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A B S T R A C T

Significant issues have arisen as a result of the global spread of monkeypox, such as the extensive transmission of 
false information, public fear, and stigmatization on social media. Increased fear, prejudice, stigmatization of 
minority groups, and opposition to public health initiatives are frequently the results of these problems. 
Furthermore, health authorities are unable to provide correct information and prompt actions due to a lack of 
efficient methods for analyzing the enormous amounts of unstructured social media data. This disparity weakens 
crisis management initiatives and increases public skepticism of health guidelines. In order to address these 
issues, this study looks into the attitude around monkeypox on social media in order to pinpoint public worries, 
counter false information, and enhance communication tactics. The study intends to improve public compre
hension, offer practical insights, and help health authorities manage the outbreak by fusing graph theory with AI- 
driven sentiment analysis. In order to facilitate semantic analysis of tweets through structured information 
extraction, graph theory is used to organize unstructured or semi-structured data by creating meaningful links 
between entities. Furthermore, opinions on monkeypox infection in social media are analyzed and user senti
ments are detected using a reinforcement Markov decision process. According to experimental results, the 
suggested model’s accuracy on the Monkeypox tweet dataset was 98 %. These results help raise awareness of 
monkeypox among the general population and promote an educated and robust social response.

1. Introduction

In 1958, the monkeypox virus was initially identified in research- 
breed monkey colonies. In 1970, the first recorded human case of 
monkeypox virus occurred in the Democratic Republic of the Congo. 
Vaccines against the virus have since been created [1]. The monkeypox 
virus was deemed exterminated in 1980, and population immunization 
was discontinued. The fatality rate during a monkeypox outbreak has 
historically ranged from 1 % to 10 %, despite the fact that the majority of 
patients may recover. Originally affecting African nations, monkeypox is 
an infectious illness that has recently spread to almost every city on the 
planet. Although the world health organization does not recognize it as a 
pandemic, some experts believe it should be treated as such [2]. Many 
articles and comments on the symptoms, treatments, side effects, and 
other people’s thoughts about the monkeypox virus have been made on 
social media sites like Reddit and Twitter. To find patterns and trends, 
it’s critical to examine these user-generated materials [3]. The same 
tactics may be applied in the event of monkeypox. There are very limited 

early studies reported for understanding the general public’s attitude 
toward monkeypox or general analysis, but a detailed analysis should be 
carried out to get a clear picture of the trends and facts [4]. Given the 
recent spread of monkeypox, associated digital information and opin
ions have also spread on different social media platforms, including 
Twitter. Determining the public trends and views about monkeypox is 
fundamental for governments, policymakers, healthcare providers, and 
researchers to use the available resources to control and mitigate the 
burden of the recent outbreak in an efficient and timely manner [5]. 
Opinion mining primarily deals with a person’s concrete view of 
something, while sentiment refers to an attitude or thought prompted by 
a feeling [6]. Sentiment analysis and opinion mining [7] were initially 
used for product review applications but have recently shifted to other 
tasks, including: stock markets, elections, disasters, healthcare and 
software engineering [8]. The content shared across social media plat
forms provides a valuable source of knowledge about the physical 
environment and social phenomena [9]. As a result, the public security 
domain has become an important application domain in sentiment 
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analysis and opinion mining [10].
In the sentiment analysis and opinion mining, graph theory plays a 

pivotal role by enabling the modeling of entities and their connections as 
networks [11]. In weighted graphs, edges carry sentiment scores enable 
the quantification and sentiment flow across the network, offering 
deeper insights into the dynamics of public opinion [12]. Knowledge 
graphs [13], a specialized application of graph theory, extend this 
concept by integrating semantic relationships between entities. Tech
niques such as spectral clustering, graph neural network (GNN) [14] and 
diffusion modeling can predict how sentiments evolve over time or 
simulate the impact of interventions, such as targeted awareness cam
paigns. By capturing both structural and contextual relationships, graph 
theory not only enhances the understanding of public sentiment but 
equips policymakers with actionable insights to address public concerns 
effectively during outbreaks like monkeypox [15]. Table 1 shows the 
detailed analysis of sentiment analysis uses AI, which provides creative 
ways to examine enormous volumes of unstructured social media data.

From the review [11–26], we found the problems associated with 
using AI-powered sentiment analysis and graph theory for analyzing 
monkeypox social media trends. While techniques like multi-weight 
graph convolutional network (MWGCN) and fuzzy graph convolu
tional networks (FGCN) address local context and syntactic features, 
their adaptation to monkeypox-specific discussions remains limited 
[16]. Handling unstructured social media data is a persistent challenge 
due to its noisy and multimodal nature. Although graph-based methods 
like Semantic-HGCN and fuzzy logic [17,18]integration help structure 
data, their scalability for large-scale real-time analysis is insufficient. 
Existing models, such as hierarchical graph contrastive learning, excel in 
multimodal sentiment extraction but fail to explicitly tackle the dy
namics of misinformation and its impact. Moreover, current sentiment 
analysis approaches often lack the capacity to analyze interconnected 
factors such as stigma, misinformation, and public health narratives 
within a single framework. While hybrid methods like N-gram 
Graph-Cut [18] combined with LSTM improve accuracy, their applica
tion to evolving social media trends and high-dimensional datasets faces 
scalability challenges. The inability to adequately represent complex 
social relationships [16–25] is another problem, as discussions about 
monkeypox often involve intricate interactions between users, groups, 
and topics. Methods like adjacency graphs and the Louvain algorithm 
provide structural insights but are limited in capturing nuanced in
terdependencies in this context [19]. Bias and stigmatization against 
minority groups also complicate sentiment analysis, requiring models to 
account for these ethical concerns while ensuring interpretability [21,
22]. Despite achieving high accuracy, such as 98 % in monkeypox 
sentiment classification, AI models lack transparency, hindering their 
adoption by public health authorities. The limited integration of 
domain-specific health knowledge and the challenges in adapting to 
real-time trends restrict the effectiveness of current approaches, making 
it crucial to develop models that are both adaptable and context-aware.

