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Modern data centers provide the foundational infrastructure of cloud computing. Workload generation, which
involves simulating or constructing tasks and transactions to replicate the actual resource usage patterns of
real-world systems or applications, plays essential role for efficient resource management in these centers.
Data center traces, rich in information about workload execution and resource utilization, are thus ideal
data for workload generation. Traditional traces provide detailed temporal resource usage data to enable
fine-grained workload generation. However, modern data centers tend to favor tracing statistical metrics to
reduce overhead. Therefore the accurate reconstruction of temporal resource consumption without detailed,
temporized trace information become a major challenge for trace-based workload generation. To address this
challenge, we propose STWGEN, a novel method that leverages statistical trace data for workload generation.
STWGEN is specifically designed to generate the batch task workloads based on Alibaba trace. STWGEN
contains two key components: a suite of C program-based flexible workload building blocks and a heuristic
strategy to assemble building blocks for workload generation. Both components are carefully designed to
reproduce synthetic batch tasks that closely replicate the observed resource usage patterns in a representative
data center. Experimental results demonstrate that STWGEN outperforms state-of-the-art workload generation
methods as it emulates workload-level and machine-level resource usage in much higher accuracy.

1. Introduction led to the prevailing role of trace-based workload emulations in the
domain [16,21]. The trace data thoroughly record resource utilization

With the rapid evolution of computing and networking technolo- of applications at each monitoring cycle, providing detailed temporal

gies, modern data centers have become the primary infrastructural
of cloud computing [1-3]. A fundamental challenge in modern data
centers is how to efficiently utilize the resources through resource
management [4-7]. This encompasses various techniques, including
capacity planning, resource scheduling, and resource isolation [8—
13]. The essence of resource management is to schedule workloads
and allocate resources for maximized resource utilization. In order to
refine the strategy of resource allocation, we should always understand
the resource consumption of workload first. However, the diversity of
workloads and the restricted access to underlining source code prevent
us from in-depth analyzing of the hosted applications. As a result, the
generation of synthetic workloads which mimic the resource consump-

insights to accurately emulate workloads. The trace-based workload
generation first extracts resource consumption patterns from trace data,
then constructs modular building blocks, and finally assembles building
blocks to emulate the original resource consumption patterns.
Previous research on workload generation are mainly conducted
in the coarse-grained manner [22-26]. They use some pre-defined
benchmark applications (e.g., TPC bench [27]) as building blocks to
generate the synthetic workloads that have the similar resource usage
statistics (such as the average, maximum statistics and the probability
distributions) as those recorded in trace data. Such approaches fall

tion of cloud applications has become a critical research area [14-17].
The ultimate goal of workload generation is to replicate the resource
consumption patterns observed in real data center applications.

In cloud data centers, tracing systems can meticulously capture the
resource consumption and execution dynamics of workloads, subse-
quently producing the trace data [18-20]. Such trace collection has
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short in faithfully replicate the workload’s resource usage sequence
along execution, hence are not good at accurately reproducing the
temporal resource utilization patterns in data centers. This limitation
hampers their capability in supporting fine-grained resource scheduling
in data centers.
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Fine-grained workload generation has emerged as a prominent so-
lution [28,29]. These methods strive to precisely replicate the intricate
details of a workload’s resource utilization throughout every moment
of its runtime. They heavily depend on the trace data, which cap-
tures the workload’s explicit temporal resource usage patterns and
micro-architectural behaviors [18], to mimic workloads that exactly
correspond to their recorded resource usage sequences in the trace.
However, as the scales of data centers continue to expand, the com-
plexity of trace information rises exponentially, which often results in
substantial resource and time cost during the trace collection [30].
To minimize the overhead, modern data centers tend to trace statis-
tical metrics rather than detailed temporal consumption and granular
workload behaviors. For instance, in the Alibaba clusterdata2018 trace
(Alibaba trace, in short) [19], the most recent large-scale data center
trace, the resource usage of batch workloads (namely, batch tasks)
is merely recorded as the maximum and average statistics. Conse-
quently, the challenge of accurately reconstructing temporal resource
consumption of workloads without the detailed and temporalized trace
information remains an open issue.

To address the challenge, we propose Statistical Trace-based Work-
load Generation (STWGEN) as the innovative method to leverage statis-
tical trace data for workload generation. STWGEN is originally designed
to generate batch task workloads based on Alibaba trace, it can also
easily be extended for more general workload generation based on
statistical trace data. STWGEN is comprised of two components: a
suite of C program-based [31] flexible workload building blocks and a
heuristic strategy to assemble building blocks for workload generation.
STWGEN integrates the two components with a sophisticated workload
submission mechanism, enabling the generation of synthetic work-
loads that can faithfully reproduce the observed resource consumption
patterns in modern data centers. Our main contributions are as follows:

Firstly, with in-depth analysis of Alibaba trace, we characterized
the resource usage patterns of batch task workloads and identified
some typical and helpful features, including the weak correlation be-
tween CPU and Memory usage, the significant variation in CPU usage,
the stable memory consumption and the differentiated resource usage
reproduction demands among tasks.

Secondly, we developed fundamental workload building blocks to
simulate CPU and memory usage respectively. These blocks are de-
signed as C programs to do parameterized amount of computation and
memory allocation operations for replicating CPU and memory usage
of given scale. Moreover, the building blocks can dynamically adjust
resource utilization in execution.

