
BenchCouncil Transactions on Benchmarks, Standards and Evaluations 4 (2024) 100189

A
2
B

Contents lists available at ScienceDirect

BenchCouncil Transactions on Benchmarks,
Standards and Evaluations

journal homepage: www.keaipublishing.com/en/journals/benchcouncil-transactions-on-
benchmarks-standards-and-evaluations/

Research Article

MultiPoint: Enabling scalable pre-silicon performance evaluation for
multi-task workloads✩

Chenji Han a,b ,∗, Xinyu Li a,b , Feng Xue a,b , Weitong Wang a,b , Yuxuan Wu c ,
Wenxiang Wang b,c, Fuxin Zhang a

a SKLP, Institute of Computing Technology, CAS, Beijing, China
b University of Chinese Academy of Sciences, Beijing, China
c Loongson Technology, Beijing, China

A R T I C L E I N F O

Keywords:
Performance modeling
Performance evaluation
Multi-task workloads

A B S T R A C T

With the core numbers integrated within single processors growing and the fast development of cloud
computing, performance evaluation for multi-core systems is increasingly crucial. It is typically conducted by
executing multi-task workloads, exemplified by SPEC CPU Rate, to measure metrics like system’s throughput.
In response, several sampling-based methods have been developed for their pre-silicon performance evaluation.
Nevertheless, these methods involve directly capturing multi-task checkpoints, which presents scalability issues
of significant storage and time overheads. Therefore, enabling more scalable performance evaluation remains
a critical problem.

In this work, we propose MultiPoint to enable scalable pre-silicon performance evaluation for multi-
task workloads. It is noted that in the multi-task workloads of interest, each task executes independently
without inter-task communication. Therefore, MultiPoint is motivated to construct the required multi-task
checkpoints by recovering multiple single-task checkpoints across different cores and guarantee their smooth
execution through address remapping and shuffling. We implemented MultiPoint on the Emulator Accelerator
and assessed its evaluation accuracy against its post-silicon Loongson 3A6000 processor. Using SPEC CPU 2017
as the benchmark, MultiPoint achieved the estimation errors of 6.20%, 5.45%, and 6.99% for Rate 2, Rate 4,
and Rate 8, respectively, achieving comparable accuracy compared to direct multi-task checkpointing but in
a more scalable manner with substantially 86.0% lower storage and 93.7% less time overheads.
1. Introduction

Background. Pre-silicon performance evaluation is becoming in-
creasingly critical, considering the continuous rise in fabrication costs
and prolonged verification periods. For the single-task workloads, many
representative sampling-based methods [1–8], such as SimPoint [1–5],
have been developed. These methods involve profiling and cluster-
ing program’s code signatures and eventually selecting the simulation
points, as detailed in Section 2.1. In our practice, SimPoint achieved
an average performance estimation error of 1.85% for SPEC CPU 2017
Rate 1 [9] with a speedup of 477 times. Besides, with the core numbers
integrated within single processors growing and the fast development
of cloud computing, performance evaluation for multi-core systems is
becoming increasingly crucial. It is typically conducted by concurrently

✩ The authors would like to thank the helpful discussions with Ruiyang Wu, Yuxiao Chen, and Hongze Tan. This work was supported by the Strategic Priority
Research Program of Chinese Academy of Sciences (Grant No. XDC05020100).
∗ Corresponding author at: University of Chinese Academy of Sciences, Beijing, China.
E-mail address: hanchenji16@mails.ucas.ac.cn (C. Han).

executing multiple workloads [10,11], exemplified by SPEC CPU 2017
Rate, to measure metrics like system’s throughput [12,13].

Research Problem. In response, several SimPoint-like method [14–
19] have been developed for pre-silicon performance evaluations of
multi-task workloads. These methods typically concatenate code sig-
natures of concurrently executed programs to cluster and select rep-
resentative simulation points. The multi-task checkpoints of selected
simulation points are then captured, containing the architecture-level
status of register values and the memory content of these tasks, which
could be recovered on the target multi-core designs to conduct per-
formance evaluations. However, the direct checkpointing of multi-task
workloads involved in these methods presents scalability issues of
significant storage and time overheads.
vailable online 13 February 2025
772-4859/© 2025 The Authors. Publishing services by Elsevier B.V. on behalf of
Y-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.tbench.2025.100189
Received 16 October 2024; Received in revised form 27 December 2024; Accepted
KeAi Communications Co. Ltd. This is an open access article under the CC

23 January 2025

https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
https://orcid.org/0009-0007-1247-9644
https://orcid.org/0000-0002-2640-8173
https://orcid.org/0009-0005-3118-8477
https://orcid.org/0009-0006-2202-9789
https://orcid.org/0009-0002-9346-8499
https://orcid.org/0000-0003-0430-3669
mailto:hanchenji16@mails.ucas.ac.cn
https://doi.org/10.1016/j.tbench.2025.100189
https://doi.org/10.1016/j.tbench.2025.100189
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tbench.2025.100189&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 4 (2024) 100189C. Han et al.

t
t

c
e

s

d

s

t
s
f
t
t
p

s
i p

p

i
n

I
e

m
d

d

Firstly, checkpoints of multi-task workloads can only be employed
o evaluate multi-core system with specific core numbers. For instance,
he checkpoints captured on a four-core system can only be used to

evaluate four-core designs. Therefore, any change in the assessed core
numbers would necessitate recapturing the corresponding multi-task
heckpoints, leading to a waste of computational resources as well as
xtra storage and time overheads.

Secondly, directly captured multi-task checkpoints require large
torage overheads. The total size of a multi-task checkpoint is approx-

imately equal to the combined size of checkpoints for the involved
individual tasks. Besides, the content in multi-task checkpoints could be
uplicated with certain single-task checkpoints. The storage overheads

would be exacerbated as the core number increases.
Key Idea. It is noticed that in the multi-task workloads of interest,

uch as SPEC CPU Rate, each task executes independently without
inter-task communication. It motivates us to restore multiple single-
task checkpoints on different cores to construct the required multi-task
checkpoints, which essentially involves concurrently running multiple
single-core operating systems on the multi-core system with the shared
memory. Consequently, the scalability issues of substantial storage and
time overheads the direct multi-task checkpointing could be eliminated.

Requirements. However, composing the required multi-task check-
point by multiple single-task checkpoints presents several require-
ments, as discussed below.

Firstly, it is required to guarantee multiple single-task checkpoints
o smoothly execute at a multi-core system with shared memory. In the
ingle-task checkpoint, the operating system manages memory within a
ixed range. When multiple single-task checkpoints are restored simul-
aneously without special handles, they would inadvertently attempt
o use the same memory regions. This overlap in memory spaces can
revent the tasks from executing normally.

Secondly, it is necessary to make the memory address characteristics
similar to that in realistic multi-task workload executions, which are
cattered across the memory and interleaved with each other, as shown
n Fig. 3. This is because, differences in memory address characteris-

tics could result in varying impacts on certain 𝜇Arch structures, like
the last-level cache, thus compromising the accuracy of performance
evaluation, as discussed in Section 6.3.

Our Work. Corresponding to these requirements, we propose Mul-
tiPoint to enable scalable pre-silicon performance evaluation for multi-
task workloads. MultiPoint is capable of composing the required multi-
task workloads by simultaneously recovering multiple single-task work-
loads across different cores and ensuring their smooth concurrent exe-
cution through physical address remapping and shuffling. Specifically,
MultiPoint introduces a checkpoint loader and proposes a synchro-
nization mechanism to support the concurrent recovery of multiple
single-task checkpoints at the Emulator Accelerator and enable their
simultaneous initiation of execution. Besides, MultiPoint introduces a
software-transparent address transform layer to support the concurrent
smooth execution of multiple single-task checkpoints. To ensure the
normal execution of these single-task checkpoints, MultiPoint remaps
the memory requests from different cores to separate memory regions
to avoid their interference. Furthermore, to mirror the actual memory
access address characteristics of multi-task workloads, MultiPoint shuf-
fles their memory addresses to make them scatter across the memory
space and interleave with each other.

To sum up, the contributions of this work include:

1. We proposed MultiPoint to compose multi-task checkpoints
through multiple single-task checkpoints, which enables scalable
pre-silicon performance evaluation for multi-task workloads.