This study introduces an innovative approach that leverages AI- 
powered sentiment analysis and graph theory to gain valuable insights 
into social media trends surrounding monkeypox. By integrating these 
advanced techniques, the work aims to enhance public understanding, 
provide actionable insights, and support health authorities in effectively 
managing the outbreak. The primary contributions of this research are 
summarized as follows: 

1. To address the challenges of analyzing unstructured or semi- 
structured social media data, graph theory is employed to establish 
meaningful connections between various entities such as keywords, 
hash-tags, and user interactions. This facilitates semantic analysis of 
tweets, transforming chaotic data into an organized framework that 
can be effectively analyzed for sentiment and thematic trends.

2. The study utilizes a reinforcement Markov decision process (RMDP) 
to analyze opinions and detect user sentiments regarding 
monkeypox-related discussions on social media. It enables a nuanced 
understanding of public perception, including the identification of 
misinformation, stigmatization, and emotional responses, which are 
critical for devising targeted communication strategies.

3. The proposed methodology is validated using a comprehensive 
Monkeypox tweet dataset comprising 61,379 tweets collected from 
Twitter between May 7 and June 11, 2022. The results showed the 
model’s high accuracy in sentiment analysis and potential to uncover 
meaningful insights, contributing to resilient public response to the 
monkeypox outbreak.

2. Material and methods

Fig. 1 illustrates the workflow of the AI-driven sentiment analysis 
model designed for detecting monkeypox infection sentiment using 
game theory. The process begins with the Monkeypox tweet dataset, 
comprising 61,379 tweets published on Twitter between May 7 and June 
11, 2022.

Table 1 
Existing state-of-art works on sentimental analysis on healthcare social media 
trends.

Ref. Method Key features Contributions Performance

[16] MWGCN Local Context 
Weighted Graph 
(LCG), 
Multigrain Dot- 
Product 
Weighting 
(MGDW)

Reduces long- 
distance 
dependencies, 
emphasizes 
local context

Improves 
sentiment 
classification 
accuracy

[17] GCN Graph structure- 
based learning

Captures 
contextual 
relationships in 
data

Accuracy 
increased by 78 
% over baseline

[18] Combination 
Graph with 
KL-divergence

KL-divergence 
between 
likelihood 
models

Enhances in 
formativeness 
of nodes in 
graph-based 
models

Better structured 
learning 
performance

[19] LSTM + N- 
gram Graph- 
Cut

Sequence 
modeling with 
LSTM and N- 
gram graph 
structure

Improves 
feature 
extraction and 
representation

9 % accuracy 
gain in three- 
way 
classification

[20] Semantic- 
HGCN

Hierarchical 
semantic graph 
encoding

Models multi- 
level semantic 
relationships

Improved 
sentiment 
prediction

[21] FGCN Fuzzy logic 
integrated with 
GCN layers

Reduces 
ambiguity in 
sentiment 
detection

Enhances 
robustness of 
sentiment 
classification

[21] BERT +
BiLSTM +
GCN

Contextual 
embedding with 
BERT-BiLSTM 
and fuzzy 
adjacency

Captures deep 
semantic and 
structural 
features

Improves 
interpretability 
and 
classification 
performance

[22] Graph using 
Publication 
Attributes

Uses attributes 
like authors, 
keywords to 
build graphs

Organizes 
topics with 
Louvain 
community 
detection

Better thematic 
structure in 
sentiment 
analysis

[23] Hierarchical 
Graph 
Contrastive 
Learning

Learns local and 
global 
representations

Captures 
complex 
relationships in 
utterances

Enhances 
multimodal 
sentiment 
extraction

[24] MGMFN 
(GNN + MLP- 
Mixer)

Combines 
multiple GNN 
graphs and long- 
range MLP 
features

Strengthens 
spatial and 
semantic 
representation

83.72 % and 
86.43 % 
accuracy in 
Chinese text 
classification

[25] GNN + RF Uses GNN for 
learning and 
Random Forest 
for classification

Analyzes user 
attitudes from 
social data 
(ChatGPT 
tweets)

Efficient multi- 
class sentiment 
categorization
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The raw textual data undergoes preprocessing steps to ensure its 
readiness for analysis. Tokenization then splits the text into smaller 
units, such as words or phrases, enabling efficient processing. After 
preprocessing, feature extraction techniques are applied to represent the 
textual data numerically. GloVe vector representation is used to embed 
words into high-dimensional vector spaces, capturing their semantic and 
contextual relationships. Additionally, one-hot encoding convert’s text 
into binary vectors, ensuring each unique word is represented distinctly. 
Next, game theory is employed to create a graph that establishes 
meaningful links between entities. Nodes in the graph represent entities 
like keywords, hash tags, user mentions, or topics, while edges are 
formed based on semantic or contextual similarities. Game-theoretic 
principles evaluate the importance of these relationships, ensuring 
that the graph highlights significant patterns and connections among the 
data. The sentiment classification is performed using a reinforcement 
Markov decision process (RMDP), which categorizes tweets into posi
tive, neutral, or negative sentiments. RMDP operates by iteratively 
learning optimal policies through a state-action framework, where states 
represent the current sentiment context and actions assign appropriate 
sentiment labels based on extracted features. This iterative learning 
ensures precise classification by continuously refining predictions. By 
integrating graph theory for semantic analysis and leveraging RMDP for 
classification, the model effectively captures public sentiment trends on 
monkeypox.

