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A B S T R A C T

Evaluation is a crucial aspect of human existence and plays a vital role in each field. However, it is often
approached in an empirical and ad-hoc manner, lacking consensus on universal concepts, terminologies,
theories, and methodologies. This lack of agreement has significant consequences. This article aims to formally
introduce the discipline of evaluatology, which encompasses the science and engineering of evaluation.
We propose a universal framework for evaluation, encompassing concepts, terminologies, theories, and
methodologies that can be applied across various disciplines, if not all disciplines.

Our research reveals that the essence of evaluation lies in conducting experiments that intentionally
apply a well-defined evaluation condition to individuals or systems under scrutiny, which we refer to as the
subjects. This process allows for the creation of an evaluation system or model. By measuring and/or testing
this evaluation system or model, we can infer the impact of different subjects. Derived from the essence
of evaluation, we propose five axioms focusing on key aspects of evaluation outcomes as the foundational
evaluation theory. These axioms serve as the bedrock upon which we build universal evaluation theories and
methodologies. When evaluating a single subject, it is crucial to create evaluation conditions with different
levels of equivalency. By applying these conditions to diverse subjects, we can establish reference evaluation
models. These models allow us to alter a single independent variable at a time while keeping all other variables
as controls. When evaluating complex scenarios, the key lies in establishing a series of evaluation models that
maintain transitivity. Building upon the science of evaluation, we propose a formal definition of a benchmark
as a simplified and sampled evaluation condition that guarantees different levels of equivalency. This concept
serves as the cornerstone for a universal benchmark-based engineering approach to evaluation across various
disciplines, which we refer to as benchmarkology.
1. Introduction

Evaluation, a fundamental and significant undertaking in human
existence, possesses a multifaceted nature. It spans a wide spectrum of
domains, encompassing the assessment of computer performance, the
evaluation of societal interventions to determine their efficacy [1], the
ranking of educational institutions, and even the appraisal of political
leaders through electoral processes. As a result, evaluation assumes a
pivotal role that permeates every discipline. Nevertheless, it is pertinent
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to recognize that evaluation practices often adopt ad-hoc and empirical
approaches, displaying inherent variations among various disciplines.

Collectively, evaluations within diverse disciplines lack universal
concepts, terminologies, theories, and methodologies. In the disciplines
of computer science, social sciences, and psychology, the communities
develop different methodologies that design experiments to deliber-
ately impose conditions on individuals or systems under scrutiny, which
we refer to as the subject, to measure and analyze their responses [2].
In the field of computer science, a benchmark is utilized as a tool
vailable online 30 April 2024
772-4859/© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of
Y-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.tbench.2024.100162
Received 19 March 2024; Accepted 22 April 2024
KeAi Communications Co. Ltd. This is an open access article under the CC

https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
mailto:jianfengzhan.benchcouncil@gmail.com
https://www.zhanjianfeng.org
https://doi.org/10.1016/j.tbench.2024.100162
https://doi.org/10.1016/j.tbench.2024.100162
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tbench.2024.100162&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


BenchCouncil Transactions on Benchmarks, Standards and Evaluations 4 (2024) 100162J. Zhan et al.
Fig. 1. The universal concepts, theories, and methodologies in evaluatology.

and methodology [3–6] to evaluate the effectiveness and efficiency of
system designs and implementations. In the realm of social sciences,
evaluation assumes the application of social research methodologies to
systematically investigate the effectiveness and efficiency of interven-
tion programs aimed at enhancing societal conditions, as defined by
Rossi et al. [1]. Within the psychology domain, social and personality
psychologists often employ scales such as psychological inventories,
tests, or questionnaires [7] to quantify psychometric variables [7].

Conversely, evaluations in the business, finance, and education
domains take different observational study methodologies [2]. The
field of business embraces the concept of benchmarking as a means
to identify exemplary practices that can propel companies towards
superior performance [8]. In the realms of finance and education,
evaluation often utilizes a tool named index. Widely employed to gauge
2

the overall performance of the system, the index is derived through the
meticulous calculation of the weighted average, utilizing a select group
of representative individuals [9].

Discussions concerning the true essence of evaluation are seldom
found, which often results in confusion with measurement and testing
and lacks clear differentiation. A critical consequence of this absence
is the lack of previous endeavors to establish universally applicable
foundational evaluation principles and methodologies that cut across
diverse disciplines, ultimately giving rise to significant ramifications.

