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A B S T R A C T

This study presents a high-accuracy deep learning-based decision support system for kidney cancer detection. 
The research utilizes a relatively large dataset of 10,000 CT images, including both healthy and tumour-detected 
kidney scans. After data preprocessing and optimization, various deep learning models were evaluated, with 
DenseNet-201 emerging as the top performer, achieving an accuracy of 99.75 %. The study compares multiple 
deep learning architectures, including AlexNet, EfficientNet, Darknet-53, Xception, and DenseNet-201, across 
different learning rates. Performance metrics such as accuracy, precision, sensitivity, F1-score, and specificity are 
analysed using confusion matrices. The proposed system outperforms different deep learning networks, 
demonstrating superior accuracy in kidney cancer detection. The improvement is attributed to effective data 
engineering and hyperparameter optimization of the deep learning networks. This research contributes to the 
field of medical image analysis by providing a robust decision support tool for early and rapid diagnosis of kidney 
cancer. The high accuracy and efficiency of the proposed system make it a promising aid for healthcare pro
fessionals in clinical settings.

Introduction

Kidney cancer, also known as renal cancer, is a serious and poten
tially life-threatening disease that affects thousands of people worldwide 
each year. Exploring the nature of kidney cancer, its causes, symptoms, 
diagnosis, treatment options, and ongoing research efforts are one of the 
most important research topic in nowadays [1].

Kidney cancer primarily develops in the renal cells, which line the 
small tubes within the kidneys. The most common type is renal cell 
carcinoma (RCC), accounting for about 90 % of all kidney cancers [2]. 
According to global statistics, kidney cancer is among the top 10 most 
common cancers in both men and women, with a higher incidence in 
developed countries. The exact cause of kidney cancer remains un
known, but several risk factors have been identified as follows [3]. The 
risk increases with age, with most cases diagnosed in people over 50. 
Tobacco uses significantly increases the risk of developing kidney can
cer. Excess body weight is associated with a higher kidney risk. High 
blood pressure may contribute to kidney cancer development. Certain 
inherited genetic conditions can increase susceptibility. Long-term 
dialysis patients have a higher risk [4] and certain chemicals, like 
trichloroethylene, may increase risk [5].

Early-stage kidney cancer often presents no symptoms. As the 
tumour grows, potential signs may include; blood in urine (hematuria), 
persistent pain in the side or lower back, unexplained weight loss, fa
tigue, Fever not associated with an infection and Anemia [6]. Diagnosis 
of kidney cancer typically involves a combination of methods; physical 
examination, imaging tests (CT scans, MRIs, ultrasounds), blood and 
urine tests and if definite results cannot be obtained with all these 
methods, it is necessary to apply Biopsy. Recent advancements in 
medical imaging and the application of artificial intelligence, particu
larly deep learning algorithms, have significantly improved the accuracy 
and speed of kidney cancer detection [7]. The prognosis for kidney 
cancer varies greatly depending on the stage at diagnosis. Early detec
tion significantly improves survival rates. The five-year survival rate for 
localized kidney cancer (confined to the kidney) is about 93 %, but this 
drops to about 17 % for cases where the cancer has spread to distant 
parts of the body [8]. Therefore, early diagnosis of kidney cancer is very 
important, like all other types of cancer.

In the early years, machine learning algorithms were used for pre
diction systems [9,10]. However, deep learning methods have been 
developed to make predictions directly from images [11]. Deep learning 
techniques have emerged as powerful tools for detecting kidney cancer 
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in medical imaging [12]. These advanced artificial intelligence methods, 
particularly convolutional neural networks (CNNs), can analyse CT 
scans, MRI images, and ultrasounds to identify potential tumours with 
high accuracy [13]. By training on large datasets of labelled kidney 
images, deep learning models learn to recognize subtle patterns and 
features associated with cancerous growths. This approach offers ad
vantageous of improved accuracy and reduced false positives, faster 
analysis of medical images, potential for earlier detection of small or 
atypical tumours and assistance to radiologists in their diagnostic 
workflow.

In this work, a deep learning-based kidney cancer detection system is 
designed to contribute faster diagnosis, higher accuracy and comparison 
of deep learning systems. First of all, enhanced deep learning system 
applied on a relatively large dataset that diagnoses very quickly after 
completing the training on the dataset. The proposed system is more 
successful than all studies in the literature and achieved classification 
success of over %99 with the help of data pre-processing and hyper
parameter tunings. Finally, the superiority of the study is shown by 
comparing it with similar studies.

