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A B S T R A C T

By utilizing statistical methods to analyze bibliographic data, bibliometrics faces inherent limitations in
identifying the most significant science and technology achievements and researchers. To overcome this
challenge, we present an evaluatology-based science and technology evaluation methodology. At the heart
of this approach lies the concept of an extended evaluation condition (EC), encompassing nine crucial
components derived from a field. We define four relationships that illustrate the connections among various
achievements based on their mapped extended EC components, as well as their temporal and citation links.
Within a relationship under an extended EC, evaluators can effectively compare these achievements by carefully
addressing the influence of confounding variables. We establish a real-world evaluation system encompassing
an entire collection of achievements, each of which is mapped to several components of an extended EC. Within
a specific field like chip technology or open source, we construct a perfect evaluation model that can accurately
trace the evolution and development of all achievements in terms of four relationships based on the real-world
evaluation system. Building upon the foundation of the perfect evaluation model, we put forth four-round rules
to eliminate non-significant achievements by utilizing four relationships. This process allows us to establish a
pragmatic evaluation model that effectively captures the essential achievements, serving as a curated collection
of the top N achievements within a specific field during a specific timeframe. We present a case study on the top
100 Chip achievements to demonstrate the effectiveness of our science and technology evaluatology. The case
study highlights its practical application and efficacy in identifying significant achievements and researchers
that otherwise cannot be identified by using bibliometrics.
1. Introduction

Science and technology (S&T) evaluation is a meticulous and com-
prehensive process. One of its paramount goals is to identify the most
remarkable accomplishments in each field, duly recognize the individ-
uals, institutions, or nations that have made significant contributions
to these achievements, and delve deeper into the effective and efficient
mechanisms and policies within the S&T ecosystems that profoundly
shape the evolution of these achievements [1]. This article focuses on
the first half of the task.

While bibliometrics methodologies have long relied on observable
metrics such as publication numbers, citation counts, and the H-index
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to assess correlations and impact [2–5], as illustrated in Fig. 1. it is
essential to recognize their inherent three limitations and the need for
alternative approaches.

First, bibliometrics commonly employs publication numbers, cita-
tion counts, and related metrics to gauge scholarly works’ quality,
influence, and significance. However, various confounding variables
can significantly impact citation counts. Moreover, citation counts are
vulnerable to manipulation by malicious networks.

Second, bibliometrics often fails to consider critical non-bibli-
ometric metrics, making them insufficient for evaluating significant
technological achievements that may have limited publication outputs.
For instance, the Linux operating system in computer science has made
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Fig. 1. Fundamental differences between bibliometrics and S&T evaluatology.

a substantial impact despite having a modest publication record.
Third, many bibliometrics methodologies prioritize the quantity

over the quality of publications, which can result in an incomplete
assessment of the true value and impact of scholarly work.

To address these shortcomings, we introduce the S&T evaluatology,
which exemplifies the application of evaluatology in evaluating S&T
achievements. The S&T evaluatology is illustrated in Fig. 1 and pre-
sented in detail in [6,7]. The fundamental principle of evaluatology is
to implement a well-defined evaluation condition (EC) on particular
subjects to establish evaluation models or systems.

At the core of the S&T evaluatology is the notion of an extended EC,
which comprises nine key components: (1) the field that can be broken
down into several problem domains; (2) The set of problem domains,
each of which can be broken down into various sub-problem domains;
(3) the sub-problem domains, each of which can be decomposed into
several problems; ‘‘(4) the set of a collective of equivalent problems,
each of which can be broken down into multiple sub-problems; (5)
the set of a collective of equivalent sub-problems; (6) the set of a
collective of problems or sub-problem instances; (7) the algorithms
or the algorithm-like mechanisms that tackles a problem or a sub-
problem; (8) the implementations of algorithms or the algorithm-like
mechanisms; (9) the support systems that provide necessary resources
and environments [6,7]’’.

We define four relationships that illustrate the connections among
various achievements based on their mapped extended EC components,
as well as their temporal and citation links. We define two primary
relationships: pioneering and progressive and two auxiliary relationships:
parallel and related but not connected. Within a pioneering or progressive
relationship under an extended evaluation condition, evaluators can
effectively compare these achievements by carefully addressing the
influence of confounding variables.
2

Fig. 2. Comparison of the number of scientists selected for the global top 2% in
different disciplines.

We establish a real-world ES encompassing the complete collection
of S&T achievements, each of which is mapped to several components
of an extended EC. In line with the aim of identifying the top N S&T
achievements, the proposed real-world S&T ES ignores the other com-
ponents of the real-world S&T ecosystems, e.g., the mechanisms and
policies that profoundly shape the evolution of these achievements [1].

Under the premise that all evaluated achievements belong to the
same field, e.g., chip technology or open source, we construct ‘‘a perfect
S&T EM’’ that can accurately trace the evolution and development of
all achievements in terms of four relationships based on the real-world
ES. We compare achievements that have a specific relationship under
the extended EC they involve. Utilizing four relationships, we employ
four rounds of rules to prune non-significant achievements to establish
a pragmatic S&T EM that captures the fundamental S&T achievements.
Essentially, the pragmatic S&T EM is a collection of top N achievements
within a field during a timeframe.

The International Open Benchmark Council (BenchCouncil) utilized
the S&T evaluatology principles and the instantiated Top N @X @Y
methodology to systematically recognize the most 100 groundbreaking
and influential achievements in chip technology (Chip100) [8]. The
case study demonstrates the effectiveness of our proposed methodology
compared to bibliometrics.

In the following sections, we will provide an in-depth examination
of the S&T evaluatology. Section 2 enumerates the existing bibliomet-
rics methodologies and analyzes their weakness. Section 3 presents the
S&T evaluatology in detail. Section 4 provides an instantiated Top N
@X @Y methodology. Section 5 introduces a case study on the Top
100 Chip Achievements. Section 6 concludes.

2. Motivation and related work

Bibliometrics is a field that applies statistical methods to analyze
bibliographic data.

In this subsection, we first present the overall weakness of biblio-
metrics in Section 2.1. Then, we introduce the representative biblio-
metrics methodologies. Finally, we introduce the fundamental concept,
theory, and methodology in evaluatology [6], based on which we will
present the S&T evaluatology.

2.1. Motivation: The limitations of bibliometrics

Due to the nature of bibliometrics, there are several inherent draw-
backs associated with its application.

First, bibliometrics commonly employs publication numbers, cita-
tion counts, and related metrics to gauge the quality, influence, and
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significance of scholarly works. However, it is crucial to acknowledge
that publication numbers and citation counts can be significantly im-
pacted by various confounding variables. These may include the diverse
disciplines involved, the reputation and networks linked to researchers
and their institutional affiliations, as well as notable differences in
researcher numbers and publication volumes across various fields.
Moreover, citation counts may even be vulnerable to manipulation by
malicious networks (Limitation One).

• (Limitation One-One). The same or similar works published in the
same or different periods can be impacted by various confounding
variables, such as the reputation and network of the researchers
and their institutions, leading to significant variations in citation
counts. Moreover, citation counts may be subject to manipulation
by malicious networks.

• (Limitation One-Two). In fundamental disciplines like mathemat-
ics, once a problem has been effectively solved, there may be
limited follow-up research on that specific topic. Consequently,
the citation count for the original work in fundamental disciplines
may not increase significantly. Hence, it cannot accurately reflect
the impact or influence of the research in the field.

• (Limitation One-Three). Citation counts fail to account for the
significant disparities in researcher numbers and publication vol-
umes across different fields. In fields with fewer researchers and
publications, citation counts are naturally lower, regardless of the
quality of the research being conducted.

• (Limitation One-Four). Bibliometrics prioritize well-established
disciplines, potentially overlooking emerging fields or unconven-
tional research outputs that may have a significant impact but
lower citation counts. The effectiveness of citation metrics is lim-
ited in representing contributions within emerging or specialized
fields. Groundbreaking research in these domains might initially
receive few citations due to the novelty of the subject matter or
the field’s limited scope. Consequently, as shown in Fig. 2, pivotal
advancements in such areas risk being undervalued, as seen in the
‘‘top scientists’’ list created by Stanford University and the Else-
vier data repository [3], which predominantly features scientists
from well-established fields like Clinical Medicine and Physics &
Astronomy. This bias is particularly harmful to innovators who
spearhead new research directions, as their contributions may not
be accurately captured by citation-based metrics.

• (Limitation One-Five). Self-citations occur when authors cite their
previous work, potentially inflating the impact of their research.
This practice skews the representation of a paper’s or a re-
searcher’s genuine influence within the academic community. For
instance, metrics like the H-index [4] are unable to circumvent
the issue of self-citations, resulting in a biased assessment that
may unfairly favor those who self-cite frequently.

Second, bibliometrics significantly ignores other fundamental non-
bibliometric metrics and hence cannot be applied to significant techno-
logical achievements that have few or no publication outputs (Limita-
tion Two). Bibliometrics primarily relies on analyzing published works.
Limitation Two arises when considering groundbreaking technological
advancements that may not be adequately represented in traditional
scholarly publications.

