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A B S T R A C T

Alzheimer’s disease (AD), due to its irreversible nature and the severe social burden it causes, has garnered
significant attention from AI researchers. Numerous auxiliary diagnostic models have been developed with
the aim of improving AD diagnostic services and thereby reducing the social burden. However, due to a
lack of validation regarding the clinical value of these models, no AD diagnostic model has been widely
accepted by clinicians or officially approved for use in enhancing AD diagnostic services. The clinical value
of traditional medical devices is validated through rigorous randomized controlled trials to prove their impact
on clinical outcomes. In contrast, current AD diagnostic models are only validated based on their accuracy,
and the relationship between these models and patient outcomes remains unknown. This gap has hindered
the acceptance and clinical use of AD diagnostic models by healthcare professionals. To address this issue,
we introduce the COADBench, a benchmark centered on clinical outcomes for evaluating the clinical value
of AD diagnostic models. COADBench curated subjects from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database who have at least two cognitive score records (the most commonly used clinical endpoint
in AD clinical trials) from different follow-up visits. To the best of our knowledge, for the first time, it links
the cognitive scores of subjects with model performance, using patient cognitive scores as clinical outcomes
after intervention to evaluate the models. Through the benchmarking of current mainstream AD diagnostic
algorithms using COADBench, we find that there was no significant correlation between the subjects’ cognitive
improvement and the model’s performance, which means that the current performance evaluation criteria of
mainstream AD diagnostic algorithms are not combined with clinical value.
1. Introduction

Alzheimer’s disease is the most common type of dementia, account-
ing for the largest proportion of dementia, because of its irreversible,
high cost of diagnosis, no cure and other characteristics, to society has
brought a very serious burden. In order to reduce the diagnostic cost
and improve the diagnostic effect, artificial intelligence (AI) researchers
have developed various deep learning models to assist the diagnosis of
Alzheimer’s disease. For example, Qiu et al. [1] use a multi-modal input
model based on 3D CNN to make three classifications of subjects, and
the best model achieves an AUC of 0.971; Xing et al. [2] use a binary
classification of subjects based on dynamic images and a pre-trained
CNN model, and the best model achieves an AUC of 0.95.

Alzheimer’s disease currently lacks a cure, so the main purpose of
diagnosis is to identify patients with reversible or delayed symptoms
for treatment, improving clinical outcomes and thus benefiting patients.

∗ Corresponding author.
E-mail address: liuwenjing@stu.gxnu.edu.cn (W. Liu).

The clinical assessment of the effectiveness of Alzheimer’s disease diag-
nosis is mainly based on the calculation of benefits (such as cognitive
improvement) based on changes in clinical endpoints or alternative
endpoints. However, the evaluation indicators (Accuracy, AUC, etc.)
of the current AI models used to diagnose Alzheimer’s disease are not
directly or indirectly related to clinical value. This means that although
an AI model achieves a high value of AUC in the diagnostic task
of categorizing or multicategorizing subjects (normal, mild cognitive
impairment, Alzheimer’s), the clinical value based on patient benefit
does not necessarily improve. For example, Zhang et al. [3] use a fusion
input model based on 3D CNN and Transformer to binary classify
subjects. The accuracy of the best model reaches 0.929, but the index
of cognitive improvement of patients in clinical practice is only 0.806.

Currently, in other areas where AI models have been introduced,
the correlation between model evaluation and clinical outcomes is low.
Tyler et al. [4] propose an algorithm based on KNN-DSS to provide
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weekly insulin injection recommendations for patients with type 1 di-
abetes (T1D), using the duration of time that the patient’s HbA1c level
remains within the safe range as the clinical outcome in conjunction
with the algorithm; Komorowski et al. [5] propose an AI clinician who
gives reinforcement learning to provide the best medical strategy to
the patient, and use mortality rates to evaluate the AI doctor’s medical
strategy. Adams et al. [6] develop a sepsis alert system based on ma-
chine learning, deploy it in hospitals to monitor the situation of sepsis
patients, and evaluated the performance of the system using in-hospital

ortality as the clinical outcome of patients. But there is no comparable
xample of a model for diagnosing Alzheimer’s disease. This can lead
o high classification evaluation metrics such as AUC or Accuracy,

but poor clinical outcomes. For example, when the model tends to
ccurately identify patients whose cognition cannot be improved, a
igh model accuracy does not result in improved clinical outcomes.