Even within computer sciences and engineering, it is not uncommon
for evaluators to generate greatly divergent evaluation outcomes for the
same subject. These discrepancies can range from significant variations
to the extent of yielding contradictory qualitative conclusions. An ex-
ample of this phenomenon can be observed when using multiple widely
recognized CPU benchmark suites to assess the performance of the same
processor. This often leads to greatly divergent evaluation outcomes
that are incomparable across different benchmarks. Such circumstances
give rise to valid concerns surrounding the reliability, effectiveness,
and efficiency of these approaches when appraising the subject that is
critical to safety, missions, and businesses. Further details on this issue
can be found in Section 5.

To the best of our knowledge, this article, for the first time, formally
introduces the discipline of evaluatology, encompassing the science and
engineering of evaluation. We present an all-encompassing concept, ter-
minology, theory, and methodology framework for evaluation that can
be universally applied across diverse disciplines if not all disciplines.

We highlight that the essence of evaluation lies in conducting
deliberate experiments where a well-defined Evaluation Condition (EC)
is applied to a well-defined subject. The purpose is to establish a well-
defined Evaluation Model (EM). By measuring and/or testing this EM,
we can then infer the impacts of the subjects being evaluated. Derived
from the core essence of evaluation, we present five axioms as the
foundational principles of evaluation theory. The five axioms focus
on key aspects of evaluation outcomes, including true quantity (The
first and second axioms), traceability of discrepancy (the third axiom),
comparability (the fourth axiom), and estimate (the fifth axiom).

Based on the five evaluation axioms, we present the universal
evaluation theories and methodologies from two distinct dimensions:
evaluating a single subject and complex scenarios.

A well-defined EC serves as a prerequisite for meaningful compar-
isons and analyses of the subjects. We propose a universal hierarchical
definition of an EC and identify five primary components of an EC from
the top to the bottom.

In the process of evaluating subjects, it is of utmost importance to
prioritize the use of the equivalent ECs (EECs) across diverse subjects.
This means that in order to establish two EECs, it is crucial to ensure
that the corresponding components within the same layer of the two
ECs are equivalent. By maintaining equivalency at each layer, we can
ensure fair and unbiased evaluations, enabling meaningful comparisons
and assessments between different subjects.

In certain cases, achieving complete equivalence between two ECs
at all levels can be a challenging or even unattainable task. In such
cases, we propose a minimum requirement of ensuring uniformity in
the most essential components of the two ECs, which we refer to as
the least equivalent evaluation conditions (LEECs). To establish the
LEECs, we identify the most governing component within an EC that
must exhibit equivalency. This component, known as the evaluation
standard, plays a crucial role in defining the LEECs.

We apply ECs with different levels of equivalency to diverse subjects
to constitute EMs. An EM element refers to a specific point within the
EM state space, and each EM element may have many independent
variables. To eliminate confounding, we propose a new concept named
a reference evaluation model (REM). An REM mandates that each
element of an EM change only one independent variable at a time while
keeping the other independent variables as controls. Subsequently, we
utilize the measurement and/or testing to gauge the functioning of the
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REM. Finally, from the amassed measurement and testing data of the
evaluation systems, we then deduce the cause–effect impacts of the
different subjects.

Addressing the complexities that arise in more intricate scenarios,
we reveal that the key to effective and efficient evaluations in various
complex scenarios lies in the establishment of a series of EMs that
maintain transitivity.

In real-world settings, we refer to the entire population of real-world
systems that are used to evaluate specific subjects as the real-world
evaluation system (ES). Assuming no safety concerns are present, the
real-world ES serves as a prime candidate for creating an optimal
evaluation environment, enabling the assessment of diverse subjects.
However, there are several significant obstacles to consider, i.e., the
presence of numerous confounding, the challenges of establishing an
REM, prohibitive evaluation costs resulting from the huge state spaces,
multiple irrelevant concurrent problems or tasks taking place, and the
inclination to exhibit bias towards certain clusters within the EC state
space.

We posit the existence of a perfect EM that replicates the real-world
ES with utmost fidelity. A perfect EM eliminates irrelevant problems or
tasks, has the capability to thoroughly explore and comprehend the en-
tire spectrum of possibilities of an EC, and facilitates the establishment
of REMs.

