
Full Length Article

LLMs: A game-changer for software engineers?

Md. Asraful Haque
Computational Unit, Z.H. College of Engineering & Technology, Aligarh Muslim University, Aligarh-202002, India

A R T I C L E I N F O

Keywords:
Software engineering
Large language model
AI tools
Coding
Testing
Debugging

A B S T R A C T

Large Language Models (LLMs) like GPT-3 and GPT-4 have emerged as groundbreaking innovations with ca
pabilities that extend far beyond traditional AI applications. These sophisticated models, trained on massive
datasets, can generate human-like text, respond to complex queries, and even write and interpret code. Their
potential to revolutionize software development has captivated the software engineering (SE) community,
sparking debates about their transformative impact. Through a critical analysis of technical strengths, limita
tions, real-world case studies, and future research directions, this paper argues that LLMs are not just reshaping
how software is developed but are redefining the role of developers. While challenges persist, LLMs offer un
precedented opportunities for innovation and collaboration. Early adoption of LLMs in software engineering is
crucial to stay competitive in this rapidly evolving landscape. This paper serves as a guide, helping developers,
organizations, and researchers understand how to harness the power of LLMs to streamline workflows and ac
quire the necessary skills.

1. Introduction

Software engineering (SE) processes refer to the structured set of
activities involved in the development of software systems, including
requirements analysis, design, coding, testing, deployment, and main
tenance. These processes ensure that software is built systematically and
meets user needs while maintaining quality and reliability [1]. Software
development follows various models such as the Waterfall, Agile, or
DevOps, each outlining different approaches to these phases. Software
engineering can be costly and time-consuming for several factors related
to the complexity, labor intensity, and long-term maintenance re
quirements. Fig. 1 illustrates a typical breakdown of the effort or cost
allocation throughout the various phases of software development life
cycle (SDLC) [2,3]. The primary objective of software engineering is to
develop high-quality software at a minimal cost. The software industry
faces numerous challenges in developing reliable software, particularly
as systems become increasingly complex [4]. The demand for faster
development cycles, high-quality code, and the ability to handle
large-scale systems has driven the adoption of new tools and technolo
gies. Among these, Large Language Models (LLMs) have emerged as a
powerful force, automating and optimizing various aspects of the soft
ware engineering process [5]. Large language models are state-of-the-art
NLP tools that have been trained on massive amounts of data, allowing
them to generate human-like responses and understand complex lan
guage patterns. They have gained immense popularity in recent years

because it makes a lot of things easier and quicker. They have the po
tential to revolutionize various industries and transform the way we
interact with technology. They have demonstrated impressive capabil
ities that are directly applicable to software engineering [6,7]. Some of
the key functions include code generation, debugging, testing etc. The
integration of LLMs into software engineering (SE) is transforming
traditional practices in multiple ways. From altering how developers
write, review, and maintain code to revolutionizing collaboration within
teams, LLMs are reshaping the landscape of SE [8–10]. The impact of
LLMs on software engineering tools and platforms is evident in the
growing trend of LLM-powered IDEs. These environments now offer
intelligent code suggestions, natural language queries, and automated
refactoring, making development more intuitive. While there’s much
excitement about LLMs in software engineering, significant concerns
remain regarding their practical use and ethical implications [11]. LLMs
lack true comprehension of the logic behind code, making them prone to
generating incorrect or insecure outputs. Additionally, the adoption of
these models also brings challenges related to ethics, job roles, and the
need for careful human oversight. Thus the question remains: Are these
capabilities sufficient to significantly transform the software engineer
ing industry?

In this paper, we aim to explore the transformative potential of Large
Language Models in software engineering, assessing whether they
represent an overhyped trend or a disruptive innovation capable of
reshaping the field. We will delve into the technical strengths and

E-mail address: md_asraf@zhcet.ac.in.

Contents lists available at ScienceDirect

BenchCouncil Transactions on Benchmarks,
Standards and Evaluations

journal homepage: www.keaipublishing.com/en/journals/benchcouncil-

transactions-onbenchmarks-standards-and-evaluations/

https://doi.org/10.1016/j.tbench.2025.100204
Received 4 March 2025; Received in revised form 28 April 2025; Accepted 19 May 2025

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 5 (2025) 100204

Available online 19 May 2025
2772-4859/© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

https://orcid.org/0000-0002-0518-2785
https://orcid.org/0000-0002-0518-2785
mailto:md_asraf@zhcet.ac.in
www.sciencedirect.com/science/journal/27724859
http://www.keaipublishing.com/en/journals/benchcouncil-transactions-onbenchmarks-standards-and-evaluations/
http://www.keaipublishing.com/en/journals/benchcouncil-transactions-onbenchmarks-standards-and-evaluations/
https://doi.org/10.1016/j.tbench.2025.100204
https://doi.org/10.1016/j.tbench.2025.100204
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tbench.2025.100204&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

limitations of LLMs, examine real-world case studies, and discuss the
ethical considerations that come with the adoption of AI-driven devel
opment tools. Through this comprehensive analysis, we seek to provide
a balanced perspective on the role of LLMs in modern software engi
neering practices.

2. Understanding large language models

Large language models (LLMs) are built on the transformative power
of the transformer architecture, a model introduced by Vaswani et al. in
2017 [12] that has since become the foundation of many advanced
LLMs. The transformer architecture, unlike its predecessors like recur
rent neural networks (RNNs) and long short-term memory (LSTM) net
works, excels at handling long-range dependencies in data through its
self-attention mechanism. This mechanism enables the model to un
derstand and weigh relationships between all tokens in a sequence
simultaneously, rather than processing them in order. This ability to
capture both local and global context makes transformers highly effec
tive for tasks that require understanding the structure and flow of text or
code. In the context of software engineering, this allows LLMs to not
only generate code based on natural language prompts but also to un
derstand the intricate relationships between different parts of a code
base, which is crucial for complex tasks like debugging, code
completion, and refactoring. The self-attention mechanism is a key
innovation that empowers LLMs to efficiently determine the importance
of different parts of input data, whether in a sentence or in a block of
code. This helps LLMs better understand the context of programming
languages, allowing them to predict the next steps in coding processes or
provide useful suggestions during the development cycle. Another vital
aspect of transformer models is positional encoding, which helps
maintain the order of input data — a necessary feature when processing
sequences like code, where the position of elements is critical to func
tionality. The combination of self-attention and positional encoding al
lows LLMs to process code sequences with an understanding of both
immediate context and overall structure, thus improving their perfor
mance in code generation and related tasks.

The development of LLMs involves mainly three stages: pre-training,
fine-tuning and reinforcement learning with Human Feedback [13–15].
In the pre-training phase, LLMs are exposed to vast amounts of textual
and coded data, learning general language patterns, coding structures,
and syntax from diverse sources such as books, websites, and
open-source code repositories. The scope of this pre-training enables
LLMs to acquire a broad understanding of multiple programming lan
guages and frameworks, making them versatile in handling different
software engineering tasks. Once pre-training is complete, the model
undergoes fine-tuning on specific datasets tailored to the target appli
cation, refining its ability to perform tasks in specialized areas such as

web development, cybersecurity, or enterprise software solutions. This
fine-tuning process sharpens the model’s ability to generate relevant,
high-quality outputs in response to domain-specific inputs. At the end,
reinforcement learning is used to further enhance the model’s perfor
mance by interacting with an environment and receiving human feed
back. The feedback, in the form of ratings, rankings, or corrections, is
used as a reward signal to guide the model’s learning. This is an iterative
process and continues until the model meets the desired standards, at
which point it can be used in real-world applications. A typical training
process of OpenAI’s ChatGPT has been shown in Fig. 2 [16]. By
leveraging the advantages of pre-training, fine-tuning and RLHF, LLMs
become proficient in understanding not only the general syntax and
structure of code but also in adapting to specialized coding practices and
conventions. This allows LLMs to assist with software engineering tasks
such as code generation, debugging, and even testing, making them
valuable tools for developers working across a variety of programming
languages and problem domains. Despite these strengths, however,
LLMs still face challenges, particularly when dealing with complex logic
or novel problems outside of their training data. Nevertheless, their
advanced architecture and training methodologies have positioned
them as powerful, versatile tools in the field of software engineering.

A significant number of LLMs are already in use. Table 1 provides a
brief overview of some well-known models [16–22]. The future holds
promise for even more powerful and advanced LLMs.

Fig. 1. Typical effort distribution at different phases of SDLC.

Fig. 2. ChatGPT training process.

Md.A. Haque BenchCouncil Transactions on Benchmarks, Standards and Evaluations 5 (2025) 100204

2

3. Technical strengths and benefits of LLMs in SE

LLMs have brought transformative potential to software engineering,
providing a suite of technical strengths and benefits that can drastically
enhance productivity, code quality, and innovation (Fig. 3). From
improving code generation to automating complex documentation
tasks, LLMs are reshaping how developers approach various phases of
the software development lifecycle. While the “state-of-the-art (SOTA)”
pushes toward autonomous software development, the “state-of-the-
practice (SOTP)” is more about augmented intelligence — enhancing
human developers rather than replacing them. The SOTA refers to the
bleeding edge of what LLMs can do under optimal conditions, typically
in research environments or advanced use cases, whereas the SOTP is
the reality of how LLMs are being used today by software engineers in
real-world environments. Below is a detailed exploration of the tech
nical strengths and benefits of LLMs in software engineering (SE).

