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A B S T R A C T

The Economic Dispatch problem is essential for minimizing generation costs while satisfying power demand in 
electrical systems. This research looks into the Orca Predation Algorithm, an optimization method based on 
biology that can solve the Economic Dispatch problem for systems with 6, 13, or 15 producing units. The idea 
behind Orca Predation Algorithm came from the way orcas hunt for food. It solves problems that other opti
mization methods and bio-inspired algorithms have, like too much population diversity and too early conver
gence. This research shows that Orca Predation Algorithm consistently does better than other bio-inspired 
algorithms like Particle Swarm Optimization, Whale Optimization Algorithm, Grey Wolf Optimizer, the Bat 
Algorithm, Genetic Algorithm and Ant Colony Optimization in terms of minimum cost, average cost, and solution 
stability. The sensitivity analysis of the parameters regulating the exploration-exploitation balance in Orca 
Predation Algorithm demonstrated substantial performance enhancements. By changing these parameters, the 
best prices came in at $15,275.93 for the 6-unit system, $17,932.49 for the 13-unit system, and $32,256.97 for 
the 15-unit system. These prices are lower than those in the previous parameter setting. Although Orca Predation 
Algorithm demonstrates greater performance, it necessitates extended computing time, which future research 
could mitigate by exploring parallelization or hybrid methodologies. This paper shows that Orca Predation Al
gorithm is a reliable tool for optimizing Economic Dispatch problems. It gives useful information to power system 
engineers who are looking for effective and scalable optimization methods for modern power systems.

1. Introduction

The economic dispatch (ED) problem is a critical issue in power 
system operation, with the primary aim of optimally distributing power 
among generating units to minimize overall generation costs [1]. This is 
accomplished while satisfying the load demand, with each generating 
unit subject to minimum and maximum power limits that must be 
observed [2,3]. The ED problem, being a convex optimization issue, 
necessitates a rapid and efficient resolution, particularly in extensive 
systems comprising numerous generating units [4,5]. Conventional 
optimization methods, including linear programming and quadratic 
programming, frequently fail to address the increasing complexity of 
power systems. This complexity originates from causes including system 
expansion, the incorporation of variable renewable energy sources, and 
the existence of numerous local optima in extensive power systems. 
Moreover, traditional methods encounter challenges in delivering 
effective global optimization, especially in systems necessitating swift 

flexibility due to variable energy demands and resources [6]. 
Bio-inspired algorithms have lately garnered interest as viable solutions 
for addressing complicated optimization issues, including the ED prob
lem [7]. These algorithms are especially beneficial for navigating 
extensive search areas and circumventing local optima, obstacles 
frequently encountered by conventional approaches. Researchers have 
thoroughly investigated a variety of bio-inspired algorithms for eco
nomic dispatch optimization, including Particle Swarm Optimization 
(PSO) [8,9,10], Bat Algorithm [11], Whale Optimization Algorithm 
(WOA) [12], Grey Wolf Optimization (GWO) [13], Genetic Algorithm 
(GA) [14] and Ant Colony Optimization (ACO) [15]. Many of these al
gorithms frequently encounter premature convergence as a result of 
insufficient population variety, which in turn limits their ability to fully 
explore the entire solution space.

Yuxin Jiang developed the Orca Predation Algorithm (OPA) in 2022, 
a unique bio-inspired optimization technique that demonstrates signif
icant potential in addressing challenges of previous algorithms [16]. The 
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predatory tactics of orcas inspire OPA, which strikes a balance between 
exploration and exploitation to maintain population diversity and pre
vent early convergence. However, the application of OPA to the ED 
problems has not been studied, and this research aims to evaluate its 
performance in comparison to other bio-inspired algorithms such as 
PSO, Bat Algorithm, WOA, GWO, GA and ACO. The originality of this 
research lies in adapting OPA to the specific restrictions of the ED 
problem, which emphasizes the optimal distribution of generating units 
while minimizing costs. OPA is implemented for its capacity to address 
intricate optimization challenges and derive efficient solutions via 
adaptive pursuit and assault phases. This study entails the meticulous 
adjustment of the parameters (p1 and p2) of OPA to enhance its efficacy 
in addressing ED problems. Parameter p1 governs the individual’s sub
sequent phase, either driving or encircling, while p2 adjusts the strength 
of the attack. A sensitivity study of these parameters is performed to 
assess their influence on solution quality and computational efficiency, 
ensuring that the method can accommodate many circumstances with 
little modification.

This work offers a thorough comparison of OPA with other prevalent 
biology-inspired optimization methods, emphasizing its benefits 
regarding solution stability and convergence speed. By comparing OPA 
to other methods already used, this study aims to show how reliable and 
effective it is as a strong optimization tool for solving economic dispatch 
problems in power systems. This work seeks to provide significant in
sights into the relevance and efficacy of OPA in treating ED issues while 
tackling critical concerns such as preserving solution diversity and 
reducing computational expenses. This study’s results will offer prac
tical direction for power system engineers in applying OPA to real-world 
ED scenarios, hence enhancing the development of efficient optimiza
tion solutions for contemporary power systems.