In practical fields like computer science, substantial contributions
requently occur outside the conventional academic publishing frame-

work. A prime example of this is the Linux operating system within
he realm of computer science. As an open-source software, the Linux
perating system boasts numerous contributors who may not publish
xtensively. Similarly, the computer mouse, one of the most universally
dopted human–computer interaction technologies, demonstrates that
ignificant impact does not necessarily stem from published research.

Table 1 presents several significant technological achievements that are
verlooked by bibliometrics. Therefore, bibliometrics alone may not
3
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Table 1
Summary of significant achievements overlooked by bibliometrics.

Field Achievements Published paper Citations

Chip X86 ISA No N/A
PCB No N/A

Open-sources systems
Linux Kernel No N/A
Git No N/A
MySQL No N/A

Benchmarks

Whetstone No N/A
TPC-C No N/A
TPC-H No N/A
FIO No N/A

fully capture the impact and significance of these achievements. Con-
sequently, non-academic metrics should be considered in the grading
process to select the top-impact achievements.

Third, bibliometrics prioritizes the quantity over the quality of pub-
ications (Limitation Three). High citation counts of a researcher can
esult from either a large volume of modestly impactful publications
r from many surveys on trending topics, such as timely topics on
arge language models. Although these works might garner significant
ttention, they do not necessarily represent substantial advancements
ithin their disciplines. The emphasis on publication counts can lead

o a skewed representation of research impact, as it fails to consider the
ignificance, rigor, and originality of individual publications.

In summary, while bibliometrics provides a quantitative metric, like
itation counts, for academic evaluation, they are beset with limita-

tions that result in biased and incomplete assessments. Thus, the S&T
valuation urgently needs more nuanced and comprehensive evaluation
etrics and methodologies that go beyond bibliometrics. Such metrics
ould ensure a fairer and more accurate depiction of scholarly impact,

ruly reflecting the multifaceted nature of academic contributions.

2.2. The representative bibliometrics methodologies

2.2.1. Csrankings in the computer science field
CSRankings is a specialized method for evaluating computer science

chievements, favoring the conference publication over the journal.
SRankings adopts the metric of the number of publications at so-called
op-tier conferences for gauging the academic influence of researchers
r their affiliated institutions in computer science. Utilizing this metric,
mery Berger pioneered CSRankings [2], a tailored academic leader-

board specifically designed for the realm of computer science. CSRank-
ings selects the Digital Bibliography & Library Project (DBLP) [9] as its
data source, ensuring up-to-date and relevant rankings with quarterly
updates.

However, this methodology has several serious flaws. First and
foremost, it places a higher emphasis on publication quantity than
quality, as outlined in Section 2.1 (Limitation Three), thereby having
flaws in recognizing top researchers or groundbreaking achievements.

For example, David Patterson’s influential works in chip technology,
articularly with RISC, RISC-V, and RAID, have substantially shaped
he field. Notwithstanding their extensive influence, Patterson is con-
picuously absent from CSRankings, a glaring omission highlighting a
ignificant shortcoming in the ranking system’s ability to acknowledge
ey contributors even in leading institutions.

In addition, CSRankings cannot discern the varying impacts of
different achievements. CSRankings quantifies the number of papers
presented at top-tier conferences, but this approach fails to identify
who pioneered a field. For instance, although the groundbreaking
‘‘Transformer‘‘ model [10] was presented at the 31st Conference on
Neural Information Processing Systems (NeurIPS), it is erroneous to
assume that all papers at this conference exert an influence comparable
to that of the Transformer.

This situation underscores a fundamental flaw in the CSRankings
ystem: overemphasizing top-tier conference publications can lead to
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misleading representations, bypassing the real depth and enduring
impact of substantial contributions.

Second, many influential works like the Linux operating system
have never even sought publication in a so-called top-tier conference
(Limitation Two). Table 1 provides other examples. The current metric
focusing on publications fails to recognize significant achievements
that are not encapsulated in conference papers. The Linux operating
system’s development and its widespread adoption stand as a prime
example, achieving monumental impact without the endorsement of
traditional academic publications.

Third, CSRankings overlooks the significant disparities in researcher
numbers, publication frequency, and volumes across different fields
within computer science (Limitation One-Three). This oversight has
resulted in a skewed ranking from 1970–2022, where four out of the
top seven institutions are led by faculty specializing in vision, a field
known for its high paper acceptance volumes. For example, the field of
computer vision, known for higher publication volumes, is overrepre-
sented. As shown in Fig. 3, in 2022, The IEEE / CVF Computer Vision
and Pattern Recognition Conference (CVPR), a leading conference in
computer vision, accepted 2065 papers [11], whereas The IEEE/ACM
International Symposium on Microarchitecture Conference (MICRO), a
top conference in computer architecture, accepted just 83 [12].

The discrepancies in publication volume across different fields may
lead to potential misleading outcomes when using CSRankings. These
disparities raise concerns about the accuracy of CSRankings in provid-
ing equitable representation for all fields within computer science.

Fourth, as a consequence of being accepted by a so-called top-tier
conference, this metric is impacted by various confounding variables,
such as the reputation and network of the researchers and their institu-
tions, and is subject to manipulation by malicious networks. Collusion
among reviewers is not an isolated incident in numerous computer
science conferences.

2.2.2. The standardized citation metrics (c-score)
The c-score, developed by John Ioannidis [3], assesses the influ-

ence of scientists. This standardized indicator amalgamates various el-
ements, including citations, h-index, co-authorship-adjusted hm-index,
and authorship-position-specific citations. Leveraging this metric, Ioan-
nidis’s team curated a global database for ranking scientists, catego-
rized into career-long and single-year impacts based on the Scopus
data. The former category spans citations from 1996 to now, while
the latter focuses on the current calendar year alone. This innovative
metric transcends traditional citation metrics, avoiding the evalua-
tion biases introduced by self-citations. However, its primary focus on
publications cannot completely encompass the wider spectrum of a
scientist’s influence, particularly in areas such as practical applications
or cross-disciplinary collaborations. These critical dimensions, essential
to the fabric of scientific progress, are often understated in conventional
bibliometric measures (Limitation Two).

Despite its popularity in the scientific field, the standardized citation
metric has limitations in acknowledging the impact of researchers
in emerging disciplines (Limitation One-Four), leading to an under-
representation of their contributions. The metric’s proclivity to privi-
lege well-established, voluminous fields is evidenced by the fact that
over half of the top-ranked influential scientists in 2021 originated
from fields like Clinical Medicine, Physics & Astronomy, Biomedical
Research, and Enabling & Strategic Technologies. This trend reveals
an inherent bias, favoring areas with more substantial publication
frequencies and higher citation volumes (Limitation One-Three).

In addition, Limitation One remains a challenge that cannot be miti-
gated by the standardized citation metrics (c-score). Factors such as the
reputation and network of researchers and their affiliated institutions
can confound the evaluation process. For instance, even when two
researchers from different institutions achieve similar achievements,
the level of attention and recognition their work receives can vary
significantly. In some cases, the earlier work may receive limited
4

Fig. 3. Comparison of accepted papers by top conferences in the fields of computer
vision and computer architecture.

attention, while subsequent work gains widespread acclaim. These
disparities can be attributed to various factors, including the visibility
and influence that researchers and their institutions hold within the
academic community.

2.2.3. H-index
H-index [4] is a useful metric proposed by Jorge E. Hirsch to char-

acterize a researcher’s scientific output. The objective is to determine
the highest value of h, where there are at least h papers with a citation
number equal to or greater than h. The mathematical representation of
H-index for a scientist is ℎ_𝑖𝑛𝑑 𝑒𝑥(𝑓 ) = max{𝑖 ∈ N ∶ 𝑓 (𝑖) ≥ 𝑖} [5]. Here,
f is an array that contains the number of citations for the scientist’s
publications in decreasing order [5]. Instead of relying solely on single-
number criteria like the total number of papers, H-index takes a more
holistic approach by considering both productivity and academic im-
pact. In addition to the limitations that we have discussed extensively
in Section 2.1, in practice, vast self-citations can raise the H-index value
easily.

2.2.4. CiteScore metrics
CiteScore Metrics [13], developed by Elsevier, extensively evalu-

ates academic journals’ citation impact and influence. These metrics
are calculated yearly, considering a three-year citation window and
considering the volume, quality, and field-normalized citation rates of
articles published in a specific journal. Featuring indicators such as
average citations per document, quartile ranking, and overall standing,
CiteScore Metrics provides a transparent and comprehensive tool for
researchers and institutions. While CiteScore metrics are designed to
assess the quality and impact of scholarly journals rather than evaluate
the quality of research within specific fields. In addition to the limi-
tations that we have discussed in Section 2.1, it has another serious
limitation. It is based on a three-year citation window. Consequently,
achievements with a substantial long-term impact but relatively few
citations in the short term may be undervalued.