3.1. Code generation

One of the most prominent uses is code generation, where models
like GitHub Copilot, powered by OpenAI’s Codex, allow developers to
describe the functionality they need in natural language, and the LLM
generates relevant code snippets [23]. This not only speeds up the

coding process but also minimizes repetitive tasks, enabling developers
to focus on more complex aspects of software design and architecture
[24,25]. The benefit here is a marked improvement in productivity, as
LLMs assist in automating routine coding activities like writing boiler
plate code, implementing standard algorithms, or creating simple data
structures. Moreover, LLM-driven code generation is highly versatile
across different programming languages, offering cross-language flexi
bility that is particularly useful in polyglot development environments
where multiple languages are used. The ability to generate code across
Python, JavaScript, Java, C++, and other languages adds immense
value, reducing the need for developers to switch contexts or master
multiple languages to complete tasks efficiently [26,27].

• State-of-the-Art: Advanced models like GPT-4, Code Llama, Star
Coder, and Claude can synthesize entire functions, classes, and even
small applications directly from natural language prompts. These
models have achieved high benchmark scores, consistently out
performing earlier generations in evaluations like HumanEval,
MBPP, and MultiPL-E, with top models surpassing 50–70 % accuracy
on competitive programming tasks [23,28]. In addition, a new
frontier is emerging with the development of autonomous code
agents, such as Auto-GPT, Smol Developer, and Devin (from Cogni
tion AI), which attempt to autonomously generate multi-file projects
with minimal human supervision. These agents are capable of
breaking down high-level goals into actionable subtasks, generating
project scaffolds, and iterating toward functional software solutions
with little direct developer input, pushing the limits of what auto
mated programming can achieve.

• State-of-the-Practice: The current state of practice in industry reveals
a more cautious and pragmatic adoption of LLM-based code gener
ation tools. Platforms like GitHub Copilot, Codeium, and Amazon
CodeWhisperer have seen widespread integration into professional
development workflows, primarily assisting with in-line code
completion, thus reducing keystrokes and improving overall devel
oper velocity. However, LLMs are still primarily leveraged for
writing boilerplate, templated code, and implementing standard
patterns rather than handling complex, domain-specific logic or
making architecture-level decisions. Limitations become apparent
when LLMs are tasked with projects involving intricate dependencies
or specialized business rules. As a result, a strong human-in-the-loop
paradigm remains necessary; developers must diligently validate,
test, and refine AI-generated code to ensure correctness, security,
and maintainability, especially in mission-critical or production en
vironments where even minor errors could have significant
consequences.

3.2. Code review, debugging and testing

LLMs have the ability to automate code reviews and assist with bug
detection [29]. These models can facilitate the knowledge required for
high-quality code reviews. Even junior developers, with the assistance of
LLM-powered tools, can contribute effectively to the code review pro
cess by leveraging the model’s knowledge of industry standards and best
practices. Traditionally, debugging requires manual effort from de
velopers, who inspect the code for errors, and once the error is located
developers can then implement a fix to correct the error [30]. LLMs can
analyze logs, error messages, and code execution paths to suggest po
tential causes of bugs [31,32]. This helps developers quickly pinpoint
the source of an issue, reducing the time spent on manual debugging.
LLMs can also suggest potential fixes based on the patterns they have
learned from analyzing similar bugs in the past. This capability is
particularly useful in large, complex systems where tracking down bugs
can be a challenging and time-consuming task. For example, LLMs can
identify common mistakes such as unhandled exceptions, resource leaks,
or improper variable initializations. They can also flag potential security
issues like injection vulnerabilities, insecure data handling, or incorrect

Table 1
A brief history of some prominent LLMs.

LLMs Release
Date

Developer Model Size

Number of
Parameters

Dimension (L ×
H)*

BERT October-
2018

Google 110 billion
(Base Model)

L = 12, H = 12
(Base Model)**

GPT-2 February-
2019

OpenAI 1.5 billion L = 12, H = 12
(Small
Version)**

XLNet June-2019 Google &
CMU

110 million
(Base Model)

L = 12, H = 12
(Base Model)**

T5 October-
2019

Google 11 billion L = 12, H = 12
(Small
Version)**

GPT-3 June-2020 OpenAI 175 billion L = 96, H = 96
Codex August-

2021
OpenAI 12 billion L = 24, H = 32

PaLM April-2022 Google 540 billion L = 118, H = 128
GALACTICA November-

2022
Meta AI 120-billion L = 80, H = 96

LLaMA February-
2023

Meta AI 65 billion L = 80, H = 64

GPT-4 March-2023 OpenAI 1.76 trillion Details
undisclosed

Gemini 1.5 May-2024 Google
DeepMind

Details
undisclosed

Details
undisclosed

* L=Number of layers, H––Number of attention heads.
** These models have different variants.

Fig. 3. Revolution in SE practices.

Md.A. Haque BenchCouncil Transactions on Benchmarks, Standards and Evaluations 5 (2025) 100204

3

encryption implementations. By catching these issues early, LLMs help
developers produce more secure and robust code. Additionally, LLMs
have been applied to automated testing, where they generate unit tests,
identify edge cases, and suggest test cases based on the functionality
described in code [33]. This application can significantly speed up the
testing phase of software development, ensuring that code is rigorously
tested without developers having to manually write every possible test
case. LLMs’ capacity to generate exhaustive test suites helps in reducing
the likelihood of bugs making it to production, thus increasing the
overall robustness and reliability of software systems.

• State-of-the-Art: Automated code review tools such as CodiumAI,
CodeGPT, and SonarLint AI leverage LLMs to provide intelligent
suggestions, identifying issues related to logic, security vulnerabil
ities, and adherence to coding best practices. AI-assisted debugging is
also becoming highly sophisticated; for instance, GPT-4 integrations
in environments like Visual Studio Code and specialized developer
assistants unveiled at OpenAI DevDay can actively parse logs, di
agnose errors, and recommend fixes [34]. In testing, LLMs have
achieved notable success in generating not just basic unit tests but
also more complex integration and property-based tests, sometimes
attaining over 90 % code coverage for simple functions, as seen in
models like DeepMind’s AlphaCode [35,36]. These advancements
signal a move towards increasingly autonomous support systems that
can substantially augment developers’ capabilities throughout the
software lifecycle.

• State-of-the-Practice: AI tools are primarily used to augment rather
than replace human-led code reviews. While they are effective at
catching common mistakes and suggesting improvements, they often
lack the deep contextual understanding necessary for evaluating
architectural choices or domain-specific logic. False positives remain
a significant concern, particularly in debugging, where LLMs some
times propose solutions that seem plausible but fail in real-world
execution. This limits the reliability of AI-suggested fixes without
human verification. Moreover, while AI-generated test cases can be
helpful, integration with Continuous Integration/Continuous
Deployment (CI/CD) pipelines remains limited. Most teams continue
to rely heavily on manual validation and traditional test frameworks,
preferring to use AI-generated tests as a supplementary resource
rather than fully trusting them for critical deployments.

3.3. Language and framework agnostic

LLMs have the remarkable ability to work across a wide variety of
programming languages and frameworks, making them versatile tools in
multi-language environments [37]. Because LLMs are trained on diverse
datasets that include code from many different programming languages,
they can switch between languages and frameworks with ease. This is
especially useful for developers who work in environments that require
knowledge of multiple languages, such as Python for backend services,
JavaScript for frontend development, and SQL for database manage
ment. By supporting a broad range of languages and frameworks, LLMs
eliminate the need for developers to switch between different coding
assistants or learn new tools for each technology they use [38,39]. This
contributes to a more seamless development experience and enhances
overall efficiency.

• State-of-the-Art: Modern LLMs, trained on vast repositories such as
GitHub and Stack Overflow, possess multilingual code understand
ing, allowing them to generate and translate code across a wide
range of languages including Python, JavaScript, Java, C++, Rust,
and Go. These models are not only language-flexible but also
framework-aware; they can produce code that aligns with the syntax
and best practices of popular frameworks such as React, Django, and
Spring Boot [40]. Furthermore, cutting-edge AI-assisted refactoring
tools are now capable of facilitating cross-language migration — for

instance, helping transition legacy systems from COBOL to Java or
modernizing codebases from Python 2 to Python 3, or even migrating
JavaScript codebases to TypeScript. These advancements enable
significant leaps in productivity, particularly when modernizing or
maintaining large, aging code infrastructures.

• State-of-the-Practice: In real-world usage, AI-generated code often
lacks deep context awareness, meaning it may not consistently
adhere to team-specific coding conventions, domain-driven archi
tectural principles, or nuanced project standards. Although LLMs can
generate framework-specific code — for example, producing Django,
Flask, Express, or FastAPI templates — real-world implementation
typically requires manual fine-tuning and adjustment to meet
production-grade requirements. Additionally, while cross-language
migration tools can offer substantial initial assistance, challenges
frequently arise when deep dependencies, intricate business logic, or
architecture-specific constraints are involved. In such cases, human
expertise remains indispensable to ensure the successful and accu
rate transition of complex software systems.