In order to solve the above problems, COADBench first considers the
use of clinical outcomes to evaluate the diagnostic model of Alzheimer’s
isease.

In most current clinical trials, the endpoint of Alzheimer’s disease
s cognitive improvement, so cognitive improvement is a quantitative

model and a clinically significant endpoint acceptable to experts [7–
11]. Thus, we propose clinical benefit measures based on changes in
patients’ ADAS scores (which reflect patients’ cognitive ability) dur-
ing follow-up after diagnosis and treatment, which could be used to
evaluate model performance.

Second, we select samples from Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI). The sample inclusion criteria: patients have at
least two follow-up visits, in the form of 3D imaging data and demo-
graphic non-imaging data, with three categories of subjects: normal,
mild cognitive impairment, and Alzheimer’s disease.

Third, we build COADBench based on clinical benefit indicators and
enchmark datasets, and conduct benchmark testing on mainstream
lzheimer’s diagnosis models using the constructed COADBench. Our

contributions are as follows:

• To the best of our knowledge, for the first time, we introduce
ADAS scores as surrogate outcomes in the evaluation of an
Alzheimer’s disease model, correlating the model’s performance
with clinical value.

• To the best of our knowledge, with ADAS scores as the center, we
construct the first clinically valuable benchmark for evaluating
Alzheimer’s disease models.

• The evaluation of current mainstream Alzheimer’s disease models
based on COADBench reveal that: (1) When classification evalu-
ation indicators such as Accuracy and AUC are used to evaluate
the model, the model with the best performance may not be the
model with the highest clinical value; (2) There was no significant
positive correlation between the classified evaluation indicators
and clinical benefit indicators based on ADAS scores.

The paper is structured as follows. Section 2 describes the defini-
tion of the problem. Section 3 reviews recent research on diagnostic
models for Alzheimer’s disease. Section 4 covers COADBench in detail.
Section 5 introduces the experimental results and analysis based on

OADBench. Section 6 summarizes the findings.

2. Problem definition

2.1. Definition of the AD diagnosis problem

The AD diagnosis task in the current mainstream research is defined
as a classification problem as follows:

𝑚𝑖𝑛
{

E(𝑥,𝑦)∼𝑇 𝑟𝛼 𝐿
(

𝑚(𝑥), 𝑦) + 𝛽 𝑅(𝑚)
}

(1)

Where 𝑇 𝑟 is the training set, The 𝐿
(

𝑚(𝑥), 𝑦) indicates the loss
at data point (𝑥, 𝑦) with AD diagnosis model 𝑚, 𝑅(𝑚) indicates the
regularization term of the model 𝑚. The coefficients 𝛼 and 𝛽 trade off

these terms. s

2 
2.2. Clinical assessment of patient cognition

Clinically, the main way to enhance patient benefit is by improving
the patient’s cognitive function, which is quantified through the ADAS
scores obtained from multiple follow-ups after treatment. Addition-
ally, it is important to reduce the various losses caused by inaccurate
diagnoses.
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𝑚𝑖𝑛
{

𝐿𝐹 𝑃 𝑅
}

𝐿𝐹 𝑃 𝑅 = 𝐹 𝑃
𝐹 𝑃 + 𝑇 𝑁

(2)

Where 𝐷𝑇 𝑒 is the test set, 𝑚(𝑥) represents the prediction result of the
model, and 𝐴 and 𝐴′ represent the ADAS score values of the patient at
the current and next follow-up visits, respectively. 𝑝 is equal to 1 when
the model prediction is correct; otherwise, 𝑝 is equal to 0.