2. Related Work

2.1. Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a global optimization tech
nique developed by Kennedy and Eberhart in 1995 [17]. PSO was 
inspired by the behavior of avian flocks and schools of fish [18]. Each 
particle PSO possesses a variable velocity that navigates the search space 
based on its prior performance [19]. The particles have a propensity to 
migrate towards more advantageous search regions throughout the 
search process. Throughout the search process [20]. PSO has been 
employed in numerous intricate optimization challenges, including the 
resolution of economic dispatch issues. The findings demonstrate that 
PSO is proficient in circumventing local minima and achieving conver
gence to the global optimum, a crucial aspect for economic dispatch 
problems characterized by intricate and non-linear objective functions 
alongside various restrictions [21]. Nonetheless, PSO may occasionally 
encounter premature convergence or sluggish convergence rates, 
particularly if the parameters are inadequately calibrated. This may 
impact the precision and dependability of the derived solutions [22]. To 
enhance the efficacy of PSO in economic dispatch problems, certain 
research integrate it with alternative optimization methodologies, such 
as Ant Colony Optimization (ACO), to augment its performance and 
convergence rate. This hybrid methodology can yield superior answers, 
yet introduces complication to its execution [23].

2.2. Bat Algorithm

The Bat algorithm is a bio-inspired metaheuristic algorithm intro
duced by Xin-She Yang in 2010 [24]. Bats’ foraging behavior, which 
involves locating prey and evading obstacles, serves as the basis for the 
Bat algorithm [25]. The fundamental principle underlying the devel
opment of the Bat algorithm is echolocation, which enables bats to 
identify food sources and obstacles while estimating their distances 
[26]. The second hypothesis posits that bats can modify their flying 

patterns in response to experience and environmental feedback, facili
tating the exploration of the solution space [27]. The third aspect per
tains to the parameters utilized in the Bat algorithm, specifically the 
loudness and emission rate of the bat’s pulse, which serve to equilibrate 
exploration and exploitation throughout the search process [28]. Prior 
studies have employed the Bat algorithm to address economic dispatch 
issues. Included are works that present the application of Ant Lion 
Optimization (ALOA) and Bat Algorithm (BA) to address economic 
dispatch issues in power systems. This study evaluated the efficacy of 
both algorithms on a small-scale three-generator system and a 
large-scale six-generator system, utilizing the IEEE-30 bus reliability test 
system. Nonetheless, the results indicate that ALOA exhibits a superior 
convergence rate compared to the Bat Algorithm (BA) [29].

2.3. Whale Optimization Algorithm

The Whale Optimization Algorithm (WOA) draws its optimization 
technique from the hunting strategies of whales in the ocean [30]. 
Specifically, it mimics the behavior of whales when they locate their 
prey, creating a bubble trap that constricts the prey’s movement [31]. 
Upon ensnaring its prey, the whale will promptly consume it. This al
gorithm provides an effective method for identifying optimal solutions 
within intricate search spaces by integrating exploration and exploita
tion phases [32]. The WOA algorithm uses three main methods to find 
the best solution: first, it copies the way whales circle their prey, moving 
their positions based on the best solution found; second, it copies the 
way whales search for food, moving around randomly and exploring the 
solution space; and third, the bubble net attack mechanism copies the 
way whales hunt together, working together to completely surround and 
catch their prey [33]. Prior studies have demonstrated the efficacy of the 
WOA algorithm in addressing economic dispatch issues. The study 
demonstrated that WOA can yield optimal or near-optimal solutions by 
taking into account fuel expenses and pollutants. Superior convergence 
characteristics set it apart from traditional methods such as PSO [29]. 
However, if not adequately designed, WOA, akin to other meta
heuristics, has sluggish convergence, limited precision, and a propensity 
to become trapped in local optima [34].

2.4. Grey Wolf Optimization

The predatory behavior of wolves in their natural habitat serves as 
the basis for the Grey Wolf Optimizer (GWO) algorithm. The gray wolf is 
regarded as an apex predator, characterized by a pronounced social 
dominance structure. The foremost leaders are designated as alpha, the 
second tier as beta, the third tier as delta, and the final tier as omega 
[35]. The GWO algorithm is characterized by three primary phases: first, 
the wolves encircle the prey according to the positions of the alpha, beta, 
and delta wolves; second, the wolves adjust their positions by adhering 
to the alpha, beta, and delta wolves, emulating the actions of tracking, 
pursuing, and nearing the prey; and third, the wolves launch an attack 
[36]. The GWO algorithm does a much better job of solving the eco
nomic dispatch problem than other meta-heuristic approaches like 
Biogeography-based Optimization (BBO), Lambda Iteration (LI), Hop
field model approaches (HM), Cuckoo Search (CS), Firefly algorithms, 
Artificial Bee Colony (ABC), Neural Networks trained by Artificial Bee 
Colony (ABCNN), Quadratic Programming (QP), and General Algebraic 
Modeling System (GAMS) [37]. Despite GWO demonstrating superior 
efficiency relative to other metaheuristic algorithms, it remains 
computationally demanding for extensive systems or when confronted 
with intricate limitations [38].

