This requires 
carefully controlling model configurations and ensuring that the evalu-
ation reflects the underlying AI inference system’s performance rather 
than the idiosyncrasies of a specific model instance.

In conclusion, by clearly defining the evaluation conditions (ECs), 
we ensure that the AI inference system is evaluated within comparable 
contexts, guaranteeing the consistency and reliability of the evaluation 
outcomes. This structured approach allows for a more accurate, repro-
ducible, and objective evaluation of AI systems in complex, real-world 
applications, ensuring that the evaluation is scientifically rigorous and 
practically applicable.

4. Refining Q@T evaluation framework

In this section, we refine the Q@T evaluation framework by formal-
izing the evaluation subject and conditions based on the earlier analysis 
using Evaluatology 4.1. This formalization ensures clear definitions 
of the evaluation subject and conditions, providing a more rigorous 
and consistent framework for evaluating AI inference systems. Through 
experiments, we further emphasize the importance of tail quality as an 
indicator of extreme performance in AI inference system evaluation 4.2. 
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Fig. 3. Comparative Q@T evaluation under multiple inference time thresholds for three representative AI models: LightGCN (e-commerce recommendation), HybridNets (autonomous 
driving), and EmotionFlow (emotion recognition). The horizontal axis indicates inference latency (including data pre- and post-processing), while the vertical axis reports task-specific 
quality metrics (NDCG, mAP, and weighted-F1, respectively). For each model, Q@T is computed at different percentiles of inference latency, with key tail-latency points (e.g., 90%, 
95%, 99%) annotated. Max/min/average Q@T scores and standard deviation are also indicated, revealing the relative performance and stability of each system under varying time 
constraints.
Finally, we discuss the landscape of stakeholder considerations, high-
lighting how incorporating the time tolerance of different stakeholders 
into the Q@T framework enhances the adaptability of the evaluation 
process 4.3.

4.1. Formalization of evaluation subject and conditions

From the perspective of the Q@T framework,  Yang et al. [11] 
adopts the second definition of the evaluation subject, as described 
in Section 3.2, where both the model instance and the computational 
infrastructure (hardware/software system) are considered a unified 
entity. This approach aligns with Q@T’s focus on evaluating the overall 
AI inference system, especially where the model and hardware are 
tightly integrated. However, the Q@T framework is flexible enough to 
accommodate the first definition of the evaluation subject, where the 
model instance is excluded. By sufficiently sampling the model instance 
space, Q@T can eliminate the impact of specific model instances on 
the evaluation outcomes, inspired by Evaluatology. This adaptabil-
ity allows Q@T to evaluate AI systems from different perspectives, 
depending on the goals of the evaluation.

Building on this flexibility, the Q@T evaluation framework es-
tablishes a causal relationship between the system configuration 𝑖, 
inference time 𝑇 , and quality 𝑄, as shown in Eq.  (2). This relationship 
allows for the assessment of the AI inference system’s performance 
across varying configurations, even though  Yang et al. [11] does not 
explicitly define the evaluation subject.

Formalization Given the inherent complexity of the evaluation 
subject, the evaluation system must operate as a whole to objectively 
assess the inference capability of AI systems. This requires running the 
system multiple times to isolate the effects of this complexity. Statistical 
indicators, such as averages and confidence intervals, are essential to 
represent the final evaluation outcomes, mitigating the influence of 
confounding factors and ensuring the consistency and reliability of 
the evaluation process. The Q@T evaluation framework addresses this 
challenge by incorporating statistical methods that improve the rigor 
of the evaluation.