3.4. Refactoring and optimization

As software systems grow, they often accumulate technical debt,
requiring refactoring and optimization to ensure long-term performance
and maintainability. LLMs can assist with these processes by suggesting
refactoring opportunities, such as code that can be simplified, dupli
cated code that can be consolidated, or outdated structures that need
updating [41]. This is particularly valuable in large codebases where
manually identifying areas for refactoring would be time-consuming and
prone to oversight. LLMs can also help optimize code by suggesting more
efficient algorithms or design patterns based on established best prac
tices. For instance, if a developer writes a brute-force solution for a
problem, the LLM might suggest a more optimal approach using dy
namic programming or divide-and-conquer algorithms. Additionally,
LLMs can provide performance insights, such as identifying inefficient
loops, excessive memory usage, or potential bottlenecks in code
execution, which helps ensure that the software remains scalable and
performant as it evolves [42].

• State-of-the-Art: Automated code refactoring tools powered by LLMs
— such as CodiumAI, IntelliCode, and Tabnine — can suggest en
hancements aimed at improving readability, modularity, and system
performance. Beyond stylistic changes, modern LLMs can engage in
AI-driven performance tuning by suggesting optimizations in algo
rithmic complexity (Big-O improvements), recommending more
efficient SQL queries, and proposing memory-optimized solutions
based on recognized best practices [43,44]. Some cutting-edge
models even demonstrate a level of semantic understanding of
code structures, allowing them to detect "code smells" and recom
mend modularization strategies to improve maintainability and
reduce technical debt. These advancements position LLMs as
powerful partners for elevating the quality and efficiency of software
development.

• State-of-the-Practice: While LLMs effectively handle simple refac
toring tasks — such as renaming variables, extracting methods, and
improving code readability — major architectural refactoring efforts
still largely require human expertise and strategic judgment. LLMs
often suffer from limited awareness of a project’s full architectural
context, which can result in inconsistent or suboptimal suggestions,
particularly when working across large repositories with complex
interdependencies. Trust remains another key issue: developers
usually conduct a careful manual check of AI-proposed optimizations
before adopting them, wary of potential regressions or performance
declines.

Md.A. Haque BenchCouncil Transactions on Benchmarks, Standards and Evaluations 5 (2025) 100204

4

3.5. Automated documentation

Generating accurate, up-to-date documentation has long been a
challenge for software engineers, as it is often seen as tedious work that
lags behind code changes [45]. Developers often deprioritize this due to
tight deadlines or a focus on feature development. However, docu
mentation is crucial for ensuring that code is maintainable, under
standable, and transferable across teams and developers. LLMs can
analyze code and automatically generate documentation for codebases,
including explaining the purpose and functionality of specific functions,
classes, and modules [46]. This ensures that documentation stays cur
rent and can be updated as code evolves, providing developers with
easily understandable, well-structured explanations of how various
parts of the system work. This capability not only improves team
collaboration and knowledge sharing but also supports on-boarding
processes by helping new developers quickly understand legacy code
bases or complex systems. In agile environments, where requirements
and implementations frequently change, the ability of LLMs to update
documentation dynamically as the code evolves is an invaluable benefit.

• State-of-the-Art: State-of-the-art developments in automated docu
mentation leverage LLMs’ deep code understanding to create more
contextual and helpful outputs. Modern tools like Codeium and
Copilot Chat enable the generation of auto-populated docstrings,
providing context-aware inline explanations that enhance code
readability. Advanced LLMs can also produce natural language de
scriptions of APIs, offering suggestions for refining Swagger or
OpenAPI specifications, thus bridging gaps between developers and
API consumers. Some AI tools, like Sourcegraph Cody, push the
boundaries further by summarizing codebases into readable tutorials
or blog-style documentation, making complex technical information
more accessible to broader audiences. These innovations are rede
fining how documentation is created and maintained, shifting it from
a manual, error-prone task to an automated, continuous process.

• State-of-the-Practice: In current development workflows, the output
of LLMs often tends to be generic, verbose, or redundant, necessi
tating human refinement to ensure clarity and relevance. While LLMs
excel at describing low-level function behaviors, they typically
struggle to capture and explain high-level architectural decisions or
intricate system designs. As a result, AI-generated documentation is
commonly integrated into internal knowledge bases like Confluence,
Notion, or proprietary wikis, where it serves as a helpful supplement
rather than a full replacement for human-authored documentation.

4. Challenges

While LLMs offer exciting possibilities in the SE domain, several
technical limitations and a range of ethical challenges must be
addressed:

4.1. Technical limitations

• Lack of True Understanding: LLMs do not "understand" code in the
same way humans do [8,44]. While LLMs are powerful at predicting
sequences based on statistical patterns learned from vast datasets,
they lack a deep understanding of the underlying logic and intent
behind a given piece of code. In software engineering, this is
particularly problematic because coding often requires not just
syntactically correct solutions, but solutions that align with specific
business logic, system architecture, and performance requirements
[47]. For instance, an LLM may generate syntactically correct code
for a sorting algorithm but fail to account for efficiency constraints
such as time complexity or memory usage, especially when these
concerns are implicit in the task description. The inability of LLMs to
grasp these nuances means that while they are useful for generating
code snippets or suggesting fixes, developers must rigorously review

and adapt their outputs to ensure they meet the functional and
non-functional requirements of the system.

• Context Sensitivity: Although LLMs are good at handling short,
localized contexts, they often struggle with maintaining long-term
context over extended portions of a codebase [48]. Software sys
tems are often composed of multiple files, modules, and libraries that
interact with one another in complex ways. Maintaining context
across such a large-scale system, where changes in one part of the
codebase can have ripple effects across the system, is a challenge for
LLMs. For example, an LLM may generate code that works well
within a single function but fails to account for broader architectural
considerations, such as how this function interacts with others in
different modules or libraries. In large enterprise-scale applications,
this limitation becomes even more pronounced, as developers need
to track dependencies across various subsystems, which LLMs may
not handle effectively. The model’s understanding tends to deterio
rate when it needs to work with codebases that span across multiple
files or projects, resulting in incomplete or incorrect suggestions.

• Inability to Handle Novel or Rare Problems: LLMs rely heavily on
patterns learned from their training data, which means they perform
best when tasked with solving common or well-documented prob
lems. However, when faced with novel or rare problems that deviate
from established patterns, LLMs often struggle to produce correct or
meaningful output. In software engineering, developers frequently
encounter unique challenges that require creative problem-solving
and a deep understanding of both the problem domain and system
architecture. LLMs, constrained by the limitations of their training
data, may not have seen enough similar examples to provide an
adequate solution. This is especially true for cutting-edge technolo
gies or innovative software designs that have not been widely
adopted and thus are not well-represented in public datasets.
Furthermore, rare edge cases, which are often the most critical and
challenging parts of software development, tend to be poorly
handled by LLMs due to the lack of exposure to similar situations
during training.

• Computational Costs: Large Language Models (LLMs) are computa
tionally intensive, requiring significant hardware resources for
training and inference [49]. Training LLMs requires immense
computational resources, including large clusters of GPUs or TPUs,
leading to high financial costs. Inference, or using the trained model
for tasks, can also be computationally expensive, especially for larger
models. These high computational costs can be a barrier to entry for
organizations, limiting their ability to adopt and utilize LLMs in their
software engineering workflows. Another consideration is the energy
consumption associated with running LLMs. The large-scale
deployment of LLMs in software engineering environments contrib
utes to increased energy usage, which has both economic and envi
ronmental implications [50].

• Transparency and accountability: LLMs are often seen as black-box
models, meaning that their decision-making processes are not
easily interpretable by users [51]. When an LLM generates code, it is
not always clear how or why it arrived at a particular solution [52].
This lack of transparency becomes problematic in scenarios where
LLMs make critical decisions, such as in safety-critical systems or in
applications that have legal and regulatory implications. If a soft
ware failure occurs due to an LLM’s suggestion, it is difficult to assign
responsibility — does the fault lie with the developer, the AI, or the
organization that provided the AI? This lack of clear accountability
creates challenges in governance and compliance, particularly in
regulated industries like finance, healthcare, and transportation.
Therefore, ensuring that LLMs are explainable and that there are
mechanisms in place to track and audit AI-generated outputs is
essential for fostering trust and ensuring that ethical guidelines are
followed.

• Security Risks: If LLMs are trained on large public datasets, including
code repositories, they may inadvertently learn insecure or

Md.A. Haque BenchCouncil Transactions on Benchmarks, Standards and Evaluations 5 (2025) 100204

5

vulnerable coding practices [53]. For instance, if an LLM is trained
on a repository where code contains hard-coded credentials, weak
encryption methods, or unpatched vulnerabilities, the model may
unknowingly generate code that replicates these flaws. This becomes
particularly dangerous in security-critical applications like financial
software, healthcare systems, or government infrastructure. The
potential for LLMs to suggest insecure code increases the burden on
developers to scrutinize the model’s output closely, ensuring that it
adheres to industry best practices and security standards. Therefore,
while LLMs can be helpful for automating routine tasks, they should
not be used blindly, especially in areas where security is paramount.
Continuous oversight and refinement of the training data, as well as
integration with secure coding practices, are essential to mitigate
these risks.

4.2. Ethical considerations

• Copyright and Intellectual Property: LLMs are trained on publicly
available data, but this data may include proprietary or copyrighted
code that the model can later reproduce in different contexts [54].
When LLMs generate code that closely resembles or directly repli
cates code from its training data, it raises serious questions about
ownership and accountability. Developers using LLM-generated code
may inadvertently violate copyright laws if the generated code
mirrors protected material without proper attribution. This could
lead to legal disputes and undermine the trust in LLMs as reliable
tools in professional software development environments. To address
these concerns, companies providing LLM services must implement
safeguards that either filter copyrighted material during the training
process or ensure that LLM-generated content is appropriately flag
ged for potential legal issues.