𝐿 represents the psychological impact on non-AD subjects when
they are misdiagnosed as AD patients, as well as the losses incurred
from further medical consultations. Since this part is difficult to quan-
tify, we use the model’s False Positive Rate on the test set as a substi-
ute. 𝐹 𝑃 represents false positive rate and 𝑇 𝑁 represents true negative
ate.

3. Related work

To evaluate the effectiveness of a model in diagnosing a particular
disease, it is necessary to ensure that its correct diagnostic predictions
have a positive impact on patients. For example, Komorowski et al. [5]
use a model to provide medication strategies for sepsis patients. They
demonstrate the model’s effectiveness by showing that the lowest mor-
tality rates occurred in patients whose actual dosages matched the
AI’s recommendations. Tyler et al. [4] demonstrate the effectiveness
of their model by showing that patients’ blood sugar levels improved
after adjusting the medication dosage according to the model’s recom-
mendations. Arbabshirani et al. [12] not only demonstrate the accuracy
and specificity of their model in diagnosing intracranial hemorrhage
but also highlight its clinical impact. The model successfully identify
patients initially deemed to require only routine examinations, upgrad-
ing them to needing immediate examinations. Radiologists confirm that
64% of these upgraded patients indeed have intracranial hemorrhages,
thereby proving the model’s effectiveness. Because deep learning and
similar technologies must ensure improved patient outcomes before
eing applied clinically, it is not sufficient to merely focus on increasing
he accuracy of disease diagnosis models.

Since there are no treatments that can stop or reverse AD, existing
edications may alleviate symptoms but are typically only effective in

he early stages of the disease [13]. As a result, much research focuses
on accurately identifying early-stage AD patients. The effectiveness
of these models is often evaluated based on accuracy, a computer-
based metric. However, when these models are applied clinically, it
is essential to consider not only their accuracy but also whether early
ntervention, following a model’s identification of an early AD patient,

can improve actual patient outcomes. Currently, there are no prospec-
tive studies to validate this aspect. Most models are trained and tested
using publicly available Alzheimer’s disease datasets and evaluated
based on metrics such as accuracy, sensitivity, precision, specificity,
and F-measure. For example, studies by Suk et al. [14], liu et al. [15],
Martinez-Murcia et al. [16], Feng et al. [17], Raza et al. [18] are all
based on these publicly available datasets and performance metrics. In
prospective studies on the effectiveness of drugs in improving patient
ymptoms [19], the impact on patients is typically assessed using the
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Fig. 1. The summary of COADBench benchmark framework.

Mini-Mental State Examination (MMSE) and the Alzheimer’s Disease
Assessment Scale-cognitive subscale (ADAS-cog).

In numerous medical domains, the assessment of model perfor-
mance is frequently closely tied to actual patient outcomes. For exam-
ple, in sepsis, which can result in rapid patient deterioration and death,
model efficacy is often evaluated based on mortality rates. In contrast,
AD remains incurable and progresses slowly [20], rendering mortality
an impractical outcome measure. Consequently, current deep learning
research on Alzheimer’s disease focuses on early diagnosis, with model
performance evaluation primarily relying on computational metrics
such as accuracy, sensitivity, etc. However, reliance on these metrics
alone is insufficient to demonstrate the model’s positive impact on
individual patients. Moreover, the absence of prospective studies fur-
ther complicates the validation of the model’s effectiveness in clinical
practice.

4. COADBench

The structural block diagram of COADBench is shown in Fig. 1.
The structural block diagram is viewed from bottom to top. Data
from 13 types of medical examinations commonly used in AD diagno-
sis are selected from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) (http://adni.loni.usc.edu) and divided into non-imaging and
imaging datasets to match different model inputs. AD diagnosis models
generally use classification algorithms to diagnose subjects. In COAD-
Bench, we also use the benefit calculation algorithm to compute benefit
metrics. For model evaluation, classification metrics (such as AUC,
Accuracy, etc.) are used to assess the model’s performance in classi-
fication, while benefit metrics are used to evaluate the model’s clinical
benefits for patients.