2.1. Data source and description

The open-source website GitHub provided the Monkeypox Twitter 
dataset used in this study, which consists of an extensive collection of 
tweets on the disease. 61,379 tweets that were posted on Twitter be
tween May 7 and June 11, 2022, make up the dataset [26].These tweets 
show a variety of public sentiments on monkeypox, including neutral, 
negative, and favorable views. All tweets are deemed pertinent to de
bates about monkeypox in this study, offering a wide range of user 

viewpoints. To make sure the dataset is clean, balanced, and organized 
for analysis, pre-processing is an essential step before beginning any 
classification or prediction activities. The gathered raw tweets are 
naturally disorganized and include superfluous parts like stop words, 
duplicate records, and non-standardized content. Because Twitter is an 
unstructured medium with multilingual support, careful data 
pre-processing is necessary to get relevant results. A two-step procedure 
is used to eliminate duplicate records at the start of the pre-processing 
pipeline. Initially, the "is retweets" characteristic that Twitter gave was 
used to find duplicates. Then, based on their distinct tweet IDs and 
content, repetitive tweets were removed. After that, tweets were cleaned 
up to eliminate unnecessary content: 

• Elements including URLs, email addresses, hash tags, mentions, and 
numerical data were removed using TextBlob analyzers.

• To ensure uniformity, all text was changed to lowercase, and stop 
words and punctuation were eliminated to concentrate on the 
important information.

• To maintain consistency in the linguistic research, only tweets 
written in English were kept.

The dataset is now well-structured and prepared for semantic anal
ysis after being cleaned to remove noise and unnecessary information. 
The dependability of ensuing categorization and prediction tasks is 
guaranteed by this thorough pre-processing. Furthermore, the dataset 
utilized in this study is openly accessible, which encourages trans
parency and makes it possible for the research findings to be replicated.

2.2. Create meaningful links between entities

Creating meaningful links between entities is a crucial step in se
mantic analysis, particularly when dealing with unstructured or semi- 
structured data such as social media tweets. This process transforms 
disorganized datasets into structured knowledge, enabling deeper 

Fig. 1. AI-driven sentiment analysis for monkeypox infection detection using game theory.
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insights and efficient data interpretation. The primary objective of 
linking entities is to uncover relationships, organize fragmented infor
mation, and support analytical applications such as sentiment analysis 
and trend monitoring. For instance, tweets about monkeypox may 
mention various entities like "Human Monkeypox," "Zoonotic Disease," 
and "Monkeypox Virus." Establishing meaningful connections among 
these entities allows for better understanding and representation of the 
data, making it more accessible for analysis. Graph theory plays a central 
role in this process by structuring data as a network of nodes and edges, 
where nodes represent entities and edges denote their relationships. 
Knowledge Graphs (KGs) [27], a practical application of graph theory, 
facilitate this transformation by encoding information as semantic 
triplets. These triplets, such as ("Human Monkeypox", "is a", "Zoonotic 
Disease") or ("Zoonotic Disease", "caused by", "Monkeypox Virus"), 
represent real-world knowledge in a machine-readable format. KGs are 
particularly useful for organizing complex datasets, enabling the dis
covery of hidden relationships and improving the scalability of data 
analysis. In the context of monkeypox-related tweets, creating mean
ingful links helps structure the data, enabling accurate sentiment anal
ysis, misinformation detection, and trend identification. Techniques like 
entity extraction, relationship identification, and graph construction 
form the foundation of this process. By linking entities based on their 
semantic relationships, the data becomes more coherent, allowing AI 
models to perform more effective reasoning and prediction. This struc
tured representation is not only vital for understanding public sentiment 
but also aids in healthcare analytics by improving data representation 
and enabling knowledge inference. Ultimately, the integration of graph 
theory into entity linking enhances the ability to extract meaningful 
insights from unstructured data, supporting data-driven decision-mak
ing in public health and other domains.

When v represents the set of B nodes, |v| = B; εrepresents the set of 
edges linking these nodes, and Z is the adjacency matrix, a graph may be 
summed up as follows: J = (v, ε, z). The networks between any two 
nodes in v are designated by the adjacency matrix, where the entry of Z 
in the h-th row and g-th column indicates the significance of the link 
between the h-th and g-th nodes, and is represented as zhg. The convo
lution action for spectral-based KG is defined in the Fourier domain by 
calculating the graph Laplacian Eigen decomposition. The graph that 
has been normalized Laplacian is definite as (D is the graph’s degree 
matrix and A is its adjacency matrix), where Λ is a diagonal matrix 
containing its eigenvalues and the columns of U are its eigenvector 
matrix. 

jθ*p = ujθ ( ∧ )uSp (1) 

A Chebyshev polynomial Sa(p)of instruction m appraised at l̃is 
recycled, and the action is definite as 

jθ*p ≈
∑A− 1

a=0
θaSa (̃l)p (2) 

wherẽl is the diagonal scale matrix. The graph fusion layer in KG com
bines information from multiple vertices into a single vertex, which 
reduces the size of the graph and expands the acceptance field of graph 
filters [28]. To alleviate the problem of overestimating the local 
neighborhood structure of maps with a very wide node size distribution, 
the convolutional filter is reduced in size to K = 1 and approximated by λ 
≈ 2, 

jθ*p ≈ θʹ
0p + θʹ

1p(l − HB)p = θʹ
0p + θʹ

1C− 1/2MC− 1/2p (3) 