2. We implemented the evaluation routine of MultiPoint on the
Emulator Accelerator and assessed its performance evaluation
accuracy against its post-silicon Loongson 3A6000 commercial
processor [20].
2

b

Fig. 1. Procedures of the representative sampling method, using SimPoint as an
illustrative example.

3. We evaluated MultiPoint on the SPEC CPU 2017 Rate bench-
mark. MultiPoint achieved the score estimation errors of 6.20%,
5.45%, and 6.99% for Rate 2, Rate 4, and Rate 8, respectively,
achieving comparable estimation accuracy compared to the di-
rect multi-task checkpointing but in a more scalable manner with
86.0% lower storage and 93.7% less time overheads.

The remaining part of this work is organized as follows. Sections 2
and 3 give the background and motivation of MultiPoint. Section 4
details the method of MultiPoint. Section 5 introduces the experiment
environment. Section 6 discusses the evaluation results. Section 7 lists
the related works. Section 8 concludes this work.

2. Background

2.1. Evaluation for single-task workload

For pre-silicon performance evaluation of single-task workload,
many representative sampling-based methods [1–8], such as SimPoint
[1–5], are well-developed and widely employed in both the academia
[21] and industries [22]. The motivation behind representative sam-
ling is that programs’ execution is composed of several recurring
hases, instead of being chaos. Fig. 1 illustrates general procedures

of the representative sampling, using SimPoint as the example. Specif-
cally, SimPoint divides the program’s dynamic execution flows into
on-overlapping intervals with fixed lengths. For each interval, Sim-

Point profiles its frequency vector of basic blocks (BBVs) (1), which
is a sequence of consecutive instructions with only one entrance and
one exit. After profiling, the K-Means algorithm is leveraged to cluster
these program intervals (2), after setting parameters of the maximum
allowed cluster numbers maxK, projected dimension dim, and Bayesian
information criterion threshold BIC. As a result, program intervals
closest to the centroid of each cluster are selected as the simulation
points to represent the average performance of each cluster. Besides,
the simulation points are assigned weights according to the number
of program intervals that they represent (3). Finally, the program’s
performance could be extrapolated by the weighted average of per-
formance of these representative simulation points’ performance (4).
n our practice, SimPoint achieved an average performance estimation
rror of 1.85% for SPEC CPU 2017 benchmark [9] with a speedup of

477 times.

2.2. Evaluation for multi-task workload

Sampling-like methods [14–19] have also been developed for ho-
ogeneous and heterogeneous multi-task workloads. Specifically, as
emonstrated in Fig. 2, these methods involve concatenating BBVs

of concurrently executed tasks (1) and utilizing the resultant con-
catenated vectors as program’s code signatures (2). Following the
SimPoint-like procedures in Fig. 1, these methods cluster these sig-
natures and select the representative simulation points. Next, their
corresponding multi-task checkpoints are captured (3). However, the
irect checkpointing of multi-task workloads involved in these methods

rings scalability issues of significant storage and time overheads.

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 4 (2024) 100189C. Han et al.

o
o
t
m

i

v
t
p

d
i

c

p
2

n
b
a

o

e
P
R
w
(

t

Fig. 2. Procedures of the SimPoint-like method for multi-task workload evaluations,
using 4 tasks as the example.

3. Key idea of MultiPoint

It is noticed that, in scenarios of multi-task workloads such as
SPEC CPU Rate, each task executes independently without inter-task
communication. It motivates us to utilize multiple single-task check-
points to agilely compose required checkpoints of multi-task workloads,
which essentially involves concurrently running multiple single-core
perating systems on the multi-core system with the shared mem-
ry. Correspondingly, such an approach must satisfy the following
wo requirements to ensure the correctness of program execution and
aintain the evaluation accuracy.

3.1. Motivations of address isolation

Firstly, it is noted that in the single-task checkpoint, the operat-
ing system manages memory within a fixed range and is typically
mmutable during runtime. When multiple single-task checkpoints are

restored simultaneously without special handles, they would inad-
ertently attempt to use the same memory regions. Consequently,
hese concurrently executed tasks would interfere with each other,
reventing them from executing successfully.

Requirement 1. Physical addresses of memory requests from differ-
ent cores should be isolated from each other.

Address isolation can be achieved by assigning different memory
offsets to requests originating from different cores.

3.2. Motivations of address interleaving

Secondly, it is necessary to make the memory address characteristics
of concurrently executed multiple single-task checkpoints similar to
that in realistic multi-task workload executions, which are scattered
across the memory and interleaved with each other. This is because
ifferences in memory address characteristics could result in varying
mpacts on certain 𝜇Arch structures. For example, in homogeneous

workloads such as SPEC CPU 2017, if only the address isolation is
implemented, the low bits of address accessed by different single-task
heckpoints for semantically identical memory are identical, and only

their highest address bits are distinct. This would result in significant
cache set conflicts in the shared last-level cache.

Specifically, Fig. 3 presents the probability density distributions of
physical address usage by different cores of four memory-intensive
rograms in SPEC CPU 2017 Rate 4. Other programs in SPEC CPU
017 behave similarly and are thus not presented here. In Fig. 3,

the program’s physical address usage is collected via the Linux ker-
el interface, and the probability density distributions are calculated
y the Gaussian KDE method [23]. Fig. 3 illustrates that memory
ddresses utilized by different cores are interleaved with each other

rather than being distinctly isolated. It is noted that the specific dis-
tributions of memory usage by multi-task workloads can vary across
3

Fig. 3. Probability density distributions of physical address usage by different cores of
four memory-intensive programs in SPEC CPU 2017 Rate 4. Instead of being isolated,
their memory addresses are interleaved with each other.

different executions based on the real-time situation of the mem-
ry fragmentation [24]. Despite these variations, physical addresses

allocated for different tasks are typically interleaved as a result of
interleaved processing of their memory allocation requests.

Requirement 2. Physical addresses of memory requests from differ-
ent cores should be interleaved with each other.

Address interleaving can be achieved by employing software-
transparent address shuffling algorithm.

4. Method of MultiPoint

In this work, we propose MultiPoint to enable scalable performance
valuation for multi-task workloads. As illustrated in Fig. 4, Multi-
oint is composed of three critical procedures as follows. Checkpoint
ecovery : Multiple checkpoints of different or identical single-task
orkloads are concurrently recovered across different processor cores
1). Besides, a sync mechanism is implemented among the processor

cores to guarantee their simultaneous initiation of evaluation. Address
Remapping : To guarantee the smooth execution of these concurrently
executed single-task checkpoints, MultiPoint remaps memory requests
from different processor cores to different memory regions to prevent
hem from interfering with each other (2). Address Shuffling : To

maintain the performance evaluation accuracy of constructing multi-
task checkpoints via multiple single-task checkpoints, MultiPoint shuf-
fles memory requests from different cores to make them scatter and
interleave in the memory space (3). Collectively, MultiPoint intro-
duces a software-transparent address transform mechanism to support
the concurrent smooth execution of multiple single-task checkpoints.
Consequently, the scalability issues of substantial storage and time
overheads the direct multi-task checkpointing could be avoided.

4.1. Checkpoint recovery

MultiPoint is designed to concurrently recover multiple single-task
checkpoints across different processor cores and employs a sync mech-
anism to guarantee their simultaneous initiation of evaluation. The
detailed recovery process of a single-task checkpoint by the proposed
checkpoint loader is illustrated in Fig. 5. The checkpoint consists of

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 4 (2024) 100189C. Han et al.

o

S
i

S
l

L

i

Fig. 4. Procedures of MultiPoint for performance evaluation of multi-task workload.
c
t

m

Fig. 5. Procedures of single-task checkpoint recovery by the checkpoint loader.

the complete architecture-level status required by the program’s normal
execution, including the memory contents and the values of vari-
ous registers specified by the Instruction Set Architecture, such as
general-purpose registers and control status registers. Specifically, for
the recovery of memory content, MultiPoint utilizes the programming
interface provided by the Emulator Accelerator to load the full contents
of the main memory into the corresponding positions in the DDR system
f the Emulator Accelerator.