For model evaluation, classification algorithms and benefit calcu-
lation algorithms are used to obtain classification evaluation metrics
(AUC, Accuracy, etc.) and benefit indicators, respectively.

4.1. Data sources

COADBench involves 10 tables and 3 categories of images which
represent 13 categories of medical examinations data commonly used
in AD diagnosis. The data are collected from 67 sites in the United
States and Canada, contains 1543 subjects with 6225 visits, and all
visits are labeled by one of three labels: AD (Alzheimer’s disease), CN
(Cognitively normal) and MCI (Mild cognitive impairment).

ADNI 13 kinds of medical tests shown in the list below:
3 
Table 1
Characteristics of subjects.

Number of subjects

Age

[55, 60) 39
[60, 70) 311
[70, 80) 790
[80, 90) 391
[90, 92] 12

Educate [0, 3] 1525
[4, 20] 9

Ethnic category
Hisp/Latino 46
Not Hisp/Latino 1488
Unknown 9

Racial category

White 1431
More than one 14
Black 64
Asian 27
Hawaiian/Other PI 1
Unknown 6

Marriage

Married 1176
Never married 53
Widowed 178
Divorced 130
Unknown 6

Category
AD 330
CN 408
MCI 805

(1) Base information (Base), usually obtained through consultation,
includes demographics, family history, medical history, and
symptoms.

(2) Cognition information (Cog), usually obtained through consulta-
tion and testing, includes Alzheimer’s Disease Assessment Scale,
Mini-Mental State Exam, Montreal Cognitive Assessment, Clinical
Dementia Rating, and Cognitive Change Index.

(3) Cognition testing (CE), usually obtained through testing, includes
ANART, Boston Naming Test, Category Fluency-Animals, Clock
Drawing Test, Logical
Memory-Immediate Recall, Logical Memory-Delayed Recall, Rey
Auditory Verbal Learning Test, Trail Making Test.

(4) Neuropsychiatric information (Neur), usually obtained
through consultation, includes Geriatric Depression Scale, Neu-
ropsychiatric Inventory, and Neuropsychiatric Inventory Ques-
tionnaire.

(5) Function and behavior information (FB), usually obtained through
consultation, includes Function Assessment Question, Everyday
Cognitive Participant Self Report, Everyday Cognition Study Part-
ner Report.

(6) Physical neurological examination (PE), usually obtained through
testing, includes Physical Characteristics, Vitals, and neurological
examination.

The rest of the examinations include blood testing (Blood), urine
testing (Urine), nuclear magnetic resonance scan (MRI), positron emis-
sion computed tomography scan with 18-FDG (FDG), positron emission
computed tomography scan with AV45 (AV45), gene analysis (Gene),
and cerebrospinal fluid analysis (CSF).

4.2. Benchmark datasets

To assess different AD diagnosis model, COADBench data source
into two parts: image data and non-image data. The image data includes
nuclear magnetic resonance scan imaging (MRI), positron emission
computed tomography (PET) image, while the non-image data includes
the remaining 10 types of tabular data from ADNI.

The demographic information of benchmark datasets subjects is
shown in Table 1.

http://adni.loni.usc.edu
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4.3. Classification algorithms

AD diagnosis models typically use classification algorithms, usually
inary classification (normal individuals, Alzheimer’s disease patients)

or three-way classification (normal individuals, mild cognitive im-
airment, Alzheimer’s disease patients). Based on the model’s output
ormat, the following classification methods are used:

• The model’s output consists of a number of values ranging from
[0, 1], corresponding to the number of classes, which represent
the probabilities of the subjects belonging to each category. The
category associated with the highest probability is then selected
as the model’s judgment result for the subject.

