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A B S T R A C T

Predicting movie ratings very precisely has become a vital aspect of personalized recommendation systems, 
which requires robust and high-performing models. for evaluating the effectiveness in predicting movie ratings, 
this study conducts a comprehensive performance analysis of various deep learning architectures, which includes 
BiLSTM, CNN + LSTM, CNN + GRU, CNN + Attention, CNN, VAE, Simple RNN, GRU + Attention, Transformer 
Encoder, FNN and ResNet. Here each model’s performance is evaluated on movie reviews’ dataset, enhanced 
with sentiment scores and user ratings, by using a range of evaluation metrics: Mean Absolute Error (MAE), R² 
score, Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Explained Variance. Here the results 
highlight distinct strengths and weaknesses among the models, in which VAE model consistently delivering 
superior accuracy, whereas attention-based models prove prominent improvements in interpretability and 
generalization. This analysis offers important insights into choosing models for movie recommendation systems, 
which also highlights the balance between prediction accuracy and computational efficiency. The discoveries 
from this study serve as a benchmark for future developments in movie rating prediction, supporting the re
searchers and practitioners in augmenting recommendation system performance.

1. Introduction

Despite noteworthy advancements in the field of recommendation 
systems, existing studies in this field still leave several important limi
tations unaddressed. Though traditional collaborative filtering methods 
are foundational, they frequently encounter challenges e.g., data spar
sity and cold-start problems, which are particularly challenging to 
manage in movie recommendation systems. as observed in earlier 
research, models based purely on matrix factorization or basic recurrent 
architectures often struggle to capture the complex temporal patterns 
and emotional nuances that significantly influence user preferences. 
More advanced models which are using GRU and attention mechanisms, 
like those by Xia et al. [1] and Wang et al. [5], have improved in 
addressing these issues while considering time-based patterns. They still 
lack a full integration of sentiment analysis, which is really important for 
understanding user sentiments and likings toward movies.

In addition, multi-modal approaches that comprise data sources like 
movie posters and plot summaries, as demonstrated by Xia et al. [2] 
provide all-inclusive view of content preferences but lack robust 
sentiment-based personalization, which is crucial for the domains where 

emotional engagement is critical. Variational Autoencoders (VAEs), 
which are used effectively for collaborative filtering by Askari et al. [3] 
and Liang et al. [6], offer another trail for grasping hidden patterns in 
user interactions. However, these models tend to focus more on inter
action data rather than user sentiment, possibly overlooking key insights 
that could improve recommendation accuracy and relevance. Further
more, while sentiment-enhanced hybrid models have started to bridge 
this gap, as in Dang et al. [8], their incorporation remains limited, and 
the models face challenges in scalability and computational cost.

Existing literature, including Siet et al. [7], explores various archi
tectures like CNNs, RNNs, and clustering-based methods, but lacks a 
comprehensive comparison across these models, limiting our under
standing of their relative performance under a unified framework. Few 
studies provide a thorough evaluation of these models based on stan
dardized error metrics, making it difficult to determine which approach 
consistently outperforms the others in terms of robustness, accuracy and 
recommendation quality.

To address these kinds of gaps, this paper provides a comprehensive 
comparison of state-of-the-art deep learning models for movie recom
mendation, including BiLSTM, CNN + LSTM, CNN + GRU, CNN +

* Corresponding author.
E-mail address: Rdmehta@hotmail.com (Dr.R. Mehta). 

Contents lists available at ScienceDirect

BenchCouncil Transactions on Benchmarks,  
Standards and Evaluations

journal homepage: www.keaipublishing.com/en/journals/benchcouncil- 

transactions-onbenchmarks-standards-and-evaluations/

https://doi.org/10.1016/j.tbench.2025.100200
Received 10 December 2024; Received in revised form 23 March 2025; Accepted 11 April 2025  

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 4 (2024) 100200 

Available online 18 April 2025 
2772-4859/© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by- 
nc-nd/4.0/ ). 

https://orcid.org/0009-0003-1877-8363
https://orcid.org/0009-0003-1877-8363
mailto:Rdmehta@hotmail.com
www.sciencedirect.com/science/journal/27724859
http://www.keaipublishing.com/en/journals/benchcouncil-transactions-onbenchmarks-standards-and-evaluations/
http://www.keaipublishing.com/en/journals/benchcouncil-transactions-onbenchmarks-standards-and-evaluations/
https://doi.org/10.1016/j.tbench.2025.100200
https://doi.org/10.1016/j.tbench.2025.100200
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tbench.2025.100200&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Attention, CNN, VAE, Simple RNN, GRU + Attention, Transformer 
Encoder, FNN and ResNet. Exclusively, this work integrates sentiment 
analysis to enhance the models’ ability to account for user emotions, 
adding a layer of personalization that prior models lacked. By evaluating 
each model on standardized error metrics—such as Mean Absolute Error 
(MAE), Mean Squared Error (MSE), and Root Mean Squared Error 
(RMSE)— this study aims to identify the most effective model for 
delivering accurate and sentiment-aware recommendations. Through 
this rigorous approach, our work sets a benchmark for future advance
ments in movie recommendation systems by emphasizing the impact of 
sentiment-driven personalization on recommendation quality.

2. Preliminaries

This paper presents a collaborative filtering recommendation algo
rithm [1] which integrates attention mechanisms within a Gated 
Recurrent Unit (GRU) framework and employs adversarial learning 
techniques. Here, the proposed model’s aim is to enhance user-item 
interactions that focus on important features and reduce the noise 
from irrelevant data. In this, the results prove the enhanced performance 
in the context of recommendation accuracy compared to traditional 
methods, showcasing the effectiveness of the attention mechanism and 
adversarial learning in capturing user preferences.

This study proposes a multi-modal transformer framework [2] which 
leverages both textual and visual features from movie posters which are 
used to enhance the recommendation performance. In this, by employ
ing an attention mechanism, the model’s concentration is on prominent 
features from the posters while integrating them with textual data that is 
obtained from movie descriptions. The experimental results here illus
trate that the proposed approach implicitly outperforms existing 
methods, mostly in scenarios where visual data plays a vital role in user 
preference prediction.

It explores the application of Variational Autoencoders (VAEs) [3] in 
the context of top-K recommendation systems using implicit feedback. 
In this the authors introduce an innovative VAE architecture that suc
cessfully models user preferences and item characteristics while also 
addressing challenges associated with implicit feedback, such as data 
sparsity. The experiments disclose that the proposed VAE-based method 
attains competitive results in top-K recommendation tasks, demon
strating its capability to generalize well to the hidden data.