2.2.5. Source Normalized Impact per Paper (SNIP)
The Source Normalized Impact per Paper [14] is a metric employed

in assessing the influence of scholarly journals. It is determined by
dividing an article’s citation count within a journal by the anticipated
citation rate within its particular field. SNIP considers the citation po-
tential within the journal’s discipline, enabling equitable comparisons
across diverse areas of study. In essence, SNIP serves as a valuable
gauge for evaluating the impact of a journal relative to its field. It
provides researchers and institutions with a standardized measure to
evaluate the influence of scholarly journals rather than the impact
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Fig. 4. The overview of an extended EC.

of the specific research achievement. Furthermore, SNIP compares a
ournal’s citation count with the citation frequency in its field. How-
ever, it fails to consider the variations in citation practices across
different subject areas. In addition, it has many inherent bibliometrics
limitations we discussed in Section 2.1.

2.2.6. Journal impact factor (JIF)
The journal impact factor, devised by Eugene Garfield, is used by

larivate’s Web of Science to evaluate a journal’s impact. The impact
actor is calculated as 𝐶∕

∑𝑛
𝑖=0 𝑃𝑖, where 𝐶 is the number of citations re-

eived in a given year for publications in a journal that were published
n the 𝑛 preceding years, and ∑𝑛

𝑖=0 𝑃𝑖 is the total number of citable items
ublished in that journal during the 𝑛 preceding years.

2.2.7. SCImago Journal Rank (SJR)
SCImago Journal Rank (SJR) indicator, developed by the Scimago

ab, is a measure of the prestige of journals. SJR is calculated by
sing an algorithm similar to Google’s PageRank, which assumes that
mportant websites are linked to other important websites. Citations are

used to link the journals. The algorithm begins by setting an identical
amount of prestige to each journal, then using an iterative procedure
o transfer each journal’s achieved prestige to each other through

citations until each journal’s update reaches a minimum threshold. The
imitations of SJR include the algorithm’s complexity, the degree of
ransparency, and the reproducibility of the results.

Besides, Kevin W. Boyack [15] utilizes data mining and analysis
techniques to map knowledge domains, specifically applying them
to 20 years of PNAS publications. It combines various data sources
to analyze the input–output ratio and diffusion between disciplines.
However, its reliance on raw citation counts as the primary measure
of impact, without adjusting for self-citations, potentially leads to a
skewed and less meaningful assessment of true scholarly influence.

2.3. The basic concepts, theories, and methodologies in evaluatology

According to [6], an individual or system being evaluated is a
subject. A stakeholder is defined as an entity that holds a stake of
responsibility or interest in the subject matter. Evaluation is ‘‘the
process of inferring the impact of subjects indirectly within evaluation
conditions (EC) that cater to the requirements of stakeholders, relying
on objective measurements and/or testing’’ [7].
5

The fundamental methodology for evaluating a single subject is
utlined as follows. Zhan et al. [6] propose a universal methodology
o define an EC, which consists of five basic components [6]: ‘‘(1) a

set of equivalent definitions of problems; (2) the set of a collective
of equivalent problem instances; (3) the algorithms or algorithm-like
mechanisms; (4) the implementations of algorithms or algorithm-like
mechanisms; (5) support systems that provide necessary resources and
environments [7]’’.

Subsequently, it becomes crucial to implement a well-defined EC for
a precisely defined subject, forming a well-defined evaluation model
(EM) or system (ES).

In terms of complex scenarios, the evaluation methodology is to
establish a series of EMs that ensure transitivity from a real-world ES
o a perfect EM and a pragmatic EM [6].

Zhan et al. [6,7] characterize the real-world ES, perfect or prag-
atic EMs. Because our S&T evaluation methodology is based on those

oncepts, we give a concise summary based on [6,7].
The real-world ES refers to ‘‘the entire population of real-world sys-

tems that are used to evaluate specific subjects’’. The real-world ES has
several significant obstacles: ‘‘the presence of numerous confounding,
prohibitive evaluation costs resulting from the huge state spaces’’.

A perfect EM replicates the real-world ES with utmost fidelity: ‘‘It
eliminates irrelevant problems and has the capability to thoroughly
explore and comprehend the entire spectrum of possibilities of an EC’’.

owever, it also has serious limitations: ‘‘possesses huge state space,
ntails a vast number of independent variables, and hence results in

prohibitive evaluation costs’’.
Providing a means to estimate the parameters of the real-world ES

r a perfect EM, a pragmatic EM simplifies the perfect EM in two ways:
‘reduce the number of independent variables that have negligible effect
nd sample from the extensive state space’’.

3. The science and technology evaluatology

This section presents the essence of S&T evaluatology.

3.1. The overview

Understanding the development of S&T is highly challenging. Some-
times, practice leads the way; at other times, theory does. Some in-
dividuals pose a significant problem and offer a preliminary solution,
while others provide state-of-the-practice solutions without explicitly
tating the problems. The relentless efforts of scientists and engineers
ake the landscape of S&T achievements intricate and dense, much like

n interwoven forest, thereby making the objective evaluation of S&T
contributions extremely challenging.

To tackle this challenge, we have adopted the evaluatology frame-
ork developed by Zhan et al. [6] as the theoretical foundation for our

research. This framework serves as the basis for developing S&T eval-
uatology. The core principles and methodologies of S&T evaluatology
are outlined as follows:

First, building upon the definition of an EC proposed in the refer-
nced paper [1], we introduce the concept of an extended EC, as shown

in Fig. 4.
With respect to the EC definition [7], an extended EC introduces

several extra components to accommodate the new requirements of
S&T evaluation, including the field that can be broken down into
several problem domains, the set of problem domains, the set of
sub-problem domains, and the set of a collective of equivalent sub-
problems. The definition of the extended EC serves as the foundation
for the proposed S&T evaluatology. It provides the framework upon
which the evaluation of S&T achievements is based.

Second, in the realm of S&T evaluation, a subject refers to an
accomplishment that can mapped onto the nine components of an
extended EC.
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Fig. 5. Illustrating S&T Evaluatology with an example.
For instance, let us consider a scenario where a researcher pro-
poses a new problem and provides a preliminary algorithm for solving
that problem. In this case, the subject, a specific S&T achievement,
comprises multiple components. These components include:

• problem: The specific problem being addressed or investigated.
• Algorithm: The preliminary algorithm proposed by the researcher

to solve the given problem.

Third, based on their mapped extended EC components as well
as their temporal and citation links, we establish two primary rela-
tionships: pioneering and progressive and two auxiliary relationships:
parallel and related but not connected to illustrate the connections among
different achievements. Section 3.3 will provide the details of four
relationships.

Fourth, according to the theory of evaluatology, S&T evaluation
involves applying a well-defined extended EC to the subject—a specific
S&T achievement. This process allows for the creation of an EM or
6

ES. Within a relationship under an extended EC, evaluators can effec-
tively compare different S&T achievements by carefully addressing the
influence of confounding variables [6,7].

In the subsequent four steps, we will adhere to and implement
the universal evaluation methodology proposed by Zhan et al. [6] to
address the intricate S&T evaluation scenarios.

Fifth, we establish a real-world S&T ES, which encompasses the
complete collection of S&T achievements. Moreover, each achievement
will be decomposed into its respective components within an extended
EC. In establishing a real-world S&T ES, it is crucial to characterize the
real-world S&T ecosystems. In line with the aim of identifying the top
N S&T achievements, the proposed real-world S&T ES in this article
encompasses the entire collection of S&T achievements while ignoring
the other components of the real-world S&T ecosystems.

Sixth, under the premise that all evaluated achievements belong to
the same field, we assume the existence of a ‘‘perfect S&T EM’’ that can
accurately trace the S&T evolution and development in terms of four
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relationships. That is to say, a ‘‘perfect S&T EM’’ can track the evolution
of a real-world S&T ES from 𝐸 𝑆𝑖 to 𝐸 𝑆𝑖+1 in a rigorous manner. This
model operates under the premise that only one change is made at a
time. By implementing one change at a time, we ensure that only one
achievement is added.

Seventh, as the perfect S&T EM contains huge states, we propose
everal simple rules to prune non-significant achievements to establish
 pragmatic S&T EM that captures the fundamental S&T achieve-
ents. Essentially, the pragmatic S&T EM is a collection of top N

chievements. The basic idea behind this process is that we compare
chievements that have a pioneering or progressive relationship under
he extended EC they involve. We will explain the simple rules in

Section 3.6.
Fig. 5 illustrates S&T Evaluatology with an example, while Fig. 6

offers a localized snapshot of a pragmatic EM in the field of chip tech-
nology, showcasing individual achievements. Within the chip technol-
ogy field are several critical problem domains like ‘Chips Manufacture’
and ‘Chips Design’. This localized snapshot highlights the diversity and
complexity within the chip technology field.