Related works

Kidney cancer, known as renal cell carcinoma (RCC), represents a 
prevalent type of cancer originating in the renal organs. Conventional 
diagnostic techniques, like imaging modalities and biopsies, often face 
constraints in terms of accuracy and effectiveness. The emergence of 
deep learning, a subset of artificial intelligence, has significantly trans
formed medical diagnostics by introducing innovative improvements in 
the recognition and categorization of renal cancer. This article in
vestigates the application of deep learning in the detection of renal 
cancer, focusing on its methodologies, advantages, and challenges.

Deep learning systems, notably convolutional neural networks 
(CNNs), are heavily utilized in the analysis of medical images [14]. 
Because their ability to operate directly on raw image data is quite high 
[15]. Trained on vast assortments of annotated medical pictures, these 
structures can recognize patterns and abnormalities linked to renal 
cancer. Deep learning is utilized in the examination of computed to
mography (CT) and magnetic resonance imaging (MRI) scans. Ap
proaches for ameliorating pictures, like Contrast Limited Adaptive 
Histogram Equalization (CLAHE) and Contrast Stretching, boost the 
quality of these scans, thereby amplifying the accuracy of tumor 
recognition and categorization[16].

The incorporation of profound learning into the identification of 
renal carcinoma presents a multitude of benefits, such as enhanced ac
curacy. These structures have showcased efficacy levels similar to that of 
medical imaging specialists in identifying renal neoplasms, thereby 
diminishing the incidence of incorrect identifications [17]. Automated 
examination of medical images decreases the duration needed for 
diagnosis, enabling timely clinical judgments. Advanced learning ad
vances non-destructive diagnostic methods, lessening the necessity for 
tissue samplings and their linked hazards. Furthermore, through iden
tifying genetic indicators and tumor subgroups, advanced learning as
sists in formulating individualized treatment tactics for individuals [18]. 
The diagnosis of kidney cancer using deep learning faces several chal
lenges, with one major hurdle being the need for carefully annotated 
datasets to train these models. Creating and annotating such datasets is 
both time-consuming and costly. The lack of transparency in deep 
learning models makes it difficult to understand how they make de
cisions, which complicates the process of validating and accepting them 
for clinical use. The training of deep learning architectures demands 
substantial computational capabilities and resources, which may not be 
readily accessible in all healthcare environments. Ensuring the gener
alizability of models across diverse patient cohorts and imaging pro
tocols is crucial for broad clinical adoption [19,20].

Gujarathi et al. provides a comprehensive survey of the application 
of machine learning and deep learning algorithms in kidney cancer 

analysis. It highlights various deep learning models, particularly con
volutional neural networks (CNNs), that have achieved radiologist-level 
performance in diagnosing kidney cancer [17].

Lu et al. employs a Deep Q-Network (DQN) to combine reinforce
ment learning with deep neural networks for identifying potential risk 
genes associated with clear cell renal cell carcinoma (ccRCC). The study 
highlights the integration of genetic factors in cancer diagnosis using 
deep learning and uses HPRD dataset [21].

Yanto et al. examines the impact of Contrast Limited Adaptive His
togram Equalization (CLAHE) on the classification of kidney tumours 
using CT scans. The enhancement technique significantly improves the 
accuracy of deep learning models in diagnosing kidney cancer and get % 
99.12 accuracy [22].

Uhm et al. proposes a Lesion-Aware Cross-Phase Attention Network 
(LACPANet) for renal tumour subtype classification using multi-phase 
CT scans. The network focuses on lesion characteristics across 
different phases to enhance subtype classification accuracy. Authors use 
Seoul St Marry Hospital CT image dataset and get %94,26 accuracy [23].

Abdulwahhab et al. discusses various deep learning applications in 
medical imaging, with a focus on lung and skin cancer in the review 
article. It highlights how deep learning models, such as convolutional 
neural networks (CNNs), have improved diagnostic accuracy. They 
found significant advancements in the literature in the accurate detec
tion and classification of lung and skin cancers [24].