However, the perfect EM possesses huge state space, entails a vast
number of independent variables, and hence results in prohibitive
evaluation costs. To address this challenge, it is crucial to propose a
pragmatic EM that simplifies the perfect EM in two ways: reducing
the number of independent variables that have negligible effect and
sampling from the extensive state space. A pragmatic EM provides a
means to estimate the parameters of the real-world ES.

We put forth four fundamental issues in the evaluations and for-
mally formulate the problems mathematically: ensure the transitivity of
EMs; perform a cost-efficient evaluation with controlled discrepancies;
ensure the evaluation traceability; connect and correlate evaluation
standards across every discipline.

Building upon the science of evaluation, we formally define a
benchmark as a simplified and sampled EC, specifically a pragmatic
EC, that ensures different levels of equivalency. Based on this concept,
we propose a benchmark-based universal engineering of evaluation
across different disciplines, which we aptly term ‘‘benchmarkology’’.
Fig. 1 presents the universal concepts, theories, and methodologies in
Evaluatology.

The article is structured as follows: Section 2 elucidates the back-
ground. Section 3 introduces a comprehensive theoretical and method-
ological framework for evaluatology. Section 4 outlines the principles
and methodologies of benchmarkology. Section 5 reviews the state-
of-the-art and state-of-the-practice evaluations and benchmarks and
expounds upon the imperative to cultivate the science and engineer-
ing of evaluation. Ultimately, Section 6 manifests the overarching
conclusion.

2. Background

This section provides an overview of the background.

2.1. Basic concepts

This subsection presents several concepts, like individual, systems,
populations, samples, variables, models, confounding, and control based
on several undergraduate textbooks [2,10,11].

An individual can be defined as the object that is described by a
given set of data. A system is an interacting or interdependent group of
individuals, whether of the same or different kinds, forming a unified
whole [12,13]. A system could be a recursive structure. That is to say,
a high-level system could consist of an interacting or interdependent
3

t

group of low-level systems, whether of the same or different kinds,
forming a unified whole.

A population is the entire group of individuals or systems we wish
o study and understand, while a sample represents a smaller subset of

individuals or systems from the population [2]. A variable or quantity is
any property of an individual or system. A parameter is a number that
describes some property of the population, while a statistic is a number
that describes some property of a sample. Inference is the process of
drawing conclusions about a parameter of a population on the basis of
the statistic of sample data [2].

According to [11], a function, denoted as f, is a rule that assigns
a unique element, referred to as 𝑓 (𝑥), from a set 𝑅 to each element
n a set 𝐷. In this context, the domain, denoted as 𝐷, refers to the
et of all possible values for which the function is defined. On the
ther hand, the range of the function, denoted as 𝑓 (𝑥), consists of all
he possible values that 𝑓 (𝑥) can take as 𝑥 varies within the domain.
he independent variable is represented by a symbol that encompasses
ny arbitrary number within the domain of the function. A dependent
ariable, represented by a symbol, is used to denote a number within
he range of the function.

A model is a simplified version of a system that would be too compli-
ated to analyze in full detail [10]. A model could be a physical model
r a mathematical model. A mathematical model is a mathematical
escription, typically through functions or equations, of a system, the
urpose of which is to understand the system and to make predictions
bout its behavior [11]. Throughout the remainder of this article,
e will use the terms ‘‘system’’ and ‘‘model’’ interchangeably unless
xplicitly stated otherwise.

An observational study observes individuals or systems and measures
ariables of interest without any attempt to influence their responses,
hile an experiment is designed to deliberately impose conditions on

ndividuals or systems to measure and analyze their responses [2].
In the realm of understanding cause and effect, it is crucial to rely on

xperiments rather than observational studies. Even if an observational
tudy is based on a random sample, it still falls short in effectively
easuring the impact of changes in one variable on another vari-

ble [2]. Experiments, on the other hand, provide us with compelling
nd conclusive data, making them the only source that truly convinces
s of cause-and-effect relationships.
Confounding arises when two independent variables are associated

n a manner that makes it challenging to differentiate their specific
ffects on a dependent variable. In other words, the influence of these
ndependent variables becomes entangled, making it difficult to at-
ribute specific impacts to each one. In such cases, the independent
ariable responsible for this confounding effect is referred to as a con-
ounding variable. Control means keeping other independent variables
hat might affect the response the same [2], and the main purpose of
control group is to provide a baseline for comparing the effects of the
ther treatments.