Here,θʹ
0, θʹ

1are two unimpeded variables. To restrain the number of 
limitations and avoid over fitting, KG further assume thatθ = θʹ

0 − θʹ
1, 

leading to the subsequent description of a graph convolution as follows. 

jθ*p ≈ θ
(
HB +C− 1/2MC− 1/2)p (4) 

The definition of a signalP ∈ rBPf with C input networks and F filters 

for functional mapping is as surveys: 

W = C̃
− 1/2

M̃C̃
− 1/2

PΘ (5) 

whereΘ ∈ rDPf the matrix is generated by the filter bank parameters, 
andW ∈ rBPf is the signal matrix attained by difficulty. GraphSAGE is 
spatial-GCN that uses node implanting with maximum union combina
tion. In order to save memory while sacrificing time performance, the 
authors propose a block training algorithm for GCNs. The GraphSAGE 
framework builds embeddings by selecting and combining features from 
the local neighborhood of a node. 

isBv
= aggregates

( {
is− 1
U , ∀U ∈ Bv

})
,

isV = σ
(

Zs⋅
[
is− 1
V ‖isBv

]) (6) 

whereBvthe area set of node is isVis the concealed state of node V at time 
step S, and Zs is the heaviness matrix at layers. Finally, K represents 
vector concatenation and σ is the logistic sigmoid function. The 
following is a formulation of the focus mechanism: 

Us = tani(Zis + n) (7) 

αs =
Exp

(
US

s Uz
)

∑b
g=1Exp

(
US

s Uz
) (8) 

Ts =
∑

s
αsis (9) 

whereis is the production of every deposit; Z, Uz, and n are trainable 
masses and bias. The position of every component in is is unhurried by 
appraising the compilation between Us and is, which is randomly pre
pared. αt is a SoftMax function. A graph courtesy network by stacking a 
single graph devotion deposit, a, which is a single-layer feed forward 
neural network, parameterized by a weight vectorm→∈ r2fh. The layer 
figures the constants in the consideration devices of the node pair (h, g) 
by 

αh,g =

Exp
(

leakyrelu
(

m→S
[

Z i
→

h‖ Z i
→

g

]))

∑
K∈BhBExp

(

leakyrelu
(

m→S
[

Z i→h‖ Z i→g

])) (10) 

where || represents the chain operation. The courtesy layer takes as 

input a set of node featuresi =
{

i1
→
, i2
→
, ..., iB

→}
, i1
→

∈ rf , where B is the 

number of protuberances of the input graph and f the number of struc

tures for every node, and foodstuffs set of node features í =
{

i1
→ʹ

, i2
→ʹ

, ...,

iB
→ʹ}

, i1
→ʹ

∈ rf as its output. The first stage in creating higher-level features 

is to apply a common linear transformation to each node, which is 
parameterized by a weight matrix Z ∈ rfʹ*f . Each node may then be 
subjected to a masked attention mechanism, which yields the following 
scores: 

Ehg = m
(

X i
→

h,X i
→

g

)

(11) 

Which specifies the position of node gʹs features to node i. A 
nonlinearity, σ, can be applied to each node to obtain its final output 
feature. 

íh = σ
(
∑

g∈Bh

αhgZig

)

(12) 

In order to stabilize the learning process, the layer additionally 
employs numerous attentions. The following representation is produced 
by combining the individual characteristics that are computed in par
allel by k distinct nodes: 
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íh=‖
k
k=1σ

(
∑

g∈Bh

αK
hgZ

K i
→

g

)

(13) 

By retaining be an average of and delay applying the final 
nonlinearity. 

íh = σ
(

1
K
∑K

K=1

∑

j∈Bh

αK
hgZ

K i
→

g

)

(14) 

whereαK
hgis the standardized consideration coefficient compute by the k- 

th attention mechanism.

2.3. Sentiment analysis to detect opinions on monkeypox infection

Once meaningful links between entities are created using Knowledge 
Graphs, the process of sentiment classification begins. Each tweet is 
analyzed to determine whether the sentiment expressed is positive, 
negative, or neutral. This study employs a Reinforcement Markov De
cision Process (RMDP) [29] to enhance sentiment analysis by treating it 
as a sequential decision-making problem. The process begins with pre
processing and feature extraction using techniques like GloVe embed
dings and one-hot encoding, which capture the syntactic and semantic 
nuances of the text. These features are then passed through the RMDP 
framework, where sentiment analysis is treated as a series of actions 
within a structured decision-making environment. The Markov decision 
process (MDP) provides the foundational framework for reinforcement 
learning by modeling the problem as a set of states, actions, rewards, and 
transitions. In this context, the states represent tweet features, the ac
tions correspond to sentiment classifications (positive, negative, or 
neutral), and the rewards signify the accuracy of classifications based on 
ground truth. RMDP-based sentiment analysis not only improves clas
sification accuracy but also provides a robust and adaptive methodology 
for analyzing public sentiment around monkeypox infection in social 
media, offering valuable insights to guide health communication stra
tegies. Then, depending on the state changeover probabilitiesXts ,ts+1 (ms), 
the situation evolves to a new state. For this development, the agent is 
immediately rewarded withRs. The agent’s objective is to maximize the 
expected cumulative advertising reward over time by obtaining a policy 
π(ms|ts) that associates each state ts with an accomplishmentms. 