• Biases in Training Data: One of the most pressing ethical concerns
surrounding LLMs is the issue of bias in training data [55]. LLMs are
trained on vast datasets that include both natural language text and
code from public repositories, such as GitHub, Stack Overflow, and
various forums. However, these sources can contain biased,
outdated, or even harmful practices. For example, if the training data
includes discriminatory language or biased coding patterns (such as
gender or race-based assumptions in user data processing), the LLM
may learn and perpetuate these biases in its outputs. In the context of
software engineering, biased code generation can lead to inequitable
software solutions, unfair user experiences, or even legal and repu
tational risks for companies. Moreover, models trained on real-world
codebases may inherit the biases of past software engineering de
cisions, such as assumptions about users’ technical abilities or
geographical location, resulting in software that does not serve all
demographics equally. Addressing these biases requires careful
dataset curation, as well as developing methods for identifying and
mitigating bias in LLM outputs.

• Impact on the Workforce: The impact on the workforce is another
ethical issue associated with the rise of LLMs in software engineering.
By automating tasks like code generation, testing, and debugging,
LLMs have the potential to reduce the demand for certain types of
coding jobs, particularly entry-level or junior software development
roles [17,55]. This could lead to job displacement for new developers
or those in low-skilled positions, creating economic inequality within
the industry. Additionally, reliance on LLMs may result in a des
killing of the software engineering workforce. If developers become
too dependent on AI-generated code and suggestions, they may lose
the ability to write complex code or troubleshoot issues indepen
dently. This could diminish the overall expertise within the field over
time, affecting the quality of software and innovation. To counteract
these risks, educational systems and organizations need to evolve,
focusing on upskilling developers to work alongside LLMs rather
than being replaced by them. Training programs should emphasize

higher-order skills like software architecture, algorithm design, and
critical thinking, which cannot be easily replicated by AI.

5. Case studies and recent trends

Initially, AI tools were primarily used for specific tasks like code
completion and bug detection. However, the advent of LLMs has ushered
in a new era of AI-powered development. This shift promises not only
greater efficiency but also new possibilities in adaptive, responsive
coding environments. In exploring the impact of LLMs on software en
gineering, it is essential to examine real-world case studies where LLMs
have been applied in different software engineering (SE) environments.
By analyzing diverse cases, we can understand how LLMs can be a game-
changer in some situations, while potentially overhyped or insufficient
in others.

5.1. GitHub Copilot (Powered by OpenAI codex)

GitHub Copilot, powered by LLM technology, has become a widely
adopted tool for code generation, suggestions, and auto-completions
[56–58]. It is extensively used by developers at organizations such as
Microsoft, Shopify, and Datadog, along with many individual de
velopers. A notable case of internal adoption is GitHub’s own integration
of Copilot into its development workflow [59,60]. This implementation
led to a significant increase in developer productivity—up to 55 % in
routine coding tasks. Developers experienced faster prototyping and
fewer context switches, which streamlined their workflows. Copilot
proved especially effective in generating boilerplate code and recurring
patterns, enabling engineers to focus more on strategic and creative
aspects of development.

Another compelling example comes from Shopify, where engineers
utilized Copilot for developing internal tools and web applications
[61–63]. The tool contributed to a faster onboarding process for junior
developers and significantly reduced cognitive load during develop
ment. Moreover, the context-aware code completions offered by Copilot
helped developers become more familiar with new libraries and
frameworks, enhancing overall efficiency and learning outcomes within
the team

5.2. Amazon CodeWhisperer

Amazon CodeWhisperer is an LLM-based tool designed to provide
real-time code suggestions based on natural language prompts, seam
lessly integrating with popular IDEs such as Visual Studio Code and
JetBrains [64]. A prominent case study of its application involves AWS
developer teams, who employed CodeWhisperer internally to automate
the generation of API integration code [65]. This implementation led to
a reduction in repetitive coding time by approximately 40–50 %,
significantly improving developer efficiency. One of the key benefits
highlighted by the teams was the tool’s high accuracy in generating code
specific to AWS SDKs and services, which substantially reduced the need
for frequent documentation lookups, thereby streamlining the overall
development workflow.

5.3. Tabnine

Tabnine is an LLM-based tool that offers predictive code completions
through either local or cloud-hosted models, making it a suitable solu
tion for privacy-focused environments and organizations requiring
team-specific model tuning [66]. A case study [67] describes how
Tabnine uses Google Cloud to deliver its AI-powered coding tool to one
million users. Tabnine’s ML models, which help developers autocom
plete about 30 % of their code, rely on Google Cloud’s GPUs and Google
Kubernetes Engine for scalability and performance. Tabnine values its
open-source commitment, which aligns with Google Cloud’s dedication
to the open-source community. They also value the support they have

Md.A. Haque BenchCouncil Transactions on Benchmarks, Standards and Evaluations 5 (2025) 100204

6

received from Google Cloud specialists.

5.4. Codium (Now qodo)

Codium uses AI to provide intelligent code completions and auto
mate test generation. It emphasizes code quality and security, offering
on-premise deployment options. It aims to boost developer productivity
by streamlining coding workflows. It supports over 70 programming
languages, and integrates seamlessly with various IDEs and web editors
[68]. It is a lightweight alternative to GitHub Copilot. One of its key
selling points is that it is available for free to both individuals and teams,
making it an accessible solution for a wide range of users. A notable case
study involves “Clearwater Analytics”, a fintech SaaS company priori
tizing data security, who adopted Qodo (formerly Codium) to enhance
developer productivity [69]. Faced with the challenge of maintaining
stringent security while leveraging AI-powered coding assistance, they
chose Qodo for its unique ability to be deployed within their Enterprise
VPC, ensuring code privacy. Developers experienced immediate pro
ductivity gains with Qodo’s code completion capabilities, resulting in
significant time and cycle savings. The successful implementation was
supported by dedicated Qodo team support and training, and the rapid
integration of new features like chat integration.

5.5. Replit Ghostwriter

Replit Ghostwriter, an LLM-powered IDE tool, is revolutionizing
coding accessibility and efficiency, particularly for students and
beginner developers. Seamlessly integrated into Replit’s browser-based
platform, it accelerates learning by providing real-time code generation,
explanation, and natural language-to-code translation [70]. Educational
institutions have witnessed significant improvements in student confi
dence and assignment completion through its interactive support,
reducing reliance on instructors. Beyond education, Ghostwriter boosts
productivity for experienced developers by automating tasks, contrib
uting to Replit’s substantial user growth, which surged from 10 million
to over 20 million within a year [71]. Ultimately, Ghostwriter de
mocratizes coding, serving as a powerful learning and productivity tool
that’s poised to expand its impact as AI technology advances.

5.6. Sourcegraph Cody

Sourcegraph Cody is an AI-powered tool designed to enhance code
navigation and documentation understanding, seamlessly integrated

with Sourcegraph’s code intelligence platform. Leidos, a science and
technology company facing the challenge of enhancing developer pro
ductivity within a complex, security-conscious environment, adopted
Sourcegraph Cody [72]. They found Cody’s context-aware assistance
and flexible LLM integration to be key differentiators, enabling signifi
cant time savings in code understanding, documentation, and debug
ging. Notably, Cody drastically reduced the time spent answering
teammate questions by 75 % and cut code orientation time on legacy
systems by 50 %. This resulted in increased efficiency in modernizing
and migrating legacy code, with tasks previously taking sprints being
completed in minutes. Leidos’s experience demonstrates Cody’s effec
tiveness in improving developer workflows, particularly in large, com
plex codebases, and its ability to maintain high security standards.

These case studies reflect that software industries worldwide are
leveraging AI tools to streamline processes, increase efficiency, and
foster creativity in problem-solving. Table 2 indicates that LLMs can
generate code and suggest improvements quickly, but they often lack the
precision, ethical insight, and contextual understanding that human
developers provide. The AI Index 2024 Annual Report [73] highlights
that software developers are among the professionals most likely to
incorporate AI in their work. As AI’s role within the economy grows,
understanding how developers use and view AI is becoming essential.
Stack Overflow, the Q&A platform for programmers, runs an annual
survey targeting developers. For the first time in 2023, this survey
gathered insights from over 90,000 developers — featured questions on
usage of AI tools [73]. It explored how developers employ these tools,
which ones they prefer, and their overall perceptions of them. Table 3
shows the developers’ preferences for using AI tools in software engi
neering tasks. Fig. 4 is the graphical representation of Table 3.

The survey was taken in May 2023, thus it may not reflect the
availability of more recent AI technologies such as Gemini and Claude 3.
The other findings of that survey were as follows (Fig. 5):

• Most popular AI developer tool among professional developers, 2023
is GitHub Copilot.

• Most popular AI search tool among professional developers, 2023 is
ChatGPT.

• Most popular cloud platform among professional developers, 2023 is
Amazon Web Services.

• Developers cited higher productivity (32.8 %), quicker learning
(25.2 %), and increased efficiency (25.0 %) as the top benefits of AI
tools in their work.

Table 2
Comparative analysis.