This survey [4] provides an all-inclusive overview of various deep 
learning models, which includes Convolutional Neural Networks 
(CNNs), Recurrent Neural Networks (RNNs), Long Short-Term Memory 
networks (LSTMs), and Gated Recurrent Units (GRUs). In this the au
thors discuss the strengths and weaknesses of individual models, their 
applications in different domains, and comparative performance met
rics. This paper contributes as a valuable resource for researchers and 
practitioners, for those who seek to understand the landscape of deep 
learning architectures.

In this work, the authors propose a personalized movie recommen
dation system [5] that combines LSTM and CNN architectures to capture 
both sequential and contextual features from user interactions. The 
model is designed here to extract temporal patterns in user behavior 
while considering the content of movies, as well. Experimental results 
indicate that the proposed system outperforms traditional collaborative 
filtering methods, particularly in capturing user preferences over time.

This paper investigates the use of Variational Autoencoders (VAEs) 
[6] for collaborative filtering tasks. The authors proposed a model here 
that collectively learns user and item representations while incorpo
rating uncertainty into the recommendations. The VAE framework here 
addresses challenges as well, such as sparsity and cold-start problems in 
collaborative filtering, resulting in the enhanced recommendation ac
curacy. The discoveries suggest that VAEs can efficiently model 
user-item interactions in collaborative filtering scenarios.

This study focuses on improving movie recommendation systems [7] 
by integrating deep learning techniques and KMeans clustering. Here, 

the authors develop a sequence-based recommendation model that 
captures user preferences over time and apply KMeans to group similar 
users. The results demonstrate that the hybrid approach which yields 
superior recommendation performance compared to traditional 
methods, mostly in dealing with sequential data.

This paper explores the integration of sentiment analysis into 
recommender systems [8] which is used to enhance user experience. The 
authors propose a deep learning framework that incorporates sentiment 
scores from user reviews to refine recommendations, particularly for 
items with varying emotional tones. Here, the experiments show that 
incorporating sentiment analysis leads to more personalized and 
appropriate recommendations, highlighting the importance of 
emotional context in user preferences.

This work presents an approach [9] to improve movie recommen
dation systems by leveraging deep learning models alongside sentiment 
analysis. The authors demonstrate that incorporating sentiment data 
from user reviews significantly enhances the accuracy and relevance of 
recommendations. The findings underscore the potential of combining 
different data sources to create more effective recommendation algo
rithms. The SVM and CNN algorithms were implemented for the Movie 
Recommendation System to recommend the most relevant films for a 
given movie. Even after extensive testing, CNN classifier has produced 
decent findings in terms of suggesting the films.

This paper proposes the GANCF model [10], which combines user 
and item latent vectors with auxiliary information to enhance recom
mendation performance through deep non-linear learning. Here, 
experimental results show better outcomes on two datasets, validating 
the benefit of auxiliary data. Future work will discover time-based 
mechanisms and integrate multi-source heterogeneous data for better 
capturing dynamic user interests.

This study addresses the cold start [11] problem in recommendation 
systems and proposes a deep learning approach that builds user profiles 
from demographic attributes. Here, a modified ANN model clusters 
users by demographics, which is used to provide personalized movie 
recommendations. It also demonstrates strong performance across 
multiple evaluation metrics.

By human brain function, Convolutional Neural Networks (CNNs) 
are inspired [12,13] and They effectively handle grid-like structured 
data, too [14]. The CNN architecture has 3 types of dimensions: 1D is for 
processing text and signals, 2D is for images and audio, whereas 3D is for 
videos. While CNNs are chiefly used in computer vision tasks, e.g., image 
classification [15], they also perform well in text classification using 
word vectors formed through concatenation [16].

Google’s TensorFlow framework [17], developed for machine 
learning, underlines tensors, which generalize vectors and matrices for 
managing flexible dimensions. This study leverages the Keras Tensor
Flow library which is mostly used to build CNN models with layers via 
including input, convolution, max-pooling, flatten, dense, dropout, and 
output [18], here each layer processes input data through the network 
[19]. Given the one-dimensional nature of text data, a 1D convolutional 
layer is used for the same, which is letting the model to extract com
posite patterns in the data [20].

To prevent overfitting, a dropout rate of 0.5 is applied after each 
Conv1D layer, deactivating a portion of neurons [21]. To reduce 
dimensionality, MaxPooling1D takes the maximum value in each pool
ing window. To further minimize the risk of overfitting, another dropout 
layer is added afterward MaxPooling. Then, a flattening layer converts 
the feature matrix into a vector, followed by another dropout at 0.5. 
Here, a dense layer with 64 units and ReLU activation processes this 
vector. The final dense layer with 3 units and sigmoid activation pro
duces class probabilities. CNN was chosen for its aptitude to achieve 
greater accuracy and it effectively recognizes patterns, even in rating 
data.

The content-based recommendation system [22] is developed using 
CNN, which is combining TF-IDF and RoBERTa for pattern recognition 
in movie review data obtained from Twitter. This augmented CNN 
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model with SMOTE and an SGD optimizer achieved an accuracy of 86.41 
%, efficaciously providing accurate movie recommendations.

DistilBERT is a reorganized version of BERT, achieving a 40 % 
reduction in size and a 60 % increase in speed while conserving 97 % of 
BERT’s language comprehension abilities [23]. It is trained through 
distillation, it’s highly efficient and well-suited for edge deployments. 
Summarization can be extractive (selecting key sentences) or abstractive 
(rephrasing content). This study assesses BERT-based models and it in
troduces "SqueezeBERTSum," [24] which is a streamlined summariza
tion model that retains 98 % of BERTSum’s performance with 49 % 
fewer parameters. ArDBertSum, an Arabic text summarization model 
based on fine-tuned DistilBERT [25], enhanced with the SCSAR tech
nique for sentence segmentation. It is evaluated on the EASC corpus, it 
beats other Arabic summarizers, and the future work will focus on 
expanding datasets, filtering evaluation methods, and discovering other 
pre-trained models.

This paper offers a widespread comparison of cutting-edge deep 
learning models for movie recommendation, encompassing BiLSTM, 
CNN + LSTM, CNN + GRU, CNN + Attention, CNN, VAE, Simple RNN, 
GRU + Attention, Transformer Encoder, FNN, and ResNet.

2.1. BiLSTM (Bidirectional long short-term memory)

BiLSTM networks are a variant of LSTMs [26] which process data in 
both directions - forward and backward, making them particularly 
effective in capturing long-range dependencies within sequences. In 
recommendation systems, BiLSTM is used to understand the consecutive 
patterns in user interactions (e.g., movie-watching behavior) over time. 
This bidirectional approach is helpful in capturing the complete context 
of user preferences, mainly for the tasks such as sequential 
recommendation.