• The model’s output is a score representing the subject’s level of
cognitive impairment. A threshold (in the case of binary classifi-
cation) or two thresholds (in the case of three-way classification)
are needed to map the score to a specific category. For three-way
classification, for example, when the model outputs a 𝐶 𝑂 𝐺_𝑆 𝑐 𝑜𝑟𝑒,
thresholds 𝑎 and 𝑏 can be used to determine the specific category
according to the following formula:

𝐶 𝑎𝑡𝑒𝑔 𝑜𝑟𝑦 =

⎧

⎪

⎨

⎪

⎩

𝐶 𝑁 , 𝐶 𝑂 𝐺_𝑆 𝑐 𝑜𝑟𝑒 ≤ 𝑎

𝑀 𝐶 𝐼 , 𝑎 < 𝐶 𝑂 𝐺_𝑆 𝑐 𝑜𝑟𝑒 < 𝑏
𝐴𝐷 , 𝑏 ≤ 𝐶 𝑂 𝐺_𝑆 𝑐 𝑜𝑟𝑒

(3)

4.4. Metrics

In COADBench, in addition to the common classification evaluation
ndicators such as AUC, Accuracy, Sensitivity, Specificity and AP, we
lso introduce the clinical indicator benefit to evaluate the benefit of a
odel to the subject. Benfit computation formula is as follows:

𝑀 =
𝑛
∑

𝑖
𝑙 ∗ 𝑏𝑖 (4)

𝐵 = 1
𝑚

𝑛
∑

𝑖
𝑙 ∗ 𝑝 ∗ 𝑏𝑖 (5)

Where 𝑙 indicates the label of the subject (AD is 1 and others are 0),
indicates the prediction of the subject, If the cognition of the subject
as not improved, then b=0, otherwise b is the difference between the
ubject’s current ADAS-Cog and the follow-up ADAS-Cog.

Please note that all operations involving the subtraction of metrics
in the paper assume that the difference between the two confidence
ntervals of the respective metrics is both independent and normally
istributed.

5. Experimental results and analysis

COADBench is constructed based on the mainstream four Alzheimer’s
diagnosis models for the benchmark test. The benchmarking process for
each diagnosis model is roughly the same, requiring data preprocessing,
model training, and evaluation using both classification indices and
mage evaluation metrics.

5.1. Experimental setup

Experiments were conducted on a machine equipped with an
NVIDIA A100 80 GB PCIe GPU, Intel Xeon Silver 4208 CPU, 256 GB
RAM, and a 16TB HDD running CentOS 7.9. The hyperparameters of
the experimental models are shown in Table 3.

Our process for evaluating AD diagnostic models is as follows: First,
e save multiple intermediate models at different stages of training. For

each intermediate model, we calculate classification evaluation metrics
such as AUC and Accuracy, as well as the benefit metric on the test set.

After calculating the various metrics, the model with the highest
UC or Accuracy is selected as the one with the best classification
erformance, while the model with the highest benefit is considered
he most beneficial for patients.
4 
5.2. Data preprocessing

Each Alzheimer’s diagnosis model the required data form is not the
ame, some model using only the image data, some model only using

the image data, and some models use a mixed input of image and image
ata.

Image data preprocessing typically involves only standardizing the
image size, while non-image data requires data cleaning. This includes
removing features with too many missing values, removing features
with excessive single-value entries, and filling in the missing values.
The meanings of some of the main columns in the data are shown in
Table 4.

Our benchmark data set of each record according to follow-up time
and ADAS — cog difference to calculate the practice guideline values,
o that the follow-up evaluation model of calculating the practice
uideline values, the calculation formula of the practice of index in 4.4.

The dataset was divided into training, validation, and test sets in a 6:2:2
ratio.