LLM-powered Tools Key Impacts Challenges

GitHub Copilot - Dramatically accelerates coding.
- Boosts creativity by suggesting patterns developers may not think of.
- Helps junior developers produce higher-quality code.

- Sometimes generates insecure or inefficient code.
- Risk of “over-relying” without understanding the logic.
- Licensing/legal concerns (e.g., code originality).

Amazon CodeWhisperer - Stronger emphasis on secure coding (e.g., encryption, authentication).
- Seamless AWS service integrations save time.
- Good for enterprise-grade cloud apps.

- Biased toward AWS ecosystem, less useful for non-AWS projects.
- Suggestions can sometimes be more verbose than necessary.
- Less flexible across diverse programming stacks.

Tabnine - Highly efficient for boilerplate and repetitive code.
- Minimal learning curve — very easy to integrate.
- Helps developers "think less" about syntax.

- Limited "deep" understanding of project-specific logic.
- Doesn’t recommend security or performance improvements.
- Can sometimes offer shallow or redundant completions.

Codium AI - Greatly improves code quality through auto-generated tests.
- Encourages a testing culture (important for scaling teams).
- Helps identify hidden bugs early.

- Test quality can vary depending on code complexity.
- Not a replacement for writing well-thought-out manual tests.
- Might generate overly simple test cases if not fine-tuned.

Replit Ghostwriter - Instant environment setup saves huge time (especially for quick experiments).
- Ideal for prototyping new ideas without local dependencies.
- Very beginner-friendly (low barrier to entry).

- Limited control for large, complex project structures.
- Not suitable for full-scale production codebases.
- Dependency on Replit ecosystem for best results.

Sourcegraph Cody - Makes navigating and understanding huge codebases faster.
- Helps teams maintain consistency across large projects.
- Reduces onboarding time for new developers.

- Requires setting up or connecting to indexed repositories.
- Effectiveness can drop if code comments/documentations are poor.
- Querying the system effectively requires some learning.

Md.A. Haque BenchCouncil Transactions on Benchmarks, Standards and Evaluations 5 (2025) 100204

7

GitHub also conducted a survey [74] from February 26 to March 18,
2024, among 2000 non-student, corporate respondents in the United
States, Brazil, India, and Germany who are not managers and work for
organizations with 1000 or more employees. According to the survey,
developers are increasingly integrating AI tools, with the majority of
respondents reporting that AI improves their productivity and coding
skills. Fig. 6 represents the respondents view on the benefits of AI tools.
It highlights that popularity and use of AI tools varies by region. Fig. 7
displays the current usage of AI coding tools against the corporate
endorsement for AI-driven coding. The survey respondents reported that
AI tools boost productivity, freeing them up to focus on strategic tasks
like system design and client collaboration. To fully leverage AI, orga
nizations should integrate it into every phase of development. AI isn’t a
job replacement but an enhancer of human creativity.

Fig. 4. Developers’ preferences for using AI-tools in development tasks, 2023.

Table 3
Developers’ preferences for using AI tools.

Development Tasks Currently using Interested in using Not interested

Planning 13.52 % 38.54 % 29.77 %
Coding 82.55 % 23.72 % 4.48 %
Code Reviews 10.09 % 49.51 % 22.95 %
Debugging 48.89 % 40.66 % 6.37 %
Testing 23.87 % 55.17 % 11.44 %
Documentation 34.37 % 50.24 % 8.07 %
Maintenance 4.74 % 45.44 % 28.33 %
Learning Codebase 30.10 % 48.97 % 13.09 %
Collaboration 3.65 % 29.98 % 41.38 %

Fig. 5. Popularity of AI-tools among professional developers, 2023.

Md.A. Haque BenchCouncil Transactions on Benchmarks, Standards and Evaluations 5 (2025) 100204

8

6. Future directions and research opportunities

As Large Language Models (LLMs) continue to evolve and become
more deeply integrated into software engineering (SE) processes, the
future of this technology holds immense potential. However, there are
several areas that still require further exploration, development, and
research [75–79]. Understanding the trajectory of LLMs in SE will not
only help identify their limitations but also uncover new applications
and possibilities for transforming software development practices. In
this section, we will explore the key future directions and research op
portunities for LLMs in software engineering, ranging from technical
advancements to ethical considerations and new ways to collaborate
with AI models.

6.1. Specialization and domain-specific LLMs

A major area of research in the future will focus on creating more
specialized LLMs tailored for specific domains within software engi
neering. While general-purpose LLMs like GPT-4 and Codex are highly
effective across a wide range of coding tasks, they are often not opti
mized for niche areas such as embedded systems, real-time applications,

or domain-specific languages like hardware description languages
(HDL). Researchers are likely to focus on training LLMs on highly
curated, domain-specific datasets, allowing these models to gain deeper
expertise in specialized fields. For example, an LLM trained exclusively
on medical software code or financial systems might be better equipped
to understand the particular regulatory requirements, security needs,
and performance constraints of these industries. Such domain-specific
models could also include compliance checks that align with industry-
specific standards, helping ensure that software adheres to legal and
regulatory frameworks. Similarly, LLMs could be fine-tuned for partic
ular programming languages or frameworks, providing deeper insights
and optimizations tailored to those specific environments.

6.2. Improved interpretability and explainability

One of the most pressing challenges with the current generation of
LLMs is their "black-box" nature, meaning they often provide answers or
code suggestions without clear explanations of how or why those sug
gestions were made. This lack of transparency is problematic, particu
larly in safety-critical applications like healthcare, finance, or aerospace,
where understanding the reasoning behind code is essential for ensuring
security and correctness. Research in this area will likely focus on
improving the interpretability and explainability of LLMs. Efforts will be
made to create models that can not only generate code but also explain
the rationale behind their decisions, offering developers more confi
dence in the accuracy and safety of the suggestions. This could involve
developing new methods for LLMs to highlight the key parts of the
training data or coding patterns that influenced their output. Explain
able AI (XAI) frameworks that allow for deeper interrogation of LLM
outputs could become more commonplace in SE environments, helping
engineers better understand the suggestions provided by the models.

6.3. Collaborative human-ai programming environments

The future of LLMs in software engineering will likely emphasize
collaborative programming environments where humans and AI work
together seamlessly. This will involve creating tools and platforms that
promote symbiotic relationships between developers and LLMs, allow
ing both parties to complement each other’s strengths. For instance,

Fig. 6. Respondents view on the benefits of AI tools.

Fig. 7. Usage of AI tools vs. Companies encouragement.

Md.A. Haque BenchCouncil Transactions on Benchmarks, Standards and Evaluations 5 (2025) 100204

9

while LLMs excel at generating code quickly and efficiently, human
developers bring contextual understanding, creativity, and ethical
judgment that AI currently lacks. Research opportunities in this area
include developing more intuitive, conversational interfaces for LLMs,
where developers can interact with models in a fluid and iterative
manner. This could involve advancements in multimodal AI, where
LLMs can take into account visual inputs, such as system diagrams or
wireframes, to better understand the developer’s intent and provide
more relevant suggestions. Similarly, AI models could be trained to
adapt their suggestions based on real-time feedback from developers,
improving their effectiveness over time and enabling a more interactive
coding process. These collaborative environments could also include AI
models acting as "pair programmers," offering continuous feedback,
alternative coding approaches, and potential optimizations during the
development process.

6.4. Enhanced debugging and automated bug fixing

One of the most promising future directions for LLMs in software
engineering is their potential to revolutionize debugging and automated
bug fixing. Current LLMs can already identify and suggest solutions for
common errors, but future advancements may lead to more sophisti
cated debugging tools that can understand complex bugs in large, multi-
component systems. Future research may focus on training LLMs to
detect not just surface-level issues (e.g., syntax errors), but deep-rooted
logical bugs, performance bottlenecks, and security vulnerabilities in
more extensive codebases. For instance, LLMs of the future could
autonomously analyze code dependencies and execution paths to iden
tify the root cause of subtle issues, such as memory leaks or race con
ditions, which are difficult to detect manually. Moreover, they could
propose multiple solutions, weigh the pros and cons of each, and
recommend the best course of action, tailored to specific system con
straints. Further research could explore the potential for AI to continu
ously monitor running systems and automatically suggest patches or
improvements in real-time, reducing the need for human intervention in
maintenance tasks.

6.5. Ethical and security concerns

As LLMs become more prevalent in SE, the ethical and security im
plications of their use will require ongoing research. For instance, as
LLMs generate more and more code, questions about the ownership and
licensing of that code will arise, particularly when the models are
trained on publicly available, open-source projects. Who owns the code
generated by AI models, and how do we ensure that it complies with
existing intellectual property laws? Addressing these issues will require
interdisciplinary research that involves not just software engineering
but also legal scholars, ethicists, and policy makers. Another major area
of concern is the security of AI-generated code. Although LLMs can
detect certain types of vulnerabilities, they can also inadvertently
introduce new ones. Research will need to focus on creating mechanisms
that prevent LLMs from generating insecure code, particularly in
mission-critical systems. There is also the risk of bias and ethical di
lemmas in the datasets used to train LLMs. Models trained on biased or
incomplete data may perpetuate harmful stereotypes or make inaccurate
decisions, which could have significant consequences in sectors such as
healthcare or criminal justice software systems. Future research will
need to address ways to mitigate these risks, ensuring fairness and
accountability in AI-generated code.