2.2. CNN + LSTM

The CNN + LSTM model attaches Convolutional Neural Networks 
(CNNs) with LSTMs [5] which is allowing the system to handle both 
spatial and sequential data efficiently. CNNs are typically applied first to 
capture features from movie details (e.g., visual or textual features), 
followed by LSTMs to understand the chronological dependencies in 
user interaction data. This combination is powerful for multimedia 
recommendation systems where both temporal dynamics and content 
features (such as movie genres or user reviews) impact the movie 
recommendations.

2.3. CNN + GRU

This architecture pairs CNNs with Gated Recurrent Units (GRUs), 
where CNNs capture spatial features from input data, whereas GRUs 
manage sequential dependencies. The GRU, a simplified version of 
LSTM [10], combines the forget and input gates into an update gate and 
merges cell and hidden states. This kind of design allows it to capture 
long-term dependencies effectively while reducing issues like gradient 
vanishing and explosion. Here, GRUs are computationally more efficient 
than LSTMs, as they contain fewer parameters. The CNN + GRU model is 
thus appreciated for the cases where movie recommendation systems 
need to balance temporal insights with efficient processing of rich 
content data, like user comments / reviews.

2.4. CNN + attention

In this model, CNNs are coupled with an attention mechanism, which 
is used to prioritize important features in the data. First, CNNs extract 
core features, which are then weighted by the attention mechanism, 
allowing the model to focus on the utmost pertinent information. For 
movie recommendations, CNN + Attention mechanism can highlight 
detailed aspects of user preferences, such as genre or specific movie 

features, which is used here to provide more relevant suggestions based 
on past communications.

2.5. CNN (Convolutional neural network)

Originally developed for image processing, CNNs are proficient at 
recognizing spatial hierarchies in data. In context of movie recommen
dation systems, CNNs [27] are used for feature extraction from 
text-based reviews/ user comments, or visual features related to movie 
posters. Though CNNs do not inherently capture sequential information, 
they provide valuable acumens into content-related features that impact 
recommendations.

2.6. VAE (Variational autoencoder)

VAEs are probabilistic models, which are designed for dimension
ality reduction and data generation. They use latent variable represen
tations, which are particularly useful for collaborative filtering because 
they can capture the hidden factors which are driving user preferences. 
In movie recommendation systems, VAEs allow for the modeling of 
complex, implicit feedback, creating robust representations of user 
preferences that adapt well to various types of recommendation tasks.

2.7. Simple RNN (Recurrent neural network)

RNNs [4] are a foundational architecture which is used for sequential 
data processing, where each node’s output is fed as input to the next 
node. While they are effective for short sequences, RNNs are prone to 
matters like vanishing gradients, which is limiting their ability to cap
ture long-term dependencies. In context of recommendation task, Sim
ple RNNs can offer elementary insights into sequential patterns. still, 
they are typically lacking in efficiency than more advanced recurrent 
models like GRUs or LSTMs.

2.8. GRU + attention

This model combines GRUs [4] with an attention layer because they 
want to prioritize significant sequential data. GRUs efficiently handle 
sequential dependencies as well, while the attention layer boosts inter
pretability by highlighting the most influential user interactions or 
content features. This kind of combination is ideal for recommendation 
systems that require efficient temporal modeling and the ability to focus 
on key preferences in the user’s viewing history as well.

2.9. Transformer encoder

This is an element of the Transformer architecture that relies solely 
on self-attention mechanisms by discarding recurrence entirely. This 
kind of architecture allows parallel processing of input data, making it 
efficient and extremely scalable. Transformer Encoders are particularly 
effective in capturing complex dependencies in user interactions over 
time, making them suitable for large-scale recommendation systems and 
these systems need to analyze diverse content features simultaneously.

2.10. FNN (Feedforward neural network)

Feedforward Neural Networks are simple neural networks contain
ing fully connected layers, mainly used for classification or regression 
tasks. In recommendation systems, FNNs can be beneficial for basic 
collaborative filtering tasks or as supplementary layers in hybrid 
models, though they lack the sequential or hierarchical structure 
required for complex, multi-faceted recommendation tasks.

2.11. ResNet (Residual neural network)

ResNet is DNN model which is known for its residual connections. it 
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helps to mitigate issues like vanishing gradients in very deep networks. 
In recommendation contexts, ResNet can be applied to extract robust, 
hierarchical features from high-dimensional data, e.g., movie posters or 
other multimedia content. Its depth makes it especially effective for 
learning complex feature, contributing to high-quality 
recommendations.

3. DATASET preparation

Here, we present a movie recommendation system that integrates 
movie review datasets from numerous sources. This includes a dataset of 
over 5000 movies from data source Kaggle [29] up to year 2017, 
alongside movie metadata [30] and additional data from Wikipedia for 
movies released between the years 2018 [31], 2019 [32] and 2020 [33]. 
Additionally, we collect reviews for sentiment analysis from the TMDB 
website using the TMDB API [28].

4. Feature engineering

In this project as shown in Fig. 1, the focus is on building an inclusive 
and sophisticated framework, for movie rating prediction by integrating 
various machine learning as well as deep learning models with senti
ment analysis and feature extraction techniques. Initially, we preprocess 
the data using DistilBERT, which is a Transformer-based model used to 

extract sentiment scores and labels, enhancing the dataset with valuable 
contextual insights from movie reviews. Additionally, we apply TF-IDF 
vectorization, which is combined with SVD for the reduction of 
dimensionality, resulting in a streamlined feature set.

The experiments conducted in this study reveal the tangible impact 
of sentiment analysis on the performance of the classification model. 
Without sentiment analysis, the model struggled to generalize effec
tively, especially in handling imbalanced classes. However, integrating 
sentiment embeddings generated by DistilBERT led to a noticeable 
improvement in performance metrics, as detailed below.

The supplementary experiments on sentiment analysis, as shown in 
Table 1, demonstrate a clear improvement in both classification and 
regression tasks. The observed improvements in both classification and 
regression tasks suggest that sentiment embeddings contribute beyond 
sentiment polarity detection, directly enhancing rating prediction ac
curacy. While the classification accuracy increases from 85.75 % to 
91.75 % with DistilBERT, demonstrating better sentiment differentia
tion, the key takeaway is its impact on regression performance. The 
reduction in MSE (from 0.1224 to 0.0743), MAE (from 0.2552 to 
0.1595), and RMSE (from 0.3498 to 0.2726) underscore how refined 
sentiment representations lead to more precise numerical predictions.

