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 A B S T R A C T

Generative image editing enhances and automates traditional image designing methods. However, there is 
a significant imbalance in existing research, where the development of sketch-guided and example-guided 
image editing has not been sufficiently explored compared to text-guided image editing, despite the former 
being equally important in real-world applications. The leading cause of this phenomenon is the severe lack of 
corresponding benchmark datasets. To address this issue, this paper proposes a comprehensive and unified 
benchmark dataset, Patrick Star, which consists of approximately 500 test images, to promote balanced 
development in this field across multi-task and multi-modal settings. First, theoretical analysis grounded in 
Evaluatology highlights the importance of establishing a balanced benchmark dataset to advance research in 
image editing. Building on this theoretical foundation, the dataset’s construction methodology is explained in 
detail, ensuring it addresses critical gaps in existing studies. Next, statistical analyses are conducted to verify 
the dataset’s usability and diversity. Finally, comparative experiments underscore the dataset’s potential as a 
comprehensive benchmark, demonstrating its capacity to support balanced development in image editing.
1. Introduction

Image editing has emerged as a crucial direction in both industry 
and academia, particularly as digital content creation becomes in-
creasingly central to modern communication, entertainment, and busi-
ness operations. Modern generative image editing approaches leverage 
deep learning models that use conditional information as guidance 
to achieve intelligent image manipulation. These approaches over-
come traditional limitations not only by reducing editing time and 
improving efficiency, but also by lowering the technical barriers for 
users. Additionally, these AI-powered editing tools have revolutionized 
the creative workflow by enabling more intuitive and precise con-
trol over image modifications, marking a significant departure from 
conventional pixel-level manipulation methods. The field of image edit-
ing has attracted increasing research attention, evolving from single-
modal to multi-modal approaches. Various image editing tasks have 
been developed, including but not limited to text-guided image edit-
ing, sketch-guided image editing, and example-based image editing. 
Each modality offers unique advantages: text guidance provides natural 
language interaction, sketch guidance enables precise spatial control, 
and example-guided approaches allow for intuitive style and content 
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transfer. The integration of these different modalities has opened new 
possibilities for more flexible and powerful image editing systems.

Recent research [1] reveals an imbalance in the development of 
these three image-editing approaches. The emergence of CLIP [2]
sparked significant advances in text–image alignment, leading to a 
boom in text-guided image editing research. Further more, the
widespread adoption of text prompts in commercial applications, due to 
their user-friendly interaction mode, has inadvertently led to relatively 
less attention being paid to sketch-guided and example-guided editing 
approaches. However, alternative guidance methods are equally impor-
tant as guided approaches in the field of image editing, particularly 
in scenarios where precise visual control or style matching is crucial. 
Sketch-guided editing, for instance, offers invaluable advantages in 
professional design workflows where exact spatial arrangements are 
required, while example-guided methods excel in maintaining visual 
consistency and achieving complex shape transfers that may be difficult 
to describe through text alone.

A fundamental shift in research paradigms lies at the root of this 
imbalance. As the field evolves from image generation to image edit-
ing, the nature of sketch-guided image editing tasks has transcended 
traditional image translation. However, this transformation appears to 
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Fig. 1. The distribution of image editing tasks is imbalanced.

have been overlooked by many researchers who may perceive the field 
as exhausted, failing to recognize the new possibilities and challenges 
that emerge in the context of editing rather than generation. Mean-
while, example-guided image editing remains at a nascent stage, with 
current approaches primarily limited to surface-level manipulations 
and complete object transfers. These methods have yet to achieve the 
granular control and sophisticated content manipulation capabilities 
that modern image editing demands. The relative immaturity of these 
approaches stems from their current inability to handle partial object 
modifications or more nuanced content transformations. This funda-
mental misalignment in research focus and the early developmental 
stage of example-guided methods have contributed to a significant 
disparity in benchmark datasets compared to text-guided image editing 
tasks. The lack of comprehensive benchmarks is not merely a data 
collection issue, but rather a reflection of the deeper challenges in un-
derstanding and defining the full potential of these guidance modalities 
in the context of modern image editing.