Thirdly, we propose a heuristic strategy to reconstruct the temporal
resource usage of batch tasks. The strategy integrates the Simulated
Annealing algorithm and the JAYA algorithm to find the optimal solu-
tion for reconstructing the maximum and average resource utilization
statistics of batch tasks and reproducing the machine-level resource
utilization.

Lastly, we performed a thorough evaluation on STWGEN. The ex-
perimental results demonstrate that, based on Alibaba trace, STWGEN
can generate batch task workloads with a average deviation of less than
14.1% on average and maximum task-level resource usage statistics,
and a average deviation of less than 14.3% on machine-level total re-
source usage. Compared to the state-of-art methods, STWGEN achieves
up to 98.6% reduction in the above deviations.

The remaining sections of the paper are organized as follows: Sec-
tion 2 introduces the Alibaba Trace and formulates the workload
generation problem. Section 3 characterizes the workloads in Alibaba
Trace. Section 4 elaborates on the proposed STWGEN method. Section 5
is dedicated to the evaluation of STWGEN method. Section 6 reviews
the literature and Section 7 concludes the paper.

2. Background and problem formulation
We take Alibaba trace as the target for the workload generation.

We first describe the detail information of Alibaba trace and formally
define the trace-based workload generation problem.
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2.1. Alibaba trace

Released in 2018, the Alibaba trace [18,32,33] captures the work-
load behavior and resource usage of a production cluster within Al-
ibaba, comprising approximately 4,000 physical servers, over a period
of eight days. Both online services and batch jobs are co-located in this
cluster. We focus on the batch workload generation in this paper. In
Alibaba cluster, one batch job consists of one or more batch tasks. A
batch task can be executed in parallel on multiple machines, known
as task instances in Alibaba trace. Batch tasks are the basic execution
units of a batch workload and also the resource consumption ele-
ments. Reproducing task-level resource utilization is the cornerstone for
conducting a fine-grained analysis of cluster resource usage patterns.

In Alibaba trace, the batch task, online service (hosted in containers)
and machine_usage resource usage data are recorded in batch instance,
container usage and machine-usage table, respectively. Among these
tables, machine-usage and container usage capture the respective re-
source usage information every 30 s with the aligned timestamps.
However, batch instance only logs the average and maximal statistics
of batch tasks’ resource usage during their executions. In addition to
the resource usage statistics for each individual batch task, the total
amount of resource usage of concurrent tasks executed on a machine
at a recording time point can be derived by substracting the container
resource usage data in container usage table from the server resource
usage data in machine usage table at that specific moment. These two
types of information constitute the basis for generating the batch task
workload.

2.2. Problem definition

Our work focuses on the batch task workload generation based
on Alibaba trace. We aim to reproduce the usage of two primary re-
sources that batch workload consume: CPU and memory. The problem
is formulated as follows.

Given a data center with massive machines, the resource usage
of an individual machine at time point i, can be described as un; =
(uc;,um;), where, uc; and um; represent its CPU and memory usage at
time i, respectively. During time period 7, there are N batch tasks
executed on this machine, denoting as T'S = (s, ts, ..., ts ). Each task
can be represent as ts; = (cavg;, mavg;, cmax;, mmax;, st;,et;), where,
cavg; and mavg; are the average CPU and memory usage of task j,
respectively.cmax; and mmax; are the maximal CPU and memory usage
of task j, respectively. st; and et; are the starting time and ending time
of task j, respectively. According to the starting and ending time of
tasks, at any specific recording time point i, there is a subset of tasks
executed concurrently on a machine, denoted as CT;,CT; C TS.

Workload generation in this paper is to construct the synthetic
workloads for tasks in TS, each with a dynamic resource usage se-
quence during execution, denoted as rs; = r; ., ....r;,, Where, r;; =
(re; ;,rm; ;). represent the CPU and memory usage of task i at the jth
time point. We define DIV, () as the deviation of the resource usage
statistics of the generated batch task workload from the corresponding
statistical data recorded in the trace, and DIV ,,,.in.() as the deviation
of the cumulative resource usage of all concurrently executed synthetic
batch task workloads on a machine from their corresponding machine-
level total resource usage recorded in the trace. Our goal can be
expressed as follows:

min(DIV 4 (ts;.rs)).j € [1,N] @

min(DIV ,, cpine(un;, CT;)),i €T 2
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Fig. 1. Correlation between CPU and memory Usage.

3. Insight from Alibaba trace

In this section, we first conduct quantitative observations on the
resource usage of batch tasks in Alibaba trace, and then extract insights
into workload generation from these observations. Our observations are
based on the batch instance table in Alibaba trace.

Observation #1: Relatively Weak Correlation between CPU and
Memory Usage

To analyze whether the CPU and memory usage during batch task
executions exhibit a strong correlation, we adopt Pearson Correlation
Coefficient (PCC) measurement [34]. Specifically, we randomly parti-
tion all batch tasks recorded in Alibaba trace into groups, each with
around 50,000 tasks. Within each group, we measure the PCC between
the batch tasks’ average CPU usage and average memory usage. The
statistical result is shown in Fig. 1. The average absolute PCC value
across all groups is 0.09, and more than 97.2% groups have the absolute
PCC value less than 0.4 (which is the typical threshold for the moderate
correlation). The result statistically proves a weak correlation between
CPU usage and memory usage during the batch task execution.

Guide for design: This observation inspires us to employ CPU-
intensive and memory-intensive operations to independently simulate
the CPU and memory usage of batch tasks. By accurately simulating
the usage of each resource, we can generate a complete synthetic task
workload by assembling the employed operations and making some
slight refinements.