Yπ(ts, ms) = eπ [Rs|ts, ms] (15) 

For any state action pairings (t, m), a policy π* is considered the best 
if and only if its projected payoff is greater than or equal to π. 

Yπ*
(t, m) ≥ Yπ(t, m) (16) 

The ultimate objective of an MDP is the Yπ* function, which describes 
the highest anticipated reward achievable by carrying out a certain ac
tion in a specific condition and then following the best course of action. 

Y*(ts, ms) = ets+1∼Xts ,ts+1 (ms)

[

r(ts, ms)+ γ Max
mʹ∈M

Y*(ts+1, mʹ)
]

(17) 

where r(ts, ms)is the instantaneous reward gotten after executing action 
ms in statetsat time s, ts+1is the next state, mʹis any achievement that can 
be busy at ts+1, and γ is a markdown factor that regulates the weight 
agreed to coming prizes. Conferring to the value of active software 
design can be written as follows: 

Y*(ts, ms)= Max{r(ts, ms) + γ
∑

mʹ∈M

Xts , ts+1 (ms)Y*(ts+1, mʹ)} (18) 

Since the transition prospects of states (Xts ,ts+1 (ms)) and the optimal 
payoffs of posterior sub-processes (Maxmʹ∈MY*(ts+1, mʹ))are often un
known. When given some experience following a policy π, the sentiment 
analysis updates the estimate Y(ts, ms) for the non-terminal states ts 
occurring in that experience. The simplest bring up-to-date rule for the 

opinion detection is as follows: 

Y(ts, ms)←Y(ts, ms) + α[Rs+1 + γY(ts+1, ms+1) − Y(ts, ms)] (19) 

where α is the erudition rate. Signifies an error measures the difference 
among the value of Y(ts, ms) and the better estimationRs+1 + γY(ts+1,

ms+1). This number is frequently referred to as the false alarm, and 
arises in various forms throughout reinforcement learning. 

δ(s)=̇Rs+1 + γY(ts+1, ms+1) − Y(ts, ms) (20) 

The RMDP consists of two networks [30]: the current network with 
parameters ω and the target network with parametersωʹ. On the other 
hand, the target network is used to estimate the target Y value which 
guides the training process. The present network’s parameters are 
regularly transferred to the target network at intervals off epochs. 

l(ω) = e(t, m,r,tʹ)∼u(C)[(Ytar(tʹ, mʹ, ωʹ) − Ytar(t, m, ω))]
2 (21) 

∇ωl(ω) = e(t, m,r,tʹ)∼u(C)[l(ω)] (22) 

where(t, m, r, tʹ
) ∼ u(C)specifies that data (t, m, r, tʹ)is sampled from 

involvement replay pool C, and define the objective functions as follows. 

ĺ (ω) = (Ytar(tʹ, mʹ, ωʹ) − Ytar(t, m, ω))∇ωY(t, m, ω) (23) 

Instead of randomly selecting the optimal action based on the Y 
function, the agent randomly selects actions with a fixed probability at 
each step. If the random number ξ generated by the algorithm is less 
than the search probability calculated in the power greedy algorithm, 
then the current optimal solution is based on the objective function (Y) is 
1
|M|

selected by probability where |m| indicates the size of the working 
space [30]. Otherwise, the current optimal action based on the Y func
tion is selected with probability. 

x(m*|t) =

⎧
⎪⎨

⎪⎩

1
|M|

if ξ <∈

1 if ξ <∈

(24) 

wherem*, Y, |M| the current ideal function of the purpose is the size of 
the functional space and 0 ≤ ξ ≤ 1 is a even random number. The 
Softmax system uses the Boltzmann distribution to estimate the Y values 
of actions and determine the probability of selecting an action. 

x(mh|t) =
E Y(t, mh)

τ
∑|M|

g=1E Y(t, mg)
τ

(25) 

where h = 1, 2, 3, …, |M|,x(mh|t) is the probability of choosing an action 
in state tY(t, mh), the expected value Y of the action mhin state t, τ is the 
temperature parameter, and |M| Size of working space. 

F(p, q) =
1 − E − |Ytar(t, m, ωʹ)− Y(t, m, ω)|

σ

1 + E − |Ytar(t, m, ωʹ)− Y(t, m, ω)|

σ

(26) 

whereYtar(t, m, ωʹ)is the Y charge for the mark net trim state act pair (t, 
m) and y(t, m, ω) is the Y worth for the network close-fitting state action 
pair (t, m). ωʹAnd ω are the limitations of the goal and existing systems, 
individually, and σ is a optimistic persistent called the inverse 
compassion factor. As stated in the earlier section, the false alarm is 
usually articulated as δ(s). 

j(δ(s), σ) =
1 − E − |δ(s)|

σ

1 + E − |δ(s)|
σ

(27) 

The value of σ the functionj(δ(s), σ) is not monotonically decreasing 
with respect to δ(s) and its value lies in the interval [0, 1). The probets− 1 

returns the probability ∈ (ts− 1)of state s - 1. where β ∈ (0, 1), typically 1/| 
M|, which defines the effect of TD error on detection probability, where | 
M| Indicates the size of the working space. 
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∈ (ts) = (1 − β)⋅j(δ(s), σ) + β⋅ ∈ (ts− 1) (28) 

It is designed to optimize an agent’s search strategy in an RL system. 
The search probability is constantly modified depending on the agent’s 
present environmental information by including TD error into the soft
max algorithm. The difference between the Y values derived from the 
target network and the present network is measured by the TD error.