2.5. Genetic Algorithm

The Genetic Algorithm (GA) is an evolutionary computer technique 
developed by John Holland in the 1970s. Genetic algorithms use se
lection, crossover, and mutation, along with other ideas from natural 
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selection and genetics, to come up with new solutions and make the ones 
we already have better. In a genetic algorithm, each solution, referred to 
as a ’chromosome,’ undergoes iterative evolution to enhance its quality 
according to a designated fitness function [39]. GA have been exten
sively utilized for diverse complex optimization challenges, including 
ED issues, owing to their capacity to manage non-linear and non-convex 
objective functions [14]. Previous research has shown that genetic al
gorithms are very good at solving economic dispatch problems by 
finding the best balance between exploring and exploiting in the search 
space. Research has shown that genetic algorithms can get optimal or 
near-optimal solutions for extensive power systems, encompassing fuel 
cost reduction and emission limitations [40]. Nonetheless, genetic al
gorithms face issues including premature convergence and sensitivity to 
parameter configurations, such as population size and mutation rate, 
which can influence their efficacy and dependability. Recent advance
ments aim to amalgamate GA with other optimization methodologies, 
such as PSO, to enhance convergence velocity and solution efficacy [41].

2.6. Ant Colony Optimization

Marco Dorigo developed Ant Colony Optimization (ACO), a nature- 
inspired metaheuristic, in the early 1990s, based on the foraging 
behavior of ants. In ACO, artificial ants emulate the foraging and 
pheromone trail-following behaviors of actual ants, enabling them to 
identify the optimal route between a food source and their colony. Each 
ant looks at the pheromone trail and heuristic data to figure out what the 
best solution might be. The pheromone trail is changed over and over to 
reinforce the best options [42]. Numerous optimization challenges, 
including economic dispatch issues, have effectively utilized ACO due to 
its capacity to adjust to dynamic and intricate search environments. 
Research indicates that ACO excels in emergency department circum
stances by effectively balancing exploration and exploitation, particu
larly in small to medium-sized power systems [15]. Efforts to integrate 
ACO with other algorithms, including GA and WOA, have demonstrated 
potential enhancements in efficiency and accuracy. Nonetheless, these 
hybrid methodologies frequently elevate computational complexity, 
rendering ACO less advantageous for extensive ED challenges that 
necessitate high precision and rapid convergence [6].

3. Research Method

3.1. Economic Dispatch Problem

The economic dispatch problem is a crucial concern in power sys
tems, to optimize the distribution of power generation among different 
power plants to satisfy the demand at the most cost-effective rate [43]. 
The aim is to reduce the overall generation cost while complying with 
the operational limits of each facility. The generating cost function is 
typically expressed as a second-order polynomial of the power output 
(1) : 

FT =
∑n

i=1
F(Pi) =

∑n

i=1

(
aiP2

i + biPi + ci
)

(1) 

where FT denotes the total generation cost in $/hour, F(Pi) signifies the 
generation cost of the i-th plant, Pi represents the power output of the i- 
th plant in MW, and ai, bi, ci are cost coefficients derived from the 
operational characteristics and fuel type of the plant. The generator 
limits characterize the inequality conditions in the ED problem 
formularization. 

Pi,min ≤ Pi ≤ Pi,max for i = 1, 2, …, n 

The ideal power flow in the power system is impacted by the trans
mission line losses. These losses can be expressed quantitatively as (2)

PLoss =
∑n

i=1

∑n

j=1
PiBijPj +

∑n

i=1
B0iPi + B00 (2) 

In this context, PLoss denotes the total transmission loss in megawatts 
(MW), while Bij, B0i, and B00 are coefficients contingent upon the system 
setup and network topology. The B coefficients need to be established 
for a changeable system demand. The prerequisites for electrical 
equality in ED are shown in (3). [44] 

PD =
∑n

i=1
Pi − PLoss (3) 

where PD is the total system demand measured in megawatts (MW). This 
study used a data set comprising three test scenarios: 6 units system with 
a total load demand of 1263 MW, 13 units system with a total load 
demand of 1800 MW, and 15 units system with a total load demand of 
2630 MW. The Tables 1, 2 and 3 displays the data sets used in this study 
from Hardiansyah’s research as well as those from Zakian and Keveh. 
[45,46]:

3.2. Orca Predation Algorrithm

The Orca Predation Algorithm (OPA) was initially proposed by [16]. 
The OPA is a bio-inspired metaheuristic optimization method that em
ulates the hunting behavior of orcas. The purpose is to imitate the 
hunting strategies of orcas, known for their advanced and highly coor
dinated hunting techniques, to address complex optimization problems. 
The algorithm consists of two distinct stages: driving and encircling. In 
the first step of OPA, important parameters are set, such as the number 
of populations (N), dimensions (D), maximum iterations, selection 
probability p1, p2, lower bound (lb), and upper bound (ub) of the design 
variables. The orca group’s initial position is randomly created within 
the specified limits [lb,ub]. The objective function determines the second 
phase of fitness value assessment for each orca. The orca exhibiting the 
highest fitness value is designated as xbest , representing the optimal 
current solution. The final step involves updating the position 