Rather than treating classification accuracy as a standalone metric, it 
should be interpreted as a validation of sentiment embedding quality. 
Higher classification accuracy indicates that the embeddings capture 

Fig. 1. Algorithm of Sentiment Analysis & Movie rating Prediction.
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nuanced sentiment variations more effectively, which, in turn, enrich 
the feature representations used in regression. This improved repre
sentation reduces prediction errors by aligning extracted sentiment in
formation more closely with actual user ratings.

The CNN + LSTM model, trained with TF-IDF embeddings serves as a 
baseline to illustrate this relationship. While TF-IDF captures word 
frequency-based sentiment cues, DistilBERT embeddings offer a more 
contextualized understanding, leading to improvements across both 
classification and regression tasks Therefore, sentiment analysis should 
be framed primarily in terms of its role in refining feature extraction, 
ensuring consistency with the study’s core regression evaluation 
metrics.

To enhance clarity, the discussion will emphasize how improvements 
in sentiment classification contribute to better rating predictions. This 
reinforces the alignment between sentiment analysis and the study’s 
primary regression objectives.

5. MODEL development & results discussion

This dataset is then used to train multiple models encompassing 
BiLSTM, CNN + LSTM, CNN + GRU, CNN + Attention, CNN, VAE, 
Simple RNN, GRU + Attention, Transformer Encoder, FNN, and ResNet. 
Each model here explores different mechanisms for capturing de
pendencies within the data. For example, the CNN + Attention model 
utilizes self-attention which is used to identify relationships within the 
data, while the BiLSTM model captures dependencies which are in both 
forward & backward directions. Moreover, using a VAE-based model 
allows us to integrate generative elements, creating a more robust 
feature representation that can potentially improve prediction accuracy.

Here the evaluation criteria include MSE, MAE, RMSE, R-squared, 
and explained variance score, which help us to analyze model perfor
mance and provide insight into each model’s suitability for the task. 
With this approach, our goal is to establish a strong baseline and identify 
the best-performing model, contributing to advanced movie recom
mendation systems that align closely with user preferences and actual 
ratings.

Here this pipeline allows for an inclusive assessment of innumerable 
deep learning models on the movie rating prediction task. It integrates 
both of the traditional architectures (like BiLSTM and CNN) and the 
advanced approaches (like Attention mechanisms, VAE, and GAN), with 
an emphasis on balancing performance and interpretability. Each model 
shown here is designed to address specific data characteristics, such as 
sequence information given in movie reviews, making the framework 
much flexible for various text-heavy recommendation systems.

Here’s a summary of the models and their structures: 

• BiLSTM: A Bidirectional LSTM network with 64 units, followed by a 
Dense layer (32 units) for regression. It uses MSE- Mean Squared 
Error as the loss function and Adam optimizer.

• CNN + LSTM: Combines Conv1D (64 filters) for feature extraction, 
followed by LSTM (64 units) for sequence modeling. It uses MSE and 
Adam optimizer.

• CNN + GRU: Similar to the CNN + LSTM, but replaces LSTM with 
GRU for sequence modeling. It also uses MSE and Adam.

• CNN + Attention: Uses Conv1D layers for feature extraction followed 
by a self-attention mechanism, then a Dense layer for regression. It 
uses MSE and Adam.

• VAE: A Variational Autoencoder with a 32-dimensional latent space. 
The model uses both reconstruction loss (binary cross entropy) and 
KL divergence loss, and is trained with the RMSprop optimizer.

• Simple RNN: A Simple RNN layer (64 units) is mainly used for 
sequence modeling, followed by a Dense layer for the regression. It 
uses MSE and Adam.

• GRU + Attention: This combines GRU (64 units) with self-attention 
for sequence modeling, followed by Dense layers for regression. It 
also uses MSE and Adam.

• FNN (Feedforward Neural Network): A fully connected network with 
three Dense layers of sizes 128, 64, and 32, trained for regression 
using MSE and Adam.

• ResNet: A CNN with residual connections and two Conv1D layers 
followed by MaxPooling, Flatten, and Dense layers for regression. It 
uses MSE and Adam.

• Transformer Encoder: A simplified transformer with Conv1D layers 
and Dense layers for regression. It uses MSE and Adam.

• GAN (Generator + Discriminator): The generator creates synthetic 
data from a latent vector, and the discriminator classifies the data. 
Both parts are trained using binary cross-entropy loss.

Based on the data provided from Table 2, here a summarized analysis 
of the models’ observations and insights based on the sample size and 
key metrics (MAE, MSE, RMSE, R², and Explained Variance) is provided 
in detail:

5.1. Effect of attention mechanism

Models incorporating Attention (e.g., CNN + Attention, GRU +
Attention) demonstrate varying degrees of improvement over their non- 
attention counterparts, particularly in reducing RMSE and improving R² 
for larger sample sizes.

However, CNN + Attention and GRU + Attention do not constantly 
outperform simpler models on smaller datasets, which may point to a 
need for larger data volumes to fully leverage the benefits of attention.

5.2. Performance of simple and advanced models

From analyzing Figs. 2, 3 and 4, As the sample size rises, The BiLSTM 
model shows consistent performance improvement, with comparatively 
lower MAE, MSE, and RMSE to other models. For the larger datasets (e. 
g., 5000 samples), it performs fairly well with R² values around 0.26.

As Per Fig. 5, Traditional models such as FNN (Feedforward Neural 
Networks) and ResNet have high error rates and poor R² values, mainly 
on smaller datasets, indicating they are less suited for this regression 
task without additional optimization.

More advanced models, such as the Transformer Encoder, demon
strate potential but generally fall behind BiLSTM and VAE in terms of 
MAE and RMSE across most sample sizes.

The performance analysis of various models reveals significant var
iations, highlighting the strengths and limitations of each approach. The 
VAE model consistently achieves the lowest error values (MAE, MSE, 
and RMSE), indicating its ability to capture complex patterns effectively. 
However, its highly negative R² and Explained Variance scores suggest 
potential overfitting or difficulties in generalizing to unseen data. This 
suggests that while VAE is powerful in latent representation learning, it 
may require additional regularization techniques or fine-tuning for 
better generalization. In contrast, BiLSTM demonstrates relatively 
strong performance with lower errors and improved R² scores, making it 

Table 1 
Performance comparison with and without DistilBERT sentiment classifier.