.2. Metrology

Metrology is the science of measurement and its applications [14].
n this section, we present a simplified yet systematic framework for
nderstanding metrology concepts based on the works of [14,15].
o maintain conciseness, we focus only on the essential metrology
oncepts (see Fig. 2).

The essence of metrology lies in quantities and their corresponding
easurements. A quantity is a property whose instances can be com-
ared by ratio or only by order [14]. Furthermore, Psychologist Stanley
mith Stevens developed a well-known measurement classification with
our levels based on empirical operations, mathematical group struc-
ure, and permissible statistics (invariant): nominal, ordinal (based on
rder [14]), interval, and ratio [16].1

1 In the original article, Stanley Smith Stevens used the term ‘‘levels or
cales of measurement’’. We have only used ‘‘levels’’ to avoid confusion with
he specific meaning of ‘‘scales’’ in psychology



BenchCouncil Transactions on Benchmarks, Standards and Evaluations 4 (2024) 100162J. Zhan et al.

n
r
i
i
c
r
t
r
r

m
t

q
i

q
m

m
s
e
S
m
a

t
w
a
[
m
r

l
s
n
t
r
s
u
t
s
s

2

s
t
c
a

o
h
o
t

o
i
i
t
q
s
i
i
f
p

Fig. 2. A simplified yet systematic conceptual framework for metrology [14,15].

A nominal level is the most basic form of measurement, where
umbers are used as labels or type numbers to establish an equality
elation. An ordinal level, on the other hand, involves ranking the
tems in a particular order. An interval level exhibits an equality of
nterval relation, where (1) the choice of a zero point is a matter of
onvention or convenience, (2) there is rank ordering, and (3) the scale
emains invariant when a constant is added to all values, preserving
he differences between them. A ratio level allows for all four types of
elations: equality, rank-ordering, equality of intervals, and equality of
atios.

The international system of metrology encompasses seven funda-
ental quantities: time, length, mass, electric current, thermodynamic

emperature, amount of substance, and luminous intensity [14].
Consistent with the definition of a quantity, the true value of a

uantity represents the magnitude of a property or characteristic of an
ndividual or system, e.g., a phenomenon, body, or substance that is
4

independent of any observer. For example, it can be a specific circle’s
radius or a particular particle’s kinetic energy within a given system
[14,15]. For measurement, the true quantity value is an unknown
measurement target [14].

In the field of measurement, the unit of measurement [15] plays a
crucial role. It is a real scalar magnitude that is defined and adopted
by convention. Its purpose is to allow for the comparison of quantities
of the same kind.

Measurement standard [15] is a realization of the definition of
uality. It is characterized by a stated metric value and an associated
easurement uncertainty.

To establish a measurement standard, it is important to use a
easurement methodology that is both repeatable (performed by the

ame team) and reproducible (performed by different teams). This
nsures consistency and reliability in the reference for measurements.
uch measurements can be conducted using measuring instruments or
easuring systems [14], providing a reliable foundation for further
nalysis and comparison.
Measurement is experimentally obtaining one or more values at-

ributed to a quantity and other relevant information [14]. Another
idespread definition of measurement in the social sciences is ‘‘the
ssignment of numerals to objects or events according to some rule.’’
16], dating back to 1946. Quantity values obtained by the measure-
ent are measured (quantity) values, representing the measurement

esults [14].
The hierarchy of measurement standards follows a progression from

ower to upper levels, with increasing accuracy and cost. This progres-
ion starts from national measurement standards and extends to inter-
ational standards. As a property of a measurement result, measurement
raceability [14] establishes a connection between the result and a
eference (measurement standards, measuring instruments, and mea-
uring systems). This connection is established through a documented,
nbroken chain of calibrations, with each calibration contributing to
he measurement uncertainty. To ensure accuracy, each level of mea-
urement standards in the hierarchy should be calibrated using a higher
tandard with greater precision.