Observation #2: Significant Variation in the CPU usage

With only the statistical data available, we adopt the max-to-
average ratio to quantify the batch task’s CPU usage variation during
runtime. Intuitively, a higher ratio represents a greater variation. Fig. 2
demonstrates the CDF (Cumulative Distribution Function) of the max-
to-average ratio of all batch tasks in Alibaba trace, with the 82.5th
percentile being 3, the 90th percentile being 7.56, the 95th percentile
being 17.48 and the 99th percentile being 29.55. This result indicates
that a considerable portion of tasks experience significant fluctuations
in CPU resource usage during their runtime, and some tasks undergo a
surge in CPU resource utilization.

Guide for design: The significant variation of CPU usage neces-
sitates that the generated task workload be able to dynamically and
agilely produce the varying CPU resource consumptions during run-
time. Further, the great gap between the maximum and average statis-
tics points to a large search space when reconstructing the task’s
resource usage sequence. A computationally-efficient algorithm is thus
required to generate task workloads that conform to both workload and
machine-level resource usage patterns recorded in the trace.

Observation #3: Low and stable Memory Usage

In the Alibaba trace, the batch task’s average memory usage value
ranges from O to 100, representing the percentage of total memory
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utilized on its host machine. We analyzed its distribution and found
that the 90th, 95th, and 99th percentile values are 0.35, 0.77 and 2.85,
respectively. Furthermore, we collected data on the max-to-average
ratio of memory usage. As depicted in Fig. 3, less than 10% of batch
tasks exhibit a ratio exceeding 1.69, and the 95th percentile value
stands at 2.24. These findings indicate that, in comparison to CPU
usage, the batch task’s memory usage is relatively stable. Even though
some tasks have a max-to-average ratio greater than 9.56 (that is, at
the 99th percentile), their absolute variations in memory consumption
remains small due to the low average base.

Guide for design: Due to the low memory usage of batch tasks, we
should carefully select memory-intensive synthetic workload operations
with minimal resource overhead to prevent simulation deviations. In
addition, given the memory usage stability, the selected operations
should maintain consistent memory occupancy so as to minimize the
overhead associated with frequent memory allocation requests.

Observation #4: Differentiated Early Reproduction Demands
among tasks

To accurately replicate the resource usage pattern of the batch
task, it is crucial to explicitly reproduce the maximum statistic at
least once during the task’s execution. Specifically, in the context
of workload generation for concurrent tasks running on a particular
machine, tasks that exhibit high resource usage peaks and have short
execution times should strive to reproduce their peak resource usage
promptly during the early stages of their execution, so as to mitigate the
risk of such tasks being unable to reach their peak usage later on due
to the time point-wise machine-level total resource usage constraints
recorded in the trace. To analyze the demand for early peak resource



Y. Liang et al.

—=—=- 99th percentile
——=- 90th percentile
—=—= 80th percentile

B e

200 300 400
CPU ERD

(=]
=
o4

(a) CPU

CDF

—=—=- 99th percentile
——=- 90th percentile
—=—= 80th percentile

0.00 0.05 0.‘10 O.lILS O.éO 0.25 0.‘30 0.‘35 0.“10
memory ERD

(b) memory

Fig. 4. Distribution of ERD.

usage reproduction among batch tasks, we utilize a metric called Early
Reproducing Demand (ERD). ERD is defined as the ratio of the batch
task’s maximal resource usage to its execution duration. The formula
of ERD is as follows:

ERD = max_usage (3)

exec_duration

Where, max_usage is the batch task’s maximal resource usage, exec_time
is its execution duration (measured in second). Fig. 4 depicts the
distributions of the Early Reproducing Demand (ERD) for CPU and
memory resources. It clearly shows that 80% of the tasks have an ERD
for CPU resources falling below a threshold 31.33, suggesting a lower
need for prompt peak resource usage reproduction. The remaining
20% of tasks, however, exhibit a higher ERD ranging from 32 to 449,
indicating a more urgent demand to reproduce their peak resource
usage early on. A comparable trend is observed for memory resources,
where a substantial proportion of tasks demonstrate a high ERD within
the range of 0.015 to 0.399.

Guide for design: The workload generation should prioritizes the
tasks with the high ERD to reproduce their maximal resource usage,
thus alleviating the potential simulation deviations on the workload-
level resource usage statistics.

4. Workload construction and generation

Work in this paper focuses on how to generate synthetic batch task
workloads based on traces lacking explicit temporal information on

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 4 (2024) 100164

task-level resource usage. The objective is to ensure the generated task
workloads can not only accurately mirror their statistical resource us-
age characteristics extracted from the trace but also reproduce temporal
resource usage patterns at the machine level. To this end, STWGEN
is proposed in this paper. As shown in Fig. 5, there are two critical
parts in STWGEN: workload building block construction and workload
sequence generation. Workload building block construction aims to
develop parameterized program units that can precisely generate the
required resource usage based on parameter settings. With the absence
of explicit task-level temporal resource usage data in the trace, work-
load sequence generation centers on reconstructing the resource usage
time series formed during a batch task execution and taking the recon-
structed sequence as a foundation to generate the complete workload
program through assembling the pertinent building blocks. In addition,
STWGEN incorporates a workload submission mechanism, enabling the
practical replay of synthetic workloads reliant on information from
trace data.