Table 1 
Dataset of 6 unit system

Variable Range Unit

Pi,min 50-100 MW
Pi,max 120-500 MW
a 0.007-0.0095 -
b 7-12 -
c 190-240 -

Table 2 
Dataset of 13 unit system

Variable Range Unit

Pi,min 0-60 MW
Pi,max 120-680 MW
a 0.00028 -0.00324 -
b 7.74-8.6 -
c 126-550 -

Table 3 
Dataset of 15 unit system

Variable Range Unit

Pi,min 20-150 MW
Pi,max 55-470 MW
a 0.000183-0.00513 -
b 8.8-13.1 -
c 173-671 -
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throughout the pursuit phase. At this juncture, the orca chooses between 
"driving" or "encircling" its prey based on the selection probability (p1). 
This decision dictates whether the orca will prioritize exploration 
(seeking novel solutions) or exploitation (refining the existing optimal 
solution). Orcas utilize sonar to modify their location by recalibrating 
their position in accordance with Equations : 

vt
chase 1,i = a

(
dxt

best − F
(
bMt + cxt

i

))
(4) 

vt
chase 2,i = ext

best − xt
i (5) 

M =

∑N
i=1xt

i
N

(6) 

c = 1 − b (7) 

{
xt

chase 1,i = xt
i + vt

chase 1,i if rand > q
xt

chase 2,i = xt
i + vt

chase 2,i if rand ≤ q
(8) 

where t is the number of cycles, vt is the chasing speed, M is the average 
position of the orca group, xt is the position of the orca, a,b and dare 
random numbers between [0,1], e is a random number between [0,2], F 
= 2 and q is a number between [0,1]. While the equation when the orca 
encircles the prey is: 

xt
chase 3,i = xt

j1,i + u
(

xt
j2,i − xt

j3,i

)
(9) 

u = 2(rand − 0.5)
maxiter − t

maxiter
(10) 

where max inter denotes the maximum number of iterations, and j1, j2,
j3 represent three distinct orcas selected at random such that 

j1 ∕= j2 ∕= j3. The position of the i-th whale after selecting the third 
chase method at time t is denoted as xt

chase 3,i.
In this procedure, orcas ascertain the location of their prey and 

modify their position to enhance the efficacy of the solution. The fourth 
phase involves updating the position during the attack phase. During 
this phase, orcas enhance their positioning to effectively assault prey. 
Equations (11)-(13) guide the revision of the position. During the as
sault, certain orcas may attain the boundaries of the search zone. If they 
surpass the limit, their position will revert to the lower limit (lb). [16] 

vt
attack 1,i =

(
xt

first + xt
second + xt

third + xt
four

)

4 − xt
chase,j

(11) 

vt
attack 2,i =

(
xt

chase,j1 + xt
chase,j2 + xt

chase,j2

)

3 − xt
i

(12) 

xt
attack,i = xt

chase,i + g1 vt
attack 1,i + g2vt

attack 2,i (13) 

where vt
attack 1,i represents the speed vector of the i-th orca during the 

hunting phase at time t, vt
attack 2,i indicates the speed vector of the i-th 

orca returning to the cage at time t, xt
first , xt

second, xt
third, xt

four denote the 
four orcas positioned optimally in succession, j1, j2, j3 signify three 

randomly selected orcas from a total of N in the pursuit phase, ensuring 
j1 ∕= j2 ∕= j3. xt

attack,i indicates the position of the i-th orca at time t 
following the attack phase, g1 is a random number within the range [0,2] 
dan g2 is a random number within the interval [-2.5;2.5]. The fifth step 
involves the establishment of a new population. Following the assault 
phase, we establish a new pod of orcas. The orcas’ placements are 
revised according to the outcomes of the pursuit and assault phases. This 
stage ensures the diversity of the population while maintaining the 
identified optimal solution. The final step is the loop’s termination. The 
algorithm verifies if the maximum iteration count (maxiter) has been 
attained or if the optimal solution has been identified. If the termination 
condition remains unfulfilled, we repeat the procedure from Step 2.

3.3. Scenarios

This study uses the OPA to optimize the ED issue across three distinct 
power generation systems: 6, 13, and 15 generating units. The aim of 
each scenario is to reduce the overall generation cost while satisfying all 
power demand and operational restrictions. Each scenario assesses 
OPA’s capacity to manage escalating system complexity and scale while 
benchmarking its performance against other bio-inspired optimization 
methods, including PSO, Bat Algorithm, WOA, GWO, GA and ACO.

3.2.1. Scenario Setup
Multiple constraints structure ED problem solving around test data: 

the first constraint mandates that each generating unit has a specified 
minimum and maximum generation capacity, the second constraint 
requires the aggregate power output of all units to align with system 
demand, and the objective is to minimize the total cost function, which 
is characterized as a quadratic function for each generator.

3.3.2. Parameter Tuning and Sensitivity Analysis
The parameter configurations for all algorithms included in this 

study were derived from prior research sources to guarantee appropri
ateness and pertinence. The subsequent Table 4 encapsulates the 
parameters.