While the Q@T metric was originally designed to explore the re-
lationship between quality 𝑄 and time 𝑇 , quantifying the trade-off 
between inference quality and time, the evaluation framework in Yang 
et al. [11] lacks clear definitions of the evaluation subject and condi-
tions. Therefore, we propose distinguishing the elements within 𝑖 into
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primary factors of evaluation conditions and inherent factors of the 
subject. Specifically, primary factors should be considered as factors  𝑖

that influence the evaluation outcomes and can be actively identified 
and controlled. In contrast, elements belonging to the subject should 
be regarded as inherent factors 𝑗 , which may affect the evaluation 
results due to system complexity but are difficult to observe or isolate 
explicitly. Therefore, the original evaluation framework, as modeled 
by Eq.  (2) can be reformulated as the following equation: 

𝑄𝜃 = 𝑓 (𝑇 ∣ 𝜃, { 𝑖}𝑛𝑖=1; {
𝑗}𝑚𝑗=1), 𝑇 ∼ . (4)

This distinction reflects a fundamental challenge in evaluation de-
sign: Although the identification and control of primary factors enable 
the construction of a self-contained evaluation system, the presence 
of inherent factors introduces variability that cannot be eliminated 
through experimental control alone. Instead, their influence must be 
mitigated through statistical methods. The statistical evaluation frame-
work for Q@T thus plays a critical role in ensuring that the evaluation 
results remain robust and generalizable, despite the uncontrollable 
complexity of the inference system.

Based on the revised formulation in Eq.  (4), we can derive practical 
principles for carrying out the evaluation process. When analyzing 
these factors, it is essential to vary one condition at a time — either 
from  𝑖 or 𝑖 — to isolate the effects of each. In practice, however, 
because inherent factors 𝑖 are often unobservable or difficult to con-
trol, statistical methods must be applied first to reduce their influence. 
This requires keeping the ECs  𝑖 fixed during repeated measurements, 
enabling the identification and mitigation of inherent variability. Only 
after this stabilization can we vary the ECs to meaningfully compare 
evaluation outcomes across different settings. Following this principle 
ensures that the evaluation process remains consistent and comparable, 
adhering to the five axioms of Evaluatology and guaranteeing the 
reliability and objectivity of the evaluation results.

Experiments We conducted three groups of experiments across 
diverse AI tasks to evaluate the effectiveness and generalizability of our 
proposed evaluation framework. As shown in Fig.  3, these experiments 
illustrate how Q@T varies under different inference time thresholds:

- E-commerce Recommendation (LightGCN [22]): As shown in 
Fig.  3(a), Q@T effectively tracks the changes in NDCG (Normalized 
Discounted Cumulative Gain), which measures the ranking quality of 
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Fig. 4. Convergence validation of the revised Q@T evaluation framework, conducted 
on the HybridNets model for autonomous driving tasks, running on an A100 GPU. The 
curve shows the square root of Jensen–Shannon divergence (rJSD) over successive sam-
pling rounds, which measures the stability of Q@T estimation as sampling progresses. 
The first occurrences of rJSD falling below 0.05 and 0.03 are annotated, indicating 
fast convergence, with rJSD dropping below the two thresholds at around the 20th 
and 40th rounds, respectively. This confirms the statistical robustness of the evaluation 
under the revised formulation.

recommendation results—the higher the value, the better the perfor-
mance. These results demonstrate the applicability of our framework 
in time-sensitive recommendation scenarios.

- Autonomous Driving (HybridNets [8]): As shown in Fig.  3(b), 
the model performs lane line detection, traffic object detection, and 
drivable area segmentation. For clarity, we focus on the mAP (mean 
Average Precision), a widely used metric for object detection that 
reflects precision across categories—higher values indicate better de-
tection accuracy. Q@T reveals how performance degrades as inference 
time constraints become stricter, highlighting potential quality loss in 
safety-critical scenarios.

- Emotion Recognition (EmotionFlow [33]): As shown in Fig. 
3(c), Q@T captures changes in weighted-F1 score, a harmonic mean of 
precision and recall, under different latency thresholds—higher values 
represent better balance between accuracy and completeness. The ex-
periment shows that emotion detection models can suffer from quality 
drops in low-latency settings.

These cross-domain experiments demonstrate the generalizability 
and practical utility of the revised Q@T framework under the guidance 
of Evaluatology, particularly in capturing time-sensitive performance 
variations across different AI applications.

In addition, we further verified the statistical stability of the pro-
posed evaluation method using HybridNets in the autonomous driving 
domain. As shown in Fig.  4, the square root of Jensen–Shannon di-
vergence (rJSD) gradually decreases and stabilizes as the number of 
sampling rounds increases. The convergence threshold of 0.05 was 
reached in fewer than 20 rounds, indicating that reliable statistical 
evaluation can still be efficiently achieved under the revised definition.