4.1. Construction of workload building blocks

In our work, a workload building block is defined as a customized
C program segment that is capable of mimicing the desired resource
usage during batch task execution. Based on observation #1 outlined
in Section 3, we have designed workload building blocks to produce
CPU usage and memory usage separately. To ensure accurate and
efficient production of diverse resource usages, the designed building
blocks must fulfill two prerequisites: they must possess lightweight
computational logic, and their executions must be controllable. To
achieve lightweightness, we opt for the most simple and straightfor-
ward operations as the components of the workload building blocks.
To ensure controllability, we have designed the building blocks to
be parameterized, allowing us to adjust their resource consumption
through parameter settings.

4.1.1. Building block for CPU usage

This module is designed to simulate the batch task’s CPU resource
consumption. Its primary function is to use loop sum calculations to
mimic CPU resource usage. As a computationally intensive operation,
the sum operation can maximize the utilization of CPU resources. To
generate varying CPU resource utilization, we have integrated sleep
operations within the loop body to simulate idle states of CPU, thereby
adjusting the amount of CPU resource usage during a specific time
period. The number of loop iterations and the sleep durations are set as
the parameters of this building block. In the current implementation,
the parameters are adjusted on a one-second interval. The duration
of the sleep operation for a one-second period is determined based
on the targeted CPU utilization during that period. For instance, if
the desired CPU utilization is 70%, the sleep duration would be set
to 0.3 s. By tuning these parameters, we can precisely control the
synthetic workload’s CPU usage at any time point during execution.
Furthermore, if a batch task’s CPU usage surpasses the capacity of a
single core (i.e., exceeds 100%), this building block can automatically
create multiple threads, with each thread executing the same loop
operation and sharing the sleep duration setting. The accumulation of
CPU usage across multiple threads can accurately simulate the CPU
usage of the task.

4.1.2. Building block for memory usage

This module is responsible for simulating batch task’s memory
consumption recorded in trace data. This building block consists of a
loop program. Echoing Observation #3 outlined in Section 3, we adopt
GLIBC memory [35] management functions within the loop body to
simulate the occupation of various amounts of memory space during
the task execution. The loop iteration is executed every one second.

In particular, in the first loop iteration, the malloc and memset func-
tion is called to allocate the desired amount of memory space, referred
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to as the initial memory allocation. In the subsequent loop iterations,
the allocated memory space is adjusted/resized with realloc function. If
the desired amount of allocated memory is less than that in previous
iteration, realloc function simply truncate the already allocated memory
space. Conversely, if it is greater, the memset function is called to set
values for the newly allocated space. The adoption of realloc function
stems from Observation #3 in Section 3. Since the memory usage of
tasks undergoes minor changes during their execution, realloc function
effectively makes slight adjustments to the existing allocated memory
space to simulate such changes. This approach eliminates the time
overhead and the extra CPU consumption associated with frequently
allocating and releasing memory across loop iterations using malloc
and free functions, thereby enhancing the efficiency of memory usage
reproduction and avoiding the bias in CPU usage simulation.

Furthermore, operations like malloc and realloc introduce additional
memory space overhead due to metadata recording, heap and stack
occupation. This overhead becomes particularly significant when the
required memory usage is comparatively small, such as in tasks from
Alibaba traces that utilize approximately 3% of the total machine
memory. This results in a considerable deviation between the memory
usage generated by our building block and the actual required usage.
To address this issue, we sample overhead data by invoking the malloc
and realloc functions with varying amounts of required memory allo-
cation and reallocation. Subsequently, we utilize these sampled data to
construct a linear overhead prediction function. This function aids us
in precisely adjusting the building block parameters, thereby ensuring
that the resulting memory resource usage aligns precisely with our
expectations.

4.2. Workload sequence generation

We describe the reconstruction method for batch task-level resource
usage sequence in this section and propose the mechanism to generate
the complete workload program in section 4.3.

The goal of sequence reconstruction is to restore resource usage
at each time point throughout the execution of a batch task. This
reconstruction must guarantee that the statistical properties of resource
usage, specifically the average and maximum values, for a synthetic

task workload are in alignment with the corresponding information ex-
tracted from the trace data. Additionally, it is crucial to ensure that the
aggregated resource usage of concurrent synthetic tasks running on a
specific machine accurately reflects the overall resource usage observed
on that machine in the trace data. We thus formulate the resource
usage sequence reconstruction issue as a multi-objective optimization
problem and adopt a heuristic algorithm to solve it.

We adopt the Simulated Annealing (SA) heuristic to find the op-
timized solution for resource sequence reconstruction. SA heuristic
algorithm mimics the physical annealing process to search for optimal
solutions to complex problems [36,37].

When designing SA for a specific application, four key points should
be figured out: the cost function definition, the initial solution selec-
tion, the neighboring solution generation, and the acceptance criterion
determination. Algorithm 1 proposes a detailed framework for batch
task resource sequence reconstruction using Simulated Annealing (SA).
It commences with an initial workload resource sequence solution and
an initial temperature T,, and then iteratively explores the search
space while gradually reducing the temperature according to a cooling
schedule. In each iteration, a new candidate solution (neighbor) is
generated from the current solution, and its acceptance is determined
in a probabilistic manner based on a specified acceptance criterion.