The subsequent experiment aimed to optimize the settings of the 
OPA algorithm to enhance its performance. The grid search technique 
fine-tunes the essential parameters p1 and p2 of the OPA to optimize the 
unique characteristics of the ED issue using the OPA algorithm. These 
two criteria are crucial for balancing the exploration and exploitation 
stages. The parameter p1 determines the chance of the orca transitioning 
into the driving or encircling phase, whereas p2 governs the attack 
phase. These parameters control the balance between exploring and 
exploiting during the optimization process. Making sure they are set up 
correctly is very important to avoid premature convergence and make 
sure that the whole solution space is explored. Grid search is conducted 
by examining multiple combinations of p1 and p2 variables. This 
research grid search process has many key steps: initially, setting the 
parameter ranges p1 and p2, where p1 ∈ {0.1, 0.3, 0.5, 0.7, 0.9} and p2 ∈

{0.01, 0.03, 0.05, 0.07, 0.1}, resulting in a 5×5 grid combination. Af
terwards, the OPA algorithm is run 40 times in the ED scenario to test 
each parameter combination and find the fitness value (generation cost) 
for each setting. The performance is judged by writing down the lowest 

Table 4 
Parameters Setting.

Algorithm Name Parameters Max_iter

OPA a, b, d ϵ [0,1]; e ϵ [0,2];F = 2; q = 0.9; p1 = 0.4; p2 = 0.05; g1ϵ[0, 2]; g2ϵ[− 2.5, 2.5] [16] 40
PSO c1 = 2; c2 = 2; ωi = 0.9; ωf = 0.2 [47] 40
Bat-Algorithm fmin = 0; fmin = 2; A0 = [0,2] ; r0 = [0,1]; α = 0.9; γ = 0.9 [48] 40
WOA a ϵ [2,0]; r ϵ [0,1]; b = 1 [49] 40
GWO A ϵ [2,0] [47] 40
GA Crossover rate =0.8; Mutation rate =0.1 [47] 40
ACO α = 1; β = 2 ; Evaporation rate = 0.2 [50] 40

V.A. Fitria et al.                                                                                                                                                                                                                                 BenchCouncil Transactions on Benchmarks, Standards and Evaluations 4 (2024) 100187 

4 



cost that can be reached for each set of parameters. The test is run 
several times to lessen the effect of stochastic variations in the algo
rithm. The aim of the grid search is to determine the parameter con
figurations that yield the optimal balance between convergence rate and 
solution quality. As part of the tuning process, sensitivity analysis is used 
to see how changes in p1 and p2 affect the optimal cost, how the solution 
converges, and how stable it is in general. The sensitivity of parameters 
p1 and p2 is illustrated by contour plots, depicting the effect of parameter 
modification on the optimal cost attained. These contour plots show how 
stable the OPA algorithm is with different parameter settings. The best 
parameter setting is shown by the global minimum on the curve. Grid 
search carefully examines all parameter combinations, guaranteeing 
that every alternative is evaluated and no solution is overlooked. This 
research employs the grid search method because of its advantages in 
parallelization and implementation [51].

3.3.3. Evaluation Metrics
In all scenarios, the efficacy of OPA and other comparative algo

rithms is assessed using several critical metrics: the minimum total 

generation cost attained by each algorithm, the mean generation cost 
across multiple tests to evaluate solution consistency, the standard de
viation to gauge result variation and algorithm stability, and the average 
computation time. To compare OPA to current methods and determine 
how well it can adapt to growing system sizes, this study will use these 
criteria in all situations.

4. Result and Discussion

Experiments have been carried out to evaluate the performance of 
the OPA, PSO, Bat Algorithm, WOA and GWO on three well-known test 
systems: the 6-unit, 13-unit, and 15-unit systems.

4.1. 6-unit system

The system comprises six thermal units, 26 buses, and 46 trans
mission lines. The load demand is 1263 megawatts. Table 5 shows the 
actual power output of each unit based on the five optimization strate
gies used. This constitutes a crucial component of the optimal ED 

Table 5 
Actual output from the system’s six generators

Algorithm P1 P2 P3 P4 P5 P6

PSO 446.82995889 171.19809142 264.10692378 125.1393930 172.10194858 83.62368431
Bat Algorithm 443.68052541 188.20549581 269.86504536 108.6707606 159.0956169 93.48255591
WOA 105.2252307 172.17792636 278.86546458 130.10435371 173.48050005 83.44119756
GWO 446.56908253 169.21357222 264.21317023 125.86927672 172.14265957 84.99223872
GA 447.5046163 170.79042194 266.01133413 123.22171545 169.17913187 86.29278031
ACO 446.3378674 162.65821351 262.98062072 150. 162.65821351 78.36508487
OPA 446.64128102 171.26899505 264.14790971 125.18833083 172.11574993 83.63773346

Table 6 
Economic Dispatch on 6 Generators

Algorithm Minimum Cost Mean Std Computation Time

PSO 15275.930594364689 15277.54602959566 3.352045776164392 0.05616219043731689
Bat Algorithm 15283.57585596129 15311.85874126833 37.97378990142223 0.11467342376708985
WOA 15276.354615304797 15284.83732050414 7.475160434950923 0.10255167484283448
GWO 15275.988847142546 15296.143454969084 31.57586518826314 0.195526856642503
GA 15276.129209510731 15281.089977499496 3.320602022291739 0.04007517496744792
ACO 15283.094249517922 15294.727679662261 5.124485757627291 0.3876126050949097
OPA 15275.930461640604 15275.933494696532 0.003482677781155 0.5794726530710856

Fig. 1. Box Plot Comparison on 6 Generators
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calculation. Table 6 presents the minimum system cost, average cost, 
standard deviation, and computation time for each method following 30 
trials. Fig. 1 depicts the minimum cost associated with each evaluated 
strategy across 40 iterations.