3.2. The definition of an extended EC

In [6], Zhan et al. emphasized that ‘‘understanding the composition
of the problem domain is crucial in identifying the problem that best
represents the whole. Across different disciplines, a field often exhibits
a hierarchical structure, where a significant problem domain can be
broken down into several problems’’, which provide the methodology
to model an extended EC.
7

s

An extended EC consists of nine basic components [6,7], as shown
in Fig. 4: (1) the field that can be broken down into several problem
domains; (2) the set of problem domains, each of which can be broken
down into various sub-problem domains; (3) the sub-problem domains,
each of which can be decomposed into several problems; ‘‘(4) the set of
a collective of equivalent problems, each of which can be broken down
into multiple sub-problems; (5) the set of a collective of equivalent
sub-problems; (6) the set of a collective of problems or sub-problem
instances; (7) the algorithms or the algorithm-like mechanisms that
tackle a problem or sub-problem; (8) the implementations of algorithms
or the algorithm-like mechanisms; (9) the support systems that provide
necessary resources and environments [6,7]’’.

As depicted in Fig. 7, the essential steps of the methodology can
e summarized as follows. The first and second steps are to define

the field and compose it into different problem domains. If necessary,
the third step is to decompose each problem domain into several sub-
roblem domains. The fourth step is to break down problem domains
r sub-problem domains into the problems. If necessary, the fifth step
s to decompose each problem into several sub-problems. The sixth step
roposes the problem instances or sub-problem instances. The seventh
tep is to figure out the algorithms or algorithm-like mechanisms to
olve the problem or sub-problem. The eighth step encompasses the
mplementation of algorithms or algorithm-like mechanisms. The last
tep is to define the support system.

For example, chip design is a problem domain in the chip field.
he system-level design is a typical sub-problem domain in chip de-
ign. The computer architecture design is one of the problems of the
ystem-level design. The Von Neumann architecture was the pioneering
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work that defined the computer architecture design problem and pro-
osed algorithm-like mechanisms to address it. Any specific processor
hat aligns with the Von Neumann architecture can be viewed as an
mplementation of this mechanism.

3.3. The formal definition of four relationships

In this section, based on their mapped extended EC components
as well as their temporal and citation links, we propose two primary
elationships and two auxiliary relationships to connect achievements,
s shown in Fig. 8.

3.3.1. Two primary relationships
Two fundamental relationships contain a pioneering relationship

and a progressive relationship.

Relationship one: A pioneering relationship. Definition:A pioneering re-
ationship pertains to an achievement that opens up a new research

direction in the form of establishing a new field, problem domain, sub-
problem domain, problem, sub-problem, algorithm or algorithm-like
mechanism, implementation, or support system within an extended EC.
The pioneering relationship recognizes the pioneering nature of such
achievements, which lay the foundation for future advancements and
innovations.

Formal expression: Let 𝐴 represent an achievement. The pioneering
relationship for 𝐴 can be formally expressed as:

𝑃 (𝐴) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

1 if 𝐴 opens up a new research direction in the
form of establishing a new field, problem do-
main, sub-problem domain, problem, sub-
problem, algorithm or algorithm-like
mechanism, implementation, or support
system within an extended EC,

0 otherwise

This binary expression indicates whether 𝐴 qualifies as a pioneering
chievement (1) or not (0). It is based solely on the novelty and
riginality of the achievement 𝐴, without any preceding work.
Examples: Pioneering relationships manifest across various indus-

tries and disciplines, highlighting achievements that are the first to
ropose a novel field, problem domain, sub-problem domain, problem,

sub-problem, solution, or support system within an extended EC.

• Chip: The Instruction Set Architecture (ISA) represents the pio-
neering work that defined the instruction set design sub-problem
within the computer architecture design problem and proposed
corresponding mechanisms to address it. The Reduced Instruction
Set Computer (RISC) and Complex Instruction Set Computers
(CISC) are subsequent developments following ISA.

• AI: The first computational model of a neuron, the McCulloh-Pitts
neuron [16], is a pioneering algorithm-like mechanism in the field
of neural networks.

Relationship two: A progressive relationship. Definition: For the achieve-
ments that involve the same component of an extended EC, e.g., a
problem or sub-problem, a progressive relationship indicates subse-
quent achievements are inspired by preceding ones, and the latter
publicly acknowledges this influence through citations.

Formal expression: A progressive relationship between two achieve-
ments 𝐴𝑖 and 𝐴𝑗 is defined as:

𝑆(𝐴𝑖, 𝐴𝑗 ) = 1 ⟺
(

𝑄(𝐴𝑖) = 𝑄(𝐴𝑗 )
)

∧
(

𝐸 𝐶(𝐴𝑖) ∩ 𝐸 𝐶(𝐴𝑗 ) ≠ ∅
)

∧
(

(𝑇 (𝐴𝑖_𝑒) < 𝑇 (𝐴𝑗 _𝑏)) ∨ (𝑇 (𝐴𝑖_𝑏) > 𝑇 (𝐴𝑗 _𝑒))
)

( )

(1)
8

∧ (𝐴𝑖 ∈ 𝑅(𝐴𝑗 )) ∨ (𝐴𝑗 ∈ 𝑅(𝐴𝑖))
Fig. 7. Essential steps of S&T evaluatology.

where:

• 𝑄(𝑎) is the key problem domain, sub-problem domain, problem,
or sub-problem that achievement 𝑎 addresses.

• 𝐸 𝐶(𝑎) denotes the EC involved in achievement 𝑎.
• 𝑇 (𝑎_𝑏) and 𝑇 (𝑎_𝑒) represent the begin time and end time of

achievement 𝑎, respectively. Thus, 𝑇 (𝐴𝑖_𝑒) < 𝑇 (𝐴𝑗 _𝑏) indicates
that achievement 𝐴𝑖 precedes achievement 𝐴𝑗 in time. 𝑇 (𝐴𝑖_𝑏) >
𝑇 (𝐴𝑗 _𝑒) indicates that achievement 𝐴𝑗 precedes achievement 𝐴𝑖
in time.

• R(a) indicates the references of achievement 𝑎. Thus, 𝐴𝑖 ∈ 𝑅(𝐴𝑗 )
indicates achievement 𝐴𝑗 publicly acknowledge the influence of
achievement 𝐴𝑖.

A many-to-one progressive relationship. Definition: A many-to-one pro-
gressive relationship is an instance of a progressive relationship, indi-
cating multiple much preceding achievements inspire a single subse-
quent achievement.

Formal expression: A many-to-one progressive relationship between
achievements 𝐴𝑖1, 𝐴𝑖2, . . . , 𝐴𝑖𝑛 and 𝐴𝑗 is defined as:

𝑆(𝐴𝑖1, 𝐴𝑗 ) ∧ 𝑆(𝐴𝑖2, 𝐴𝑗 ) ∧⋯ ∧ 𝑆(𝐴𝑖𝑛, 𝐴𝑗 ) = 1 (2)

where:

• {𝐴𝑖1, 𝐴𝑖2,… , 𝐴𝑖𝑛} are multiple preceding achievements.
• 𝐴𝑗 is a single subsequent achievement.

An one-to-many progressive relationship. Definition: A one-to-many pro-
gressive relationship is an instance of a progressive relationship, in-
dicating a single preceding achievement inspires multiple subsequent
achievements.

Formal expression: A one-to-many progressive relationship between
achievement 𝐴𝑖 and 𝐴𝑗1, 𝐴𝑗2, . . . , 𝐴𝑗 𝑛 is defined as:
𝑆(𝐴𝑖, 𝐴𝑗1) ∧ 𝑆(𝐴𝑖, 𝐴𝑗2) ∧⋯ ∧ 𝑆(𝐴𝑖, 𝐴𝑗 𝑛) = 1 (3)
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Fig. 8. Two fundamental relationships and two auxiliary relationships among the S&T achievements.
where:

• 𝐴𝑖 is a single preceding achievement.
• {𝐴𝑗1, 𝐴𝑗2,… , 𝐴𝑗 𝑛} are multiple subsequent achievements.

Examples:Progressive relationships demonstrate how knowledge and
technology evolve over time, with each new development building on
the previous ones.

• Chip: The RISC-V instruction set architecture has its origins in
and was developed from the original RISC design.

• AI: LeNet [17,18] is a pioneering convolutional neural network
that inspired AlexNet [19], a milestone in the field of deep
learning.

• Open-sources systems: OpenBLAS [20] is a progressive achieve-
ment of GotoBLAS2 [21].

• Benchmarks: The CH-benCHmark [22] exemplifies a many-to-
one progressive relationship as it integrates aspects from both
the TPC-C [23] and TPC-H [24] benchmarks. This benchmark
is designed to evaluate a hybrid workload by combining the
transactional operations characteristic of TPC-C with the complex
querying features of TPC-H.

3.3.2. Two auxiliary relationships
Two auxiliary relationships contain a parallel relationship and a

connected but not related relationship.

Relationship three: A parallel relationship. Definition:A parallel relation-
ship indicates that the achievements that involve the same compo-
nent of an extended EC, e.g., problem or sub-problem, are proposed
simultaneously within a brief and shared timeframe.