3. Results and discussion

This section presents the results and comparative analysis of senti
ment analysis for opinion detection in monkeypox. Python program
ming is used to do experiments on an X86–64 Ubuntu 18.04.4 LTS 
computer. With 16 GB of RAM, the CPU is an Intel(R) Core(TM) i7–8550 
U running at 1.80 GHz. Using the suggested model, we examine senti
ment emotions using this configuration. The Monkeypox Twitter dataset 
used in this study was sourced from the open-source platform GitHub. It 
includes a comprehensive collection of tweets related to the disease, 
comprising 61,379 tweets posted on Twitter between May 7 and June 
11, 2022 [31]. These tweets capture a range of public sentiments 
regarding monkeypox, including neutral, negative, and positive opin
ions. All the tweets are considered relevant to the discussions sur
rounding monkeypox, providing diverse perspectives from users. The 
results of proposed Graph+RMDP model is compared with the existing 
models such as Navie bayes (NB), support vector machine (SVM), lo
gistic regression (LR), random forest (RF), decision tree (DT), convolu
tional neural network (CNN), long short-term memory (LSTM) and 
CNN+LSTM [32]. The performance can validated through different 
metrics such as accuracy, precision, recall, F-measure and area under 
curve (AUC).

3.1. Impact of graph theory in sentiment analysis for opinion detection in 
monkeypox

The integration of graph theory in sentiment analysis offers a 
powerful method for understanding complex relationships within large 
datasets, such as social media discussions surrounding events like the 
monkeypox outbreak. This approach enhances the ability to detect 
public opinion, categorize sentiments accurately, and uncover deeper 
insights into societal reactions. Graph theory provides a structured way 
to organize unstructured social media data. Tweets about monkeypox 
are often disjointed and varied in content, making it difficult to extract 
meaningful relationships between entities (e.g., symptoms, prevention, 
public health policies). By using graphs, each tweet or piece of infor
mation can be treated as a node, and relationships between these 
nodes—such as co-occurrence of terms or sentiment-related associa
tions—can be established as edges. This allows the creation of a network 
(Fig. 2) that illustrates how different concepts (e.g., fear, misinforma
tion, and vaccination) are interconnected, facilitating deeper semantic 
analysis.

Traditional sentiment analysis techniques typically classify text into 
predefined sentiment categories (positive, negative, or neutral). How
ever, this often oversimplifies complex opinions that may contain mixed 
emotions or contradictory viewpoints. Graph theory helps address this 
by identifying patterns of sentiment propagation across the network. For 
example, the sentiment of an individual tweet about monkeypox may 
influence subsequent tweets, either amplifying or modifying the general 
public’s perception. In the context of monkeypox, misinformation and 
rumors can spread rapidly, exacerbating panic and confusion. Graph 
theory enhances misinformation detection by analyzing the flow of in
formation through the network and identifying unusual patterns that 
may indicate false narratives. For instance, a rapid increase in the spread 

Fig. 2. Knowledge graph for limited tweets from Monkeypox tweet dataset, the plot highlights positive (green), negative (red), and neutral (blue) sentiments. The 
graph shows the relationships between keywords, hashtags, and user interactions, such as "monkeypox", "vaccine", "symptoms", "health", and "prevention".
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of a specific hashtags associated with misinformation could be detected 
by examining the graph’s connectivity and temporal patterns. Sentiment 
propagation models using graph theory take into account the influence 
of neighboring nodes in a network. When a tweet expressing a strong 
sentiment spreads through a network, the sentiment of connected nodes 
may also shift. Fig. 3visually represents the relationships between key 
entities and sentiment in the monkeypox tweet dataset. By applying 
graph-based algorithms, sentiment analysis can account for this dy
namic process, leading to a more accurate and nuanced understanding of 
how sentiment evolves over time and across different demographic 
groups. This allows for timely interventions and better-targeted public 
health campaigns regarding monkeypox. By combining sentiment 
analysis with graph theory, researchers can contextualize public opinion 
in ways that are more meaningful for decision-makers. For example, 
graph-based sentiment analysis help identify which areas or regions are 
most concerned about monkeypox, the type of concerns and how these 
concerns evolve over time. It enables health authorities to tailor their 
communication strategies, target high-risk groups, and address mis
conceptions in a more informed and efficient manner.

3.2. Results analysis of sentiment analysis for monkeypox tweets

This section presents a comparative analysis of the proposed 
Graph+RMDP model and several existing models, including NB, SVM, 
LR, RF, DT, CNN, LSTM and CNN+LSTM [32], for sentiment analysis to 
detect public opinion on monkeypox tweets. The performance of these 
models is evaluated using various metrics, including accuracy, preci
sion, recall, F-measure, and AUC. Fig. 4 shows the results of the pro
posed Graph+RMDP model indicate effective learning and 
generalization as seen in both the loss and accuracy curves across the 