.3. Testing

A test oracle is a method used to verify whether an individual or
ystem being tested has performed correctly during a specific execu-
ion [17]. Test oracles can include, but are not limited to, specifications,
ontracts, reference products, previous versions of the same product,
nd relevant performance or quality of service criteria [18].

As shown in Fig. 3, testing is the process of executing an individual
r system to determine whether it (1) conforms to the specified be-
avior defined by the test oracles [19] (the first category) and/or (2)
perates correctly within its intended environment as defined by the
est oracles (the second category).

In the first category of testing, the test oracle compares the actual
utput with the specified output to identify incorrect behavior, which
s considered a failure [19]. Another type of failure is often encountered
n the second category of testing, where an individual or system fails
o meet environmental constraints or falls outside the specified re-
uirements. Examples of such failures include running out of memory,
low execution, and incompatibility with operating systems [17]. It
s important to note that these two types of failures are not isolated
ncidents. Failures in the second category can lead to failures in the
irst category, such as running out of memory, which results in incorrect
rogram execution.
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Fig. 3. A simplified yet systematic conceptual framework for testing [17,19].

. The science of evaluation

Within this section and the forthcoming one, we first propose the
niversal evaluation concepts and terminologies. Then, we elucidate
he theory and methodology governing the realm of evaluation, col-
ectively referred to as evaluatology.

We present the science of evaluation from two distinct perspectives:
valuating a single subject and evaluating complex scenarios.

We postpone the exposition of the principles and methodology
ertaining to benchmarkology, the benchmark-based engineering of
valuation, to Section 4.

.1. Basic evaluation concepts and terminology

In this subsection, we will examine an illustrative case study in
valuation and meticulously analyze the fundamental components inher-

ent in an evaluation. For the sake of convenience, henceforth, within
this article, each case study shall be assigned a unique case ID for
differentiation purposes.

In the first case, which we will call Case One, an organization is in
the process of acquiring a computer. To make an informed decision, the
organization decides to evaluate various computer options by executing
its applications on each one. During this evaluation, the organization
will collect extensive data on performance and energy efficiency.

Based on this data, the organization will then formulate an explicit
or implicit function to express its preferences for different computers.
This function will serve as a way to quantify and articulate the organi-
zation’s priorities and requirements in terms of performance and energy
efficiency. By doing so, the organization can make a well-informed
decision and choose the computer that best aligns with its needs and
preferences.

In any evaluation process, we refer to an individual or a system
under scrutiny as a subject. In the context of Case One, the computers
that are being considered for evaluation are the subjects.

Another important component of an evaluation is the presence of
stakeholders. A stakeholder is defined as an entity that holds a stake
of responsibility or interest in the subject matter. In this case, the
stakeholders involved in the procurement of computers include the
organization seeking to acquire the computers, the specific users, the
5

designers responsible for creating the computer specifications, and the
producers who manufacture the computers.

Each subject, in this case, the computer, has its own set of stakehold-
ers who will render judgments based on the data collected from mea-
surements. Metrology provides the foundational principles, methodol-
ogy, and instruments for measurements within this process. It ensures
that the measurements are accurate, reliable, and consistent, enabling
the stakeholders to make informed decisions based on the gathered
data.

In Case One, the prospect of measuring the mere attributes of a
subject, such as its weight and power consumption, possesses a certain
degree of utility. Nevertheless, such measurements fall considerably
short of meeting stakeholders’ evaluation requirements. The stake-
holder seeks comprehension of the subject’s effectiveness and efficiency
when applying a specific condition or intervention to the subject. In
this case, it is to execute the stakeholder’s primary or forthcoming
applications, which we informally label as an evaluation condition (EC).
The EC represents the third critical component of an evaluation, which
shall be formally expounded upon subsequently.

Within this framework, an important question arises: How can
organizations establish a framework to determine the preferences of
distinct subjects when they exhibit varying levels of performance across
different applications?

In the current state-of-the-practice, a more intuitive approach en-
tails executing applications on computers sequentially. Subsequently,
we proceed to measure the computers’ performance when operating
distinct applications individually. Following each execution, data is col-
lected encompassing factors such as the duration of each application’s
execution and its corresponding energy consumption.

It is imperative to establish a function that can map the compiled
measurement data to one or several composite evaluation metrics
capable of capturing the stakeholders’ concerns and interests. In the
rest of this article, we refer to this function as a value function. Once the
evaluation outcomes have been obtained, it becomes feasible to define
a reference subject and its reference evaluation outcome against which the
evaluation results of alternative subjects can be compared.