For the recovery of register, MultiPoint introduces a checkpoint
loader, which is firmware that is responsible for initializing the DDR
system and preparing the execution environment before handing over
control to the operating system in the checkpoint to be recovered.
pecifically, in the checkpoint loader, after completing the system
nitialization, the processor core enters the recovery mode, in which

all register values can be modified via instructions, regardless of their
writable properties defined in the Instruction Set Architecture (ISA).
ubsequently, the checkpoint loader begins executing instructions re-
ated to status configuration and register recovery.

The stable timer register, which supplies the wall clock time for
inux, is restored. Inaccurate restoration of this register can lead Linux

to perceive the current time as earlier or significantly later than the
actual last recorded time during subsequent system checks. This dis-
crepancy can induce kernel panic and disrupt the normal operation of
programs. Following this, remapping and shuffling settings are con-
figured for the subsequent run-time physical transform mechanism,
as detailed in Section 4.2. Next, the program counter (PC) for the
first instruction in the checkpoint execution is logged. ISA registers,
ncluding control status registers (CSRs) and general purpose registers

(GPRs) [25], are then restored by respective instructions. It is noted
that since the recovery process is instruction-based, which requires
4

Fig. 6. Sync mechanism for simultaneous multiple single-task checkpoint recovery.

modification of GPR values, GPRs must be restored at the last step. As
the speed of checkpoint recovery may vary across different cores, each
processor core, upon completing its checkpoint recovery, would sync
with other cores, ensuring all cores have finished their recovery. Once
synchronization is achieved, a special instruction is executed, enabling
all processor cores to exit recovery mode and simultaneously jump
to the target PC and initialize their execution. It is required that this
special instruction does not modify the values of any registers visible
to the ISA. Collectively, when the processor cores begin their execution
from the first instruction of the checkpoints, the values in memory,
various registers, and the necessary operating system state have all
been carefully restored, allowing the program to commence the normal
execution.

During the synchronization procedure, processor cores communi-
ate through their mailboxes, which is a hardware mechanism of
he asynchronous inter-core communication. Specifically, as shown in

Fig. 6, once a processor core completes its checkpoint recovery, it
registers its readiness in its own mailbox and waits for a free run signal
to trigger its execution. The Sync controller would monitor all cores’
mailboxes. Upon detecting all the cores have been prepared, the Sync
controller would send the free run message to all cores’ mailboxes,
thus simultaneously initiating executions of the multiple multi-task
workloads.

4.2. Address remapping and shuffling

MultiPoint proposes a software-transparent physical address trans-
form mechanism to support the concurrent and smooth execution of

ultiple single-task checkpoints. As illustrated in Fig. 7, after the vir-
tual address translation through the Translation Lookaside Buffer (TLB),
the cached memory read or write requests issued by the processor
core are remapped and then shuffled. For the uncached memory ac-
cess requests, which typically originate from Linux kernel interactions
with I/O devices, their physical addresses are not translated to ensure
accurate access to peripherals. Typically, the only peripheral in the
pre-silicon performance evaluation is the serial port, which is used
for program output printing. It is noted that above address transforms
in MultiPoint are hardware-only and software-transparent, thus re-
quiring no special software modifications and imposing no additional

requirements for checkpoint capture.

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 4 (2024) 100189C. Han et al.

1

1
1
1
1

2

t
r
s
(
b
E
n
i
l
(
p
i

f

f

o

b
L
S
p

u

n
r
t
o
m
o
f

u
o
c

d
c
i
d

Fig. 7. Mechanism of physical address transforms in MultiPoint. The detailed proce-
dures are presented in Algorithm 1.

Algorithm 1 Procedures of address transforms in MultiPoint
1: function LBS(addr, from_bit, to_bit, lbs_bits)
2: origin ← addr [from_bit : to_bit)
3: shuffled ← LeftBarrelShift(origin, lbs_bits)
4: addr [from_bit : to_bit) ← shuffled
5: return addr
6: end function
7: function XOR(addr, from_bit, to_bit)
8: first_slice ← addr [start : start + to_bit - from_bit)
9: addr [from_bit, to_bit) ⊕ = first_slice

10: return addr
11: end function
12: function RemappingAndShuffling(paddr, core_id)
3: # Address Remapping

14: paddr ← paddr + core_id × (1 ≪ task_mem_bit)
15: # Address Left Barrel Shift
6: slices ← Max(⌊(task_mem_bit - start) / copies⌋, 1)
7: for slice from 0 to slices do
8: from_bit ← start + slice × copies
9: to_bit ← Min(from_bit+copies, task_mem_bit)

20: lbs_bits ← core_id + slice
1: paddr ← LBS(paddr, from_bit, to_bit, lbs_bits)

22: end for
23: # Address Xor
24: paddr ← XOR(paddr, to_bit, total_mem_bit)
25: return paddr
26: end function

The detailed procedures of address remapping and shuffling in
MultiPoint are illustrated in Algorithm 1. Specifically, for address
remapping, the physical addresses paddr of memory requests issued by
different cores are added offsets that are multiplied by 𝑐 𝑜𝑟𝑒_𝑖𝑑 and the
memory size for each task (line 14), ensuring that physical addresses
across different cores do not overlap with each other. For the address
shuffling, the remapped addresses paddr starting from the start bit
are divided into several slices, each containing bit numbers of copies. In
his algorithm, contiguous physical addresses within the 2𝚜𝚝𝚊𝚛𝚝-aligned
anges would retain their continuity after the address shuffling. The
lice number is calculated by dividing the shuffled address bits by copies
line 16). For single-task checkpoint with 4 GB memory (task_mem_bit
eing 32), the shuffled address bits are correspondingly 32 − 𝚜𝚝𝚊𝚛𝚝.
ach slice in paddr is conducted the left barrel shift (line 21), with the
umber of shifted bits determined by the sum of the 𝑐 𝑜𝑟𝑒_𝑖𝑑 and the slice
ndex (line 20). The remaining paddr bits starting from the boundary of
eft barrel shift to the end of effective physical address bits are XORed
line 24) with the corresponding bits stating from the start bit of
addr. Collectively, the physical addresses are remapped and shuffled
n such a software-transparent and hardware-friendly manner.

Fig. 8 illustrates the impact of physical address remapping and shuf-
ling when restoring four identical single-task checkpoints. Specifically,

Fig. 8 depicts the distributions of physical addresses allocated to dif-
erent cores. The physical addresses are randomly generated addresses
5

Fig. 8. Illustration of address distributions after remapping and shuffling for randomly
generated addresses within [0, 4 GB].

within the range [0, 4 GB]. After address remapping, different cores
operate duplicated data within distinct memory regions, as shown in
Fig. 8(a). Subsequent address shuffling results in the physical addresses
being scattered and interleaved across the memory among different
cores, as presented in Fig. 8(b).

It is important to note that the address shuffling algorithm used
in MultiPoint is empirically determined, because barrel shift and xor
are hardware-friendly operations. Alternate algorithms can also be
utilized, provided they ensure that the physical addresses from different
cores are effectively interleaved and the guarantee the transforms are
ne-to-one mappings.

5. Methodology

5.1. Benchmarks

In this work, the SPEC CPU 2017 Rate [9] is employed as the
enchmark and is compiled using GCC-13 at the Loongnix system with
inux 4.19. The simulation points of SPEC CPU 2017 are selected by
imPoint, utilizing parameters from previous studies [7,22] with the
rogram interval length N being 100 million, the maximum allowed

cluster numbers maxK being 30, the dimension of random linear pro-
jection dim being 15, and the Bayesian information criterion threshold
BIC being 0.95. The checkpoints for these simulation points are cap-
tured by the modified system-level QEMU [26,27] with the equipped
memory of 4 GB. When dumping the full-system checkpoint, physical
pages containing all zero content would be suppressed. Besides, the ISA
tilized in this work is the LoongArch [25].

It is noted that MultiPoint is not limited to evaluations of homoge-
eous workloads. Heterogeneous workloads can also be evaluated by
estoring distinct single-task checkpoints at different cores to compose
he required multi-task checkpoints determined by the sampling meth-
ds. We want to emphasize that MultiPoint is proposed to provide a
ore scalable alternative to the direct multi-task checkpointing. It is

rthogonal to studies on how to sample and select the simulation points
or multi-task workloads.