Finally, we conducted a focused analysis of EmotionFlow to explore 
Q@T’s ability to capture tail quality. As shown in Fig.  5, we set 
the inference time threshold to 90% tail latency (118.75 ms) and 
observed the corresponding quality fluctuation. The results show that 
Q@T effectively reflects system performance at critical latency thresh-
olds, offering a more comprehensive perspective for optimizing the 
quality-latency trade-off in AI system deployment. 

Furthermore, we observed that all three models exhibited signifi-
cant quality fluctuations under strict inference time constraints. This 
indicates that current AI software and hardware systems may still lack 
sufficient stability in critical scenarios, emphasizing the need for fur-
ther optimization to ensure robust inference performance in real-world 
applications.
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Fig. 5. Q@T evaluation results across multiple inference time thresholds using the 
revised Q@T framework, with the subject composed of the A100 GPU and the 
EmotionFlow model for emotion recognition. The violin plot represents the distribution 
of Q@T (measured by weighted-F1) at a specific time threshold. The box highlights 
the distribution when the time threshold is set to 90% tail latency (118.75 ms). Key 
statistics — including maximum, minimum, average, and standard deviation — are 
annotated, with the baseline ‘‘No Time Threshold Limit’’ included for reference.

4.2. The importance of tail quality

The mean value alone is insufficient to accurately capture the over-
all performance of AI inference systems, particularly in scenarios where 
extreme behavior is more indicative of the system’s true performance. 
In real-world applications, the performance of AI systems often deviates 
significantly from the average in critical applications. This is the tail 
quality phenomenon, which Q@T specifically aims to address.

For example, in the MLPerf inference benchmark [15], the evalu-
ation primarily focused on average- or best-quality metrics. However, 
this approach overlooks the performance in extreme cases where the 
system might fail or perform poorly, often the most critical aspect 
for real-world applications. Incorporating statistical methods, such as 
the Monte Carlo Simulation, into evaluating Q@T ensures that these 
extreme cases are not overlooked, providing a more comprehensive 
understanding of the system’s true capability.

Through our experiments, we further emphasize the importance of 
Tail Quality in AI inference system evaluation. As shown in Fig.  5, 
the refined Q@T effectively captures the full spectrum of evaluation 
quality fluctuations, including extreme performance variations at the 
tail end of the distribution. For instance, when the inference time 
threshold is set to 118.75 ms, the lowest observed inference quality is 
30.25 weighted-F1, significantly lower than the value of 64.92 obtained 
using traditional isolated quality metrics. The difference between these 
two values is approximately 2.15 times, highlighting how Q@T can 
reveal extreme quality fluctuations that traditional evaluation methods 
cannot capture. This capability ensures that the evaluation reflects not 
only the system’s overall quality but also how it behaves under the 
most demanding conditions, which is critical for ensuring reliability in 
high-risk or real-time applications.

4.3. The landscape of stakeholder consideration

In the original Q@T evaluation framework, the focus has largely 
been on strict time thresholds, where inference time is a critical factor 
in determining system performance. However, real-world applications 
often involve varying levels of tolerance for inference delay, depending 
on the specific needs of different stakeholders. These stakeholder needs 
can significantly influence how the system is evaluated and what 
performance metrics are prioritized.
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Fig. 6. Stakeholder-aware Q@T evaluation on the EmotionFlow model (weighted-F1). (a) shows the original Q@T scores under different inference time thresholds; as the threshold 
increases, the model is allowed more time, leading to higher Q@T values. (b) illustrates Q@T variation after applying a linear tolerance function over the tolerance interval from 
118 ms to 121 ms. (c) shows the corresponding result with a nonlinear tolerance function, where high-latency points are penalized more severely.
To better address these diverse needs, we propose expanding the 
Q@T framework by incorporating a tolerance function that adjusts the 
weight of the Q@T metric based on the acceptable time thresholds 
for different stakeholders. This allows the evaluation framework to 
reflect time tolerance based on the level of urgency or flexibility that 
stakeholders require. The new approach ensures that the evaluation 
process is more adaptable to real-world constraints, where not every 
scenario demands the same level of urgency.