Formal expression: For a set of achievements 𝐴 with each achieve-
ment 𝐴𝑖 ∈ 𝐴, a parallel relationship between two achievements 𝐴𝑖 and
𝐴𝑗 is defined as:

𝑃 (𝐴𝑖, 𝐴𝑗 ) = 1 ⟺
(

𝑄(𝐴𝑖) = 𝑄(𝐴𝑗 )
)

∧
(

𝐸 𝐶(𝐴𝑖) ∩ 𝐸 𝐶(𝐴𝑗 ) ≠ ∅
)

∧
(

[𝑇 (𝐴 _𝑏), 𝑇 (𝐴 _𝑒)] ∩ [𝑇 (𝐴 _𝑏), 𝑇 (𝐴 _𝑒)] ≠ ∅
)

(4)
9

𝑖 𝑖 𝑗 𝑗
where:

• 𝑄(𝑎) is the key problem domain, sub-problem domain, problem,
or sub-problem that achievement 𝑎 addresses.

• 𝐸 𝐶(𝑎) denotes the EC involved in achievement 𝑎.
• 𝑇 (𝑎_𝑏) and 𝑇 (𝑎_𝑒) represent the begin time and end time of

achievement 𝑎, respectively. The achievements 𝐴𝑖 and 𝐴𝑗 are
considered to be in a parallel relationship if their time intervals
overlap.

Exmaples: Parallel relationships occur across multiple fields where
different approaches are employed simultaneously to address a com-
mon issue within a shared timeframe.

• Chip: The Von Neumann architecture and the Harvard architec-
ture are two parallel works in computer system-level design in the
1940s.

• AI: BERT [25] and GPT [26] are two parallel works in the
research of big models.

• Open-sources systems: Ubuntu [27] and CentOS [28] are two
parallel works in open-source software.

• Benchmarks: BigDataBench [29] and BigBench [30] are two
benchmarks specifically designed for evaluating big data systems,
and they epitomize a parallel relationship as both were published
within a year of each other, representing concurrent efforts in the
problem domain of big data benchmarking.

Relationship four: A related but not connected relationship.. Definition:For
the achievements that involve the same component of an extended EC,
e.g., a problem or sub-problem, a related but not connected relation-
ship suggests that these achievements are not proposed simultaneously
within a brief and shared timeframe. Instead, they are related in some
way, but there is no explicit public acknowledgment cited by the later
achievements indicating inspiration or influence from the earlier ones.

Formal expression: A related but not connected relationship char-
acterizes that two achievements are not parallel and have similar
components inheriting the same high-level component of an extended
EC but lack a citation.

This relationship carries three implications. First, two achievements
have similar components inheriting the same high-level component of
an extended EC. Second, they are not parallel in nature, meaning they
are not proposed simultaneously. Third, though the two achievements
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Algorithm 1 Identify four fundamental relationships among numerous S&T achievements
1: Input: 𝐼 𝐷 𝑠, 𝑇 𝑖𝑚𝑒𝑆 𝑡𝑎𝑚𝑝𝑠_𝑏, 𝑇 𝑖𝑚𝑒𝑆 𝑡𝑎𝑚𝑝𝑠_𝑒, 𝑅𝑒𝑓 𝑒𝑟𝑒𝑛𝑐 𝑒𝑠, 𝐸 𝐶 , 𝑃 𝑟𝑜𝑏𝑙 𝑒𝑚𝑠𝑄
2: Output: 𝑃 𝑖𝑜𝑛𝑒𝑒𝑟𝑅𝑒𝑙 𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝, 𝑃 𝑎𝑟𝑎𝑙 𝑙 𝑒𝑙 𝑅𝑒𝑙 𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝, 𝑃 𝑟𝑜𝑔 𝑟𝑒𝑠𝑠𝑖𝑣𝑒𝑅𝑒𝑙 𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝, 𝑅𝑒𝑙 𝑎𝑡𝑒𝑑 𝐵 𝑢𝑡𝑁 𝑜𝑡𝐶 𝑜𝑛𝑛𝑒𝑐 𝑡𝑒𝑑 𝑅𝑒𝑙 𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝
3: Initialize 𝑃 𝑖𝑜𝑛𝑒𝑒𝑟𝑅𝑒𝑙 𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝, 𝑃 𝑎𝑟𝑎𝑙 𝑙 𝑒𝑙 𝑅𝑒𝑙 𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝, 𝑃 𝑟𝑜𝑔 𝑟𝑒𝑠𝑠𝑖𝑣𝑒𝑅𝑒𝑙 𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝, 𝑅𝑒𝑙 𝑎𝑡𝑒𝑑 𝐵 𝑢𝑡𝑁 𝑜𝑡𝐶 𝑜𝑛𝑛𝑒𝑐 𝑡𝑒𝑑 𝑅𝑒𝑙 𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 to empty sets
4: for each achievement 𝑖 do
5: if 𝑖 opens up a new research direction in the form of establishing a new field, problem domain, sub-problem domain, problem, sub-problem,

algorithm or algorithm-like mechanism, implementation, or support system within an extended EC. then
6: Add 𝑖 to 𝑃 𝑖𝑜𝑛𝑒𝑒𝑟𝑅𝑒𝑙 𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝
7: end if
8: end for
9: for each pair of achievements (𝑖, 𝑗) where 𝑖 ≠ 𝑗 do

10: if 𝑃 𝑟𝑜𝑏𝑙 𝑒𝑚𝑠𝑄[𝑖] = 𝑃 𝑟𝑜𝑏𝑙 𝑒𝑚𝑠𝑄[𝑗] then
11: if TimeIntervalsExistOverlap([𝑇 𝑖𝑚𝑒𝑆 𝑡𝑎𝑚𝑝𝑠_𝑏[𝑖], 𝑇 𝑖𝑚𝑒𝑆 𝑡𝑎𝑚𝑝𝑠_𝑒[𝑖]], [𝑇 𝑖𝑚𝑒𝑆 𝑡𝑎𝑚𝑝𝑠_𝑏[𝑗], 𝑇 𝑖𝑚𝑒𝑆 𝑡𝑎𝑚𝑝𝑠_𝑒[𝑗]]) AND 𝐸 𝐶[𝑖] ∩ 𝐸 𝐶[𝑗] ≠ ∅ then
12: Add (𝑖, 𝑗) to 𝑃 𝑎𝑟𝑎𝑙 𝑙 𝑒𝑙 𝑅𝑒𝑙 𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝
13: else if (𝑇 𝑖𝑚𝑒𝑆 𝑡𝑎𝑚𝑝𝑠_𝑒[𝑖] precedes 𝑇 𝑖𝑚𝑒𝑆 𝑡𝑎𝑚𝑝𝑠_𝑏[𝑗] OR 𝑇 𝑖𝑚𝑒𝑆 𝑡𝑎𝑚𝑝𝑠_𝑒[𝑗] precedes 𝑇 𝑖𝑚𝑒𝑆 𝑡𝑎𝑚𝑝𝑠_𝑏[𝑖]) AND (𝑖 ∈ 𝑅𝑒𝑓 𝑒𝑟𝑒𝑛𝑐 𝑒𝑠[𝑗] OR 𝑗 ∈

𝑅𝑒𝑓 𝑒𝑟𝑒𝑛𝑐 𝑒𝑠[𝑖]) AND 𝐸 𝐶[𝑖] ∩ 𝐸 𝐶[𝑗] ≠ ∅ then
14: Add (𝑖, 𝑗) to 𝑃 𝑟𝑜𝑔 𝑟𝑒𝑠𝑠𝑖𝑣𝑒𝑅𝑒𝑙 𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝
15: end if
16: end if
17: end for
18: for each consecutive pair of achievements (𝑖, 𝑖 + 1), sorted by 𝑇 𝑖𝑚𝑒𝑆 𝑡𝑎𝑚𝑝𝑠_𝑒 do
19: if 𝑃 𝑟𝑜𝑏𝑙 𝑒𝑚𝑠𝑄[𝑖] = 𝑃 𝑟𝑜𝑏𝑙 𝑒𝑚𝑠𝑄[𝑖 + 1] AND 𝐴𝑖 ∉ 𝑅𝑒𝑓 𝑒𝑟𝑒𝑛𝑐 𝑒𝑠[𝐴𝑖+1] AND 𝐸 𝐶[𝑖] ∩ 𝐸 𝐶[𝑖 + 1] ≠ ∅ AND TimeIntervalsNoOver-

lap([𝑇 𝑖𝑚𝑒𝑆 𝑡𝑎𝑚𝑝𝑠_𝑏[𝑖], 𝑇 𝑖𝑚𝑒𝑆 𝑡𝑎𝑚𝑝𝑠_𝑒[𝑖]], [𝑇 𝑖𝑚𝑒𝑆 𝑡𝑎𝑚𝑝𝑠_𝑏[𝑖 + 1], 𝑇 𝑖𝑚𝑒𝑆 𝑡𝑎𝑚𝑝𝑠_𝑒[𝑖 + 1]]) then
20: Add (𝑖, 𝑖 + 1) to 𝑅𝑒𝑙 𝑎𝑡𝑒𝑑 𝐵 𝑢𝑡𝑁 𝑜𝑡𝐶 𝑜𝑛𝑛𝑒𝑐 𝑡𝑒𝑑 𝑅𝑒𝑙 𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝
21: end if
22: end for
23: return 𝑃 𝑖𝑜𝑛𝑒𝑒𝑟𝑅𝑒𝑙 𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝, 𝑃 𝑎𝑟𝑎𝑙 𝑙 𝑒𝑙 𝑅𝑒𝑙 𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝, 𝑃 𝑟𝑜𝑔 𝑟𝑒𝑠𝑠𝑖𝑣𝑒𝑅𝑒𝑙 𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝, 𝑅𝑒𝑙 𝑎𝑡𝑒𝑑 𝐵 𝑢𝑡𝑁 𝑜𝑡𝐶 𝑜𝑛𝑛𝑒𝑐 𝑡𝑒𝑑 𝑅𝑒𝑙 𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝
f
t
b

r

have a chronological order, the later ones did not cite the earlier ones.
While we cannot accurately disclose the underlying motivation, we
emphasize the factual nature of these implications.