Based on our literature review [3], as shown in Fig.  1, current 
research in the field of image editing exhibits a significant imbalance 
across different guidance modalities. This uneven distribution of re-
search attention has led to two critical challenges: First, when conduct-
ing comparative experiments, niche tasks such as sketch-guided and 
example-guided editing struggle to find appropriate control groups. Re-
searchers often resort to direct comparisons with text-guided methods, 
a practice that presents methodological limitations. Second, existing 
benchmark datasets suffer from two major deficiencies:

• Fragmentation of Test Content: Test data for different guidance 
modalities (text, sketch, and example) are typically isolated, with 
almost no benchmark datasets supporting evaluation across all 
three editing modes simultaneously. This fragmentation makes 
cross-modal performance comparisons both challenging and less 
convincing.

• Inconsistency in Evaluation Metrics: Taking Pre_error (used to 
evaluate the preservation of non-edited regions) as an example, 
the accuracy of such evaluation metrics heavily depends on the 
uniformity of editing region sizes. However, existing benchmark 
datasets often overlook this crucial factor by not standardizing 
the editing regions, directly impacting the comparability and 
reliability of evaluation results.

We present Patrick Star Bench, a benchmark dataset designed specif-
ically for image editing tasks. Addressing the issues of inconsistent 
evaluation standards and fragmented test content in existing datasets, 
we developed a systematic benchmark construction method from the 
perspective of scientific evaluation. as illustrated in Fig.  2. This com-
prehensive dataset consists of five components:Source Image, Mask, 
Prompt, Sketch, Example and GroundTruth. Patrick Star encompasses 
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500 sets totaling 2,500 images, covering three major tasks and seven 
subtasks. The main characteristics and contributions of this benchmark 
dataset are as follows: First, it achieves unified support for three ma-
jor editing modalities text-guided, sketch-guided, and example-guided 
editing, providing a reliable standard for evaluating model perfor-
mance across cross-modal editing tasks. The dataset implements a 
rigorous quality control system, ensuring alignment between prompts 
and images, precision of mask boundaries, and clarity of line extrac-
tions. Through experimental validation on six representative models, 
Patrick Star Bench demonstrates strong discriminative power and reli-
ability. The experimental results indicate that this benchmark not only 
effectively evaluates performance differences across various editing 
methods but also provides valuable reference points for subsequent 
model improvements. we developed a systematic benchmark construc-
tion method from the perspective of scientific evaluation. The main 
contributions are:

(1) Cross-Modal Integration: For the first time, a benchmark dataset 
unifies the evaluation of text-guided, sketch-guided, and example-
guided editing within a single framework. This directly addresses the 
fragmentation challenge in existing benchmarks and enables reliable 
cross-modal performance comparisons.

(2) Standardized Evaluation Framework: By implementing consis-
tent mask regions and evaluation metrics across all modalities, our 
benchmark resolves the long-standing issue of inconsistent evaluation 
standards, particularly in measuring preservation errors (Pre_error) 
across different editing approaches.

(3) Extensive Validation: Through rigorous experiments with six 
representative models, Patrick Star Bench demonstrates strong discrim-
inative power in identifying performance differences across various 
editing methods.

These contributions collectively address the key challenges in cur-
rent image editing evaluation and establish a more robust and compre-
hensive evaluation standard for the field.

2. Related work

2.1. Image editing methods

Image editing has evolved from single-modal approaches to multi-
modal methodologies, encompassing text-guided, sketch-guided, and 
example-guided editing techniques. Among these, text-guided image 
editing has experienced remarkable growth with numerous down-
stream applications, including instructional editing, position modi-
fication [4,5], object manipulation [6–9] (movement, deletion, and 
addition), and scene reconstruction. These methods typically lever-
age pre-trained models through fine-tuning or task-specific adapters, 
achieving impressive results while reducing computational costs. The 
technical paradigm in image editing has shifted from GANs to Diffusion 
Models, with each advancement demanding larger datasets and more 
parameters. However, this trend toward increasingly resource-intensive 
models poses challenges for general users who may lack access to 
sufficient computational resources. Sketch-guided image editing has 
undergone a significant transformation. In its early stages, the field 
primarily focused on direct image-to-image translation within sketched 
regions. However, contemporary approaches have evolved to utilize 
sketches as auxiliary conditional controls for content generation in 
specific domains. Despite this advancement, the application of sketch 
guidance in local image editing tasks remains relatively unexplored, 
representing a notable gap in current research. Example-guided im-
age editing currently encompasses two primary approaches. The first 
method focuses on object transfer through segmentation, which pre-
serves the complete set of object characteristics but often struggles with 
seamless integration, particularly when dealing with non-independent 
objects. The second approach leverages semantic information extracted 
from reference images to generate semantically consistent results. 
While this method excels at contextual integration, it may not fully 
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Fig. 2. Patrick Star: Cases for Image editing tests.
Fig. 3. COCOEE pair of test cases.