5.2. Metric and evaluation platform

We implemented the evaluation routine of MultiPoint on the Em-
lator Accelerator and assessed its performance evaluation accuracy
f multi-task workloads against its post-silicon Loongson 3A6000 four-
ore processor [20], whose 𝜇Arch specifications are presented in

Table 1. The Emulator Accelerator is a commercial hardware platform
esigned to accelerate and verify complex chip designs through ac-
urate simulation and real-time debugging. The absolute score error
s utilized for evaluating performance estimation accuracy, with the
efinition given below:

𝐸 𝑟𝑟𝑜𝑟 = |𝑆 𝑐 𝑜𝑟𝑒𝑀 𝑢𝑙 𝑡𝑖𝑃 𝑜𝑖𝑛𝑡 − 𝑆 𝑐 𝑜𝑟𝑒3𝐴6000| (1)

𝑆 𝑐 𝑜𝑟𝑒3𝐴6000

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 4 (2024) 100189C. Han et al.

3

c
t

b

c
i
a
a

t

s
e
m

Table 1
Specifications of Loongson 3A6000 processor [20].

Components Features

Core 4 LA664 Cores, with SMT2
Issue width 6 Insts per Cycle
Function unit 4 Fix, 4 Vec, 4 Mem
Reorder buffer 256 Entries
L1 Cache 64 kB DCache and ICache
L2 Cache 256 kB
Last level cache 16 MB
Main memory 2 Channel, DDR4-3200

Table 2
Memory bandwidth and latency of Emu.(Emulator Accelerator) and its post-silicon
A6000 processor.
Benchmark Emu. 3A6000 Error

Stream copy (MB/s) 36 397 35 977 1.17%
Stream scale (MB/s) 26 247 26 402 0.59%
Stream add (MB/s) 28 477 28 163 1.11%
stream triad (MB/s) 29 611 29 674 0.21%

Memory Latency (ns) 91.2 91.8 0.65%

Fig. 9. Scores and estimation errors of SimPoint for each program in SPEC CPU 2017
Rate 1, where the SCORE is the geometric mean of individual program scores.

In SPEC CPU 2017 Rate, the score is calculated by multiplying the
Rate numbers and ratios of the evaluated processor’s runtime for each
benchmark against a reference processor’s runtime, which reflects sys-
tem’s throughput and scalability. The final SCORE is calculated by
omputing the geometric mean of the individual program scores. Due
o potential variations in execution speeds among different cores, the

runtime reported under Rate 𝑁 mode is determined by the time taken
y the slowest-running core.

The Emulator Accelerator is equipped with 32 GB memory, i.e.,
addr_bit in Algorithm 1 being 35, which enables the concurrent exe-
ution of up to eight checkpoint copies. Besides, the parameter start
s assigned the value of 24, which indicates that contiguous physical
ddresses within the 16 MB-aligned space would retain their continuity
fter the address remapping and shuffling. Different parameter values

of start are discussed in Section 6.3.
To ensure the reliability of the experimental results, we calibrated

he Emulator Accelerator against its post-silicon 3A6000 processor.
Given that the Emulator Accelerator and the 3A6000 processor share
identical core logic, our calibration efforts were concentrated on the
memory system. Specifically, we aligned the parameters of the memory
controllers between these two systems. The calibration outcomes for
their memory system are detailed in Table 2. We evaluated the align-
ment of their memory systems using the stream and lat_mem_rd
benchmarks to assess memory bandwidth and latency, respectively. The
results, as shown in Table 2, demonstrate that the memory systems
of the Emulator Accelerator and its post-silicon 3A6000 processor are
fundamentally aligned. Furthermore, the estimation accuracy of Sim-
Point on SPEC CPU 2017 Rate 1 is validated on the calibrated Emulator
6

Fig. 10. Scores and errors of SPEC CPU 2017 Rate 2.

Fig. 11. Scores and errors of SPEC CPU 2017 Rate 4.

Accelerator platform. The corresponding scores and estimation errors
are presented in Fig. 9, where SimPoint yields the total score error of
only 1.85%, which is consistent with previous studies [8,28].

6. Evaluation

6.1. Analysis of performance evaluation accuracy

We employed the SPEC CPU 2017 Rate 2, Rate 4, and Rate 8 bench-
marks to evaluate MultiPoint and assessed its score estimation accuracy
against the post-silicon 3A6000 commercial processors. For Rate 2,
these workloads are executed on two logic threads of one processor
core. For Rate 4, these workloads are executed on four logic threads
of four processor cores. For Rate 8, these workloads are executed on
eight logic threads of four processor cores. The scores and estimation
errors of these multi-task workloads are presented in Figs. 10, 11, and
12, respectively. In these figures, SCORE is the final SPEC CPU score.
Specifically, for these multi-task workloads, MultiPoint achieved score
errors of 6.20%, 5.45%, and 6.99%, respectively.

It is observed that for most programs in these multi-task workloads,
MultiPoint could achieve estimation errors within 10%; while for sev-
eral programs, such as xalancbmk, wrf, and cam4 in Rate 8, MultiPoint
yields relatively large estimation errors, with the value of 22.79%,
25.02%, and 15.11%, respectively, Nevertheless, studies [7,29] have
illustrated that SimPoint-based method could exhibit stable relative
errors across different 𝜇Arch designs. It is important to note that, in pre-
ilicon 𝜇Arch performance evaluations, the consistency of estimation
rrors across different 𝜇Arch designs holds greater significance than the
agnitude of the error itself [15].
Evaluations across different 𝜇Arch designs. To evaluate the cross-

𝜇Arch consistency of MultiPoint, programs xalancbmk, wrf, and cam4
are evaluated at five distinct 𝜇Arch designs and their estimation errors
are demonstrated in Fig. 13. These programs are presented because
their estimation errors are the highest in the Rate 8 evaluations. Besides

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 4 (2024) 100189C. Han et al.
Fig. 12. Scores and errors of SPEC CPU 2017 Rate 8.

Fig. 13. Score estimation errors across five different 𝜇Arch designs of MultiPoint for
programs xalancbmk, wrf, and cam4 in SPEC CPU 2017 Rate 8, whose estimation errors
are the highest as shown in Fig. 12.

Fig. 14. Illustration of the discrepancy between checkpoint-based simulation and true
execution for multi-task workloads.

of the original 3A6000, the introduced 𝜇Arch designs involve various
structure changes of (a) turning off data prefetching, (b) turning off
branch predictor for return branch, (c) turning off load-store memory
dependence prediction, and (d) reducing half of the LLC capacity,
respectively. The post-silicon 3A6000 processor is configured these
𝜇Arch changes through firmware modifications. As shown in Fig. 13,
MultiPoint yields relatively stable estimation errors for these three
programs across these five different 𝜇Arch designs, with the standard
variance being 1.04%, 1.13%, and 0.97%, respectively. Besides, the es-
timation errors of these programs exhibit same-sign bias across different
𝜇Arch changes. To sum up, these consistent biases in estimation errors
could enable designers to make correct trade-off decisions in the design
space explorations of multi-core processors.

Error Comparisons with single-task workload. It is observed that
for many programs, estimation errors in multi-task workloads of Rate
2, 4, and 8 are higher than those in single-task workloads of Rate
1. For example, the estimation errors for wrf in Rate 1, 2, 4, and 8
workloads are 0.91%, 7.85%, 11.80%, and 25.02%, respectively. This
discrepancy arises from the inherent limitations of checkpoint-based
methods, as discussed in previous studies [30–33]. Fig. 14 illustrates
7

Fig. 15. Comparison of score errors of SPEC CPU 2017 Rate 8 for MultiPoint and
direct multi-task checkpointing.

Table 3
Summary on estimation errors of MultiPoint and direct multi-task checkpointing for
SPEC CPU 2017 Rate 2/4/8.