𝐶(𝐴𝑖, 𝐴𝑖+1) = 1 ⟺
(

𝑄(𝐴𝑖) = 𝑄(𝐴𝑖+1)
)

∧
(

𝐸 𝐶(𝐴𝑖) ∩ 𝐸 𝐶(𝐴𝑗 ) ≠ ∅
)

∧
(

[𝑇 (𝐴𝑖_𝑏), 𝑇 (𝐴𝑖_𝑒)] ∩ [𝑇 (𝐴𝑖+1_𝑏), 𝑇 (𝐴𝑖+1_𝑒)] = ∅)

∧
(

(𝐴𝑖 ∉ 𝑅(𝐴𝑖+1))
)

(5)

where:

• 𝑄(𝑎) is the key problem domain, sub-problem domain, problem,
or sub-problem that achievement 𝑎 addresses.

• 𝐸 𝐶(𝑎) denotes the EC involved in achievement 𝑎.
• 𝑇 (𝑎_𝑏) and 𝑇 (𝑎_𝑒) represent the begin time and end time of

achievement 𝑎, respectively.
• R(a) indicates the references of achievement 𝑎. 𝐴𝑖 ∉ 𝑅(𝐴𝑖+1) indi-

cates achievement 𝐴𝑖 does not in the reference list of achievement
𝐴𝑖+1.

Examples: related but not connected relationships trace the sequence
of achievements that tackle similar issues across different timeframes.
Although these developments may seem interconnected, they often
evolve independently.

• AI: Condconv [31] and Dynamic Convolution [32] are two con-
temporary achievements for dynamical models with similar ap-
proaches.

• Benchmarks: TPC-C [23] and TPC-E [33], both developed to
evaluate Online Transactional Processing (OLTP) databases, ex-
emplify a related but not connected relationship. They sequen-
tially advance the field of database benchmarking without direct
influence from one another.

Fig. 8 illustrates the interplay among S&T achievements governed
y four relationships: pioneering, progressive, parallel, and related but
ot connected. In S&T evaluatology, formalizing the four relationships
s crucial for understanding and analyzing the interaction between
arious scientific achievements.
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3.3.3. The algorithm to identify the four relationships
In this subsection, we present an algorithm designed to discern

our significant types of relationships among a myriad of science and
echnology achievements: pioneering, progressive, parallel, and related
ut not connected relationships. The algorithm operates on a set of

inputs comprising achievement IDs, timestamps, references (key ref-
erences), evaluation conditions (EC), and the key problem domain,
sub-problem domain, problem, or sub-problem Q addressed by each
achievement. Subsequently, it outputs sets of achievement pairs catego-
ized into pioneering, progressive, parallel, or related but not connected

relationships.

Inputs:

• 𝐼 𝐷 𝑠: A list of achievement IDs or an optional list of pairs of
achievement IDs for comparison.

• 𝑇 𝑖𝑚𝑒𝑆 𝑡𝑎𝑚𝑝𝑠_𝑏: Timestamps indicating the beginning time of
achievements.

• 𝑇 𝑖𝑚𝑒𝑆 𝑡𝑎𝑚𝑝𝑠_𝑒: Timestamps indicating the end time of achieve-
ments.

• 𝑅𝑒𝑓 𝑒𝑟𝑒𝑛𝑐 𝑒𝑠: Key references or citations between achievements.
• 𝐸 𝐶: The involved EC components of each achievement.
• 𝑃 𝑟𝑜𝑏𝑙 𝑒𝑚𝑠𝑄: A compilation of key problem domain, sub-problem

domain, problem, or sub-problem Q addressed by each achieve-
ment.

The algorithm proceeds as follows:

1. Identification of Pioneering Relationship:

• achievements that are the first to open up a new research direc-
tion by establishing a new field, problem domain, sub-problem
domain, problem, sub-problem, algorithm or algorithm-like
mechanism, implementation, or support system within an ex-
tended EC.
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2. Identification of Parallel Relationship:

• achievements addressing the same problem domain, sub-problem
domain, problem, or sub-problem are scrutinized.

• achievements occurring within overlapping time intervals are
classified as having a parallel relationship.

3. Identification of Progressive Relationship:

• achievements sharing the same problem domain, sub-problem
domain, problem, or sub-problem are paired.

• successive temporal order and mutual referencing between
achievements, indicate a progressive relationship.

4. Identification of related but not connected Relationship:

• achievements within no-overlapping time intervals are evaluated.

• achievements addressing the same problem domain, sub-problem
domain, problem, or sub-problem, without any mutual referenc-
ing, are considered to have a related but not connected relation-
ship.

Outputs:

• 𝑃 𝑖𝑜𝑛𝑒𝑒𝑟𝑅𝑒𝑙 𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝: A set of achievement pairs in a Pioneering
relationship.

• 𝑃 𝑎𝑟𝑎𝑙 𝑙 𝑒𝑙 𝑅𝑒𝑙 𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝: A set of achievement pairs in a Parallel
relationship.

• 𝑃 𝑟𝑜𝑔 𝑟𝑒𝑠𝑠𝑖𝑣𝑒𝑅𝑒𝑙 𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝: A set of achievement pairs in a Progres-
sive relationship.

• 𝑅𝑒𝑙 𝑎𝑡𝑒𝑑 𝐵 𝑢𝑡𝑁 𝑜𝑡𝐶 𝑜𝑛𝑛𝑒𝑐 𝑡𝑒𝑑 𝑅𝑒𝑙 𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝: A set of achievement pairs
in a related but not connected relationship.

This algorithm offers a systematic approach to unraveling the in-
tricate interplay among S&T achievements, facilitating a deeper under-
tanding of their underlying relationships.

3.4. Establishing the real-world S&T ES

This subsection presents how to model the real-world S&T ES (𝑀𝑟),
as depicted in Fig. 7. The proposed real-world S&T ES encompasses
the entire collection of S&T achievements, each of which is mapped
nto the several components of an extended EC. As the aim is to
ingle out the top achievements, we ignore the other components of
he S&T ecosystem, e.g., the mechanisms and policies within the S&T
cosystems that profoundly shape the evolution of these achievements.

Although this approach can identify all S&T achievements, the real-
world S&T ES (𝑀𝑟) is often susceptible to confounding factors. For
instance, the communities tend to favor highly prestigious scientists,
naturally drawing more attention to the research outcomes of well-
known scientists. This bias stems from a real-world S&T ES (𝑀𝑟) ’s
inability to track the developmental trajectory of S&T achievements and
elucidate the relationships among these achievements.

To address these deficiencies in the real-world S&T ES (𝑀𝑟), we
will develop the perfect S&T EM (𝑀𝑝) in Section 3.5, which system-
tically traces the evolution of S&T achievements and clarifies the

interconnections among them.

3.5. Establishing the perfect S&T EM

The core objective of the perfect S&T EM is to track the evolution
of S&T achievements. This model aims to capture these achievements’
ynamic changes and progressions in terms of four relationships as
hey contribute to the S&T ecosystem. Doing so provides a full-picture
nderstanding of the evolution of S&T within the real-world context.

Section 3.1 has offered a concise overview of the process for estab-
lishing a perfect S&T EM. This subsection will delve into the details,
11
comprehensively exploring the methodology.
The perfect S&T EM aims to track the evolution of the real-world

S&T ES. A perfect S&T EM meticulously tracks the progression of a real-
world S&T ES, from 𝐸 𝑆𝑖 to 𝐸 𝑆𝑖+1, in a rigorous manner. This process
ensures that only one achievement is added from 𝐸 𝑆𝑖 to 𝐸 𝑆𝑖+1. This
framework allows for an accurate description of the evolution of a field,
starting from 𝐸 𝑆0 and ultimately culminating in the development of a
comprehensive real-world S&T ES.