Model Variant Accuracy MSE MAE RMSE Precision (Class 1) Recall (Class 1) F1-score (Class 1)

Without DistilBERT 0.8575 0.1224 0.2552 0.3498 0.86 1.00 0.92
With DistilBERT 0.9175 0.0743 0.1595 0.2726 0.91 1.00 0.95
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a reliable choice for sequential data analysis. The GRU + Attention 
model also performs well by maintaining a balance between accuracy 
and computational efficiency, selectively focusing on important se
quences to enhance predictions. On the other hand, CNN-based models, 
such as CNN + LSTM and CNN + GRU, exhibit significantly higher er
rors, particularly for smaller sample sizes, indicating their struggle in 
capturing long-range dependencies within the dataset. While CNN ar
chitectures are effective in feature extraction, their ability to model 
sequential relationships may be limited, leading to suboptimal perfor
mance. Similarly, ResNet, despite its deep learning capabilities, shows 
inconsistent results, often producing higher errors and poor R² scores, 
suggesting that residual learning techniques effective in image pro
cessing may not translate well to movie rating predictions. Meanwhile, 
Transformer Encoder and Simple RNN models perform moderately, 
though their higher variance in predictions suggests sensitivity to 

dataset size. Transformers generally require large amounts of data to 
perform optimally, while Simple RNNs are prone to vanishing gradient 
issues, making them less effective for long-term dependencies compared 
to GRU and LSTM-based models.

From a practical perspective, the trade-off between accuracy and 
generalization is crucial. While VAE provides the best accuracy in terms 
of error reduction, its poor R² and explained variance scores indicate 
that a model with slightly higher errors but better generalization, such 
as BiLSTM, may be preferable for real-world applications. Additionally, 
computational efficiency plays a vital role in model selection. 
Transformer-based architectures and deep models like ResNet, while 
powerful, are computationally expensive and may not be feasible in 
resource-constrained environments. In contrast, GRU + Attention offers 
a reasonable trade-off between accuracy and efficiency, making it a 
more practical choice. Furthermore, dataset size sensitivity is another 

Table 2 
The evaluation metrics for given Different Models on customized dataset.

Sample Size Model MAE MSE RMSE R2 Explained Variance

1000 BiLSTM 0.671496 0.979911 0.989904 − 0.0009 0.00753
1000 CNN + LSTM 6.080096 37.88085 6.154742 − 37.6921 − 0.00128
1000 CNN + GRU 6.024232 37.1923 6.098549 − 36.9888 − 0.00059
1000 CNN + Attention 3.740283 14.59443 3.820265 − 13.907 − 0.02247
1000 CNN 1.80834 3.964826 1.991187 − 3.04974 − 0.05592
1000 VAE 0.406633 0.17754 0.421355 − 2642.08 − 101.288
1000 Simple RNN 1.64833 4.494392 2.119998 − 3.59065 − 3.44333
1000 GRU + Attention 1.46563 2.814831 1.677746 − 1.87512 0.000344
1000 Transformer Encoder 0.717499 1.079262 1.038875 − 0.10238 − 0.09497
1000 FNN 5.951155 36.31172 6.02592 − 36.0894 − 0.00824
1000 ResNet 2.510871 8.314544 2.883495 − 7.49262 − 1.15139
2000 BiLSTM 0.59105 0.584029 0.764218 0.173399 0.198478
2000 CNN + LSTM 0.746794 0.899824 0.94859 − 0.27356 0.000646
2000 CNN + GRU 5.175412 27.42779 5.237155 − 37.8197 0.000728
2000 CNN + Attention 2.48067 6.941842 2.634738 − 8.82508 − 0.11759
2000 CNN 2.046236 4.959599 2.227016 − 6.01953 − 0.12288
2000 VAE 0.343646 0.129785 0.360257 − 1833.7 − 112.103
2000 Simple RNN 0.975142 1.555495 1.247195 − 1.20156 − 0.98509
2000 GRU + Attention 1.402577 2.512179 1.584985 − 2.55559 − 0.00118
2000 Transformer Encoder 0.719324 0.901978 0.949725 − 0.27661 − 0.16107
2000 FNN 5.946396 36.03272 6.002726 − 49.9986 0.000607
2000 ResNet 0.918815 1.375626 1.172871 − 0.94698 − 0.81381
3000 BiLSTM 0.557207 0.6463 0.803928 0.235977 0.236167
3000 CNN + LSTM 0.998374 1.66297 1.289562 − 0.96588 − 0.00035
3000 CNN + GRU 2.25313 5.928203 2.43479 − 6.00802 − 0.00673
3000 CNN + Attention 1.482648 2.819197 1.679046 − 2.33271 − 0.07432
3000 CNN 1.565222 3.075744 1.75378 − 2.63599 − 0.06903
3000 VAE 0.263929 0.081713 0.285856 − 592.812 − 68.7838
3000 Simple RNN 0.809486 1.138417 1.066966 − 0.34578 − 0.2557
3000 GRU + Attention 0.749757 1.08692 1.042555 − 0.2849 − 0.00787
3000 Transformer Encoder 1.308901 2.337863 1.529007 − 1.7637 − 0.10741
3000 FNN 5.481222 30.79281 5.549127 − 35.4017 − 0.01322
3000 ResNet 1.065996 1.987914 1.409934 − 1.35001 − 1.25002
4000 BiLSTM 0.566931 0.584771 0.764703 0.158819 0.158916
4000 CNN + LSTM 0.779662 0.980019 0.989959 − 0.40974 − 0.00056
4000 CNN + GRU 1.251231 2.081645 1.442791 − 1.9944 − 0.01432
4000 CNN + Attention 0.851361 1.14326 1.069234 − 0.64456 − 0.0598
4000 CNN 0.799943 1.067414 1.033157 − 0.53545 − 0.07575
4000 VAE 0.187607 0.04504 0.212225 − 733.128 − 98.2667
4000 Simple RNN 0.805155 1.092853 1.045396 − 0.57205 0.017145
4000 GRU + Attention 0.858142 1.138319 1.06692 − 0.63745 0.001379
4000 Transformer Encoder 0.911492 1.340027 1.157595 − 0.9276 − 0.18881
4000 FNN 4.218891 18.40042 4.289572 − 25.4686 − 0.00789
4000 ResNet 1.04947 1.803121 1.342804 − 1.59375 − 1.08891
5000 BiLSTM 0.537969 0.503345 0.709468 0.26168 0.261796
5000 CNN + LSTM 0.681385 0.754899 0.868849 − 0.10731 − 0.00046
5000 CNN + GRU 0.642445 0.693075 0.832511 − 0.01662 − 0.00473
5000 CNN + Attention 0.747997 0.86742 0.931354 − 0.27236 − 0.03289
5000 CNN 0.666162 0.722275 0.849868 − 0.05945 − 0.02662
5000 VAE 0.12305 0.022333 0.149444 − 509.388 − 102.912
5000 Simple RNN 0.62642 0.663366 0.814473 0.026956 0.028359
5000 GRU + Attention 0.646964 0.705254 0.839794 − 0.03449 − 0.00028
5000 Transformer Encoder 0.770956 0.911904 0.954937 − 0.33761 − 0.07195
5000 FNN 1.085351 1.72848 1.314717 − 1.53538 − 0.08889
5000 ResNet 0.911236 1.315809 1.147087 − 0.93007 − 0.90149
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critical factor, as models like CNN + LSTM and ResNet show perfor
mance degradation with smaller datasets, suggesting that they may 
require larger data volumes to fully leverage their architectural 

advantages. These findings underscore the importance of careful model 
selection based on practical constraints such as computational cost, 
dataset availability, and generalization ability, rather than relying solely 

Fig. 2. MAE for Different Models and Different Sample Sizes.