Error MultiPoint Direct checkpointing

Rate 2 6.20% 5.23%
Rate 4 5.45% 4.98%
Rate 8 6.99% 5.79%

Average 6.21% 5.33%

the discrepancies between checkpoint-based simulation and true exe-
cution for multi-task workloads. In realistic executions of multi-task
workloads, variability in the execution speeds of individual tasks can
occur due to differences in memory response order and memory access
latency across cores. Therefore, to make inter-task relative progress
independent of specific 𝜇Arch implementations, current methods [34,
35] tried to enforce identical execution speeds across all cores. This
approach introduces divergences between the actual runtime state and
the initial checkpoint state. Such discrepancies lead to variations in
memory access timing and patterns, resulting in different performance
behaviors on 𝜇Arch structures, such as the last-level cache and memory
controller, during subsequent executions. Consequently, there can be
significant performance differences between checkpoint-based simu-
lations and true executions. In contrast, for single-task workloads,
where inter-workload relative execution speed is not a concern, the
initial state of the checkpoint aligns consistently with the realistic
runtime state. As a result, checkpoint-based evaluation methods exhibit
lower estimation errors for single-task workloads compared to multi-
task workloads. Nevertheless, MultiPoint is still effective in pre-silicon
performance evaluations for multi-task workloads, considering that it
could yield stable estimation errors across different 𝜇Arch designs, as
shown in Fig. 13.

6.2. Comparisons with direct checkpointing

In this subsection, MultiPoint is evaluated against the direct multi-
task checkpointing, as introduced in Section 2.2, in terms of their
estimation accuracy and overheads.

Estimation Accuracy. The comparisons of score errors of each
program in SPEC CPU 2017 Rate 8 for MultiPoint and direct multi-
task checkpointing are depicted in Fig. 15, where MultiPoint achieves
comparable estimation errors compared to the direct multi-task check-
pointing. Specifically, the total score estimation errors of direct check-
pointing and MultiPoint are 6.99% and 5.79%, respectively. The com-
parisons of estimation errors for Rate 2 and Rate 8 exhibit similar
tendencies are hence not presented. The summary on estimation errors
of MultiPoint and direct multi-task checkpointing for SPEC CPU 2017
Rate is given in Table 3, where their average total score errors are
6.21% and 5.33%, respectively. As demonstrated in Table 3, MultiPoint
yields same-level estimation accuracy compared to the direct multi-task

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 4 (2024) 100189C. Han et al.

i

i
v

e
c
t
s
n
s
s
t
c
e

r
M
i
t
i

r
w
t
i
b
R

i

a
i
r
M
f
b
c
t

t
e
f
m
m

t
e

Fig. 16. Storage overheads of SPEC CPU 2017 Rate 8 for MultiPoint and direct multi-
task checkpointing, where the 𝑦-axis is logarithmically scaled for better visualization.

Table 4
Summary on storage overheads of MultiPoint and direct multi-task checkpointing for
SPEC CPU 2017 Rate 2/4/8.

Storage (TB) MultiPoint Direct checkpointing

Rate 2 0.71 0.98
Rate 4 0.71 1.51
Rate 8 0.71 2.58

Total 0.71 5.07

checkpointing. The estimation error discrepancies between MultiPoint
and direct multi-task checkpointing mainly originate from two issues,
as discussed below.

Firstly, while MultiPoint incorporates an address shuffling mech-
anism, its memory address usage is inevitably not identical that of
realistic multi-task workloads. The differences in memory access pat-
terns can result in varying performance behaviors on physical-address-
aware 𝜇Arch structures, such as caches, hardware data prefetchers,
and memory controllers. Consequently, compared to direct multi-task
checkpointing, MultiPoint demonstrates larger but still comparable
estimation errors for most programs, as illustrated in Fig. 15. Besides, it
s noted that MultiPoint’s estimation errors could be improved if more

sophisticated address shuffling algorithm is introduced.
Secondly, it is noted that the execution paths of profiling the code

signatures and capturing the checkpoints of multi-task workloads are
nevitably different due to non-deterministic events, such as random
ariations in task scheduling and memory accesses [30,32]. Therefore,

the captured checkpoints of multi-task workloads do not strictly cor-
respond to their simulation points. In contrast, single-task workloads
xhibit more deterministic and repeatable execution paths. MultiPoint
onstructs the required multi-task checkpoints through multiple single-
ask checkpoints, which mitigates the misalignment between multi-task
imulation points and their checkpoints. Besides, due to the statistical
ature [29] of K-Means clustering in SimPoint, the simulation points
elected by direct multi-task checkpoint is not identical to that con-
tructed by MultiPoint, thereby introducing random discrepancies in
heir performance estimations. Collectively, compared to the direct
heckpointing, MultiPoint can occasionally produce lower estimation
rrors for certain programs, such as the lbm, bwaves, and mcf.
Storage Overheads. The comparison of storage overheads of each

program in SPEC CPU 2017 Rate 8 for MultiPoint and direct multi-task
checkpointing are presented in Fig. 16, where the 𝑦-axis is logarith-
mically scaled for better visualization. Specifically, their total storage
equirements are 0.71 TB and 2.58 TB, respectively. It is noted that
ultiPoint significantly reduces the storage overheads by 72.5%. This

s attributed to that MultiPoint composes the multi-task checkpoint
hrough the combination of multiple single-task checkpoints, therefore
ts storage overheads of SPEC CPU 2017 Rate 8 is the same as Rate

1, which is much smaller. In contrast, direct multi-task checkpoint-
8

ing requires dumping the real run-time multi-task checkpoint, thus
Table 5
Summary on time overheads of checkpoint capture by MultiPoint and direct multi-task
checkpointing for workloads of SPEC CPU 2017 Rate 2, 4, and 8.

Time (h) MultiPoint Direct checkpointing

Rate 2 9.0 19.4
Rate 4 9.0 37.5
Rate 8 9.0 85.9

Total 9.0 142.8

necessitating much more storage overheads.
Moreover, when evaluating different Rate 𝑁 workloads, direct

checkpointing requires distinct checkpoints for different rate number,
esulting in redundant storage overheads. In contrast, for MultiPoint,
hen evaluating different Rate 𝑁 workloads, there is no necessity

o recapture respective checkpoints, thus avoiding the extra comput-
ng resources, timing, and storage overheads. For SPEC CPU Rate
enchmark, the storage overhead of MultiPoint is always that of the
ate 1 workload, irrespective of how many different Rate numbers to

be evaluated. The summary on storage overheads of MultiPoint and
direct multi-task checkpointing for SPEC CPU 2017 Rate is presented
n Table 4, where their total storage requirements are 0.71 TB and

5.07 TB, respectively. For these workloads, MultiPoint substantially
decreases the storage requirements by 86.0%, while their estimation
accuracy is comparable.

Time Overheads. Table 5 summarizes the time overheads for check-
point capture using MultiPoint and direct multi-task checkpointing for
workloads of SPEC CPU 2017 Rate 2, 4, and 8. It is noted that check-
points are captured concurrently, with the total checkpoint capture
time determined by the runtime of the longest-running program. Specif-
ically, the total time overheads are 9.0 h and 142.8 h for MultiPoint and
direct multi-task checkpointing, respectively. For these workloads, Mul-
tiPoint reduces the time overheads by 93.7% while maintaining com-
parable performance evaluation accuracy. This significant reduction is
ttributed to the property that MultiPoint’s checkpoint capture time is
ndependent of the Rate numbers being evaluated. By constructing the
equired multi-task checkpoints from multiple single-task checkpoints,
ultiPoint eliminates the need for additional checkpoint capture time

or workloads of Rate 2, 4, and 8, once the Rate 1 checkpoints have
een captured. In contrast, for direct multi-task checkpointing, the
apture time for Rate N increases linearly with the Rate number under
he QEMU icount mode [26].

To sum up, MultiPoint achieves larger yet still comparable estima-
ion accuracy compared to the direct multi-task checkpointing. How-
ver, MultiPoint achieves agile evaluations with substantially 86.0%
ewer storage and 93.7% less timing overheads. Compared to direct
ulti-task checkpointing, MultiPoint enables more scalable perfor-
ance evaluations for multi-task workloads.