Rossi et al. explored the benefits of risk-stratified screening for kid
ney cancer. Their research indicates that personalized screening pro
tocols, based on individual risk assessments, can significantly enhance 
early detection rates. This approach may involve genetic, environ
mental, and lifestyle factors [25].

Yang et al. developed novel near-infrared fluorescent dyes for optical 
imaging of kidney cancer. These dyes specifically target cancer cells, 
allowing for more precise detection in both preclinical and clinical set
tings. This method could revolutionize the visualization of kidney tu
mours during surgery [26].

Tuncer and Alkan developed a decision support system for detecting 
renal cell cancer using machine learning algorithms. This system can 
analyse medical images and clinical data to assist radiologists in iden
tifying kidney tumours more accurately. The accuracy of the work is % 
92 with SVM classifier [27].

Although all the studies have achieved success in line with their 
objectives, there are some shortcomings. First of all, the low accuracy 
rate in some studies is a deficiency, especially considering that 50 % 
success is achieved even in the case where no learning is performed in 
classification processes consisting of 2 classes. Secondly, the low number 
of medical images reduces the reliability of the systems. Finally, in some 
studies, it has been observed that the use of a single network and the 
tuning of hyperparameters by default reduces the system performance. 
In order to overcome all these deficiencies, it is tried to show the sta
bility of the system by comparing different networks with each other as 
well as comparing with the studies in the literature. The hyper
parameters with the highest performance of the networks at different 
learning rates were optimised to obtain the highest accuracy rates in the 
literature.

Kidney medical scan classification dataset

Medical Scan Classification Dataset that includes kidney images with 
tumour and healthy kidney images, can be found available online at 
Kaggle [28]. Dataset contain 5000 medical images of healthy patients 
and 5000 medical images of kidney tumour detected patients. When the 
images with a healthy image in Fig. 1 and a tumour detected in Fig. 2 are 
examined, it is seen that it is very difficult for non-experts to detect this 
tumour.

As in the examples, other than horizontal section images out of a 
total of 10,000 images were first removed from the dataset. All of the 
images have 512 × 512 pixels resolution. After deleting the vertical 
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versions of the same images, the study was carried out with a total of 
3251 healthy images and 3152 tumour images and all of the images are 
resized to 224 × 224 pixels for the efficiency of deep learning networks. 
Since vertical angle images are images of the same patients and reduce 
the success of the predictive system, it was deemed appropriate to 
perform training and testing only with horizontal section images. An 
example of removed vertical angle images is shown in Fig. 3.

Materials and method

In order to establish a successful system, classification was first 

carried out using different deep learning structures. AlexNet, Effi
cientNet, Darknet-53, Xception, DenseNet-201 networks offered the best 
performance for the proposed system.

AlexNet is considered the model that started the deep learning rev
olution and holds an important place as one of the cornerstones of 
modern artificial intelligence research. The most important factor in this 
progress was the emergence of GPU designs and computational opera
tions. AlexNet is an important model in the field of deep learning and 
image recognition. Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton 
worked to develop AlexNet in 2012, which gained significant recogni
tion for winning the ImageNet Large Scale Visual Recognition Challenge 
(ILSVRC) competition. AlexNet, with its 8 layers consisting of 5 con
volutional layers and 3 fully connected layers, is widely recognized as a 
groundbreaking model that effectively showcased the power of deep 
learning. The incorporation of the ReLU activation function in AlexNet 
led to improved learning speed and efficiency. To prevent overfitting, 
AlexNet utilizes the dropout technique, which enhances the model’s 
generalization by randomly deactivating specific neurons. Additionally, 
AlexNet leverages GPU parallel processing to optimize training on large 
datasets, resulting in enhanced speed and efficiency[29].

EfficientNet is created by Google and it presents an innovative 
strategy for scaling Convolutional Neural Network (CNN) architectures. 
The unique scaling technique of this model adjusts the width, depth, and 
resolution of various CNN models with great skill. EfficientNet achieves 
higher accuracy using fewer parameters and less computational re
sources. The EfficientNet series includes models ranging from B0 to B7, 
with B0 being the most compact and fastest, and B7 being the largest and 
most powerful. In our study, we used the EfficientNet-B0 model as the 
foundation, with the other versions being scaled adaptations of it. 
Compared to other popular CNN models, EfficientNet provides better 
accuracy and requires less computational resources, especially in eval
uations using the ImageNet dataset. These advantages have made Effi
cientNet a preferred choice for both academic research and industrial 
applications. The innovative scaling methodology and remarkable per
formance of EfficientNet render it exceptionally effective for a diverse 
array of deep learning assignments [30].