Table 6, which encompasses six power plants, indicates that OPA 
exhibits superior performance, with the lowest cost of 15275.9305 and 
the most stable average cost of 15275.9335 in comparison to GA, PSO, 
ACO, the Bat Algorithm, WOA, and GWO. Moreover, OPA’s minimal 
standard deviation (0.0035) signifies that its optimization outcomes are 
highly consistent. This is markedly superior to other, more variable al
gorithms, such as the Bat Algorithm (37.9738) and GWO (31.5759). GA 
and PSO exhibited similar performance, with GA achieving a minimal 
cost of 15276.13 and PSO reaching a nearly identical minimum cost of 
15275.9306, along with slightly higher standard deviations of 3.3206 
and 3.3520, respectively. Although OPA’s computation time is slightly 
increased at 0.579 seconds, its dependability in producing the ideal 
solution establishes it as the preeminent approach for the ED problem.

Fig. 1’s boxplot demonstrates that OPA exhibits the most constrained 
cost distribution, lacking outliers and hence confirming its reliability. 
PSO and GA exhibit similarly tight distributions, albeit with slightly 
greater variability than OPA. Conversely, ACO exhibits a broader spec
trum with a greater number of outliers, signifying less consistent per
formance. The Bat Algorithm and GWO display the broadest distribution 
with numerous outliers, indicating their instability, while WOA shows 
improved performance but remains less stable than OPA, PSO, and GA. 
The convergence curve in Fig. 2 shows that OPA is clearly better because 
it reaches stability and the lowest possible cost (about $15,275) in just 
10 rounds. PSO demonstrated rapid convergence, with a final outcome 
nearly identical to OPA. GA demonstrated rapid and consistent 
convergence, but with a somewhat elevated final cost. ACO necessitates 

additional iterations to attain stability, resulting in a higher optimal cost 
compared to OPA, PSO, and GA. The Bat Algorithm and GWO exhibited 
negligible enhancement across iterations, with optimal costs persisting 
at elevated levels. Concurrently, WOA exhibited incremental enhance
ment but plateaued at a suboptimal cost of around 15284. This confirms 
that OPA is the leading algorithm, producing the most optimal solution 
and demonstrating efficiency and stability that significantly exceed 
those of alternative algorithms.

The experimental results for the OPA algorithm utilize the identical 
parameter values p1 and p2 as those in Yuxin’s study. The forthcoming 
discussion will present the results of the sensitivity graph for parameters 
p1 and p2 following the adjustment of certain parameters.

The experimental results from the sensitivity graph of parameters p1 
and p2 for 6 system units using the OPA algorithm show that the best cost 
changes a lot depending on the combinations of parametersp1 and p2, 
especially when the values are low. In the lower left quadrant of the 
graph, particularly within the range of p1 from 0.1 to 0.4 and p2 from 
0.01 to 0.08, a notable alteration in the optimal cost is observed. 
Conversely, when p1 approaches 0.9, the fluctuation in the optimal cost 
diminishes, as evidenced by the more uniform coloration of the graph. 
This indicates that elevated levels of p1 (approaching 1) and diminished 
p2 yield stability in the outcomes, albeit with minimal variation in the 
optimal cost. Furthermore, experimental outcomes with the p1 and p2 
parameter values from Yuxin’s study yielded an optimal cost of 
15275.930461640604. Further optimization yielded a superior cost of 
15275.930398908155, using parameter values p1 = 0.9 and p2 = 0.01. 
The sensitivity graph indicates that parameter adjustment substantially 
influences the optimization outcomes. The combination of elevated p1 
(0.9) and diminished p2 (0.01) demonstrated superior optimality 
compared to the parameter values employed in Yuxin’s article. This 

Fig. 2. Convergence curves on 6 Generators

Table 7 
Actual output from the system’s 13 generators

Algorithm P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13

PSO 782 86 223 72 85 75 108 89 76 42 41 58 57
Bat Algorithm 510 288 175 72 93 70 97 103 165 60 40 57 64
WOA 658 228 225 101 114 108 99 97 92 40 39 55 56
GWO 499 257 253 100 101 101 101 99 101 40 40 55 55
GA 505 194 247 136 102 104 87 96 89 51 50 59 73
ACO 528 264 306 120 60 60 105 60 60 60 60 60 55
OPA 505 255 254 97 98 99 100 98 98 40 40 55 55
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study demonstrates that parameter optimization in the OPA method can 
markedly enhance performance, particularly in the economic dispatch 
problem involving a system with six producing units. Through appro
priate parameter tuning, a reduced optimal cost and enhanced stability 

can be achieved, demonstrating significant potential for improving the 
optimization outcomes of the OPA method.