6.3. Discussions of address shuffling

In this subsection, we analyzed the benefits and parameter sensi-
ivity of introduced address shuffling on the accuracy of performance
valuation for multi-task workloads.
Benefits of address shuffling. Fig. 17 illustrates the estimation

errors of MultiPoint with and without the address shuffling on the
SPEC CPU 2017 Rate 8. The comparisons of estimation errors for
Rate 2 and Rate 8 exhibit similar tendencies and are hence not pre-
sented. For MultiPoint without implementing address shuffling, only
the address remapping is conducted to guarantee the normal concurrent
execution of evaluated multi-task workloads. Specifically, as depicted
in Fig. 17, incorporating address shuffling could markedly diminish
the evaluation errors, significantly reducing total score errors from
43.60% to 6.99%. The error reductions are especially pronounced
for programs like bwaves, povray, and parest, whose errors are signif-
icantly decreased by 76.33%, 73.30%, and 67.41%, respectively. It

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 4 (2024) 100189C. Han et al.

s

a
c

c
t
c
t
i
t
c
c
d
c

t

s
l
v
a

R
r

f

i
t
a
X
i
m
a
b

l

g
t
p

p
c

m
p
t

m

n

w

Fig. 17. Comparison of score estimation errors of SPEC CPU 2017 Rate 8 for MultiPoint
with and without address shuffling.

Fig. 18. Score estimation errors of SPEC CPU 2017 Rate 8 under different values
of parameter start in Algorithm 1, which determines the granularity of address
huffling.

is noted that these programs own the common feature of extensive
memory access demands. In contrast, for the program deepsjeng and
exchange2, which exhibit moderate memory access demands, their
estimation errors remained unaffected by the address shuffling.

The substantial decreases in estimation errors after introducing
ddress shuffling are because that different physical memory address
haracteristics can impact the performance of certain 𝜇Arch structures

that are sensitive to the physical addresses. For instance, under homo-
geneous workloads, like SPEC CPU 2017 Rate, if address shuffling is not
implemented, the low bits of address accessed by different single-task
heckpoints for semantically identical memory are identical, with only
heir highest bits differing. This would result in significant cache set
onflicts in the shared last-level cache. In contrast, in the actual multi-
ask workload executions, the physical addresses of memory requests
ssued by different cores are interleaved with each other. This allows
he memory requests to be more evenly distributed across different
ache sets, thereby resulting in fewer set conflicts. Fewer cache set
onflicts would bring fewer cache misses and mitigate the performance
egradation associated with the serial operations required by the cache
oherence protocol for memory requests within the same cache set.
Sensitivities of Shuffling Algorithm. Fig. 18 presents the final score

estimation errors of SPEC CPU 2017 Rate 8 under different values of
he parameter start in Algorithm 1. The parameter start deter-

mines the granularity of address shuffling, where contiguous physical
addresses within 2𝚜𝚝𝚊𝚛𝚝-aligned ranges maintain their continuity after
huffling. As shown in Fig. 18, the final score estimation errors exhibit
ow sensitivity to the specific value of start. In this work, the default
alue of start is set to 24 because its barrel shift bits, calculated
s 32 − 24 = 8, are divisible by 2, 4, and 8, which are the evaluated

Rate numbers. This selection simplifies boundary condition handling in
TL coding, considering that different start values yield comparable
esults.

Collectively, Figs. 17 and 18 demonstrate that the address shuf-
ling mechanism significantly influences the accuracy of performance
9

d

evaluation, while the specific values of start have only a minor
impact on estimation accuracy. In essence, the coarse-grained isolation
of memory usage illustrated in Fig. 8(a) fundamentally differs from
the interleaved characteristics of real multi-task workloads depicted in
Fig. 3. However, when the physical addresses of different tasks become
nterleaved, the granularity of interleaving has only a limited effect on
he final performance outcomes. In this study, the address shuffling
lgorithm in MultiPoint is empirically selected, as barrel shift and
OR operations are hardware-friendly. Despite this, current method

s effective in producing comparable evaluation accuracy to direct
ulti-task checkpointing. Exploring improved shuffling algorithms is
 promising direction for further reducing the estimation error gap
etween MultiPoint and direct multi-task checkpointing.

7. Related work

Evaluation for Single-Task Workloads: There are mainly two cate-
gories of sampling methods that are widely used for single-task work-
oad, or the single-threaded programs. Representative Sampling [1–

8]: This method leverages the recurrent phases exhibited in the pro-
ram’s dynamic execution and selectively chooses several intervals
o represent and reconstruct the complete execution behavior of the
rogram. Systematic Sampling [36–38]: This method involves sys-

tematically extracting many short program intervals to collectively
represent the behavior of the entire program. This approach could
statistically ensure a broad coverage of the program’s behavior, making
it possible to estimate the overall performance more accurately.

Evaluation for Multi-Task Workloads: The multi-task workloads
are primarily categorized into two types: homogeneous workloads,
where different cores execute the same program, as exemplified by
SPEC CPU 2017 Rate; and heterogeneous workloads, where differ-
ent cores execute distinct workloads. For homogeneous workloads,
Perelman et al. [15] introduced the parallel SimPoint method for effi-
cient performance evaluation. For heterogeneous workloads, Jacob-
vitz et al. [10] provided a rigorous definition for benchmark evaluation
urposes. Velásquez et al. [11] proposed a method involving random
ombinations of task loads to construct representative heterogeneous

workloads. Eyerman et al. [12,39] developed several system-level per-
formance evaluation metrics for multi-task workloads. Van et al. [19],
NamKung et al. [14], Tawk et al. [17] introduced a series of sampling

ethods for heterogeneous workloads aimed at reducing the number of
hase combinations needed for simulation, thereby enhancing simula-
ion efficiency. Prieto et al. [40,41] proposed extracting core loops from

programs and established a statistical model to validate the consistency.
Evaluation for Multi-Threaded Workloads: Because of the synchro-

nization and communication among threads, the dynamic instruction
counts of multi-threaded workloads can fluctuate significantly with
each execution [42], and the execution paths are unpredictable [43].
Besides, the relative execution relationship among threads is

icroarchitecture-dependent [30,31]. These factors introduce many
challenges to the performance evaluation of the multi-threaded work-
loads. Currently, pre-silicon performance evaluation methods for multi-
threaded workloads are divided into three categories: Timing-based
Sampling [30,31] methods periodically switch processor cores be-
tween fast-forward and detailed simulation states until the program
execution concludes. Communication primitive-based Sampling [32,
44,45] involves segmenting the program based on statements like
barriers, loops, and tasks, thereby obtaining simulation points that are
aturally independent of the program’s execution path. Work-based

Sampling [33–35] divides the program according to the total effective
orks so as to acquire simulation points that are independent of the
ynamic instruction counts of the program.

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 4 (2024) 100189C. Han et al.

X

c
i

8. Conclusion

In this work, we propose MultiPoint to enable pre-silicon perfor-
mance evaluation for multi-task workloads. The key idea of MultiPoint
is to construct the required multi-task workloads by combining multiple
single-task workloads. To guarantee the smooth concurrent execution
of these single-task checkpoints, MultiPoint introduces the mechanisms
of address remapping. Furthermore, to maintain the accuracy of perfor-
mance evaluation, MultiPoint shuffles memory requests from different
cores to make them scatter and interleave in the memory space. Multi-
Point is evaluated on the SPEC CPU 2017 and yields score estimation
errors of 6.20%, 5.45%, and 6.99% for Rate 2, Rate 4, and Rate 8,
respectively, achieving comparable performance evaluation accuracy
compared to direct multi-task checkpointing but in a more scalable
manner with substantially 86.0% lower storage and 93.7% less time
overheads.

CRediT authorship contribution statement

Chenji Han: Writing – original draft, Methodology, Investigation.
inyu Li: Writing – review & editing, Methodology. Feng Xue: Writ-

ing – original draft, Methodology. Weitong Wang: Writing – review
& editing, Methodology. Yuxuan Wu: Writing – review & editing,
Methodology. Wenxiang Wang: Writing – review & editing, Methodol-
ogy. Fuxin Zhang: Writing – review & editing, Methodology, Funding
acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

References

[1] Timothy Sherwood, Erez Perelman, Greg Hamerly, Brad Calder, Automatically
characterizing large scale program behavior, in: ASPLOS X, 2002.

[2] Jose Renau, Fangping Liu, Hongzhang Shan, Sang Wook Stephen Do, Enabling
reduced simpoint size through LiveCache and detail warmup, BenchCouncil
Trans. Benchmarks Stand. Eval. 2 (4) (2022) 100082.