epochs. The train loss starts at 0.56 in epoch 0 and consistently de
creases, reaching a minimal value of 0.0000002 by epoch 59. This 
steady reduction in train loss suggests that the model is effectively 
learning from the training data, improving its predictions over time. The 
test loss follows a similar downward trend, starting at 0.59 and 
decreasing to 0.17 by epoch 59, albeit with some fluctuations. The test 
loss is slightly higher than the train loss throughout, which is typical in 
machine learning models, indicating a minor degree of overfitting. The 
train accuracy shows rapid improvement, starting at 0.6 in epoch 0 and 
reaching 1.0 by epoch 20. After this point, it stabilizes at a perfect score, 
suggesting that the model is fitting the training data very well. In 
contrast, test accuracy starts at 0.55 and gradually increases, peaking at 
0.99 by epoch 23. Although it fluctuates slightly between 0.94 and 0.99 
after this point, the general upward trend in test accuracy indicates that 
the model is not just memorizing the training data but is also able to 
generalize well to new, unseen data. The fluctuations in test accuracy, 
especially between epochs 27 to 37, where it dips to 0.95, could be due 
to minor overfitting or noise in the validation set, but the overall high 
values demonstrate that the model performs reliably on test data. The 
Graph+RMDP model shows excellent performance, with a steady 
decline in both train and test loss and high, stable test accuracy. 
Although the model achieves perfect training accuracy, the test accuracy 
fluctuates slightly, indicating a small degree of overfitting. These results 
suggest that the model is effectively learning from the data, with good 
generalization ability, though further refinements or regularization 
techniques could be explored to reduce the minor fluctuations in test 
accuracy.

Table 2 summarizes the performance analysis of the proposed and 
existing sentiment analysis models for the Monkeypox tweet dataset. In 
the accuracy comparison for the Monkeypox tweet dataset (Fig. 5), all 

Fig. 3. Knowledge graph for entire Monkeypox tweet dataset.
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models show improved performance as the dataset size increases from 
300 to 1500 epochs. The NB model improves from 75.236 % to 84.578 
%, SVM from 78.528 % to 85.546 %, LR from 80.147 % to 90.125 %, RF 
from 84.153 % to 90.857 %, and DT from 85.633 % to 92.357 %. Deep 
learning models like CNN and LSTM also perform better, with CNN 
improving from 89.547 % to 93.398 %, and LSTM from 90.258 % to 
94.475 %. The CNN+LSTM hybrid model performs even better, 
increasing from 95.628 % to 96.235 %. The Graph+RMDP model 
consistently achieves the highest accuracy, improving from 98.564 % to 
99.245 %. This superior performance is attributed to its ability to cap
ture complex relationships between tweet features using graph-based 
learning, while the RMDP component enhances decision-making by 
dynamically optimizing classification outcomes based on long-term 
reward signals. Unlike traditional models that rely on static feature 
vectors, Graph+RMDP offer a more adaptive and context-aware senti
ment analysis approach, making it highly effective for dynamic and 
noisy social media data.

Fig. 6 presents the precision comparison of the proposed and existing 
models on the Monkeypox tweet dataset. The Graph+RMDP model 
achieves the highest precision across all dataset sizes, starting at 93.212 

% and reaching 97.076 %, reflecting a 3.86 % improvement. The 
CNN+LSTM model also shows strong performance, improving from 
88.119 % to 92.731 % (4.61 % increase), followed by LSTM and CNN 
with gains of 5.59 % and 6.77 %, respectively. Among traditional 
models, DT improves from 81.201 % to 88.353 % and RF from 80.414 % 
to 87.518 %, showing steady gains. NB starts at 72.526 % and improves 
to 80.302 % (7.78 % increase), while SVM and LR record improvements 
of 7.43 % and 7.11 %, respectively. The results highlight the effective
ness of advanced models—particularly Graph+RMDP and 
CNN+LSTM—in delivering superior precision in sentiment analysis of 
Monkeypox-related tweets, outperforming traditional approaches by a 
considerable margin. Fig. 7 illustrates the recall comparison of the 
proposed and existing models on the Monkeypox tweet dataset. The 
Graph+RMDP model consistently achieves the highest recall, increasing 
from 90.124 % at 300 epochs to 94.31 % at 1500 epochs, marking 4.19 
% improvement. The CNN+LSTM model follows, improving from 
85.235 % to 90.702 % (5.47 % increases). Similarly, LSTM and CNN 
show notable gains of 6.22 % and 7.11 %, respectively, across the 
dataset sizes. Among traditional models, DT and RF show steady im
provements, with DT rising by 6.33 % and RF by 5.92 %. LR and SVM 

Fig. 4. Loss and accuracy of proposed Graph+RMDP model with varying epochs.

Table 2 
Performance analysis of proposed and existing sentiment analysis models for Monkeypox tweet dataset.

Models Accuracy ( %) Precision ( %)

300 600 900 1200 1500 300 600 900 1200 1500

NB 75.236 75.858 78.958 81.256 84.578 72.526 73.112 76.436 77.104 80.302
SVM 78.528 79.158 81.254 82.366 85.546 75.307 77.348 79.451 80.903 82.739
LR 80.147 82.355 86.645 89.578 90.125 78.109 78.723 81.286 83.301 85.220
RF 84.153 85.158 86.985 90.124 90.857 80.414 81.752 84.240 85.234 87.518
DT 85.633 86.247 87.985 91.985 92.357 81.201 82.254 84.853 86.053 88.353
CNN 89.547 90.058 91.547 92.285 93.398 83.673 84.381 87.110 89.022 90.441
LSTM 90.258 91.086 92.357 93.325 94.475 85.420 86.539 88.211 89.441 91.012
CNN+LSTM 95.628 95.857 95.957 96.012 96.235 88.119 88.986 90.407 91.228 92.731
Graph+RMDP 98.564 98.618 98.855 98.958 99.245 93.212 94.451 95.640 96.125 97.076

Recall ( %) F-measure ( %)