The Darknet-53 is a key CNN structure used in the YOLOv3 algo
rithm, developed by Joseph Redmon and Ali Farhadi. Known for its 

Fig. 1. Healthy Medical Image of a Patient.

Fig. 2. Tumour Detected Medical Image of a Patient.

Fig. 3. Vertical Angle Image Example in the Dataset.
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outstanding performance in object recognition tasks, the Darknet-53 
consists of 53 layers, enabling it to capture more complex features and 
achieve higher accuracy. To build a more profound network, Darknet-53 
incorporates Residual Blocks inspired by the ResNet architecture. These 
blocks effectively address the issue of vanishing gradients in deep net
works by using bypass connections, making it easier to train deeper 
models. In comparison to its predecessor, Darknet-19, Darknet-53 offers 
improved accuracy and increased Frames Per Second (FPS) efficiency.. 
Consequently, YOLOv3, which is constructed on Darknet-53, excels in 
executing prompt and effective object recognition [31].

Xception, short for "Extreme Inception," is a system designed to 
improve the structure of Convolutional Neural Networks (CNNs) in deep 
learning. Created by François Chollet and introduced in 2017, Xception 
builds upon Google’s Inception framework and introduces significant 
improvements. It employs depthwise separable convolutions to enhance 
the efficiency of the Inception framework, reducing computational costs 
while improving model accuracy. Xception represents a revolutionary 
approach to enhancing both efficiency and accuracy in deep learning 
frameworks, combining the strengths of the Inception framework with 
the benefits of depthwise separable convolutions to create faster and 
lighter models [32].

DenseNet-201 stands out as a version of the Dense Convolutional 
Network (DenseNet) structure, specifically distinguished by its 201 
layers. The team of Gao Huang, Zhuang Liu, Laurens van der Maaten, 
and Kilian Q. Weinberger introduced DenseNet-201 in 2016, with a 
focus on improving information flow and enhancing gradient propaga
tion through closely connected layers. This design ensures that each 
layer receives input from all previous layers, promoting weight reuse 
and improved information flow. The primary use of 3 × 3 filters in 
DenseNet-201 helps to reduce computational costs. Additionally, 
bottleneck layers in the form of 1 × 1 convolutional layers are integrated 
to further streamline computations and minimize parameter usage. 
Transition layers, consisting of a 1 × 1 convolutional layer and a 2 × 2 
average pooling layer, are incorporated to connect dense blocks and 
manage dimensions. The output of each layer in DenseNet is impacted 
by a specific growth rate, ensuring efficient and effective network per
formance. This dictates how many channels each layer’s output con
tributes. In DenseNet-201, the growth rate is typically set as 32. Dense 
connections among layers enable gradients to propagate more smoothly, 
thus mitigating the vanishing gradient issue. Due to dense connections, 
superior performance can be attained with fewer parameters. This en
ables weights to be reused and renders the model more concise. Den
seNet excels in various computer vision tasks, such as image 
categorization and object recognition, providing high accuracy and ef
ficiency. [33]. DenseNet-201, specifically, is preferred in scenarios that 
require accurate and effective deep learning architectures. It attained 
the highest accuracy level in the research.

A crucial element in network performance is the acquisition speed, a 
hyperparameter that governs the degree to which weights are modified 
during the instruction of a machine learning model. The speed of 
acquiring information specifically controls how much the weights 
change at each step of the instructions. Setting an appropriate acquisi
tion speed allows the model to learn quickly and effectively, while an 
incorrect speed can slow down the learning process. Improvement al
gorithms like gradient descent adjust the model’s weights based on the 
loss function’s derivative, and the acquisition speed determines the 
degree of these adjustments. This highlights the acquisition speed’s 
importance as a critical parameter in training deep learning models. A 
too small acquisition speed can slow down the training, while a too large 
speed can cause instability. Applying different optimization techniques 
to fine-tune the acquisition speed leads to a more efficient and effective 
training process [34].