In this framework, we also provide an auxiliary structure to depict
he interconnected relationships among all the achievements. As we
rogress from 𝐸 𝑆0 to 𝐸 𝑆1, from 𝐸 𝑆𝑖, then to 𝐸 𝑆𝑖+1, and ultimately

towards a real-world S&T ES, we adhere to the principle of adding only
ne achievement at a time. When a new achievement is introduced
n 𝐸 𝑆𝑖+1, we compare it to its counterpart in 𝐸 𝑆𝑖 and determine the
elationship based on the rules defined in Section 3.3. This approach en-

sures a systematic and logical evaluation of the evolving achievements
within the S&T evaluation framework.

Meanwhile, as discussed in [6,7], the perfect S&T EM also implies
xploring and understanding the entire spectrum of possibilities within

a research field.
By embracing the concept of a perfect S&T EM, researchers can

ush the boundaries of knowledge and innovation. It encourages them
o explore new avenues, challenge existing assumptions, and uncover
idden potentials. Fig. 7 shows a sample of a perfect S&T EM. The

perfect S&T EM has almost entirely replicated the real-world S&T ES.
Not only can it establish an extended EC, but it can also organize a
oadmap of achievements’ evolution by identifying relationships among

achievements.

3.6. Establishing the pragmatic EM

Building upon the perfect S&T EM, we can establish the pragmatic
valuation model after filtering out non-significant achievements. The
rocess of filtering out non-significant achievements is essentially the
everse of the process outlined in Section 3.5, which explains how an

achievement is added from 𝐸 𝑆𝑖 to 𝐸 𝑆𝑖+1. In the filtering process, we
employ four rounds of filtering rules.

In the first round, our focus is to identify and filter out non-
ignificant achievements from those that demonstrate progressive re-

lationships. For the achievements that have progressive relationships,
as they involve one or several same components of an extended EC,
e.g., a problem domain or a problem, we compare achievements under
the shared components of the extended EC and filter out those that are
not significant.

In the second round, we will identify the achievements that exhibit
parallel relationships or related but not connected relationships to the
chievements preserved in the first round. Once we have compiled
hese achievements, we will proceed with an additional filtering process
o eliminate any non-significant ones.

We categorize an achievement that exhibits a pioneering relation-
hip as a pioneering achievement. In the third round, we will compare
he pioneering achievements under the shared components of the ex-
ended EC and filter out achievements that are deemed non-significant.

In the fourth round, we will identify the achievements that exhibit
parallel relationships or related but not connected relationships to
the pioneering achievements preserved in the third round. Once we
have compiled these achievements, we will proceed with an additional
filtering process to eliminate any non-significant ones.

According to Zhan [34], an achievement can exert a positive change
force over a counterpart by significantly enhancing the simplicity, user
experience, cost-effectiveness, efficiency, or other fundamental features
by several orders of magnitude. On the other hand, significant deviation
from existing technology ecosystems can generate a negative change
force. Additionally, when different usage patterns require users to
incur significant learning costs, it can also result in a negative change

force. This empirical law helps to explain why a certain achievement



BenchCouncil Transactions on Benchmarks, Standards and Evaluations 4 (2024) 100182G. Kang et al.

u
d

n

c

e

r
p

a

p
t

t

i
e
p
t
w
a

t
t
c

m
b
i
t
w
t

S

d
w
i
t
R
S
t
i
i
t
b

d

dominates over the other one.
In theory, it is possible to quantitatively measure two achievements

nder the same extended EC from different dimensions, and each
imension is defined as 𝑋𝑖. To summarize these dimensions, we propose

a simple rule of thumb. We differentiate between positive and negative
signs and sum up the positive or negative values of 𝑙 𝑔(𝑋𝑖) (metrics
from different dimensions), and the formula is shown in Eq. (6). This
approach allows for a holistic assessment of the achievements, taking
into account their various dimensions and providing a comprehensive
understanding of their overall impact. By considering both positive and
egative values, we can gain insights into the strengths and weak-

nesses of each achievement, enabling a more nuanced evaluation and
omparison.

𝑉 =
∑

𝑖
𝑙 𝑔(𝑋𝑖) (6)

4. The top N @X @Y methodology

As a typical case study, this section presents how to apply S&T
valuatology.

We propose Top N @X @Y, aiming to recognize the top N achieve-
ments within a specific period X in a particular field Y. Here, N
epresents the number of top achievements, X represents a specific
eriod, and Y represents a particular field.

To optimize the effectiveness of evaluating science and technology,
 standardized procedure has been devised as outlined below.

First, during a particular timeframe X, we create a real-world S&T
ES that encompasses all achievements. Each achievement is decom-
posed into various components within the specific extended EC.

Second, based on the real-world S&T ES during a timeframe X, we
construct a perfect S&T EM that traces the evolution of S&T achieve-
ments in the field of Y according to the four relationships.

Third, considering the total number of achievements (N), we assign
different percentages that add up to 100% to the achievements that
have pioneering relationships and progressive relationships.

Finally, following the four-round filtering process defined in Sec-
tion 3.6, we filter out non-significant achievements to establish a
ragmatic S&T EM that comprises the top N achievements during a
imeframe X in the field of Y. Please note that the final step is iterative.

Following the aforementioned procedures, the top N achievements
are obtained and can be presented in a tree form, as depicted in Fig. 6.
Subsequently, we can proceed to rank these achievements along with
heir corresponding contributors and institutions.

We propose a simple rule to score each achievement, with higher
scores leading to higher rankings. Initially, each selected achievement
s assigned a score of 1.0 points. However, we give an extra score to
ach pioneering achievement. With each groundbreaking achievement
aving the way for new research directions, we aggregate the cumula-
ive scores of progressive achievements by applying a weight, which
e call a pioneering weight, to the original score of the pioneering
chievement.

Once the scores for each achievement are determined, we proceed
o assess the contribution shares of each author and their respec-
ive institutions. The specific criteria for assessing the main academic
ontributors are as follows:

1. If the number of authors is three or fewer, the score is evenly
distributed among all authors involved.

2. If there are more than three authors, and their contributions are
stated to be equal, the score is evenly divided among all authors.

3. When there are more than three authors and their contributions
are not stated as equal, the first author is assigned a first-author
ratio, i.e., 0.3. In cases where multiple individuals share the first
authorship, the first-author ratio is equally divided among them.
12
The corresponding author (or the last author in the absence
of a designated corresponding author) receives a corresponding
author ratio, i.e., 0.3. Similarly, if multiple individuals share
the corresponding author role, the corresponding author ratio is
evenly distributed among them. The remaining ratio is equally
divided among the other authors.

As per the aforementioned rule, the score assigned to each achieve-
ent is subsequently distributed among the respective contributors

ased on their designated ratios. For every contributor, the correspond-
ng institutions (which may be one or multiple) can be determined at
he time of their contribution. In cases where a contributor is associated
ith multiple institutions, the score will be evenly divided among all

he affiliated institutions.

5. A case study on the top 100 chip achievements

The chip industry plays a crucial role in driving technological
advancements across various sectors, encompassing a vast ecosystem
involved in software, hardware, and application development to har-
ness their capabilities. Utilizing S&T evaluatology principles, the In-
ternational Open Benchmark Council (BenchCouncil) has developed
a well-defined extended EC to assess various aspects of chips com-
prehensively. The first level is the chip field, while the second level
encompasses three problem domains: chip design, chip manufacturing,
and chip packaging. At the third level, chip design involves several sub-
problem domains, including system-level design, logic design, physical
design, timing design, verification, and simulation. Chip manufacturing
covers semiconductors, materials, and optics. Then, using the Top N @X
@Y methodology, BenchCouncil has launched an ambitious initiative to
systematically recognize and honor the most 100 groundbreaking and
influential achievements in chip technology (Chip100) [8].

The current version of Chip100 uses the Top N @X @Y methodol-
ogy, where N stands for 100, X spans from the 1940s (the advent of
the first computer) to 2023, and Y indicates the chip field and the per-
centages of pioneering achievements and progressive achievements are
40% and 60%, respectively. For the ranking in Chip100, the pioneering
weight is set as 0.2, the first-author ratio is 0.3, and the corresponding
author ratio is 0.3.

The major influential accomplishments in chips are encompassed
within Chip100. For example, as depicted in Fig. 6, the Instruction
et Architecture (ISA) was first introduced by Frederick Brooks in

the 1960s. It defines a crucial sub-problem of computer architecture
esign (problem) of the system-level design (sub-problem domain)
ithin the chip design problem domain: the challenge of designing the

nstruction set and proposing effective mechanisms. This concept led
o the development of Complex Instruction Set Computers (CISC) and
educed Instruction Set Computer (RISC). Subsequently, Instruction
et Architectures such as X86 and RISC-V emerged, drawing from
he principles of CISC and RISC. This examination provides valuable
nsights into the connections among these achievements. So, Chip100
dentified and evaluated significant achievements and researchers in
he chip field that could not be discerned through the application of
ibliometrics.

We use the data of Chip100, CSRankings, and the Highly cited Re-
searchers from Elsevier to find the top 100 achievements, contributors,
and institutions in the chip field.