NB 70.345 71.850 74.491 75.693 78.204 71.419 72.476 75.451 76.392 79.239
SVM 73.270 74.634 77.122 78.479 81.017 74.275 75.967 78.269 79.673 81.869
LR 75.301 76.429 79.110 80.563 82.354 76.679 77.559 80.183 81.909 83.762
RF 77.028 78.024 80.136 81.543 82.953 78.685 79.845 82.137 83.348 85.174
DT 78.712 79.324 82.139 83.127 85.043 79.937 80.762 83.474 84.565 86.666
CNN 80.210 81.352 84.016 85.178 87.322 81.905 82.839 85.535 87.058 88.854
LSTM 82.145 83.509 85.431 86.450 88.360 83.750 84.997 86.799 87.920 89.666
CNN+LSTM 85.235 85.951 88.024 89.301 90.702 86.653 87.442 89.200 90.254 91.705
Graph+RMDP 90.124 91.016 92.410 93.047 94.310 91.642 92.702 93.997 94.561 95.673
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demonstrate moderate growth, with recall increasing by 7.05 % and 
7.75 %, respectively. Although NB shows the smallest improvement 
(7.86 %), it performs relatively well at lower dataset sizes. The results 
highlight the superior recall performance of advanced models like 
Graph+RMDP and CNN+LSTM, while traditional models also exhibit 
consistent gains with increased dataset size.

Fig. 8 presents the F-measure comparison of the models on the 
Monkeypox tweet dataset. The Graph+RMDP model achieves the 
highest F-measure, improving from 91.642 % at 300 to 95.673 % at 
1500 epochs, reflecting a 4.03 % increase. The CNN+LSTM model fol
lows closely, rising from 86.653 % to 91.705 %, marking 5.05 % 
improvement. Similarly, LSTM and CNN show notable gains of 5.92 % 
and 6.95 %, respectively. Among the traditional models, DT and RF 
exhibit steady performance, with DT improving by 6.73 % and RF by 

6.49 %. LR and SVM show moderate increases of 7.08 % and 7.59 %, 
respectively. The NB model shows the smallest gain, increasing by 7.82 
%, from 71.419 % to 79.239 %. The results indicate that hybrid models 
like Graph+RMDP and CNN+LSTM outperform traditional approaches, 
offering improvements in F-measure, particularly as dataset size 
increases.

Fig. 9 shows the performance of various sentiment analysis models 
for opinion detection on the Monkeypox tweet dataset was assessed 
across five key metrics: accuracy, precision, recall, F-measure, and AUC. 
The Graph+RMDP model emerged as the top performer, achieving the 
highest accuracy of 98.848 %, which was 2.91 % improvement over 
CNN+LSTM. Compared to traditional models, Graph+RMDP showed a 
significant increase in accuracy, with models like NB lagging far behind 
by 19.671 %. The precision of Graph+RMDP was also the highest at 

Fig. 5. Accuracy comparison for proposed and existing models for Monkeypox tweet dataset.

Fig. 6. Precision comparison for proposed and existing models for Monkeypox tweet dataset.
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95.301 %, exceeding CNN+LSTM by 5.007 %, with NB again showing 
the lowest precision at 75.896 %, a decrease of 19.405 % compared to 
the top model. In terms of recall, Graph+RMDP led with a score of 
92.181 %, outperforming CNN+LSTM by 4.057 %, and traditional 
models like RF and DT showed lower performance. NB had the lowest 
recall at 74.117 %, trailing the best model by 18.064 %. For F-measure, 
Graph+RMDP also achieved the highest score of 93.715 %, surpassing 
CNN+LSTM by 4.664 %. This marked an impressive improvement over 
models like RF and DT with NB again showing the weakest performance 
with 74.995 %, falling behind by 18.72 %. The AUC scores mirrored 
these findings, with Graph+RMDP achieving 95.8 %, a 3.4 % 
improvement over CNN+LSTM. Traditional models like RF and DT 
exhibited lower AUC values, while NB again lagged behind with the 

lowest score of 78.45 %, a 17.35 % decrease compared to Graph+RMDP. 
Graph+RMDP consistently outperformed all other models across all 
metrics, showing significant improvements in accuracy, precision, 
recall, F-measure, and AUC. While CNN+LSTM also performed well, 
traditional ML models like NB, SVM, LR, RF, and DT demonstrated lower 
performance across the board.

4. Conclusion

The proposed AI-powered sentiment analysis, combined with graph 
theory, effectively addresses the challenges of analyzing unstructured or 
semi-structured social media data surrounding Monkeypox. By using 
graph theory to establish meaningful connections between keywords, 

Fig. 7. Recall comparison for proposed and existing models for Monkeypox tweet dataset.

Fig. 8. F-measure comparison for proposed and existing models for Monkeypox tweet dataset.
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hashtags, and user interactions, and using a reinforcement Markov de
cision process (RMDP) to analyze opinions and detect sentiment. The 
methodology was validated using a Monkeypox tweet dataset 
comprising 61,379 tweets collected from Twitter between May 7 and 
June 11, 2022.The results demonstrate that the Graph+RMDP model 
outperforms existing sentiment analysis models for the Monkeypox 
tweet dataset. It achieved the highest accuracy of 98.848 %, precision of 
95.301 %, recall of 92.181 %, F-measure of 93.715 %, and AUC of 95.8 
%, reflecting substantial improvements over the next best model, 
CNN+LSTM, with increases of 2.91 % in accuracy, 5 % in precision, 
4.057 % in recall, 4.664 % in F-measure, and 3.4 % in AUC. When 
compared to traditional models such as Naïve Bayes, the Graph+RMDP 
model demonstrated a performance boost of up to 19.671 % in accuracy. 
The Graph+RMDP model is poised to provide valuable insights into 
public sentiment and trends related to public health crises like Mon
keypox, thereby enabling more informed and data-driven decisions for 
policymakers and public health organizations.
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