Network performance metrics

A confusion matrix is a table used to assess the performance of 

classification algorithms by comparing the predicted class labels to the 
real class labels. It is particularly useful for dataset with multiple classes. 
The confusion matrix is comprised of four key components:

1. True Positives (TP): The number of instances correctly classified as 
positive.

2. True Negatives (TN): The number of instances correctly classified as 
negative.

3. False Positives (FP): The number of instances incorrectly classified as 
positive (Type I error).

4. False Negatives (FN): The number of instances incorrectly classified 
as negative (Type II error).

An Example of the Confusion Matrix is shown in Table 1.
To evaluate the confusion matrix, it is necessary to calculate various 

performance metrics. The metrics can be summarized as follows:

1. Accuracy: Proportion of samples that the model predicted correctly.
2. Precision: It shows how many of the positive predictions are actually 

positive.
3. Recall (Sensitivity or True Positive Rate): It shows how many of the 

true positives were predicted correctly.
4. F1-Score: It is the harmonic mean of Precision and Recall. It is a 

balanced performance measure.
5. Specificity (True Negative Rate): It shows how many of the true 

negatives were predicted correctly.

The use of different metrics is important in decision support systems 
such as cancer prediction in the study. For example, if healthcare pro
fessionals are required to examine medical images more carefully, 
especially those containing tumours, the Recall parameter used here will 
show how high the tumour detection rate is.

Proposed network designs

Flow chart of the proposed prediction system is shown in Fig. 4. 
Firstly, Kidney images were extracted from the dataset. Then, all med
ical images were resized to the same size and images with errors and low 
resolutions were deleted. Since there are both horizontal and vertical 
angle images of the same patient in the dataset and since it is difficult to 
detect most kidney tumours in vertical angle images, these images were 
excluded. It was also tested with deep learning systems that it is difficult 
to detect tumours from vertical angled images, and it was determined 
that vertical angled images decreased the success in the training of all 
networks.

After completing all the operations on the dataset, a balanced dataset 
containing 6404 images with approximately equal number of tumour 
and healthy images was obtained. The obtained dataset was randomly 
divided as 75 % training and 25 % test. Then, the most successful 5 
different networks are shown in the study results according to the 
validation results by training on many deep learning networks. Also, 
hyperparameter tuning plays a crucial role in optimizing deep learning 
networks. The choice of optimizer and loss function significantly im
pacts model convergence and performance. Learning rate, a key 
hyperparameter, influences the speed and stability of training; too high 
a rate may cause overshooting, while too low a rate can lead to slow 
convergence. Batch size affects both training speed and generalization, 
with larger batches potentially offering more stable gradients but at the 
cost of memory. The number of epochs determines how many times the 

Table 1 
An example of confusion matrix.

Real Positives Real Negatives

Predicted Positives TP FP
Predicted Negatives FN TN

T. ETEM and M. TEKE                                                                                                                                                                                                                        BenchCouncil Transactions on Benchmarks, Standards and Evaluations 4 (2024) 100174 

4 



model sees the entire dataset, balancing between underfitting and 
overfitting. Careful tuning of these hyperparameters can dramatically 
improve a model’s accuracy, efficiency, and generalization capabilities.

Results

The performance metrics of the network models used in the study 
against the learning rate are given in the Table 2.

As seen in the Table 2 above, the DenseNet-201 network gave the 
highest performance. When the learning rate, one of the most important 
parameters affecting the network performance, was changed, different 
model Xception network gave higher results. While the effect of the 
learning rate on Alexnet is 0.001, it shows 50 % performance; When 
training is performed with a rate of 0.0001, the performance has 
increased up to 98 %. Confusion matrices were used to obtain metrics. 
The confusion matrices of the selected deep learning networks are given 
below in Fig. 5, 6, 7, 8, 9, 10 and 11.

According to all these analyses, it was determined that the best 
performance was obtained when the DenseNet-201 learning rate was 
shown as 0.0001. Apart from DenseNet-201 network, Xception LR=
0.001 and EfficientNet LR= 0.0001 networks can also be used in deci
sion support mechanisms by making improvements. When the confusion 
matrices of these networks are examined, it is very important for deci
sion support systems that the margin of error usually occurs in healthy 

individuals while detecting tumour images very accurately.