The cost function in SA algorithm serves to evaluate the quality of
each candidate solution during the optimization process. In our design,
the cost function is defined based on Egs. (1) (2):

CostFunction = DIV ;g + DIV . pine )

In our work, the resource usage sequence reconstruction for CPU
and memory resources is conducted separately. In each instance, the re-
construction deviation is solely calculated based on the target resource.
In addition, the task-level deviation DIV, primarily comprises two
components: deviations in both average and maximum resource usage
statistics. We incorporate these deviations linearly in the cost function.
Evidently, this cost function takes into account both the machine-
level and task-level resource sequence reconstruction errors, thereby
effectively guiding the algorithm towards finding an optimal solution.
The acceptance criterion is used to determine whether a newly gener-
ated solution should be accepted or rejected. We adopt the Metropolis
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Algorithm 1: SA-Based Workload Sequence Generation

Input : Batch task resource usage statistic list Task list, Time
period TP, Machine resource usage sequence
Machine_seq, Initial temperature T;,, Cooling rate CR,
Temperature threshold min T

Output: Optimal solution for batch tasks’ resource usage
sequences Solution

1 Generate initial solutions for all batch tasks as init_solution.
2 Set current_solution as init_solution.

3 Set Current Temperature T as Tj,.

4 while T > min. T do

5 Calculate P,..opqnce s the acceptance probability.

6 Calculate current_cost for current_solution.

7 if random() > 0.8 then

8 ‘ generate neighbor_solution by naive search method.
9 else

10 generate neighbor_solution by JAYA algorithm with input

Of Pacceptance'

11 end

12 Calculate neighbor_solution’s cost as neighbor_cost.

13 if neighbor cost < current cost then

14 ‘ set current_solution as neighbor_solution.

15 else

16 if random(Q) > Pycceprance(T) then

17 ‘ set current_solution as neighbor_solution.

18 end

19 end

20 Decrease temperature 7' by CR.
21 end

22 Return Solution = current_solution.

criterion in our design which can be described as follows: if the cost of
the neighboring solution (that is, the newly generated solution) is less
than that of the current solution, it will be accepted. Otherwise, it will
be accepted with the probability of P, ..piance: Pacceprance 1 calculated
based on the current annealing temperature 7.

neighbor_cost—current_cost

P, =e T %)

acceptance

The efficacy of the final resource usage sequence significantly de-
pends on the quality of the initial solution and the methodology for
generating neighboring solutions. We will delve into the specifics of
these aspects in the subsequent sections.

4.2.1. Initial solution selection

To enhance the reproducibility quality of the final solution, we
should strive to select an initial resource usage sequence for a batch
task that aligns with its corresponding statistics, particularly in terms
of the average and maximal resource usage recorded in trace data.
This selection must adhere to the constraint of the machine-level total
resource utilization.

Based on observation #4 in Section 3, the initial solution selection
algorithm is outlined in Algorithm 2. For each task, a preliminary
resource usage sequence is generated, following a normal distribution,
and derived from its statistical average (line #2). This preliminary
sequence constitutes the initial step towards the creation of the final
initial solution. Initially, all tasks are designated as ‘“‘unallocated”,
indicating that they have not yet reached their maximum resource
usage during any point of execution (line#3). Transitioning a workload
to the ‘““allocated” state signifies that it has achieved its maximum
resource usage at a specific moment during its execution time.

By sequentially traversing each moment in time over the given
period, concurrent tasks executing at a specific time point are sorted
in descending order based on their Early Reproduction Demand (ERD),
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as defined in observation #4 (Line #8). These tasks are then examined
sequentially. If a task remains in the “unallocated” state and the ma-
chine’s remaining resource usage quotas is still sufficient, it is marked
as “allocated”, and its resource usage is set to its maximum value for
that specific sampling point (Line #9 -#12). If not, the workload is
allocated the remaining resource usage quotas available on the machine
(line #14 - #15).

By utilizing an initial sequence generation based on average re-
source usage, the chosen initial solution for a batch task has a high
likelihood of aligning with its corresponding average statistic. Further-
more, by employing ERD as the task priority, the proposed method
ensures that tasks with higher maximum resource usage statistics and
shorter execution durations are prioritized for reproducing their peak
resource usage.

Algorithm 2: Initial Workload Sequence Solution Selection

Input : Batch task resource usage statistic list Task_list, Time
period TP, Machine resource usage sequence
Machine_seq.

Output: Initial solution for batch tasks’ resource usage
sequences Solution

1 for task; in Task_list do

2 set Solution|task;] for task; following normal distribution(u
is the average resource usage of ask;).

3 Calculate ERD of task; and set task; state as ‘unallocated’.

4 end

5 for timestamp; in TP do

6 Set Resource_left as the total resource usage at timestamp; in

M achine_seq.
while Resource left > 0 do
8 Find the concurrent task at timestamp; with the maximal
ERD and ’unallocated’ state as Tasky,,-
9 if Resource_left > peak resource usage of Tasky,, then
10 Set Solution[Tasky,,] at timestamp; as the peak
resource usage of Tasky,q-
11 Decrease Resource_left by the peak resource usage of
Tasky,.

12 Mark Tasky,, state as "allocated’.

13 else

14 Set Solution[Tasky,,] at timestamp; as Resource_left.
15 Set Resource_left to 0.

16 end

17 end
18 end

19 return Solution.

4.2.2. Neighboring solution generation

Neighboring solution generation plays a crucial role in enhancing
the diversity of solutions and preventing simulated annealing from
falling into the local optima. In our design, two strategies are randomly
employed in Neighboring solution generation:

+ Naive Search Strategy: Based on the current solution, a task’s so-
lution sequence and a position within that sequence are randomly
selected. A random floating-point number within the range of
[-5, 5] is then added to the resource usage value on this selected
position, resulting in a new neighboring solution.