6.6. Continual learning and model adaptation

As software development environments evolve, so too must the LLMs
that support them. One area of research is continual learning; where
LLMs can update their knowledge in real-time as they are exposed to
new coding patterns, languages, or technologies. This would eliminate

the need for retraining models from scratch and allow LLMs to stay
relevant in dynamic environments. Future LLMs could potentially learn
from real-world codebases as they evolve, adapting to new trends in
development practices and adjusting their suggestions accordingly.
Moreover, research into adaptive LLMs may explore models that can
fine-tune themselves based on specific user needs or project contexts.
For instance, a developer working on a web application might receive
different types of suggestions from an LLM compared to someone
working on an embedded system. Models could be fine-tuned not just for
specific industries but also for individual developers, offering person
alized feedback based on past interactions, coding styles, and preferred
development frameworks.

6.7. Cross-Language and multimodal development

With the rise of LLMs in software engineering, there is growing in
terest in models that can understand and generate code across multiple
programming languages. This capability would be especially useful for
projects that involve integrating systems built in different languages or
for teams with diverse language preferences. Research opportunities in
this area include developing LLMs that are fluent in cross-language
development, offering seamless transitions between languages and
ensuring that code components written in different languages can work
together efficiently. Additionally, multimodal LLMs that can integrate
text, code, and even visual information (such as UI wireframes or
architectural diagrams) offer exciting possibilities for the future of SE.
These models could enable more comprehensive understanding of
complex software systems, allowing developers to describe features in
natural language while the LLM generates code, suggests optimizations,
and aligns it with the visual or architectural elements of the project.

6.8. Education and training in the AI era

Lastly, the rise of LLMs in software engineering will have a profound
impact on how future developers are trained and educated. As LLMs take
over more of the rote coding tasks, the focus of SE education will likely
shift toward higher-level problem-solving, system design, and ethical
decision-making. Researchers will explore new pedagogical models that
emphasize the collaboration between humans and AI, teaching de
velopers not only how to code but also how to work effectively with AI
tools. Future research in education will likely investigate how to inte
grate LLMs into software engineering curricula, ensuring that de
velopers are well-prepared to work with AI-enhanced development
tools. There will also be a need to develop new metrics for assessing
coding skills, as the traditional focus on syntax and manual coding
proficiency may become less relevant in a world where LLMs handle
much of the low-level programming work.

7. Conclusion

The integration of LLMs into software engineering represents a sig
nificant turning point in how software is developed, maintained, and
optimized. This article has explored the potential of LLMs to both
enhance and challenge the current practices within the field of software
engineering. Throughout the discussion, several important findings have
emerged regarding the use of LLMs. They have proven to be game-
changers across various phases of the software development lifecycle,
including requirement analysis, code generation, testing, and debug
ging. By automating routine tasks and improving code quality, LLMs
allow developers to focus on more complex and creative aspects of their
work. Furthermore, LLMs can ensure consistency across large codebases
and assist in maintaining legacy systems, thereby addressing technical
debt effectively. However, while the potential of LLMs is vast, ethical
concerns surrounding data bias, intellectual property, and job
displacement must be carefully managed. The computational costs
associated with training and deploying these large-scale models can also

Md.A. Haque BenchCouncil Transactions on Benchmarks, Standards and Evaluations 5 (2025) 100204

10

be prohibitive, particularly for smaller organizations. In light of these
findings, it is clear that LLMs are not merely a product of overhyped
marketing; they represent a profound shift in how software is engi
neered. They should be seen as powerful tools that augment human
capabilities rather than replace them. Human oversight remains crucial
for ensuring that AI-generated code aligns with project goals, is secure,
and is free from biases. Therefore, the verdict is that LLMs indeed are
game-changers in software engineering, but their true potential can only
be unlocked when combined with human expertise and ethical safe
guards. For developers and organizations, embracing the rise of LLMs is
not just a choice but a strategic imperative. Developers must become
familiar with how LLMs can assist in coding, testing, debugging, and
maintenance while continuing to refine their higher-level skills such as
system design and ethical decision-making. Organizations should invest
in integrating LLMs into their development environments, starting with
pilot projects to gauge effectiveness, as this can reduce development
costs, accelerate time-to-market, and enhance software quality. Educa
tional institutions, too, should revise their software engineering
curricula to prepare the next generation of developers for the future of
AI-driven development.

The impact of this article extends beyond simply presenting the ad
vantages and challenges of LLMs in software engineering; it provides a
balanced and nuanced perspective that allows stakeholders to make
informed decisions about adopting these technologies. By highlighting
real-world case studies, technical strengths, ethical considerations, and
future research opportunities, the article contributes to the growing
discourse on AI-driven development tools and their place in the future of
software engineering. Ultimately, it serves as a guide for developers,
organizations, and researchers, helping them understand how LLMs can
enhance workflows and the skills needed to remain competitive in an AI-
driven landscape. As LLMs continue to evolve, their integration into
software engineering practices will redefine what is possible in software
development, pushing the boundaries of automation, creativity, and
collaboration. Thus, this article offers a foundational understanding of
how LLMs are poised to change the software engineering landscape,
encouraging stakeholders to embrace these tools thoughtfully and
strategically. In conclusion, LLMs hold the potential to significantly
disrupt and enhance the software engineering process, and as developers
and organizations adapt to these changes, they will find themselves at
the forefront of a new era in software development—one that is faster,
more efficient, and more collaborative than ever before.

Funding

The authors declare that no funds, grants, or other supports were
received during the preparation of this manuscript.

Data availability

No datasets were generated or analyzed during the current study.

CRediT authorship contribution statement

Md. Asraful Haque: Writing – original draft, Methodology, Inves
tigation, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financia
linterestsor personal relationships that could have appeared to influence
the work reported in this paper.

References

[1] Guide to the Software Engineering Body of Knowledge (SWEBOK Guide), in:
H. Washizaki (Ed.), Guide to the Software Engineering Body of Knowledge
(SWEBOK Guide), IEEE Computer Society, 2024.

[2] R.S. Pressman. Software Engineering: A Practitioner’s Approach. 5th Edition,
McGraw-Hill Higher Education, 2001, ISBN- 0073655783.

[3] P. Jalote. Software Engineering: A Precise Approach. Wiley, 2010, ISBN-
9788126523115.

[4] M.A. Haque, N. Ahmad, Key issues in software reliability growth models, Recent
Adv. Comput. Sci. Commun. 15 (5) (2022) 741–747.

[5] X. Hou, Y. Zhao, Y. Liu, Z. Yang, K. Wang, Li Li, X. Luo, D. Lo, J. Grundy, H. Wang,
Large language Models for Software engineering: a systematic literature review,
ACM Trans. Soft. Eng. Methodol. (2024), https://doi.org/10.1145/3695988.

[6] I. Ozkaya, Application of large language models to software engineering tasks:
opportunities, risks, and implications, IEEE Softw. 40 (3) (2023) 4–8.

[7] S. Rasnayaka, G. Wang, R. Shariffdeen, G.N. Iyer, An empirical study on usage and
perceptions of LLMs in a software engineering project, in: Proceedings of the 1st
International Workshop on Large Language Models for Code, 2024, pp. 111–118,
https://doi.org/10.1145/3643795.3648379. Pages.

[8] Y. Li, T. Zhang, X. Luo, H. Cai, S. Fang, D. Yuan, Do pretrained language models
indeed understand software engineering tasks? IEEE Trans. Software Eng. 49 (10)
(2023) 4639–4655.

[9] Z. Liu, Y. Tang, X. Luo, Y. Zhou, L.F. Zhang, No need to lift a finger anymore?
Assessing the quality of code generation by ChatGPT, IEEE Trans. Software Eng. 50
(6) (2024) 1548–1584.

[10] A. Tarassow. 2023. The potential of llms for coding with low-resource and domain-
specific programming languages. arXiv preprint arXiv:2307.13018.

[11] J. Sallou, T. Durieux, A. Panichella, Breaking the silence: the threats of using LLMs
in software engineering, in: Proceedings of the 2024 ACM/IEEE 44th International
Conference on Software Engineering: New Ideas and Emerging Results, 2024,
pp. 102–106. Pages.

[12] A. Vaswani, et al., Attention Is All You Need, 30, Advances in Neural Information
Processing Systems (NIPS 2017), Long Beach, CA, USA, 2017.

[13] T.B. Brown, et al., Language models are few-shot learners, in: Proc. of the 34th Int.
Conf. on Neural Information Processing Systems (NIPS ’20), 2020, pp. 1877–1901.
Article 159.

[14] J. Howard, S. Ruder, Universal language model fine-tuning for text classification,
in: 56th Annual Meeting of the Association for Computational Linguistics (Long
Papers), 2018, pp. 328–339, pagesMelbourne, Australia.

[15] L. Ouyang, et al., Training language models to follow instructions with human
feedback, in: 36th Conf. on Neural Information Processing Systems 35, 2022,
pp. 27730–27744.

[16] M.A. Haque, S. Li. 2024. Exploring ChatGPT and its impact on society. AI and
ethics. doi:10.1007/s43681-024-00435-4.

[17] M. Lubbad. 2023. GPT-4 parameters: unlimited guide NLP’s game-changer.
Medium (March 19, 2023). Available online: https://medium.com/@mlubbad/t
he-ultimate-guide-to-gpt-4-parameters-everything-you-need-to-know-about-nlps-g
ame-changer-109b8767855a.