5.3. Model

We selected the following AD diagnostic models for evaluation:

• Qiu et al. [1] proposed three models to classify subjects into
three categories: an MRI model based on 3D CNN and multi-
layer perceptron, using only MRI images as input; CatBoost based
nonImg model uses only non-image data as input; the Fusion
model based on CatBoost uses a mixed input of non-image data
and image data. In Qiu et al.’s paper, the Fusion model finally
achieved the best performance. We benchmarked for all three
models.

• Xing et al. [2] used dynamic image-based and pre-trained CNN
models to dichotomize subjects (AD vs CN). In Xing et al.’s paper,
they used approximate rank pooling to convert 3D MRI into 2D
dynamic image. The pre-trained CNN model was then input.

• Zhang et al. [3] use CNN and the Transformer based on 3 d model
of the subjects for binary classification (AD vs CN), use only the
image data as input.

• Hosseini et al. [21] proposed a deep 3D convolutional neural net-
work for three-classification of subjects with Alzheimer’s disease,
using MRI images as input.

5.4. Results

The results of the evaluation of the mainstream AD diagnostic mod-
els are shown in Table 2. As can be seen from the table, when the AUC
nd other indicators of the AD diagnostic model reach their highest, the
enefit value is not the highest in most of cases, which means that it is
roblematic to use AUC and other classification evaluation indicators to

select the most effective model, because the model selected according
o this method is not necessarily the most beneficial model for patients.

If we only look at the situation with the highest index, there is not
uch difference between the index value of the model with the best

lassification effect and the model that is most beneficial to patients,
ut not all AD diagnostic models can achieve good classification ef-
ects. For example, the Multimodal Nonimg model in Table 1 has the

highest accuracy of 0.7619. The corresponding benefit is 0.8310, but
when taking the model with the highest benefit, the benefit reaches
0.8886 when the accuracy is only 0.6577. This indicates that when the
classification effect of the model is not very good, the index values of
the model with the best classification effect and the model that is most
beneficial to the patient may differ greatly.

In order to better analyze the experimental results and illustrate our
oint, we plot the scatter plot 2 with categorical metrics on the 𝑋-axis

and benefit on the 𝑌 -axis. Each point in the scatter plot represents a
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Fig. 2. Scatter plot of metrics versus benefit.
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Table 2
Classification Metrics vs Benefit.

best AUC best Benefit best Accuracy best Benefit

AUC Benefit AUC Benefit Accuracy Benefit Accuracy Benefit

Multimodal MRI [1] 0.9591 0.8926 0.9477 0.9119 0.8806 0.9020 0.8698 0.9119
Multimodal NonImg [1] 0.8978 0.8139 0.8846 0.8886 0.7619 0.8310 0.6577 0.8886
Multimodal Fusion [1] 0.9548 0.8770 0.9528 0.9051 0.8857 0.9045 0.8828 0.9051
DSA 3D CNN [21] 0.9477 0.8624 0.9307 0.9007 0.8596 0.8712 0.8314 0.9007
Transformer [3] 0.9830 0.5913 0.6008 0.9839 0.9638 0.8064 0.4275 0.9839
Dynamic Image [2] 0.9753 0.9180 0.9737 0.9286 0.9367 0.9079 0.9340 0.9286

best AP best Benefit best Sensitivity best Benefit

AP Benefit AP Benefit Sensitivity Benefit Sensitivity Benefit

Multimodal MRI [1] 0.9186 0.8965 0.8863 0.9119 0.8595 0.9119 0.8595 0.9119
Multimodal NonImg [1] 0.8241 0.8128 0.7993 0.8886 0.7503 0.8173 0.5466 0.8886
Multimodal Fusion [1] 0.9280 0.8679 0.9255 0.9051 0.8518 0.9025 0.8386 0.9051
DSA 3D CNN [21] 0.9295 0.8624 0.9060 0.9007 0.9230 0.8518 0.8929 0.9007
Transformer [3] 0.9859 0.5913 0.6135 0.9839 0.9825 0.8225 0.9474 0.9839
Dynamic Image [2] 0.9748 0.9180 0.9702 0.9286 0.9926 0.7379 0.9213 0.9286