Strategy based on JAYA Algorithm: The Jaya algorithm [38]
is a meta-heuristic optimization technique that operates on the
principle of continuous improvement by moving towards bet-
ter solutions and away from poorer ones. Specific steps of this
strategy are as follows:

1) Randomly select a task’s solution sequence and name it
Solutionc,,.
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2) Add a standard normal distribution random value at each
position of Solutionc,,. Repeat this operation 10 times to generate
10 candidate solutions.

(3) Calculate the cost values of the ten generated solutions and
find the solution with the minimum and maximum cost values as
Solutiong,; and Solutionyy ..

(4) Use JAYA algorithm update formula to generate Solutiony,,,
by Solutionc,,, making it get close to the Solutiong,, and staying
away from Solutiony, ..

5) If the cost value of Solutiony,,, is less than that of Solutionc,,,
updating Solutionc,, as Solutiony,,. Otherwise, Combine with
the Simulated Annealing algorithm to accept Solutiony,,, with a
certain probability.

6) Repeat step (2)—(5), until the designated iteration number is
reached, and choose Solution,, as the final solution.

The naive search strategy commences with our carefully crafted
optimized initial solution and proceeds by making incremental adjust-
ments along the search trajectory. This strategy ensures the exploitation
capability of our neighboring solution generation. While the Jaya-based
strategy serves as a complement to enhance the exploration capability
of our neighboring solution generation. It strives to find beneficial solu-
tions by exploring new regions of the search space while simultaneously
avoiding solutions that are less promising. In addition, the design of
jaya-based search is intimately linked to the principles of simulated
annealing heuristic. As the rounds of simulated annealing progress, this
search’s tendency to explore new solutions diminishes, instead focusing
more on the exploitation and optimization of existing solutions. In
summary, by combining these two strategies, our neighboring solution
generation method ensures to output the high-quality solution. Experi-
mental results on Alibaba trace prove that adopting Jaya-based neigh-
boring solution searching helps to reduce the deviation on workload’s
maximal CPU resource usage by 34.2%.

4.3. Workload submission mechanism

We have implemented a workload submission mechanism that en-
ables the authentic generation of runnable batch task workloads, lever-
aging our proposed workload construction and generation methods.

This submission mechanism involves creating a Python script that
prompts users to specify a machine within the trace and the corre-
sponding time period for workload replay. Subsequently, the script
reconstructs the resource usage sequence for the designated batch tasks
within the trace. The synthetic workloads are then launched by execut-
ing the CPU and memory building blocks as concurrent threads, which
take the generated resource usage sequence as input and replicate the
resource usage pattern every second.

5. Performance evaluation

We introduce the experimental setup, followed by a detailed presen-
tation of the evaluation results in this section. Our evaluation primarily
comprises two parts: first, we evaluate the resource usage reproduc-
tion accuracy of STWGEN; second, we compare the performance of
STWGEN with state-of-the-art trace-based workload generation meth-
ods.

5.1. Experimental setup

From Alibaba cluster data 2018, we choose all task instances run-
ning on three representative machines: m_1935, m_1983 and m_1940,
specifically on the fourth day within the 8-day trace recording period
to evaluate STWGEN. Among the three selected machines, m_1935
has the high average and variance of resource usage, while m_1983
and m_1940 respectively have the medium and low levels during
the selected time period. The task-level resource usage statistics are
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derived from batch instance table and the machine-level temporal re-
source usage data is obtained by subtracting the resource usage data in
container. usage table from the corresponding resource usage data from
machine_usage table, based on aligned timestamps. The experimental
environment was configured on Alibaba Cloud using Linux 3.2104
LTS 64-bit OS, with the system specifications set to ’ecs.hfc6.16xlarge’,
featuring 64 vCPUs and 128 GB of memory.

5.2. Metrics
According to the definition in Egs. (1)(2), we formulate three met-

rics to evaluate the workload and machine-level resource usage repro-
duction accuracy achieved by STWGEN and other baselines.

. |Sum(CT;) — uc;|
DRMachine(’) = (6)
uc;
) [Max(rs;) — max;|
DRTusk,muxO) = T )
) |Avg(rs;) — avg;|
DRTask_aUg = T (C))

DRy ycpine(i) represents the deviation rate in the reproduction of
machine-level resource usage, where, Sum(-) function signifies the accu-
mulated resource usage produced with the generated concurrent batch
tasks at a specific time point i on a machine. uv; stands for the observed
total resource usage of the machine at the corresponding time point
in the trace.DRyyg max(J) @nd DRryg 40,(j) Tepresent the deviation
rates in the reproduction of the maximal and average resource usage
statistics at task level, respectively. Where, Max(-) and Avg(-) functions
signify the statistical maximum and average values, respectively, of the
resource usage sequence generated by the synthetic workload for task ;.
max; and avg; refer to the corresponding statistics recorded in the trace.
We use the aforementioned metrics for CPU and memory resources,
respectively.