Benchmarking

The comparison table of the proposed method and other kidney 
cancer detection systems are shown in Table 3.

In the context of kidney cancer detection, deep learning techniques 
have shown varying degrees of success across different studies [41]. On 
public datasets, researchers like Türk et al. [40] employed a hybrid 
V-Net-based model, yielding an accuracy of 97.7 % with 210 CT images, 
while Ma et al. [39] proposed a Heterogeneous Modified Artificial 
Neural Network (HMANN) and achieved an accuracy of 97.5 % with 400 
CT scans.

In comparison, our proposed method utilizing the DenseNet-201 
architecture significantly outperformed these models, achieving an ac
curacy of 99.75 % on a much larger public dataset consisting of 10,000 
CT images. This improvement is attributed to the extensive dataset size, 
effective preprocessing steps, and hyperparameter optimization, making 
it one of the most reliable systems for kidney tumor detection to date. 
The results suggest that our model not only generalizes well to unseen 
data but also sets a new benchmark in terms of accuracy, making it a 
strong candidate for integration into clinical decision support systems.

Fig. 4. Proposed System Flow Chart.

Table 2 
Score of the deployed models.

Deep Learning Model Learning Rate Accuracy Precision Sensitivity F1-Score Specificity

AlexNet 0.001 0.5078 0.25 0.50 0.50 .050
EfficientNet-b0 0.001 0.9550 0.9581 0.9557 0.9550 0.9557
DarkNet-53 0.001 0.7820 0.8465 0.7854 0.7727 0.7854
DenseNet-201 0.001 0.9750 0.9758 0.9754 0.9750 0.9754
Xception 0.001 0.9950 0.9950 0.9951 0.9950 0.9951
AlexNet 0.0001 0.9813 0.9813 0.9814 0.9813 0.9814
EfficientNet-b0 0.0001 0.9582 0.9608 0.9588 0.9581 0.9608
DarkNet-53 0.0001 0.9663 0.9675 0.9667 0.9663 0.9667
DenseNet-201 0.0001 0.9975 0.9975 0.9975 0.9975 0.9975
Xception 0.0001 0.9794 0.9799 0.9797 0.9794 0.9797
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Fig. 5. Confusion matrice of AlexNet LR: 0,0001.

Fig. 6. Confusion matrice of DarkNet-53 LR: 0,0001.

Fig. 7. Confusion matrice of DenseNet-201 LR: 0,0001.
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Fig. 8. Confusion matrice of EfficientNet LR: 0,0001.

Fig. 9. Confusion matrice of DarkNet-53 LR: 0,001.

Fig. 10. Confusion matrice of DenseNet-201 LR: 0,001.
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Conclusions

The importance of early and rapid diagnosis of serious diseases such 
as cancer is increasing day by day. At this point, although artificial in
telligence systems are not yet in a position to take over completely, they 
offer great support to users even as a decision support system. In this 
study, a deep learning-based prediction system has been developed for 
kidney cancer. As can be seen in Table 3, the highest success was ob
tained in the comparison of the studies. The improvement of the accu
racy was achieved as a result of the data engineering done on the dataset 
and by optimising the hyper-parameters of the deep learning networks.

For future studies, it is planned to realise a system in which deep 
learning networks supported by larger datasets make fully automatic 
decisions with high success. Also, feature extraction methods can be 
applied to achieve the best results for the predictive system.
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[11] G. Buyrukoğlu, S. Buyrukoğlu, Z. Topalcengiz, Comparing regression models with 
count data to artificial neural network and ensemble models for prediction of 
generic escherichia coli population in agricultural ponds based on weather station 
measurements, Microb. Risk. Anal. 19 (Dec. 2021), https://doi.org/10.1016/J. 
MRAN.2021.100171.

[12] J. Nyman, et al., Spatially aware deep learning reveals tumor heterogeneity 
patterns that encode distinct kidney cancer states, Cell Rep. Med. 4 (9) (Sep. 2023) 
101189, https://doi.org/10.1016/J.XCRM.2023.101189.

[13] M. Mousavi, S. Hosseini, A deep convolutional neural network approach using 
medical image classification, BMC. Med. Inform. Decis. Mak. 24 (1) (Aug. 2024) 
239, https://doi.org/10.1186/s12911-024-02646-5.
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