Table 8 
Economic Dispatch on 13 Generators

Algorithm Minimum Cost Mean Std Computation Time

PSO 17981.852673781043 18010.25471739617 12.105198962784101 0.0828967014948527
Bat Algorithm 17972.28367998929 18006.380485156496 18.17393100098788 0.11570893923441569
WOA 17935.78738096655 17975.3459921142 15.979580254725192 0.06328445275624593
GWO 17932.597705266875 17932.841638157162 0.19262156142012746 0.1848301410675049
GA 17963.61906345404 17981.56961907532 9.25872245439762 0.05540952682495117
ACO 17978.631481258828 17998.38803106319 9.697338387501473 0.8677584489186605
OPA 17932.495398652336 17932.556635945206 0.058578778625625744 1.039674949645996

Fig. 3. Parameter Sensitivity Graph on 6 System Units

Fig. 4. Box Plot Comparison on 13 Generators
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4.2. 13-unit system

The 13 generators in the 13-unit system collectively require a total 
load of 1800 MW. Table 7 displays the power output of each unit uti
lizing the five optimization procedures. Table 8 displays the minimum 
cost of the system following 30 trials, the average cost derived from 
these trials, the standard deviation, and the computation time for each 
technique. Fig. 3 illustrates the box plot for each algorithm assessed over 
40 iterations. Fig. 4 illustrates their convergence curves.

The study found that OPA was the best way to solve the ED problem 
because it had the lowest cost (17932.4954), the most stable average 
cost (17932.5566), and the smallest standard deviation (0.0586). With a 
slightly higher average cost (17932.8416) and higher standard deviation 
(0.1926), GWO emerged as a strong contender. On the other hand, GA 
showed better results with a minimum cost of 17963.6191, even though 

its standard deviation was higher (9.2587). ACO demonstrates advan
tageous characteristics relative to PSO and the Bat Algorithm; yet, it 
displays reduced convergence speed and increased variability. 
Regarding computational duration, GA is the most rapid at 0.0554 
seconds, followed by WOA at 0.0633 seconds. The computing length of 
OPA is 1.0397 seconds, a duration that aligns with its exceptional ac
curacy and stability. A boxplot study shows that OPA is more consistent 
with the most tightly shaped cost distribution that doesn’t have any 
outliers, but GWO is also stable. Convergence research Fig. 5 shows that 
OPA gets to the best cost (~17932) in just 10 iterations, which is faster 
than other methods. GWO and GA are also competitive, but not as 
reliable, options. These findings show that OPA is the most dependable 
and efficient method for addressing the ED problem involving 13 
generators.

The sensitivity graph Fig. 6 of parameters p1 and p2 for ED over 13 

Fig. 5. Convergence curves on 13 Generators

Fig. 6. Parameter Sensitivity Graph on 13 System Units
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system units shows that the best cost changes depending on how p1 and 
p2 are combined. The experimental findings indicate that utilizing the 
parameter settings from Yuxin’s work yields a maximum cost of 
17932.495398652336, produced by the OPA method. Subsequent 
optimization yields a superior cost of 17932.485745827937, utilizing 
parameter values p1 = 0.9 and p2 = 0.01. The sensitivity graph indicates 
that within the range of p1 from 0.2 to 0.4 and p2 from 0.03 to 0.05, there 
is a notable variation in the optimal cost, with the most favorable out
comes occurring within these parameters. Simultaneously, as p1 ascends 
to 0.9 and p2 descends to 0.01, it is evident that the optimal cost di
minishes, signifying that this parameter combination yields more stable 
and superior outcomes. The results of this 13-unit system demonstrate 
that the OPA algorithm can enhance its performance for solving eco
nomic dispatch problems in larger systems.

4.3. 15-unit system

The system consists of fifteen thermal units, and the specific pa
rameters can be referenced in [16]. This test setting encompasses all the 

nonlinear features and practical limitations associated with the ED 
problem. The load demand is 2630 MW. Fig. 8

The investigation reveals that OPA is the most efficient method for 
the ED issue involving 15 generators Tables 9 and 10, boasting the 
lowest cost (32257.0186) and the most consistent average cost 
(32257.6022) with a minimal standard deviation (0.3278), thereby 
confirming its exceptional stability. GWO emerged as a viable alterna
tive with a marginally elevated cost (32260.9655) but increased vari
ability (246.2950), while WOA showed commendable performance 
(32274.7753), albeit with a lower consistency (90.0663). GA yielded 
competitive findings (32452.4846), although its standard deviation 
(59.1128) constrained its reliability. ACO outperforms PSO and the Bat 
Algorithm; nonetheless, its slower convergence and elevated standard 
deviation suggest reduced stability. On the other hand, PSO 
(32623.1758) and the Bat Algorithm (32736.6932) have high costs that 
change a lot, which proves that they are unstable. Regarding calculation 
time, WOA is the most rapid at 0.0420 seconds, followed by GA at 
0.0590 seconds, whereas OPA requires more time at 0.9068 seconds due 
to its meticulous optimization procedure. Notwithstanding the increased 