[3] Harish Patil, Alexander Isaev, Wim Heirman, Alen Sabu, Ali Hajiabadi, Trevor E
Carlson, ELFies: executable region checkpoints for performance analysis and
simulation, in: 2021 IEEE/ACM International Symposium on Code Generation
and Optimization, CGO, IEEE, 2021, pp. 126–136.

[4] Odysseas Chatzopoulos, Maria Trakosa, George Papadimitriou, Wing Shek
Wong, Dimitris Gizopoulos, SimPoint-based microarchitectural hotspot & energy-
efficiency analysis of RISC-v OoO CPUs, in: 2024 IEEE International Symposium
on Performance Analysis of Systems and Software, ISPASS, IEEE, 2024, pp. 1–12.

[5] Charles Yount, Harish Patil, Mohammad S Islam, Aditya Srikanth, Graph-
matching-based simulation-region selection for multiple binaries, in: 2015 IEEE
International Symposium on Performance Analysis of Systems and Software,
ISPASS, IEEE, 2015, pp. 52–61.

[6] Kenneth Hoste, Lieven Eeckhout, Microarchitecture-independent workload
characterization, IEEE Micro 27 (3) (2007) 63–72.

[7] Weihua Zhang, Jiaxin Li, Yi Li, Haibo Chen, Multilevel phase analysis, ACM
Trans. Embed. Comput. Syst. 14 (2015) 31:1–31:29.

[8] Hongwei Cui, Yujie Cui, Honglan Zhan, Shuhao Liang, Xianhua Liu, Chun
Yang, Xu Cheng, MBAPIS: Multi-level behavior analysis guided program interval
selection for microarchitecture studies, in: 2023 32nd International Conference
on Parallel Architectures and Compilation Techniques, PACT, IEEE, 2023, pp.
297–308.

[9] James Bucek, Klaus-Dieter Lange, Jóakim v. Kistowski, SPEC CPU2017: Next-
generation compute benchmark, in: Companion of the 2018 ACM/SPEC
International Conference on Performance Engineering, ICPE ’18, Association for
Computing Machinery, New York, NY, USA, 2018, pp. 41–42.

[10] Adam N. Jacobvitz, Andrew D. Hilton, Daniel J. Sorin, Multi-program benchmark
definition, in: 2015 IEEE International Symposium on Performance Analysis of
Systems and Software, ISPASS, IEEE, 2015, pp. 72–82.

[11] Ricardo A. Velásquez, Pierre Michaud, André Seznec, Selecting benchmark com-
binations for the evaluation of multicore throughput, in: 2013 IEEE International
Symposium on Performance Analysis of Systems and Software, ISPASS, 2013, pp.
173–182.
10
[12] Stijn Eyerman, Pierre Michaud, Wouter Rogiest, Multiprogram throughput met-
rics: A systematic approach, ACM Trans. Archit. Code Optim. (TACO) 11 (3)
(2014) 1–26.

[13] Jovan Stojkovic, Chunao Liu, Muhammad Shahbaz, Josep Torrellas, 𝜇Manycore:
A cloud-native CPU for tail at scale, in: Proceedings of the 50th Annual
International Symposium on Computer Architecture, 2023, pp. 1–15.

[14] Jeffrey Namkung, Dohyung Kim, Rajesh Gupta, Igor Kozintsev, Jean-Yves Bouget,
Carole Dulong, Phase guided sampling for efficient parallel application simula-
tion, in: Proceedings of the 4th International Conference on Hardware/Software
Codesign and System Synthesis, 2006, pp. 187–192.

[15] Erez Perelman, Marzia Polito, J-Y Bouguet, Jack Sampson, Brad Calder, Carole
Dulong, Detecting phases in parallel applications on shared memory architec-
tures, in: Proceedings 20th IEEE International Parallel & Distributed Processing
Symposium, IEEE, 2006, pp. 10–pp.

[16] Alvaro Wong, Dolores Rexachs, Emilio Luque, Extraction of parallel application
signatures for performance prediction, in: 2010 IEEE 12th International Confer-
ence on High Performance Computing and Communications, HPCC, IEEE, 2010,
pp. 223–230.

[17] Melhem Tawk, Khaled Z. Ibrahim, Smail Niar, Multi-granularity sampling for
simulating concurrent heterogeneous applications, in: Proceedings of the 2008 In-
ternational Conference on Compilers, Architectures and Synthesis for Embedded
Systems, 2008, pp. 217–226.

[18] Melhem Tawk, Khaled Z. Ibrahim, Smail Niar, Adaptive sampling for efficient
mpsoc architecture simulation, in: 2007 15th International Symposium on Mod-
eling, Analysis, and Simulation of Computer and Telecommunication Systems,
IEEE, 2007, pp. 186–192.

[19] M. Van Biesbrouckt, Lieven Eeckhout, Brad Calder, Considering all starting
points for simultaneous multithreading simulation, in: 2006 IEEE International
Symposium on Performance Analysis of Systems and Software, IEEE, 2006, pp.
143–153.

[20] Loongson, Loongson LS3a6000 processor, 2024, URL https://www.loongson.cn/
EN/product/show?id=11.

[21] Yinan Xu, Zihao Yu, Dan Tang, Guokai Chen, Lu Chen, Lingrui Gou, Yue Jin,
Qianruo Li, Xin Li, Zuojun Li, Jiawei Lin, Tong Liu, Zhigang Liu, Jiazhan Tan,
Huaqiang Wang, Huizhe Wang, Kaifan Wang, Chuanqi Zhang, Fawang Zhang,
Linjuan Zhang, Zifei Zhang, Yangyang Zhao, Yaoyang Zhou, Yike Zhou, Jiangrui
Zou, Ye Cai, Dandan Huan, Zusong Li, Jiye Zhao, Zihao Chen, Wei He, Qiyuan
Quan, Xingwu Liu, Sa Wang, Kan Shi, Ninghui Sun, Yungang Bao, Towards
Developing High Performance RISC-V Processors Using Agile Methodology, in:
2022 55th IEEE/ACM International Symposium on Microarchitecture, MICRO,
2022, pp. 1178–1199.

[22] Brian Grayson, Jeff Rupley, Gerald D. Zuraski, Eric Quinnell, Daniel A. Jiménez,
Tarun Nakra, P. W. Kitchin, Ryan Hensley, Edward Brekelbaum, Vikas Sinha,
Ankit Ghiya, Evolution of the samsung exynos CPU microarchitecture, in: 2020
ACM/ IEEE 47th Annual International Symposium on Computer Architecture,
ISCA, 2020, pp. 40–51.

[23] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod
Millman, Nikolay Mayorov, Andrew R.J. Nelson, Eric Jones, Robert Kern, Eric
Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E.A. Quintero,
Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa,
Paul van Mulbregt, SciPy 1.0 Contributors, SciPy 1.0: Fundamental Algorithms
for Scientific Computing in Python, Nature Methods 17 (2020) 261–272, http:
//dx.doi.org/10.1038/s41592-019-0686-2.

[24] Mel Gorman, Physical page allocation, 2013, URL https://www.kernel.org/doc/
gorman/html/understand/understand009.html. (Accessed 24 December 2024).

[25] Loongson Technology, LoongArch documentation, 2022, URL https://loongson.
github.io/LoongArch-Documentation/.

[26] Fabrice Bellard, QEMU, a fast and portable dynamic translator., in: USENIX
Annual Technical Conference, FREENIX Track, Vol. 41, Califor-nia, USA, 2005,
p. 46.

[27] Xinyu Li, Plugin for checkpoint dumping in QEMU, 2024, URL https://github.
com/rrwhx/qemu_plugins_loongarch.

[28] Björn Gottschall, Silvio Campelo de Santana, Magnus Jahre, Balancing accu-
racy and evaluation overhead in simulation point selection, in: 2023 IEEE
International Symposium on Workload Characterization, IISWC, IEEE, 2023, pp.
43–53.

[29] Erez Perelman, Greg Hamerly, Brad Calder, Picking statistically valid and
early simulation points, in: 2003 12th International Conference on Parallel
Architectures and Compilation Techniques, 2003, pp. 244–255.

[30] Ehsan K. Ardestani, Jose Renau, ESESC: A fast multicore simulator using
time-based sampling, in: 2013 IEEE 19th International Symposium on High
Performance Computer Architecture, HPCA, 2013, pp. 448–459.