5.3. Resource usage reproduction accuracy with STWGEN

Figs. 6, 7, and 8 illustrate the distributions of deviation rates in the
reproduction of resource usage with STWGEN on machines m_1935,
m_1983, and m_1940, respectively. At the machine level, the average
deviation rate for CPU usage across all recorded time points on a
specific machine is under 6.4%, whereas for memory usage, it is less
than 14.3%. On the task level, the average deviation rate for the
maximum and average statistics of CPU usage among all batch tasks
is below 5.4% and 9.6%, respectively. Similarly, the average deviation
rate for the maximum and average statistics of memory usage is less
than 11.4% and 14.1%. Overall, the reproduction performance on CPU
resource usage surpasses that on memory resource usage. For instance,
on each of the selected machines, over 85% of the recorded time points
show deviation rates for CPU usage that are below 15%, whereas only
55% of the time points achieve such a deviation rate for memory usage.
This is due to that most batch tasks in Alibaba trace have 1 small
amount of memory usage, making them more sensitive to slight biases
in resource usage reproduction, which ultimately results in higher devi-
ation rates. However, given the low memory resource usage recorded in
Alibaba trace, even a deviation rate of 32.67% (exceeding those on the
95th percentile on all these machines) translates into a mere absolute
deviation of 0.67, which is negligible when compared to the memory
usage range of [0, 100]. Consequently, we deem the maximum average
deviation rate of 14.3% achieved by STWGEN in memory resource
usage reproduction as acceptable. In addition, among the three selected
machines, tasks on m_1940 achieve the best reproduction performance.
This is because the variation in total resource usage on m_1940 is less
than that of the other two machines, enabling the workload building
blocks to adjust their CPU/memory usage less frequently and reduc-
ing the search cost of finding optimized reconstructed resource usage
sequences for batch tasks.
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Fig. 8. Distribution of deviation rates on CPU and memory usage reproductions on m_1940.

5.4. Comparison to the state-of-art methods

To verify the superiority of STWGEN, we compare it with two
state-of-art methods: Tracie [25] and EdgeCloudBenchmark [24].

Tracie utilizes Parametric Density Estimation (PDE) to derive the
probability distribution function (PDF) of batch tasks’ resource uti-
lization characteristics. Following this, it randomly generates resource
usage sequences for batch tasks that adhere to the derived probability
distributions. Subsequently, Tracie selects applications from the TPC
benchmark suite( [27]) and the Rodinia benchmark( [39]) that ex-
hibit comparable resource utilization statistics, using them as building
blocks to craft synthetic workloads. EdgeCloudBenchmark employs a
clustering technique to categorize the batch tasks recorded in the trace
data into several groups, where tasks within the same group exhibit
similar resource usage statistics. It then randomly selects a task from
each group to represent the resource usage characteristics of the tasks
within that group. It utilized Apache Bench test tool as build blocks to
generate the synthetic workloads.

We conduct the experiments on machines m_1935, m_1983, and
m_1940, and the results are presented in Figs. 9 and 10. STWGEN
exhibits the most stable performance on all three machines, achieving

the lowest average deviation rate of machine-level resource usage
reproduction, which stands below 14.3%, and the lowest average devia-
tion rate of task-level resource usage statistics reproduction is less than
14.1%. In contrast, Tracie and EdgeCloudBenchmark show significantly
higher deviation rates in terms of resource usage reproductions. Specif-
ically, Tracie demonstrates an average deviation rate of up to 302.6%
for machine-level resource usage across the three machines, while the
average deviation rate for task-level maximum and average resource
usage statistics reached to 756.4% and 432%, respectively. The cor-
responding rates of EdgeCloudBenchmark are 240.2%, 257.5%, and
206.4%, respectively. Overall, compared to the two baselines, STWGEN
can reduce the deviation rates of the resource usage reproductions by
up to 98.6% and a minimum of 77.1%.

The superiority of STWGEN lies in two aspects. Firstly, it introduces
lightweight and agile building blocks for task-level workload gener-
ation. Unlike the predefined benchmark applications used in Tracie,
which generate limited and relatively fixed temporal resource utiliza-
tion patterns, our proposed building blocks can dynamically generate
resource consumption profiles on demand, accommodating the diverse
resource utilization signatures of batch tasks in large-scale data centers.
Secondly, using the proposed heuristic algorithm, STWGEN can finely
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reconstruct the resource usage of individual batch tasks, considering
both their resource usage statistics and machine-level resource con-
straints. Such time point-wise machine-level constraints, contributes to
the accurate reproduction of a task’s resource usage at any point during
its runtime. However, Tracie and EdgeCloudBenchmark fail to incor-
porate workload-level coarse-grained and machine-level fine-grained
resource usage characteristics. They merely characterize cluster-level
task resource usage statistics and use these statistics to randomly gener-
ate synthetic workloads, thus lacking the precision to mimic individual
tasks accurately.

6. Related works

Traces from large-scale production cloud platforms are pivotal in the
workload analysis and generation. Three prominent traces commonly
used for cloud workload generation are Google ClusterData2011 [18],
Azure PublicDataset2017 [40,41], and Alibaba Clusterdata2018 [19].
Google ClusterData2011 comprises extensive data on hundreds of thou-
sands of job-task-structured workloads, particularly the detailed re-
source usage tracked over time for each task and their micro-
architecture behavior information. Azure PublicDataset2017 represents
the workload of virtual machines (VMs) within Microsoft Azure, col-
lected in 2017. It documents the resource usage of approximately 2 mil-
lion monitored VMs, recorded every 5 min, resulting in comprehensive
time series data. Among these three traces, Alibaba Clusterdata2018
stands out as the most recent. It records resource usage information for
over 12 million batch tasks. Distinct from the other two traces, Alibaba
Clusterdata2018 simply captures statistical summaries for batch tasks’
resource usage, encompassing metrics like maximum and average
resource usage during task execution.