Fig. 3. MSE for Different Models and Different Sample Sizes.
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on error metrics. 5.3. Model consistency

VAE demonstrates remarkably low MAE, MSE, and RMSE values 
across different sample sizes, indicating strong predictive performance 

Fig. 4. RMSE for Different Models and Different Sample Sizes.

Fig. 5. R2 for Different Models and Different Sample Sizes.
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in minimizing absolute errors. This suggests that VAE effectively cap
tures latent patterns in the data, leading to precise individual 
predictions.

However, the model exhibits extremely negative R² values, indi
cating a significant discrepancy between the variance of the predicted 
and actual ratings. While this might initially suggest overfitting, it is 
more likely due to structural characteristics of the VAE rather than 
traditional overfitting in a deterministic model. Unlike standard 
regression-based models, VAE prioritizes reconstructing input features 
rather than directly optimizing for rating prediction, which may result in 
uninformative or misaligned feature representations.

Several factors could contribute to this behaviour: 

• Poor Latent Space Representation – The learned latent space may 
not effectively capture the global variance of the target ratings, 
leading to inconsistent predictions.

• Overly Strong KL Divergence Regularization – Excessive regula
rization can force the latent space distribution too close to a prior (e. 
g., isotropic Gaussian), potentially limiting the expressiveness of the 
learned representations.

• Mismatch Between Generative and Predictive Objectives – 
VAE’s primary goal is to generate meaningful representations of 
input data rather than directly minimize rating prediction error, 
which may cause it to underperform in tasks requiring strict nu
merical alignment.

• Improper Feature Scaling or Suboptimal Hyperparameters – 
Poorly scaled features, an inappropriate latent dimension size, or 
insufficient tuning of key hyperparameters may further degrade 
predictive performance.

To address these issues, future work could explore fine-tuning 
techniques such as adjusting the KL divergence weight, optimizing the 
latent space dimensionality, refining hyperparameters, and incorpo
rating hybrid models that balance generative representation learning 
with explicit predictive objectives. These improvements could enhance 

VAE’s interpretability while preserving its ability to capture complex 
feature interactions.

5.4. Practical implications and trade-offs

• Accuracy vs. Generalization: While VAE provides the best accuracy, 
its poor R² and explained variance scores highlight the importance of 
evaluating generalization. A model with slightly higher errors but 
better R², such as BiLSTM, may be preferable in real-world 
applications.

• Computational Cost vs. Performance: Transformer-based models and 
deep networks like ResNet are computationally expensive, making 
them impractical for resource-constrained environments. In contrast, 
GRU + Attention offers a reasonable trade-off between accuracy and 
efficiency.

• Dataset Size Sensitivity: Some models, such as CNN + LSTM and 
ResNet, perform worse on smaller datasets, indicating that they may 
require larger data volumes to leverage their architectural strengths 
effectively.

5.5. Impact of sample size

Increasing the sample size generally improves the performance of all 
the models, especially in context of reducing MAE and RMSE. However, 
from the Analysis of the Fig. 6, the improvement in R² and Explained 
Variance is not uniform, as some models still show adverse R², indicating 
poor fit despite the larger dataset.

5.6. Noteworthy performance

VAE consistently has low error metrics (MAE, MSE, RMSE), making it 
a candidate for further tuning, though the highly negative R² suggests it 
might require regularization or additional feature engineering to 
generalize better.

BiLSTM and GRU + Attention appears to be more balanced choices, 

Fig. 6. Explained Variance for Different Models and Different Sample Sizes.
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with moderate error metrics and reasonable R² values, representing both 
accuracy and generalizability.

Here are the context-specific definitions of the evaluation metrics, 
tailored for actual movie ratings (yi) predicted movie ratings (ŷi) :

Mean Absolute Error (MAE) measures the average magnitude of the 
errors which are in a set of predictions. 

MAE = (1 /n) ∗ Σ|yi − ŷi| (1) 

Where, n: number of data points, yi: actual rating, ŷi: predicted 
rating.

Mean Squared Error (MSE) - measures the average squared differ
ence, which is between the actual and predicted values. 

MSE = (1 /n) ∗ Σ(yi − ŷi)² (2) 

Root Mean Squared Error (RMSE) is the square root value, which is of 
the MSE, which is providing an error measure in the same units like as 
the original data. 

RMSE = √MSE (3) 

R-squared (R²) measures the proportion of the variance in the 
dependent variable (actual ratings) that is explained by the independent 
variable (predicted ratings). 

R² = 1 −

(
SSR
SST

)

(4) 

Where, SSR: Sum of Squared Residuals = Σ (yi - ŷi) ², SST: Total Sum 
of Squares = Σ(yi - ȳ)² , ȳ: mean of actual ratings

Explained Variance Score measures the proportion of variance in the 
dependent variable, explained the model predictions. 

Explained Variance Score = 1 −

(
Var(y − ŷ)

Var(y)

)

(5) 

Where, Var (y - ŷ): variance of the residuals, Var(y): variance of the 
actual ratings

By calculating these kinds of metrics, we can compute the accuracy 
and reliability of our movie rating prediction model and make knowl
edgeable decisions about its performance and probable improvements.

In Fig. 7, The number of attention heads’ sensitivity analysis in the 
CNN + Attention model shows that use of 4 attention heads results in the 
lowest loss (0.667), offering the best performance. Increasing the 
amount of attention heads beyond 4 leads to diminishing returns, with 
performance slightly degrading. Therefore, 4 heads strike the best bal
ance between model complexity and performance.

The Summary of Differences between the given Models are:
VAE excels at handling uncertainty and missing data, and it is 

generative, meaning it is able to create new samples. This helps it 
overcome cold start problems more effectively than models like CNN +
LSTM, CNN + GRU, or BiLSTM, which are not designed for generative 
tasks.