best Specificity best Benefit

Specificity Benefit Specificity Benefit

Multimodal MRI [1] 0.9223 0.8905 0.9191 0.9119
Multimodal NonImg [1] 0.8488 0.8251 0.7404 0.8886
Multimodal Fusion [1] 0.9227 0.9045 0.9190 0.9051
DSA 3D CNN [21] 0.8459 0.8377 0.7673 0.9007
Transformer [3] 0.9877 0.7204 0.0617 0.9839
Dynamic Image [2] 0.9968 0.8224 0.9468 0.9286
Table 3
Model hyperparameters. Since the Multimodal NonImg and Multimodal Fusion models are based on the CatBoost regressor, there is no need
to set batch size, optimizer, or loss function.
Model Learning rate Batch size Epochs Optimizer Loss function

Multimodal MRI [1] 0.001 3 100 Adam MSE
Multimodal NonImg [1] 0.05 – 100 – –
Multimodal Fusion [1] 0.05 – 100 – –
DSA 3D CNN [21] 0.000015 4 100 Adam Cross entropy
Transformer [3] 0.0001 4 40 Adam Cross entropy
Dynamic Image [2] 0.00001 16 100 Adam Cross entropy
e
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Table 4
Non-imaging data column meaning.
Column Meaning

RID Unique identifier of subject
VISCODE Follow-up time
filename The corresponding MRI file name
COG Sample classification
Other Feature

model with a different level of training, and the different shapes of the
points distinguish between different model architectures.

From the trend of the scatter plot, it can be seen that when the
lassification evaluation metrics reach higher values, the benefit met-
ics are also high. This indicates that when the model performs well
n classification, the benefits for AD patients are significant. However,
hen the classification evaluation metrics are not very high, there

s not always a linear relationship between the classification metrics
and the benefit metrics. All classification metrics of the DSA 3D CNN
and Dynamic Image models show a clear positive correlation with the
benefit metrics, particularly evident with the Accuracy metric. The

ccuracy metric of the Multimodal MRI model also shows a certain
ositive correlation with the benefit metrics, while other models did
ot show this relationship. This implies that when the classification
erformance of a model did not reach a high level, one could not simply

select the best classification model as the one that provides the highest
benefit to patients. Focusing solely on classification performance during
 t

6 
model training might overlook models that were truly beneficial to
patients.

It is noteworthy that the Specificity metric of the Transformer model
xhibited a tendency for a negative correlation with the benefit metric,
hich contrasts with other models. Furthermore, when the Specificity
alues of multiple intermediate models are similar, the benefit values
an differ significantly. This may be due to the fact that Specificity
eflects the model’s classification accuracy for non-AD subjects, while
he increase in benefit is related to AD subjects. When the model
rioritizes identifying non-AD subjects and neglects the recognition
f AD subjects, the benefit value tends to be lower. Conversely, high
lassification accuracy across all categories is necessary to achieve high
alues for both Specificity and benefit metrics. This further underscores
he importance of not relying solely on classification evaluation metrics
hen selecting the most beneficial model for patients.

6. Conclusion

To the best of our knowledge, in this work, we are the first to
associate AD (Alzheimer’s Disease) diagnostic algorithms with clinical
utcomes for evaluation, revealing the limitations of current main-
tream AD algorithms and providing guidance for future development.
owever, our work have limitations. Due to challenges in clinical trials,
e did not evaluate the algorithms in a real clinical environment but
sed cognitive improvement from clinical follow-ups as a proxy out-
ome, which may introduce bias. Additionally, our evaluation used data
olely from the ADNI database, limiting patient diversity. To address
hese issues, we plan to create a hybrid evaluation system combining
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real-world and simulated data, expanding the scope to broader regions
to reduce bias.
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