From the perspective of reproducing resource usage characteristics,
trace-based workload generation in data centers can be divided into
four levels: cluster-level, virtual machine-level, job-level, and task-
level. Cluster- and VM-level workload generations replicate overall
resource usage patterns of cloud clusters or individual VMs [23,26,42]

[29,43,44], but not individual workloads. Hence, they excel in data
center capacity planning, but lack precision in fine-grained resource
scheduling. Job-level generation aims to simulate the characteristics
of job workloads, such as the resource usage pattern [45], the job
structure [45], the task size and the execution duration of jobs [22] .
As the basic unit for cloud workload submission, Job-level workload
generation primarily targets workloads that meet average resource
usage and expected duration for jobs, but often neglects precise repli-
cation of resource usage for individual tasks within a job. Tasks serve
as the fundamental units for cloud workload execution and resource
usage [46]. Task-level workload generation aims to accurately replicate
resource usage characteristics from trace data, crucial for effective
resource scheduling and workload migration [24,25,28]. This paper
focuses on trace-based batch task workload generation in cloud data
centers.

From the technical view, trace-based workload generation can be
categorized into two types based on the granularity of reproducing
resource usage characteristics: coarse-grained and fine-grained genera-
tion. Coarse-grained workload generation involves extracting statistical
features of resource utilization from trace data, such as average and
peak resource usage, and synthesizing a comprehensive workload that
mirrors these characteristics using a combination of typical benchmark
applications as building blocks. For instance, Sfakianakis et al. [25]
employ techniques like Parametric Density Estimation (PDE), Non-
parametric Density Estimation (NDE), or Kernel Density Estimation
(KDE) to determine the probability distribution function (PDF) of re-
source utilization characteristics in Google trace batch tasks. Subse-
quently, it selects applications from the TPC benchmark suite [27] and
Rodinia benchmark [39] that exhibit comparable resource utilization
statistics to craft a holistic workload. Additionally, Koltuk et al. [23]
conduct a comprehensive analysis of resource utilization distribution
and structural attributes of batch jobs in Alibaba trace, leveraging
mapreduce tasks within BDGS to create synthetic workloads for simula-
tion and analysis purposes. Furthermore, Wen et al. [24] apply k-means
clustering to categorize batch tasks in Alibaba trace, randomly selecting
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representative tasks from each cluster. A distributed framework based
on microservices is then utilized to simulate the concurrent execution
of these tasks. Lastly, the Apache Bench test tool is used to gener-
ate resource consumption patterns for each individual task, ensuring
alignment with the characteristics of the selected representative tasks.
Although commonly employed, coarse-grained methods solely cap-
ture statistical resource usage, neglecting intricate temporal patterns,
thereby reducing workload reproduction precision. Benchmark appli-
cations, while representative, still differ from real-world workloads
in the temporal resource usage patterns, and this discrepancy widens
when multiple applications are combined to generate the synthetic
workloads.

Fine-grained workload generation involves constructing synthesized
workloads that precisely match the temporal patterns of resource usage
recorded in trace data. In contrast to coarse-grained generation, fine-
grained methods strive to accurately replicate the resource utilization
at every instant during the workload’s execution, encompassing not
just statistical features but also the dynamic behavior. Using RWB
(Reducible Workload Block) as the building block for workload gener-
ation, Han et al. [28] combine various RWBs to synthesize workload
for each task moment, drawing on the micro-architectural behavior
characteristics of tasks captured in Google trace. Koltuk et al. [23,42]
aim to replicate virtual machine workload resource usage based on
Azure trace. It identifies a cumulative distribution function fitting
the trace samples and based on the periodic characteristics in VM’s
resource usage, it adjusts resource usage to align with the distribution
while minimizing auto-correlation. Lin et al. [47] employ Generative
Adversarial Networks to generate the time-dependent cloud workload,
which does not require any prior knowledge to do distribution anal-
ysis. However, the article fails to provide specific details about the
building blocks used for workload generation, rendering the application
of this method to the construction of authentic synthetic workloads
challenging. In summary, while fine-grained load generation methods
excel at generating intricate sequences of resource usage, they typically
depend on explicit temporal information extracted from traces to ac-
curately reconstruct resource usage characteristics at the workload or
machine level. Nevertheless, this approach presents difficulties when
applied to large-scale traces with limited temporal information, such as
the Alibaba trace. Additionally, existing fine-grained methods tailored
for batch tasks rely heavily on assembly instructions, which restricts
their portability and renders them unusable for traces lacking micro-
architectural metric information. Consequently, the challenge remains
of developing an efficient method for fine-grained batch task workload
generation that can handle large-scale traces lacking both temporal
information on resource usage and detailed system-level behavior data.

7. Conclusion

In light of the challenge posed by the absence of precise temporal
information of workload-level resource usage in modern data center
traces, this paper proposes STWGEN, a novel trace-based batch task
workload generation method based on the statistic-based Alibaba trace.
STWGEN accurately reproduces the batch task’s resource usage se-
quence by incorporating the task-level coarse-grained resource statistics
and the machine-level fine-grained resource constraints. The extensive
experimental results affirm the superiority of STWGEN method to the
state-of-art baselines. In the future, our work will be extended to
consider task dependencies in the workload generation.
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