preserve specific object details. This creates a fundamental trade-off 
between feature preservation and contextual harmony, highlighting the 
challenge of balancing object fidelity with seamless scene integration 
in example-guided editing.

2.2. Image editing evaluation benchmarks

While numerous evaluation benchmarks exist in the image editing 
field, these benchmark datasets commonly exhibit significant limita-
tions. As shown in Table  1, existing benchmarks typically support only 
a single guidance modality: text guidance (e.g., EditBench [10], Ted-
Bench [5]), example guidance (e.g., COCOEE [11]), or sketch guidance 
(e.g., SKETCH Dataset [12]). Through in-depth analysis of existing 
benchmarks, we identify several key challenges:

First, the limitation of evaluation paradigms. EditBench [10] pri-
marily focuses on text and mask-guided inpainting while neglecting 
global editing tasks; TedBench [5], despite expanding the task scope, 
lacks detailed instructions; EditVal [13] is constrained by the low 
resolution and blurry image quality inherited from the MS-COCO 
dataset [14] and Emu Edit relies solely on input images from the 
MagicBrush [15] benchmark. Such singular evaluation perspectives fail 
to comprehensively reflect model performance.

Second, the absence of cross-modal support. Although COCOEE [11] 
attempts to support multiple guidance modalities through data pro-
cessing, its scope remains limited to simple editing tasks within object 
detection contexts. As illustrated in Fig.  3, this dataset exhibits incon-
sistencies between reference images and ground truth, highlighting the 
technical challenges in constructing high-quality multi-modal editing 
3 
benchmarks: maintaining complex non-independent editing elements 
(such as modifying a round collar to a notched lapel) while ensuring 
content and style consistency between target and groundtruth images.

To address these challenges, we propose Patrick Star Bench with 
a more systematic task classification system. For simple tasks, it in-
cludes quantity changes color modifications, position adjustments, and 
basic state transformations, focusing on evaluating models’ local pre-
cise editing capabilities. For complex tasks, it encompasses material 
transformations, content synthesis, overall consistency, and texture 
transformations, comprehensively testing models’ ability to handle so-
phisticated editing scenarios. This classification not only covers the 
seven types of editing operations in traditional benchmarks (back-
ground modification, global transformation, style transfer, object re-
moval, addition, local editing, and texture/color changes) but also 
provides more fine-grained evaluation criteria.

More importantly, Patrick Star Bench pioneers unified support for 
text, example, and sketch guidance, establishing a more comprehen-
sive and reliable standard for evaluating cross-modal image editing 
capabilities. Through systematic data construction processes and strict 
quality control, we have successfully addressed the challenges of data 
consistency and evaluation standard uniformity. 

3. Dataset construction

3.1. Semantic tag specification

To standardize prompt generation and validation processes in image 
editing tasks, we designed a strict semantic tag specification. As show 
in Fig.  7, this specification consists of six fundamental semantic tags: 
Position tags <P>, Object tags <O>, State tags <S>, Material tags <M>, 
Action tags <A>, and Temporal tags <T>. These tags are embedded 
during prompt generation, ensuring that editing requirements have 
clear structural characteristics.