CNN-based models (LSTM, GRU, Attention) are intended for 
sequential data processing (such as text or time-series) and capture 
temporal dependencies. However, they still struggle with cold-start 
problems as they do not generate new data which relies heavily on the 
availability of historical data.

BiLSTM and CNN + Attention are mainly decent at capturing com
plex sequential dependencies, but they are not inherently generative as 
VAE. Their attention mechanisms help the model focus on important 
sequences or features, but they still require explicit handling of missing 
data and cold-start issues.

Fig. 7. Sensitivity Analysis:Number of Attention Heads.
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Training Time fluctuates significantly. VAE tends to be the slowest 
due to its complex training process which involves variational inference. 
The CNN-based models and BiLSTM can have moderate training times.

CNN + LSTM efficiently extracts features and captures temporal 
patterns, but struggles with long sequences. CNN + GRU offers better 
efficiency but may miss long-range dependencies. CNN + Attention 
improves performance with a focus mechanism, though it adds 
complexity. VAE excels at learning a regularized latent space but can 
struggle with noisy data. Simple RNNs are efficient but fail with long- 
term dependencies. GRU + Attention combines efficiency with atten
tion but still faces long-range challenges. FNN is simple but lacks the 
ability to model complex relationships, while ResNet helps with gradient 
flow but can lead to overfitting. Transformer models capture long-range 
dependencies well but are computationally expensive, and GANs are 
powerful but often unstable during training.

The VAE model performs significantly better than SVR on the basis of 
provided MAE and MSE. The VAE’s MAE decreases from 0.4066 to 
0.1231, and MSE drops from 0.1775 to 0.0223, indicating improved 
accuracy with each iteration. In contrast, as shown in [34], the SVR 
model has higher MAE (0.787) and MSE (1.097), demonstrating that 
VAE minimizes prediction errors more effectively. Table 3.

This extensive evaluation and comparison framework provides the 
most effective Deep Learning Model for Movie rating Predictions.

5.7. Comparison with other benchmark dataset

To ensure a thorough comparison, we evaluate our proposed 
approach against the widely used MovieLens [35] benchmark. The 

MovieLens-based method chiefly relies on structured numerical and 
categorical features such as age, gender, occupation, and movie year, 
with TF-IDF vectorization applied to movie titles, followed by dimen
sionality reduction using Truncated SVD and feature scaling. In contrast, 
proposed customized database-based method integrates both structured 
and unstructured data, incorporating user reviews, sentiment scores 
extracted using DistilBERT, and user ratings. By leveraging TF-IDF 
vectorization with a higher dimensionality (10,000 features) and 
applying Truncated SVD (200 components), our method captures richer 
contextual information from textual data. Unlike MovieLens, which fo
cuses on predefined user and item attributes, our approach enhances 
predictive performance by incorporating sentiment polarity and 
user-generated content, making it more effective in capturing nuanced 
user preferences.

Table 3 
Comparing Models with respect to features.

Feature VAE CNN + LSTM CNN + GRU CNN + Attention BiLSTM

Model Type Probabilistic Deep Learning 
Model

Convolutional + Recurrent 
Model

Convolutional + Recurrent 
Model

Convolutional + Attention- 
based Model

Recurrent Deep 
Learning Model

Latent Space 
Representation

Latent probabilistic space Does not have explicit latent 
space

Does not have explicit latent 
space

Attention mechanism instead 
of latent space

Sequential hidden states

Handling 
Uncertainty

Models’ uncertainty using 
latent space

Does not model uncertainty Does not model uncertainty Attention weights can focus 
on key areas, but no explicit 
uncertainty modeling

Does not model 
uncertainty

Generative Aspect Generates new data (user- 
item interaction)

Not generative, focuses on 
prediction

Not generative, focuses on 
prediction

Focused on learning 
attention-based relationships

Not generative, focuses 
on prediction

Regularization KL divergence regularization 
for smoothness

Regularization through 
dropout and L2

Regularization through 
dropout and L2

Regularization via attention 
and dropout

Regularization via L2 
and dropout

Handling Missing 
Data

Handles missing data via 
latent space representation

Requires imputation or 
missing data strategy

Requires imputation or 
missing data strategy

Requires imputation or 
missing data strategy

Requires imputation or 
missing data strategy

Data Type 
Handling

Can handle complex data 
distributions due to 
probabilistic nature

Focuses on sequential data 
(e.g., time series, text)

Focuses on sequential data 
(e.g., time series, text)

Focuses on sequential data 
with attention mechanism

Focuses on sequential 
data (text or time series)

Feature 
Interactions

Models complex interactions 
in latent space

Captures spatial and 
temporal interactions

Captures spatial and 
temporal interactions

Focuses on key features using 
attention weights

Models sequential 
interactions

Scalability Can scale but may be slow 
due to sampling in training

Scales well but requires 
sufficient computational 
resources

Scales well but requires 
sufficient computational 
resources

Scales well with attention 
mechanism, but needs careful 
tuning

Scales well for 
sequential data

Overfitting 
Prevention

KL Divergence term helps to 
prevent overfitting

Dropout layers for 
regularization

Dropout layers for 
regularization

Dropout + attention 
regularization

Dropout regularization

Training 
Complexity

High computational 
complexity due to sampling 
from latent space

Requires tuning of both CNN 
and LSTM parameters

Requires tuning of both CNN 
and GRU parameters

Requires tuning of CNN +
Attention weights

Requires tuning of LSTM 
parameters

Flexibility High flexibility due to the 
generative model

Flexible for sequence-based 
problems

Flexible for sequence-based 
problems

Flexible for sequence-based 
problems with attention focus

Flexible for sequence- 
based problems

Cold Start Problem Handles cold start better 
through generative nature

Struggles with cold start if no 
historical data

Struggles with cold start if no 
historical data

Struggles with cold start if no 
historical data

Struggles with cold start 
if no historical data

Hyperparameter 
Tuning

Needs tuning of latent space 
size, learning rate, and 
regularization terms

Needs tuning of CNN layers, 
LSTM parameters

Needs tuning of CNN layers, 
GRU parameters

Needs tuning of CNN layers, 
attention parameters

Needs tuning of LSTM 
parameters

Interpretability Lower interpretability due to 
the complex latent space and 
probabilistic nature

Moderate interpretability in 
terms of learned filters and 
sequential patterns

Moderate interpretability in 
terms of learned filters and 
sequential patterns

Lower interpretability due to 
attention mechanisms being 
black-box

Moderate 
interpretability in terms 
of sequential patterns

Training Time Can be slow due to 
variational inference and 
sampling steps

Moderate training time due 
to sequential data processing

Moderate training time due 
to sequential data processing

Moderate to high depending 
on the attention complexity

Moderate to high 
depending on data size

Table 4 
The evaluation metrics for given different models on movielens dataset.