[18] W.X. Zhao et al. 2023. A survey of large language models. arXiv preprint arXiv:
2303.18223v11.

[19] R. Taylor, M. Kardas, G. Cucurull, T. Scialom, A. Hartshorn, E. Saravia, A. Poulton,
V. Kerkez, R. Stojnic. 2022. Galactica: a large language model for science. arXiv
preprint arXiv:2211.09085.

[20] H. Touvron et al. 2023. Llama: open and efficient foundation language models.
arXiv preprint arXiv:2302.13971.

[21] M.A. Haque, A brief analysis of ‘ChatGPT’ – A revolutionary tool designed by
OpenAI, EAI Endorsed Tran. AI and Robotics 1 (1) (2023) e15.

[22] Y. Chang, et al., A survey on evaluation of large language models, ACM Trans.
Intell. Syst. Technol. 15 (3) (2024) 1–45. VolIssueArticle No. 39Pages.

[23] Jiang, J., et al. 2024. A survey on large language models for code generation. arXiv
preprint arXiv:2406.00515.

[24] S. Zhang, J. Wang, G. Dong, J. Sun, Y. Zhang, G. Pu. 2024. Experimenting a new
programming practice with llms. arXiv preprint arXiv:2401.01062.

[25] R.A. Husein, H. Aburajouh, C. Catal, Large language models for code completion: a
systematic literature review, Comput. Stand. Interf. 92 (2025) 103917.

[26] M. Welsh, The end of programming, Commun. ACM 66 (1) (2023) 34–35, https://
doi.org/10.1145/3570220.

[27] Z. Wang, J. Li, Ge Li, Z. Jin. 2023. Chatcoder: chat-based refine requirement
improves llms’ code generation. arXiv preprint arXiv:2311.00272.

[28] Z. Yu et al. 2024. HumanEval Pro and MBPP Pro: evaluating large language models
on self-invoking code generation. arXiv preprint arXiv:2412.21199v2.

[29] K. Huang, et al., An empirical study on fine-tuning large language models of code
for automated program repair, in: Proceedings 38th IEEE/ACM Int. Conf.
Automated Softw. Eng. (ASE), 2023, pp. 1162–1174.

[30] M.A. Haque, S. Li, The potential use of ChatGPT for debugging and bug fixing, EAI
Endorsed Trans. AI and Robot. 2 (1) (2023) e4.

[31] S. Kang, J. Yoon, N. Askarbekkyzy, S. Yoo, Evaluating diverse large language
models for automatic and general bug reproduction, IEEE Trans. Software Eng. 50
(10) (2024) 2677–2694.

[32] Z. Fan, X. Gao, M. Mirchev, A. Roychoudhury, S. Hwei Tan, Automated repair of
programs from large language models, in: 2023 IEEE/ACM 45th International
Conference on Software Engineering (ICSE), Melbourne, Australia, 2023,
pp. 1469–1481.

Md.A. Haque BenchCouncil Transactions on Benchmarks, Standards and Evaluations 5 (2025) 100204

11

http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0001
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0001
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0001
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0004
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0004
https://doi.org/10.1145/3695988
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0006
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0006
https://doi.org/10.1145/3643795.3648379
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0008
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0008
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0008
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0009
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0009
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0009
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0011
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0011
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0011
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0011
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0012
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0012
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0013
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0013
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0013
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0014
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0014
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0014
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0015
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0015
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0015
https://doi.org/10.1007/s43681-024-00435-4
https://medium.com/@mlubbad/the-ultimate-guide-to-gpt-4-parameters-everything-you-need-to-know-about-nlps-game-changer-109b8767855a
https://medium.com/@mlubbad/the-ultimate-guide-to-gpt-4-parameters-everything-you-need-to-know-about-nlps-game-changer-109b8767855a
https://medium.com/@mlubbad/the-ultimate-guide-to-gpt-4-parameters-everything-you-need-to-know-about-nlps-game-changer-109b8767855a
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0021
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0021
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0022
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0022
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0025
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0025
https://doi.org/10.1145/3570220
https://doi.org/10.1145/3570220
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0029
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0029
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0029
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0030
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0030
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0031
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0031
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0031
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0032
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0032
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0032
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0032

[33] M. Schafer, S. Nadi, A. Eghbali, F. Tip, An empirical evaluation of using large
language models for automated unit test generation, IEEE Trans. Software Eng. 50
(1) (2024) 85–105.

[34] J. Wang, Y. Huang, C. Chen, Z. Liu, S. Wang, Q. Wang, Software testing with large
language models: survey, landscape, and vision, IEEE Trans. Software Eng. 50 (4)
(2024) 911–936.

[35] Y. Wang et al. 2025. ProjectTest: a project-level LLM unit test generation
benchmark and impact of error fixing mechanisms. arXiv preprint arXiv:
2502.06556v4.

[36] J.A. Pizzorno and E.D. Berger. 2025. CoverUp: coverage-guided LLM-based test
generation. arXiv preprint arXiv:2403.16218v3.

[37] T. Xue, X. Li, T. Azim, R. Smirnov, J. Yu, A. Sadrieh, B. Pahlavan. 2024. Multi-
programming language ensemble for code generation in large language model.
arXiv preprint arXiv:2409.04114.

[38] J. Zhang, P. Nie, J.J. Li, M. Gligoric, Multilingual code Co-evolution using large
language models, in: Proceedings of the 31st ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE 2023), 2023, pp. 695–707.

[39] Q. Peng, Y. Chai, X. Li, Humaneval-xl: a multilingual code generation benchmark
for cross-lingual natural language generalization, in: Proceedings of the 2024 Joint
International Conference on Computational Linguistics, Language Resources and
Evaluation, 2024, pp. 8383–8394, pagesTorino, Italia.

[40] J. Xing, M. Bhatia, S. Phulwani, D. Suresh, R. Matta. 2025. HackerRank-ASTRA:
evaluating correctness & consistency of large language models on cross-domain
multi-file project problems. arXiv preprint arXiv:2502.00226v1.

[41] A. Shirafuji, Y. Oda, J. Suzuki, M. Morishita, Y. Watanobe, in: Refactoring
Programs Using Large Language Models with Few-Shot Examples. 30th Asia-Pacific
Software Engineering Conference (APSEC-23), Seoul, South Korea, 2023,
pp. 151–160.

[42] S. Ishida et al. 2024. LangProp: a code optimization framework using large
Language Models applied to driving. arXiv preprint arXiv:2401.10314.

[43] P. Akioyamen. 2024. The unreasonable effectiveness of LLMs for query
optimization. arXiv preprint arXiv:2411.02862v1.

[44] Z. Yao et al. 2025. A query optimization method utilizing large language models.
arXiv preprint arXiv:2503.06902v1.

[45] A.D. Porta, et al., Using large language models to support software engineering
documentation in waterfall life cycles: are we there yet?, in: Proceedings of the 4th
National Conference on Artificial Intelligence, organized by CINI, May 29-30,
Naples, Italy, 2024.

[46] L. Belzner, T. Gabor, M. Wirsing, Large language model assisted software
engineering: prospects, challenges, and a case study, in: Bridging the Gap Between
AI and Reality: First International Conference, AISoLA 2023, Crete, Greece, 2023,
pp. 355–374.

[47] H. Jin, L. Huang, H. Cai, J. Yan, Bo Li, H. Chen. 2024. From LLMs to LLM-based
Agents for Software Engineering: a survey of current, challenges and future. arXiv
preprint arXiv:2408.02479.

[48] F. Errica, G. Siracusano, D. Sanvito, R. Bifulco. 2024. What did I do wrong?
Quantifying LLMs’ Sensitivity and consistency to prompt engineering. arXiv
preprint arXiv:2406.12334v1.

[49] Y. Xia, J. Kim, Y. Chen, H. Ye, S. Kundu, C. Hao, N. Talati. 2024. Understanding the
performance and estimating the cost of LLM fine-tuning. arXiv preprint arXiv:
2408.04693.

[50] M.C. Rillig, M. Agerstrand, M. Bi, K.A. Gould, U. Sauerland, Risks and benefits of
large language models for the environment, Environ. Sci. Technol. 57 (9) (2023)
3464–3466.

[51] C. Tantithamthavorn, J. Cito, H. Hemati, S. Chandra, Explainable AI for SE:
experts’ interviews, challenges, and future directions, IEEE Softw. 40 (4) (2023).

[52] B. Kou, S. Chen, Z. Wang, L. Ma, and T. Zhang. 2023. Do large language models pay
similar attention like Human programmers when generating code?. arXiv preprint
arXiv:2306.01220.

[53] N. Perry, M. Srivastava, D. Kumar, D. Boneh, Do users write more insecure code
with AI assistants?, in: ACM SIGSAC Conference on Computer and
Communications Security (CCS ’23), 2023, pp. 2785–2799.

[54] C. Kirchhubel, G. Brown, Intellectual property rights at the training, development
and generation stages of Large language Models, in: Proceedings of the Workshop
on Legal and Ethical Issues in Human Language Technologies @ LREC-COLING
2024, ELRA and ICCL, Torino, Italia, 2024, pp. 13–18, pages.

[55] J. Jiao, S. Afroogh, Y. Xu, C. Phillips. 2024. Navigating LLM Ethics: advancements,
challenges, and future directions. arXiv preprint arXiv:2406.18841.