This tag specification offers the following advantages:

• Automated Analysis: Through clear tag boundaries, different 
types of editing operations can be programmatically extracted and 
analyzed. For example, we can quickly analyze the distribution 
of different object categories (via <O> tags) in the dataset, or 
assess the success rate of specific material transformations (via
<M> tags).
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Table 1
Comparison of benchmark dataset characteristics. The number of supported types indicates how many guidance types (text/sketch/example) 
the dataset supports. Patrick Star Bench is the only dataset that supports all three types of guidance.
 Dataset Source 

image
Text Sketch Example 

image
Mask Groundtruth Number of 

supported types
 

 Text-guided
 EditBench [10] ✓ ✓ ✓ ✓ 1  
 TedBench [5] ✓ ✓ ✓ 1  
 EditVal [13] ✓ ✓ ✓ 1  
 IP2P [16] ✓ ✓ ✓ 1  
 MagicBrush [15] ✓ ✓ ✓ ✓ 1  
 Emu Edit [9] ✓ ✓ 1  
 Example-guided
 COCOEE [11] ✓ ✓ ✓ ✓ 1  
 Sketch-guided
 SKETCH Dataset [12] ✓ ✓ 1  
 Patrick Star Bench ✓ ✓ ✓ ✓ ✓ ✓ 3  
Fig. 4. Overview of Patrick Star dataset construction pipeline. (a) illustrates our multi-stage generation process: We first use Claude to generate structured prompts following our 
template format, then employ DALL-E 3 to create the ground truth image. After manual mask annotation or SAM [17] annotation on the ground truth, we utilize Stable Diffusion 
inpainting in two ways: combining the ground truth with mask and background_scene prompt to generate the source image (pre-editing state), and combining the ground truth 
with inverted mask and mask_content prompt to create the example image. (b) shows the sketch generation process, where we apply ControlNet’s preprocessor to extract structural 
features from the source image and combine them with the mask to obtain the final line drawing. (c) presents our template structure for prompts, which includes comprehensive 
fields for image metadata, editing specifications, and contextual information. The complete dataset comprises seven essential components: source image, mask, text prompt, sketch, 
example image, ground truth, and mask content, collectively forming a comprehensive multi-modal benchmark for image editing evaluation.
• Consistency Verification: Using tag correspondence, we can 
automatically verify semantic consistency between pre- and post-
editing descriptions. Particularly in complex editing tasks, these 
tags help track changes in key attributes.

• Quality Control: By enforcing tag specifications during the gen-
eration phase, we significantly reduce the need for manual re-
view later in the process, improving the efficiency of dataset 
construction.

This tag specification serves as a crucial foundation for building 
Patrick Star Bench, providing reliable support for subsequent auto-
mated processing and analysis.

3.2. Multi-dimensional task taxonomy

To comprehensively evaluate image editing models’ performance, 
we propose a two-level task classification system. Based on the com-
plexity of editing operations and semantic levels, Patrick Star Bench 
categorizes tasks into Simple Tasks and Complex Tasks.
4 
Fig. 5. Image category quantity chart.
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Fig. 6. Distribution of image editing operations in our dataset.
Fig. 7. A heatmap of the label and the changes in the quantities before, during, and 
after editing.

At the basic level, we define four fundamental editing operations:
quantity_change focuses on precise modifications of object num-
bers in scenes; color_change addresses adjustments to basic appear-
ance attributes; position_change evaluates models’ capabilities in 
spatial layout modifications; and basic_state tests simple object 
attribute transformations. While these tasks are operationally simple, 
they require models to possess precise local editing capabilities.

Complex tasks examine models’ ability to handle complex seman-
tic transformations: material_transformation requires chang-
ing object physical properties while maintaining shape; content_
synthesis tests models’ ability to integrate multiple elements;
overall_consistency evaluates scene coherence during large-
scale editing; and texture_ transformation focuses on fine-
grained surface feature modifications. These tasks not only demand 
accurate editing operations but also require maintaining natural con-
textual transitions. To be specific, the taxonomy categorizes the dis-
tribution of image editing operations, as shown in Fig.  6, while more 
illustrative examples of image editing are presented in Fig.  8.

3.3. Dataset construction pipeline

Our dataset construction approach combines both real-world pho-
tography and AI-generated content to ensure diversity and quality, as 
shown in Fig.  4.Specifically, our dataset consists of 100 high-quality 
images sourced from Unsplash, a copyright-free photography platform, 
and 400 AI-generated images. This hybrid approach leverages the 
authenticity of real photographs while maintaining scalability through 
generative models.