[31] Trevor E. Carlson, Wim Heirman, Lieven Eeckhout, Sampled simulation of multi-
threaded applications, in: 2013 IEEE International Symposium on Performance
Analysis of Systems and Software, ISPASS, 2013, pp. 2–12.

http://refhub.elsevier.com/S2772-4859(25)00002-X/sb1
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb1
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb1
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb2
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb2
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb2
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb2
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb2
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb3
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb3
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb3
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb3
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb3
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb3
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb3
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb4
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb4
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb4
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb4
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb4
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb4
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb4
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb5
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb5
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb5
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb5
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb5
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb5
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb5
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb6
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb6
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb6
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb7
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb7
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb7
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb8
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb8
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb8
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb8
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb8
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb8
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb8
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb8
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb8
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb9
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb9
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb9
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb9
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb9
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb9
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb9
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb10
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb10
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb10
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb10
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb10
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb11
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb11
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb11
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb11
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb11
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb11
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb11
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb12
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb12
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb12
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb12
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb12
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb13
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb13
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb13
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb13
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb13
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb14
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb14
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb14
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb14
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb14
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb14
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb14
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb15
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb15
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb15
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb15
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb15
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb15
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb15
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb16
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb16
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb16
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb16
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb16
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb16
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb16
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb17
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb17
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb17
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb17
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb17
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb17
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb17
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb18
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb18
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb18
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb18
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb18
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb18
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb18
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb19
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb19
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb19
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb19
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb19
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb19
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb19
https://www.loongson.cn/EN/product/show?id=11
https://www.loongson.cn/EN/product/show?id=11
https://www.loongson.cn/EN/product/show?id=11
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb21
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb21
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb21
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb21
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb21
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb21
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb21
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb21
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb21
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb21
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb21
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb21
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb21
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb21
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb21
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb21
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb21
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb22
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb22
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb22
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb22
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb22
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb22
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb22
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb22
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb22
http://dx.doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.1038/s41592-019-0686-2
https://www.kernel.org/doc/gorman/html/understand/understand009.html
https://www.kernel.org/doc/gorman/html/understand/understand009.html
https://www.kernel.org/doc/gorman/html/understand/understand009.html
https://loongson.github.io/LoongArch-Documentation/
https://loongson.github.io/LoongArch-Documentation/
https://loongson.github.io/LoongArch-Documentation/
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb26
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb26
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb26
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb26
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb26
https://github.com/rrwhx/qemu_plugins_loongarch
https://github.com/rrwhx/qemu_plugins_loongarch
https://github.com/rrwhx/qemu_plugins_loongarch
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb28
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb28
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb28
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb28
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb28
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb28
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb28
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb29
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb29
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb29
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb29
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb29
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb30
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb30
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb30
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb30
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb30
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb31
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb31
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb31
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb31
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb31

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 4 (2024) 100189C. Han et al.
[32] Trevor E Carlson, Wim Heirman, Kenzo Van Craeynest, Lieven Eeckhout,
Barrierpoint: Sampled simulation of multi-threaded applications, in: 2014 IEEE
International Symposium on Performance Analysis of Systems and Software,
ISPASS, IEEE, 2014, pp. 2–12.

[33] Changxi Liu, Alen Sabu, Akanksha Chaudhari, Qingxuan Kang, Trevor E. Carlson,
Pac-Sim: Simulation of multi-threaded workloads using intelligent, live sampling,
ACM Trans. Arch. Code Optim. (2024).

[34] Alen Sabu, Harish Patil, Wim Heirman, Trevor E. Carlson, LoopPoint: Checkpoint-
driven sampled simulation for multi-threaded applications, in: 2022 IEEE
International Symposium on High-Performance Computer Architecture, HPCA,
2022, pp. 604–618.

[35] Alen Sabu, Changxi Liu, Trevor E. Carlson, Viper: Utilizing hierarchical program
structure to accelerate multi-core simulation, IEEE Access (2024).

[36] Sina Hassani, Gabriel Southern, Jose Renau, LiveSim: Going live with microarchi-
tecture simulation, in: 2016 IEEE International Symposium on High Performance
Computer Architecture, HPCA, 2016, pp. 606–617.

[37] Roland E. Wunderlich, Thomas F. Wenisch, Babak Falsafi, James C. Hoe,
SMARTS: accelerating microarchitecture simulation via rigorous statistical sam-
pling, in: 30th Annual International Symposium on Computer Architecture, 2003.
Proceedings, 2003, pp. 84–95.

[38] Uday Kumar Reddy Vengalam, Anshujit Sharma, Michael C. Huang, LoopIn:
A loop-based simulation sampling mechanism, in: 2022 IEEE International
Symposium on Performance Analysis of Systems and Software, ISPASS, 2022,
pp. 224–226.
11
[39] Stijn Eyerman, Lieven Eeckhout, System-level performance metrics for
multiprogram workloads, IEEE Micro 28 (3) (2008) 42–53.

[40] Pablo Prieto, Pablo Abad, Jose Angel Herrero, Jose Angel Gregorio, Valentin
Puente, SPECcast: A methodology for fast performance evaluation with SPEC
cpu 2017 multiprogrammed workloads, in: Proceedings of the 49th International
Conference on Parallel Processing, 2020, pp. 1–11.

[41] Pablo Prieto, Pablo Abad, Jose Angel Gregorio, Valentin Puente, Fast, accurate
processor evaluation through heterogeneous, sample-based benchmarking, IEEE
Trans. Parallel Distrib. Syst. 32 (12) (2021) 2983–2995.

[42] Alaa R. Alameldeen, David A. Wood, IPC considered harmful for multiprocessor
workloads, IEEE Micro 26 (4) (2006) 8–17.

[43] Weihua Zhang, Xiaofeng Ji, Bo Song, Shiqiang Yu, Haibo Chen, Tao Li, Pen-
Chung Yew, Wenyun Zhao, Varcatcher: A framework for tackling performance
variability of parallel workloads on multi-core, IEEE Trans. Parallel Distrib. Syst.
28 (4) (2016) 1215–1228.

[44] Miguel Tairum Cruz, Sascha Bischoff, Roxana Rusitoru, Shifting the barrier:
extending the boundaries of the barrierpoint methodology, in: 2018 IEEE
International Symposium on Performance Analysis of Systems and Software,
ISPASS, IEEE, 2018, pp. 120–122.

[45] Thomas Grass, Trevor E Carlson, Alejandro Rico, German Ceballos, Eduard
Ayguade, Marc Casas, Miquel Moreto, Sampled simulation of task-based
programs, IEEE Trans. Comput. 68 (2) (2018) 255–269.

http://refhub.elsevier.com/S2772-4859(25)00002-X/sb32
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb32
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb32
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb32
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb32
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb32
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb32
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb33
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb33
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb33
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb33
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb33
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb34
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb34
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb34
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb34
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb34
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb34
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb34
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb35
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb35
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb35
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb36
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb36
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb36
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb36
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb36
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb37
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb37
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb37
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb37
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb37
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb37
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb37
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb38
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb38
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb38
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb38
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb38
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb38
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb38
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb39
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb39
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb39
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb40
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb40
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb40
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb40
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb40
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb40
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb40
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb41
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb41
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb41
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb41
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb41
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb42
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb42
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb42
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb43
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb43
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb43
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb43
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb43
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb43
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb43
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb44
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb44
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb44
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb44
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb44
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb44
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb44
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb45
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb45
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb45
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb45
http://refhub.elsevier.com/S2772-4859(25)00002-X/sb45

	MultiPoint: Enabling scalable pre-silicon performance evaluation for multi-task workloads
	Introduction
	Background
	Evaluation for Single-Task Workload
	Evaluation for Multi-Task Workload

	Key Idea of MultiPoint
	Motivations of Address Isolation
	Motivations of Address Interleaving

	Method of MultiPoint
	Checkpoint Recovery
	Address Remapping and Shuffling

	Methodology
	Benchmarks
	Metric and Evaluation Platform

	Evaluation
	Analysis of Performance Evaluation Accuracy
	Comparisons with Direct Checkpointing
	Discussions of Address Shuffling

	Related Work
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	References