For instance, a real-time autonomous driving application may im-
pose strict time constraints on inference, whereas in e-commerce, a 
slight delay beyond the threshold might be tolerable, though it could 
lead to user churn. However, user churn is not necessarily directly 
correlated with a strict time threshold, as exceeding the threshold does 
not automatically result in user loss. Different users have varying levels 
of tolerance for delay, and the relationship between user patience and 
inference time is not as binary or stepwise as the rigid time thresholds 
might suggest. In this context, the tolerance function for time delay 
in e-commerce applications must reflect the more gradual and non-
linear impact of delay, where mild delays may still be acceptable but 
could lead to different levels of consequences depending on the user’s 
tolerance.

Building upon the original formulation of Q@T in Eq.  (4), we 
propose a generalized version that incorporates stakeholder-specific 
tolerance to inference delay, referred to as Stakeholder-aware Q@T: 

Q@Tstakeholders = ∫𝑇̂∈𝑅
Q@𝑇̂ × Tolerance(𝑇̂ ) 𝑑𝑇̂ , (5)

where Q@𝑇̂  denotes the quality metric evaluated at time threshold 
𝑇̂ , 𝑅 = [𝑅min, 𝑅max] is the stakeholder-defined tolerance interval for 
inference time, and Tolerance(𝑇̂ ) is a user-defined weighting function 
that expresses the degree to which inference delays at 𝑇̂  are acceptable. 
The integration domain 𝑅 is determined by the specific requirements 
of stakeholders, reflecting the time thresholds they consider relevant or 
acceptable for their application scenarios. For strict time constraints, 
the tolerance value will be low, reducing the weight of Q@𝑇̂  at those 
time intervals. On the other hand, for more flexible time requirements, 
the tolerance value will be higher, increasing the weight of Q@𝑇̂  at 
those intervals.

Note that Eq.  (5) integrates the weighted Q@T across a stakeholder-
defined tolerance interval 𝑅. It does not represent a normalized aver-
age, but rather an aggregate evaluation score that emphasizes perfor-
mance in regions preferred by the stakeholder. A normalized version 
can be obtained by dividing by ∫𝑇̂∈𝑅 Tolerance(𝑇̂ ) 𝑑𝑇̂ , if desired. We 
intentionally leave the expression unnormalized to maintain flexibility, 
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allowing users to interpret the result either as a total weighted score or 
to apply normalization as needed for their specific use cases.

This adaptation of Q@T allows us to tailor the evaluation process 
to the specific time tolerance of the task at hand. In practice, this 
enables the Q@T evaluation to be much more flexible, reflecting the 
landscape of stakeholder needs. For example, in autonomous driving, 
any delay could be catastrophic. Here, Q@T would prioritize faster 
inference times and impose stricter thresholds. In contrast, in health-
care applications, where accurate diagnosis is critical but minor delays 
may be acceptable, Q@T would adjust the tolerance to allow for longer 
inference times while still ensuring high-quality outputs.

By incorporating stakeholder-driven tolerance for inference time 
into the evaluation process, the Q@T framework can provide a more 
realistic, adaptable, and comprehensive evaluation metric that reflects 
the diversity of real-world applications. This adjustment enhances the 
flexibility of the evaluation, making it more suitable for a variety of 
use cases where performance criteria differ significantly based on the 
context and needs of the stakeholders.

Experiments To empirically validate the stakeholder-aware exten-
sion of Q@T, we designed two experiments using synthetic tolerance 
functions. Due to the lack of large-scale data on stakeholder demands, 
we manually constructed two representative forms of the Tolerance(𝑇̂ )
function to simulate varying tolerance for inference time. These func-
tions define how much weight each evaluation result Q@𝑇̂  receives 
at a given inference time threshold 𝑇̂ , thereby reflecting hypothetical 
stakeholder preferences across different application contexts. 