3.3.1. Dual-source data collection
For real-world images, we carefully selected 100 high-resolution 

photographs from Unsplash that serve as ground truth images. These 
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images were processed through multimodal large language models 
to automatically generate initial descriptions following our template 
format, followed by manual refinement to ensure tag specification 
compliance. Masks for these images were generated using a hybrid ap-
proach: for regions identifiable by SAM, we automatically expanded the 
bounding boxes and applied masks accordingly, while intricate details 
were manually annotated by experts to ensure precise editing region 
definition. The corresponding source images and reference images were 
then created using Stable Diffusion inpainting models with varying 
prompts, maintaining consistency with our editing objectives.

For the AI-generated portion, we develop a systematic creation 
process starting with prompt design. The process begins with designing 
specific prompt templates for each task type that comply with our 
tag specification while capturing the core challenges of each editing 
operation. For example, in material transformation tasks, the template 
must explicitly specify the material characteristics before and after 
editing while maintaining other object attributes unchanged.

3.3.2. Content creation
The content creation phase employs different strategies based on 

the image source. For Claude AI-generated [18] content, we utilize the 
DALL-E3 [19] API with optimized parameters, requiring multiple gen-
eration attempts to obtain candidates that best align with the prompts. 
For Unsplash-sourced images, we employ Stable Diffusion inpainting 
to generate variations while preserving the high quality of the original 
photographs. In both cases, mask generation focuses on precise edit-
ing region definition, and sketch extraction utilizes ControlNet with 
optimized parameters.

3.3.3. Quality verification
Our quality verification process ensures consistency across both real 

and generated images. For Unsplash-sourced content, we pay particular 
attention to the quality of generated variations and their alignment 
with the original photographs. For AI-generated content, we focus on 
the consistency between different versions of the same scene. The 
automated system verifies tag consistency, cross-modal alignment, and 
editing region standardization, while task-specific verification ensures 
that each sample meets its unique requirements.

Through this hybrid approach, we created a dataset of 500 high-
quality editing samples, combining the authenticity of real photographs 
with the scalability of AI generation. This combination provides a more 
comprehensive benchmark for evaluating image editing models, as it 
tests performance on both real-world photographs and AI-generated 
content. The dataset’s diverse sources and standardized quality make 
it particularly valuable for assessing models’ generalization capabilities 
across different image types and editing scenarios.
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Fig. 8. Illustration of five categories of food image editing: material transformation, quantity change, overall consistency, basic state and color change. Each row demonstrates a 
specific editing type with its source image, binary mask, text prompt, generated sketch, example reference, and ground truth (GT) result.
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Table 2
Patrick Star Bench’s test results on different tasks.
 Evaluation metric Text-guided Sketch-guided Example-guided

 Image inpainting-SD1.5 Image inpainting-SDXL [20] Controlnet-SD2.1 Controlnet-SDXL [4] Paint by example [11] DesignEdit [21] 
 LPIPS↓ 0.0978 0.0678 0.572 0.473 0.0948 0.0284  
 FID↓ 22.270 19.314 45.156 34.253 22.785 18.501  
 Pre_error↓ 0.126 0.103 – – 0.126 0.099  
 CLIP_Score↑ 65.9120 71.2986 – – 70.7843 70.1917  
 SSIM ↑ 0.8214 0.8442 0.3282 0.4885 0.8253 0.8748  
 Aesthetic Score ↑ 4.9033 4.8567 5.0463 4.8899 4.9635 5.1798  
Fig. 9. Instruction string length.

3.4. Dataset statistics

To ensure comprehensive coverage and balance of the dataset, we 
conducted a detailed statistical analysis of various dataset features. As 
shown in Fig.  9, the instruction lengths exhibit diversity, with some 
being short for simple tasks like object replacement and color changes, 
while others are longer and more descriptive. These longer instructions 
typically require a certain level of detail to guide the model in making 
precise adjustments.

The source images in our dataset span across five main categories, 
as illustrated in Fig.  5: Natural Elements (25.0%), Daily Item Surfaces 
(23.0%), Clothing Parts (21.3%), Household Items (18.3%), and Food 
& Beverages (12.4%). This balanced distribution ensures the dataset’s 
representativeness across different domains and editing scenarios. The 
relatively higher proportions of natural elements and surface textures 
reflect common editing requirements in real-world applications, while 
the inclusion of diverse categories enables comprehensive evaluation of 
models’ generalization capabilities across different editing tasks.