[56] S. Imai, Is GitHub copilot a substitute for human pair-programming? An empirical
study, in: Proceedings of the ACM/IEEE 44th International Conference on Software
Engineering (ICSE ’22), Pittsburgh, Pennsylvania, 2022, pp. 319–321.

[57] M. Jaworski, D. Piotrkowski. 2023. Study of software developers’ experience using
the Github Copilot Tool in the software development process. arXiv preprint arXiv:
2301.04991.

[58] S. Peng, E. Kalliamvakou, P. Cihon, M. Demirer. 2023. The impact of AI on
developer productivity: evidence from GitHub copilot. arXiv preprint arXiv:
2302.06590.

[59] D. Smit, H. Smuts, P. Louw, J.;. Pielmeier, C. Eidelloth, The impact of GitHub
Copilot on developer productivity from a software engineering body of knowledge
perspective, in: AMCIS 2024 Proceedings, 2024, p. 10.

[60] A. Ziegler, E. Kalliamvakou, X.A. Li, A. Rice, D. Rifkin, S. Simister, G. Sittampalam,
E. Aftandilian, Measuring GitHub copilot’s impact on productivity, Commun. ACM
67 (2024) 54–63, 3 (March 2024).

[61] R. Salva. 2025. Essentials of GitHub copilot. Available online: https://resources.
github.com/learn/pathways/copilot/essentials/essentials-of-github-copilot/.

[62] Revolutionizing Shopify’s Engineering: The Power of GitHub Copilot, Available
online, https://www.toolify.ai/ai-news/revolutionizing-shopifys-engineering-the
-power-of-github-copilot-821646, 2024.

[63] A. Ambo. Empowering devs with AI: how Shopify made GitHub Copilot core to its
culture. 2023. Available online: https://medium.com/@AmboAtsushi/empowerin
g-devs-with-ai-how-shopify-made-github-copilot-core-to-its-culture-d237ba09d
61b.

[64] Impactful work: helping developers around the world improve productivity with
AI. 2023. Available online: https://aws.amazon.com/careers/life-at-aws-imp
actful-work-helping-developers-around-the-world-improve-productivity/.

[65] V.K. Sikha, AI fueled transformation in application development & coding, Int. J.
Commun. Networks Inf. Security 15 (04) (2023).

[66] V. Joshi, I. Band. 2024. Disrupting test development with AI assistants. arXiv
preprint arXiv:2411.02328.

[67] Tabnine: using Google Cloud powered AI to help developers code faster. 2023.
Available online: https://cloud.google.com/customers/tabnine.

[68] K.-.A. Marvel. 2025. Codeium: the best github copilot alternative. Available online:
https://semaphore.io/blog/codeium.

[69] Clearwater Analytics on Codeium, Available online, https://codeium.com/blog/cl
earwater-analytics-case-study, 2024.

[70] A. Masood, S.Dahal, A. Cai, G. Burtini. 2022. Ghostwriter AI & Complete Code
Beta. Replit Blog: https://blog.replit.com/ai.

[71] A. Masad. 2023. Replit’s path to product-market fit — The $1 billion side project.
Available online: https://review.firstround.com/replits-path-to-product-market-fit
/.

[72] Cody + Leidos: maximizing efficiency with heightened security in the AI race.
2025. Available online: https://sourcegraph.com/case-studies/cody-leidos-
maximizing-efficiency-heightened-security-ai-race.

[73] N. Maslej, L. Fattorini, R. Perrault, V. Parli, A. Reuel, E. Brynjolfsson,
J. Etchemendy, K. Ligett, T. Lyons, J. Manyika, J.C. Niebles, Y. Shoham, R. Wald,
J. Clark, The AI Index 2024 Annual Report, in: AI Index Steering Committee,
Institute for Human-Centered AI, Stanford University, CA, 2024.

[74] Kyle Daigle & GitHub Staff. 2024. Survey: the AI wave continues to grow on
software development teams. GitHub blog. Available online: https://github.
blog/news-insights/research/survey-ai-wave-grows/#key-survey-findings.

[75] D. Russo, Navigating the complexity of generative AI adoption in software
engineering, ACM Trans. Softw. Eng. Methodol. 33 (2024) 50, https://doi.org/
10.1145/3652154, 5, Article 135 (June 2024)pages.

[76] A. Drake. 2024. The future of software engineering: lLMs and beyond. Comet
(February 28, 2024). Available online: https://www.comet.com/site/blog/the
-future-of-software-engineering-llms-and-beyond/.

[77] J. Monti. 2024. The future of AI-driven software development. Medium (Mar 8,
2024). Available online: https://joemonti.org/the-future-of-ai-driven-software-de
velopment-0dec24759a71.

[78] J. Sauvola, S. Tarkoma, M. Klemettinen, J. Riekki, D. Doermann, Future of software
development with generative AI, Automat. Software Eng. 31 (2024) 26, https://
doi.org/10.1007/s10515-024-00426-z.

[79] V. Terragni, P. Roop, K. Blincoe. 2024. The future of software engineering in an AI-
driven world. arXiv preprint arXiv:2406.07737.

Md.A. Haque BenchCouncil Transactions on Benchmarks, Standards and Evaluations 5 (2025) 100204

12

http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0033
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0033
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0033
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0034
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0034
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0034
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0038
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0038
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0038
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0038
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0039
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0039
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0039
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0039
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0041
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0041
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0041
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0041
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0045
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0045
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0045
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0045
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0046
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0046
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0046
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0046
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0050
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0050
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0050
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0051
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0051
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0053
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0053
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0053
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0054
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0054
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0054
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0054
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0056
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0056
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0056
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0059
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0059
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0059
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0060
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0060
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0060
https://resources.github.com/learn/pathways/copilot/essentials/essentials-of-github-copilot/
https://resources.github.com/learn/pathways/copilot/essentials/essentials-of-github-copilot/
https://www.toolify.ai/ai-news/revolutionizing-shopifys-engineering-the-power-of-github-copilot-821646
https://www.toolify.ai/ai-news/revolutionizing-shopifys-engineering-the-power-of-github-copilot-821646
https://medium.com/@AmboAtsushi/empowering-devs-with-ai-how-shopify-made-github-copilot-core-to-its-culture-d237ba09d61b
https://medium.com/@AmboAtsushi/empowering-devs-with-ai-how-shopify-made-github-copilot-core-to-its-culture-d237ba09d61b
https://medium.com/@AmboAtsushi/empowering-devs-with-ai-how-shopify-made-github-copilot-core-to-its-culture-d237ba09d61b
https://aws.amazon.com/careers/life-at-aws-impactful-work-helping-developers-around-the-world-improve-productivity/
https://aws.amazon.com/careers/life-at-aws-impactful-work-helping-developers-around-the-world-improve-productivity/
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0065
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0065
https://cloud.google.com/customers/tabnine
https://semaphore.io/blog/codeium
https://codeium.com/blog/clearwater-analytics-case-study
https://codeium.com/blog/clearwater-analytics-case-study
https://blog.replit.com/ai
https://review.firstround.com/replits-path-to-product-market-fit/
https://review.firstround.com/replits-path-to-product-market-fit/
https://sourcegraph.com/case-studies/cody-leidos-maximizing-efficiency-heightened-security-ai-race
https://sourcegraph.com/case-studies/cody-leidos-maximizing-efficiency-heightened-security-ai-race
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0073
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0073
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0073
http://refhub.elsevier.com/S2772-4859(25)00017-1/sbref0073
https://github.blog/news-insights/research/survey-ai-wave-grows/#key-survey-findings
https://github.blog/news-insights/research/survey-ai-wave-grows/#key-survey-findings
https://doi.org/10.1145/3652154
https://doi.org/10.1145/3652154
https://www.comet.com/site/blog/the-future-of-software-engineering-llms-and-beyond/
https://www.comet.com/site/blog/the-future-of-software-engineering-llms-and-beyond/
https://joemonti.org/the-future-of-ai-driven-software-development-0dec24759a71
https://joemonti.org/the-future-of-ai-driven-software-development-0dec24759a71
https://doi.org/10.1007/s10515-024-00426-z
https://doi.org/10.1007/s10515-024-00426-z

	LLMs: A game-changer for software engineers?
	1 Introduction
	2 Understanding large language models
	3 Technical strengths and benefits of LLMs in SE
	3.1 Code generation
	3.2 Code review, debugging and testing
	3.3 Language and framework agnostic
	3.4 Refactoring and optimization
	3.5 Automated documentation

	4 Challenges
	4.1 Technical limitations
	4.2 Ethical considerations

	5 Case studies and recent trends
	5.1 GitHub Copilot (Powered by OpenAI codex)
	5.2 Amazon CodeWhisperer
	5.3 Tabnine
	5.4 Codium (Now qodo)
	5.5 Replit Ghostwriter
	5.6 Sourcegraph Cody

	6 Future directions and research opportunities
	6.1 Specialization and domain-specific LLMs
	6.2 Improved interpretability and explainability
	6.3 Collaborative human-ai programming environments
	6.4 Enhanced debugging and automated bug fixing
	6.5 Ethical and security concerns
	6.6 Continual learning and model adaptation
	6.7 Cross-Language and multimodal development
	6.8 Education and training in the AI era

	7 Conclusion
	Funding
	Data availability
	CRediT authorship contribution statement
	Declaration of competing interest
	References