Table 9 
Actual output from the system’s 15 generators

Algorithm P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

PSO 637 413 127 126 156 357 363 156 57 66 35 55 37 15 23
Bat algorithm 289 408 116 91 416 444 455 89 113 57 47 28 29 16 22
WOA 434 446 87 127 172 446 437 298 154 143 62 65 78 15 26
GWO 424 455 130 130 283 458 465 60 25 25 51 54 25 15 15
GA 429 366 120 119 222 458 455 71 90 90 49 70 28 16 39
ACO 381 444 130 130 169 444 444 60 60 46 80 80 46 55 55
OPA 454 454 129 129 271 459 464 60 25 25 41 58 25 15 15

Table 10 
Economic Dispatch on 15 Generators

Algorithm Minimum Cost Mean Std Computation Time

PSO 32479.77291159878 32623.175772738516 64.57281947957246 0.1150459369023641
Bat Algorithm 32517.27926269168 32736.693165221626 92.45938874166197 0.10075624783833821
WOA 32274.77527602057 32417.488311981335 90.06626186968653 0.04204538663228353
GWO 32260.96554107122 32373.93983597075 246.29498176071982 0.20730963548024495
GA 32452.48462298998 32591.145301781602 59.11278287536433 0.05900542736053467
ACO 32536.403120208663 32688.53318748755 76.27128490028328 0.9935892422993978
OPA 32257.018569117114 32257.602241102897 0.3277700800721914 0.9067840178807577

Fig. 7. Box Plot Comparison on 15 Generators
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computing time, OPA typically yields improved outcomes, validating 
the trade-off. The boxplot study reinforces OPA’s superiority, demon
strating the smallest cost distribution without outliers; hence, it affirms 
its exceptional consistency (Fig. 7). GWO exhibited stability with 
increased variability, whereas WOA, GA, and ACO demonstrated 
broader dispersion (Fig. 7). The PSO and Bat Algorithm exhibit the 
broadest distributions, indicating a deficiency in consistency. The 
convergence graph illustrates the efficacy of OPA, achieving optimal 
cost (~32257) after 10 rounds (Fig. 8). GWO approaches convergence at 
approximately 32260 after approximately 15 iterations; however, it 
exhibits diminished consistency. WOA stabilized at approximately 
32274 across 20 iterations, indicating moderate performance. GA and 
ACO exhibited slower convergence, stabilizing at around 32452 and 
32536, respectively. The PSO and Bat Algorithm did not attain 
competitive prices, stabilizing at elevated values with negligible 

enhancement. These results show that OPA is the most reliable and 
effective way to solve the ED problem with 15 generators. It is better 
than all the other options in terms of correctness, stability, and 
convergence rate.

The sensitivity graph Fig. 9 of parameters p1 and p2 for ED over 15 
system units shows that changing the parameters has a big effect on the 
optimal cost. Yuxin’s essay’s parameter values yielded an optimal cost of 
32257.018569117114. Subsequent optimization yielded a reduced 
optimal cost of 32256.967447080402, achieved with parameter values 
p1 = 0.7 and p2 = 0.07. The graph shows that the optimal values for p1 
and p2 are within the range of 0.7 and 0.07, respectively, allowing for 
cost minimization beyond the parameters presented in Yuxin’s work. 
This proves that changing some parameters makes OPA algorithms work 
much better and more efficiently, especially for more complicated ED 
problems, as this 15-unit system shows.

Fig. 8. Convergence curves on 15 Generators

Fig. 9. Parameter Sensitivity Graph on 15 System Units
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5. Conclusion

This research shows that the Orca Predation Algorithm (OPA) 
consistently does a better job than other methods, such as PSO, the Bat 
Algorithm, WOA, GWO, GA, and ACO, when it comes to solving ED 
problems for systems with 6, 13, and 15 units in all possible configu
rations. OPA achieved the lowest cost, the most constant average cost, 
and the least fluctuation, confirming its remarkable stability and reli
ability. In the 6-unit system, OPA got the best price of $15,275.9305 
very precisely, beating out its competitors because it had the lowest 
standard deviation and the fastest convergence. In the 13-unit system, 
OPA maintained the lead with an ideal cost of 17932.4954 and consis
tent performance, although GWO presented a viable alternative, albeit 
with slightly greater variability. In the 15-unit system, OPA worked 
amazingly well, getting the best results with the lowest cost 
(32257.0186) and the most consistent costs. This solidified its reputa
tion as the most reliable algorithm. While GWO exhibited commendable 
convergence speed, its greater variability and certain outliers under
scored the superior consistency of OPA. WOA and GA yielded compet
itive outcomes in certain instances; nonetheless, they exhibited inferior 
stability and precision compared to OPA. Simultaneously, ACO 
demonstrated superior performance compared to PSO and the Bat Al
gorithm, but with delayed convergence and increased variability. The 
PSO and Bat Algorithm consistently produced bad results with wide 
variation, proving that they are not useful for solving ED problems. 
Although OPA had outstanding performance, its computational duration 
surpassed that of alternative approaches. The remarkable precision and 
stability of OPA justify this trade-off. Researchers may find ways to get 
around this problem in the future by finding ways to speed up OPA’s 
calculations through parallelization or hybrid methods. Also, looking 
into how OPA can be used in bigger, more complicated systems with cost 
functions that aren’t convex can show how useful it is for real-world 
power system optimization.
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