Model MSE MAE RMSE

BiLSTM 1.263141 0.943774 1.123895
CNN + LSTM 1.263239 0.941157 1.123939
CNN + GRU 1.263117 0.941631 1.123885
CNN + Attention 1.263012 0.942678 1.123838
CNN 1.263223 0.941211 1.123932
Simple RNN 1.263106 0.941687 1.123880
GRU + Attention 1.263023 0.942980 1.123843
FNN 1.265930 0.947997 1.125135
ResNet 1.263187 0.941339 1.123916
VAE 0.084038 0.250673 0.289893
Transformer 0.080232 0.242910 0.283253

M. Valera and Dr.R. Mehta                                                                                                                                                                                                                  BenchCouncil Transactions on Benchmarks, Standards and Evaluations 4 (2024) 100200 

11 



Here is the formatted Table 4 with all the models and their evalua
tion metrics:

The VAE and Transformer models have significantly lower errors 
than the others, indicating superior performance.

Although customized database-based method requires higher 
computational resources due to transformer-based sentiment analysis, it 
provides a more comprehensive understanding of user sentiment and 
engagement, demonstrating its advantage in real-world movie recom
mendation scenarios where textual opinions significantly influence user 
decisions.

The evaluation dataset is designed to ensure diversity by incorpo
rating a broad range of movies across multiple genres, different user 
demographics, and varying sentiment expressions in reviews. Unlike 
traditional datasets that primarily rely on structured numerical features 
(e.g., MovieLens), proposed dataset integrates textual data from IMDb 
user reviews, enriched with sentiment scores extracted using Dis
tilBERT. This approach enables a more nuanced analysis of user pref
erences beyond explicit ratings. Additionally, the dataset includes 
movies from different years and a variety of user profiles, ensuring that 
the proposed method is robust across different audience segments and 
rating behaviors. By leveraging both structured and unstructured data, 
our evaluation framework effectively highlights the strengths of 
different models in handling diverse user interactions and contextual 
factors in movie recommendation.

The dataset is randomly sampled from a large corpus to ensure di
versity across different attributes like genres, directors, actors, and 
sentiments. Additionally, DistilBERT-based sentiment extraction cap
tures nuanced variations, and TF-IDF with SVD retains key textual di
versity. Expanding the sample size or incorporating stratified sampling 
can further enhance representativeness.

MovieLens 100 K Dataset (structured format with user-item in
teractions) Fields are: user_id, item_id, rating, timestamp, movie_title, 
year, age, gender, occupation, zip_code. Models like BiLSTM, CNN +
LSTM, CNN + GRU, CNN + Attention, etc., were evaluated on MSE, 
MAE, and RMSE. VAE and Transformer models performed significantly 
better.

The Proposed Dataset with Movie Metadata & Sentiment Analysis 
Fields are director_name, actor_1_name, actor_2_name, actor_3_name, 
genres, movie_title, comb, User_Score, Review, Review_Sentiment Per
formance was measured across different sample sizes (1000 to 5000) for 
multiple models. VAE again showed the best performance, with Trans
former Encoder also performing well.

Both MovieLens 100 K and our dataset support movie rating pre
diction, but MovieLens 100 K focuses on structured user-item in
teractions, while our dataset integrates metadata and sentiment 
analysis. Unlike MovieLens, our dataset leverages textual and semantic 
features, improving model performance, especially for VAE and 
Transformer-based models. This broader feature set provides a richer 
benchmark, capturing deeper user preferences beyond explicit ratings. 

• Similarities: Both MovieLens 100 K and our dataset serve as 
benchmarks for movie rating prediction and support various deep 
learning models.

• Differences: MovieLens 100 K is structured around user-item in
teractions, including demographic information, whereas our dataset 
incorporates additional metadata (director, actors, genres) and 
sentiment analysis from reviews, providing richer contextual 
information.

• Advantages: The inclusion of sentiment-based and metadata-driven 
features enhances predictive performance, particularly for complex 
models like VAE and Transformer Encoder. This broader feature 
representation enables a more nuanced understanding of user pref
erences beyond explicit numerical ratings, making our dataset a 
more comprehensive benchmark.

6. Conclusion

This study delivers a thorough performance analysis of numerous 
deep learning models for movie rating prediction, by examining archi
tectures such as BiLSTM, CNN + GRU, CNN + LSTM, CNN + Attention, 
VAE, and other advanced frameworks. Through evaluating these kinds 
of models across manifold metrics, including MAE, MSE, RMSE, R², and 
Explained Variance, clear patterns in model performance are identified 
and effectiveness is found for accurate rating prediction. The results 
show that while VAE steadily attains the highest accuracy, attention- 
based models offer valuable improvements in interpretability as well 
as adaptability to varying input sequences. Models like CNN and BiLSTM 
also demonstrate reliable performance, and they are also balancing ac
curacy with computational efficiency. These types of findings under
score the importance of picking the accurate architecture based on the 
specific requirements of recommendation systems, whether prioritizing 
prediction accuracy, interpretability, or computational efficiency. This 
study very well contributes a benchmark for deep learning models in 
movie rating prediction, which is guiding researchers and practitioners 
toward optimized model selection in personalized recommendation 
contexts. Based on the evaluation metrics, the VAE model constantly 
outperforms others across all sample sizes with the lowermost MAE 
(0.123 for 5000 samples), MSE (0.022), and RMSE (0.149), which is 
demonstrating its superior predictive accuracy. However, its negative R² 
and Explained Variance still suggest potential limitations in capturing 
data variability, which is warranting further exploration. The proposed 
approach integrating sentiment analysis improves movie rating predic
tion accuracy compared to traditional methods and outperforms 
benchmark datasets like MovieLens in capturing user preferences. 
Future research may discover integrating these kinds of various models 
or incorporating hybrid architectures to further improve the evaluation 
measure like prediction accuracy and model robustness. The paper could 
benefit from outlining specific improvements for hybrid models, by 
integrating reinforcement learning for adaptive recommendations and 
addressing data sparsity issues. Exploring hybrid models with advanced 
optimization techniques, such as Bayesian optimization, could enhance 
accuracy. Additionally, incorporating real-world factors like user 
behavior patterns and explainable AI techniques can make the system 
more practical and interpretable.
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