CSRankings uses the metric of the number of publications at the
top-tier conferences for gauging the academic influence of researchers
or their affiliated institutions in computer science. The CSRankings
atabase utilized by us extends across a timeline from 1970 to 2023,

representing the most extensive timeframe available for CSRankings.
The most matched areas include Computer Architecture and Design
Automation.

The Highly Cited Researchers list is the typical metric based on
citations. The main criteria for inclusion are ‘‘the authorship of mul-
tiple Highly Cited Papers™ within the past decade and being ranked
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Table 2
Comparing Chip100 against CSRankings and highly cited researchers from Elsevier.

Methods Top 20 achievements Top 20 contributors Top 20 institutions

Chip100 [8] (By the
end of 2023)

Von Neumann Architecture, ISA,
Stored-program computers, Cache memory,
Boolean Algebra, Floating Point Unit,
Formal Verification, Out-of-Order Execution,
Stream Architecture, Amdahl’s Law, Verilog,
FPGA, Branch Predictor, CC-NUMA, ECC,
EDA, Electrostatic Discharge, Harvard
Architecture, Multi-Core Processors, NOC,
SIMD Architecture, Single-Chip
Multiprocessor, SOC, The Principle of
Locality, and Virtual address translation

John von Neumann, Maurice Wilkes,
Frederick Brooks, David A. Patterson, Gene
Amdahl, George Boole, Robert Tomasulo,
William Kahan, Phil Moorby, John L.
Hennessy, Aart de Geus, Claude Shannon,
Jen-Hsun Huang, John Gustafson, Lisa Su,
Mark Hill, Michael J. Flynn, Michel
Mardiguian, Richard Hamming Ross H.
Freeman, Wayne Wolf, and William M.
Johnson

Princeton University, IBM, Univ. of
California - Berkeley, University of
Cambridge, Stanford University, AMD, Intel,
Massachusetts Institute of Technology,
NVIDIA, Xilinx, University of Michigan,
Gateway Design Automation, ARM, Bell
Labs, Georgia Institute of Technology,
Google, Harvard University, Motorola,
Sandia National Laboratories, Synopsys,
University of Paris South, University of
Pennsylvania, and University of Washington

CSRankings [2] (By
the end of 2023)

Achievements are predicated on the number
of publications in top-tier conferences.

David T. Blaauw, Andrew B. Kahng, Srini
Devadas, Josep Torrellas, Diana Marculescu,
Mark Horowitz, Alberto L. Sangiovanni
Vincentelli, Mahmut T. Kandemir, Jason
Cong, Yuan Xie, Moinuddin K. Qureshi,
Giovanni De Micheli, Sheldon X.D. Tan,
Onur Mutlu, David Z. Pan, Yiran Chen,
ohsen Imani, Zhiru Zhang, Xiaoyao Liang,
and Margaret Martonosi

University of Michigan, Univ. of California -
San Diego, Massachusetts Institute of
Technology, Univ. of Illinois at
Urbana-Champaign, Carnegie Mellon
University, Stanford University, Univ. of
California - Berkeley, Pennsylvania State
University, Univ. of California - Los
Angeles, Univ. of California - Santa Barbara,
Georgia Institute of Technology, EPFL, Univ.
of California - Riverside, ETH Zurich,
University of Texas at Austin, Univ. of
California - Irvine, Duke University,
Shanghai Jiao Tong University, Cornell
University, and Princeton University

Highly cited
researchers [35]
(2023)

Achievements are highly cited papers There are a total of 98 highly cited
researchers in the field of computer science,
listed in no particular order.a

Chinese Academy of Sciences, Harvard
University, Stanford University, National
Institutes of Health, Tsinghua University,
Massachusetts Institute of Technology,
University of California San Diego,
University of Pennsylvania, University of
Oxford, Max Planck Society, University of
California San Francisco, University College
London, University of Hong Kong,
Washington University, University of
California Berkeley, Johns Hopkins
University, Memorial Sloan Kettering Cancer
Center, University of Cambridge, Yale
University, University of California Los
Angeles, and University of Washington
Seattle (based on the summary of highly
cited researchers from all research fields)

a https://clarivate.com/highly-cited-researchers/.
a
A

o

i
C
a

in the top 1% based on citations in Web of Science™’’ [35]. Highly
Cited Researchers™ represent a select group comprising only 0.1% of
researchers in the world. The data of Highly Cited Researchers utilized
by us was released in the year 2023, and hence, the timeframe is from
2013 to 2023, representing the most extensive timeframe available for
this database. The matched area is Computer Science, as it cannot be
narrowed down to focus solely on the chip field.

Table 2 outlines a compilation of the Top 20 outcomes from
hip100, CSRankings, and the Highly Cited Researchers list published
y Elsevier. Throughout the remainder of this section, we will focus
n analyzing the top five achievements, contributors, and institutions
rom various rankings to identify any notable distinctions.

First, we contrast the results of Chip100 with those from CSRank-
ngs. From Table 2, we can see that the results are totally different.

According to the analysis conducted by Chip100 (1940s–2023),
The top five achievements include the Von Neumann Architecture,
ISA, Stored-program computers, Cache memory, and Boolean Algebra.
These achievements are crucial in driving the development of chips.
Conversely, the achievements in CSRankings are solely based on the
volume of publications in top-tier conferences.

Furthermore, the Top five institutions in the chip field encompass
Princeton University (recognized for advancements like Von Neumann

rchitecture, The Principle of Locality, and Virtual address transla-
tion), IBM (recognized for advancements like ISA, CISC, Amdahl’s Law,
and Dennard Scaling Law), UC Berkeley (known for achievements
13
in Floating Point Unit design, RISC architecture, and RISC-V imple-
mentation), University of Cambridge (highlighted for innovations in
Stored-program computers, Cache Memory, and Advanced RISC Ma-
chines), and Stanford University (acknowledged for progress in MIPS
architecture, Superscalar processing, and Single-Chip Multiprocessor
development).

In contrast, CSRankings only emphasizes the number of publications
t top-tier computer science conferences. In the field of Computer
rchitecture and Design Automation, covering the period from 1970

to 2023, the top five research institutions include the University of
Michigan, University of California-San Diego, Massachusetts Institute of
Technology, University of Illinois at Urbana-Champaign, and Carnegie
Mellon University.

Among the top five research institutions selected by CSRankings,
nly the University of Michigan (No. 11), Massachusetts Institute of

Technology (No. 8), and Carnegie Mellon University (No. 24) are
ncluded within the Chip100 (1940s-2023), while the University of
alifornia-San Diego and the University of Illinois at Urbana-Champaign
re not featured.

The Top five contributors in Chip100 are John von Neumann (rec-
ognized for Von Neumann Architecture), Maurice Wilkes (known for
Stored-program computers and Cache Memory mechanism), Frederick
Brooks (credited with ISA), David A. Patterson (recognized for the
monograph ‘‘Computer Architecture: A Quantitative Approach’’, RISC,
and RISC-V), and Gene Amdahl (recognized for CISC and Amdahl’s

https://clarivate.com/highly-cited-researchers/
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Law). Contrasting with this viewpoint, the top five chip research con-
tributors according to CSRankings by the end of 2023 are Onur Mutlu
117 contribution papers), Yuan Xie (116 contribution papers), Jason

Cong (112 contribution papers), Alberto L. Sangiovanni-Vincentelli
(108 contribution papers), and David Z. Pan (104 contribution papers).
The noticeable disparity between these rankings is apparent, with none
of the top five researchers in CSRankings being featured in the Chip100
list spanning from the 1940s to 2023.

Another well-known ranking is the Highly Cited Researchers pub-
ished by Elsevier. The achievements are constrained to highly cited
apers as viewed through the lens of the Highly Cited Researchers. The
op institutions listed in Table 2 are determined based on a roster of

highly cited researchers from all research fields. In 2023, a total of 7125
researchers were recognized as Highly Cited Researchers, including 98
in the field of computer science. It is challenging to conduct precise
searches for top institutions or researchers within a specific and focused
field, such as Chip.

The criteria for this recognition clearly prioritize the impact of
apers from a bibliometric perspective, as indicated by their citation

counts. As a result, none of the top five contributors listed in the
Chip100 have been encompassed in the Highly Cited Researchers list.

n the other hand, none of the 98 Highly Cited Researchers in the field
f computer science have been included in Chip100 as well.

6. Conclusion

This article systematically reveals three severe bibliometrics limi-
tations in recognizing top science and technology achievements and
esearchers. To address these shortcomings, we introduce science and
echnology evaluatology, which exemplifies the application of evalua-
ology in evaluating science and technology achievements. At the heart

of this approach lies the concept of an extended evaluation condition,
ncompassing nine crucial components. We define four relationships
hat illustrate the connections among various achievements based on
heir mapped extended EC components, as well as their temporal
nd citation links: pioneering, progressive, parallel, and related but
ot connected. Within a pioneering or progressive relationship under
n extended evaluation condition, evaluators can effectively compare
hese achievements by carefully addressing the influence of confound-
ng variables. The case studies show the effectiveness of the proposed
ethodology compared with bibliometrics.
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