The first form is a linear decay function, controlled by a slope 
parameter 𝛼 ∈ (0, 1]: 

Tolerancel(𝑇̂ ) = 1 − 𝛼 ⋅
𝑇̂ − 𝑅min

𝑅max − 𝑅min
. (6)

The second form is a nonlinear exponential decay function, con-
trolled by shape parameters 𝜆 > 0 and 𝑝 > 1: 

Tolerancen(𝑇̂ ) = exp

(

−𝜆 ⋅

(

𝑇̂ − 𝑅min
𝑅max − 𝑅min

)𝑝)

. (7)

In both cases, 𝑅min and 𝑅max define the range of inference time 
thresholds under consideration. This range represents the domain in 
which stakeholders are assumed to express meaningful tolerance varia-
tions. For instance, in safety-critical scenarios, 𝑅 may be narrow and 
focused on low-latency thresholds; in contrast, in offline reasoning 
tasks, a broader range may apply. 

We applied both tolerance functions to two tasks: (1) Emotion 
recognition using EmotionFlow, evaluated with weighted-F1; and (2) 
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Fig. 7. Stakeholder-aware Q@T evaluation on the Vicuna model (top-1 accuracy). (a) presents the original Q@T curve under varying inference time constraints. (b) depicts the 
evaluation using a linear tolerance function across the defined interval from 200 ms to 600 ms. (c) applies a nonlinear tolerance function, emphasizing low-latency performance 

and reducing the impact of slower responses.
Question answering using Vicuna, evaluated with top-1 accuracy. For 
each case, we compared the original Q@T formulation with the
stakeholder-aware variant Q@Tstakeholders, using both linear and non-
linear tolerance. 

Figs.  6 and 7 demonstrate two key implications of incorporating 
stakeholder-aware tolerance functions. First, rather than focusing on 
Q@T under a single time threshold, this framework encourages evalua-
tors to consider a broader range of thresholds, each weighted according 
to stakeholder preferences. This allows Q@T scores at higher-latency 
points — often overestimated in unconstrained evaluations — to be 
reasonably discounted, reflecting more realistic expectations. 

Second, the stakeholder-aware score Q@Tstakeholders can be inter-
preted as a weighted average of Q@T over a tolerance-defined inter-
val 𝑅, capturing the system’s overall quality across multiple thresh-
olds. This integrates not only peak performance but also performance 
stability over time, which is crucial for reliable deployment. 

Comparing Figs.  6 and 7, we observe that although the nonlinear 
tolerance function penalizes high-latency Q@T more severely, Emotion-
Flow exhibits a smoother degradation curve than Vicuna. As a result, 
its Q@Tstakeholders shows a relative gain under nonlinear weighting. 
Additionally, Vicuna demonstrates more consistent behavior across the 
tolerance range, with minimal difference between the maximum area 
(i.e., best-case Q@T) and the minimum area (i.e., worst-case Q@T) 
regions—an important indicator of stability in deployment. In contrast, 
EmotionFlow shows significant performance variance, with a 21.46-
point gap in average weighted-F1 between the best and worst Q@T 
segments. 

These results illustrate that the stakeholder-aware Q@T can adapt 
evaluation outcomes based on context-specific tolerance levels, offering 
a more flexible and realistic assessment approach. Even with synthetic 
tolerance profiles, the influence on evaluation is evident, providing 
preliminary support for the practical applicability of this framework 
in critical tasks. 

5. Conclusion

This paper reanalyzes and extends the Quality@Time-Threshold 
(Q@T) framework from the perspective of Evaluatology, offering a 
robust theoretical foundation for evaluating AI inference systems. By 
applying Evaluatology’s five core axioms and its universal evaluation 
methodology, we redefine the components of the evaluation system, en-
suring precise and consistent assessments of AI systems across various 
tasks and environments. Additionally, we enhance Q@T by incor-
porating a stakeholder-driven tolerance function, making the frame-
work more adaptable to diverse real-world requirements. This work 
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also emphasizes the importance of tail quality, demonstrating how 
Q@T captures extreme performance variations overlooked by tradi-
tional metrics. Overall, we bridge the gap between theoretical evalu-
ation frameworks and practical AI evaluation, providing a comprehen-
sive, adaptable, and scientifically grounded approach for assessing AI 
systems in complex applications.
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