4. Experiments

We conducted three groups of image editing experiments, totaling 
six tests covering both basic and optimized versions. All experiments 
were performed on an RTX 3090 GPU with 24 GB memory using 
identical hyperparameters, ensuring fair comparison conditions. For 
text-guided image editing, we employed SD1.5-Inpainting and SDXL-
Inpainting models. Given the relatively limited work in sketch-guided 
image editing, we opted to use the ControlNet sketch generation models 
in both SD2.1 and SDXL versions. For example-guided image editing 
tasks, we compared Paint by Example with our proposed DesignEdit 
method. We evaluated the models using six evaluation metrics: LPIPS, 
FID and SSIM [22] for image quality assessment, Aesthetic Score [23] 
for image aesthetic evaluation, and CLIP_Score [24] and Pre_error for 
image content assessment.

The experimental results reveal significant performance variations 
across different approaches. As shown in Table  2, SDXL consistently 
outperforms SD1.5 and SD2.0 across most evaluation metrics, including 
LPIPS, FID, CLIP Score, and SSIM. This demonstrates that our dataset 
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effectively differentiates the generation capabilities of different models. 
The ability to highlight these variations confirms the dataset’s robust-
ness in benchmarking image editing performance across multiple tasks 
and model architectures.

Human Evaluation We selected images generated by the six meth-
ods mentioned above and presented them to 100 participants. Partici-
pants were allowed to select multiple images that met the specified cri-
teria. As shown in Fig.  10, they were asked to evaluate the images based 
on realism and alignment with the provided instructions. Inpainting-
sd1.5, Inpainting-sdxl, Paint by Example, and DesignEdit received high 
scores for both realism and alignment. In contrast, ControlNet sdxl and 
ControlNet sd1.5 had lower scores, which demonstrates that our bench-
mark can effectively distinguish output images quality. Furthermore, 
the smaller differences in the ControlNet methods indicate that the 
benchmark can also capture subtle variations in performance. Over-
all, these results prove that the benchmark is effective and sensitive, 
providing valuable guidance for image editing tasks.

These comprehensive experimental results not only verify our
dataset’s applicability across different guidance modes but also demon-
strate its effectiveness in evaluating and differentiating the performance 
of various methods. The consistent performance improvements ob-
served in the optimized versions further confirm our dataset’s discrim-
inative capability and reliability, establishing a dependable benchmark 
for future model improvements and evaluations.

5. Conclusion and future work

This paper presents Patrick Star Bench, a comprehensive evaluation 
benchmark designed specifically for image editing tasks. Addressing 
the challenges of inconsistent evaluation standards and fragmented 
testing content in existing datasets, we have developed a systematic 
benchmark construction methodology grounded in scientific evaluation 
principles.

The key features and contributions of our benchmark dataset are sig-
nificant. Notably, it is the first to provide unified support for three ma-
jor editing paradigms: text-guided, sketch-guided, and example-guided 
editing. This integration establishes a reliable standard for evaluating 
model performance across cross-modal editing tasks. The dataset im-
plements a rigorous quality control system that ensures prompt-image 
alignment, mask boundary precision, and sketch extraction clarity.

Through extensive validation experiments across six representative 
models, Patrick Star Bench has demonstrated excellent discriminative 
capability and reliability. The experimental results confirm that our 
benchmark can effectively assess performance differences between var-
ious editing methods while providing a solid foundation for future 
model improvements.

Looking ahead, we envision several promising directions for future 
research:

(1) Multi-turn Interactive Editing: Extending the benchmark to sup-
port evaluation of conversational image editing systems, where multi-
ple rounds of user feedback and model responses are involved.

(2) Dynamic Assessment Metrics: Developing more sophisticated 
evaluation metrics that can capture the nuanced aspects of interactive 
editing processes.

(3) Temporal Consistency: Incorporating evaluation criteria for 
video editing tasks and sequential image modifications.
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Fig. 10. Human evaluation of image realism and text–image alignment on Patrick Star.
These future developments aim to enhance the benchmark’s func-
tionality and broaden its applications in multimodal image editing 
research. We hope the foundation laid by Patrick Star Bench can 
contribute to the development of better evaluation methods for image 
editing technologies.
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