3.2. The essence of evaluation

From the aforementioned analysis in Section 3.1, it is evident that
the challenge in evaluation arises from the inherent fact that evaluating
a subject in isolation falls short of meeting the expectations of stake-
holders. Instead, it is crucial to apply a well-defined EC that reflects
the stakeholders’ concerns or interests. By doing so, evaluation can be
viewed as an intentional experiment that deliberately imposes a specific
EC on the subject itself.

Based on the definitions provided in Section 2.1, when a subject is
equipped with an EC, it forms an evaluation system (ES) or an Evaluation
Model (EM). An evaluation model (EM) is a simplified version of an ES
that would be too complicated to analyze in full detail [10].

Based on the analysis presented earlier, it becomes clear that the
ore essence of evaluation lies in conducting deliberate experiments where
quivalent ECs (EECs) are applied to a diverse range of subjects, resulting
n the establishment of equivalent EMs. Subsequently, we can effectively
valuate the subjects by measuring the equivalent EMs.

Therefore, we formally define evaluation as an experiment that ap-
lies EECs to diverse subjects and establishes equivalent EMs, enabling the
easurement of these equivalent EMs, the inference of the subjects’ impact,
nd the subsequent judgment of them.

.3. Five evaluation axioms

In this section, we present five evaluation axioms that are de-
ived from the core essence of evaluation, serving as the foundational
rinciples of evaluation theory. They focus on key aspects of evalua-
ion outcomes, including true quantity (The first and second axioms),
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traceability of discrepancy (the third axiom), comparability (the fourth
axiom), and estimate (the fifth axiom).

The First Axiom of Evaluation: The Axiom of the Essence of
Composite Evaluation Metrics. This axiom declares that the essence
f the composite evaluation metric either carries inherent physical
ignificance or is solely dictated by the value function.

In nature, a composite evaluation metric refers to a combined quantity
hat is constructed using base quantities and other quantities that possess
hysical significance. If a composite evaluation metric does not carry
nherent physical significance, the value function serves as a mecha-
ism that maps base quantities and other quantities carrying physical
eaning into a composite evaluation metric. The widespread accep-

ance of the composite evaluation metric relies on it being embraced
y the community of evaluators.
The Second Axiom of Evaluation: The Axiom of True Evalua-

ion Outcomes. This axiom declares that when a well-defined EC is
pplied to a well-defined subject, its evaluation outcomes, including its
uantities and composite evaluation metrics, possess true values.

‘‘The magnitude of a property of an individual phenomenon, body,
r substance is associated with a true quantity’’ [14,15]. Additionally,
ach testing procedure yields a definitive outcome relative to its respec-
ive test oracle. Building upon this inference, it is reasonable to presume
hat when a well-defined subject is equipped with a well-defined EC,
he quantities within the corresponding well-defined EM possess true
alues.

For a well-defined EM, each composite evaluation metric is derived
rom measurement and/or testing outcomes, utilizing a definite value
unction that translates the base quantities and other quantities into a
omposite evaluation metric. Consequently, the evaluation results are
xclusively determined by the measurements and/or testing procedures
mployed. It is reasonable to assume that for a well-defined EM, its
omposite evaluation metric possesses a true value.

The first and second axioms are concerned with the true evaluation
utcome. The first axiom provides the basis for defining value func-
ions. With a well-defined value function, a well-defined EM possesses
rue quantities of evaluation outcomes.
The Third Axiom of Evaluation: The Axiom of Evaluation Trace-

bility. This axiom declares that for the same subject, the divergence
n the evaluation outcomes can be attributed to disparities in ECs,
hereby establishing evaluation traceability. This axiom focuses on the
raceability of discrepancies in the evaluation outcomes.

For the same subject, this axiom is deemed rational as disparities
n evaluation outcomes can be rationalized as the consequence of
ariations in the ECs. In the absence of this axiom, the differences
bserved in evaluation outcomes would be inexplicable, contradicting
ur scientific and engineering intuitions.
The Fourth Axiom of Evaluation: The Axiom of Comparable

valuation Outcomes. This axiom declares when each well-defined
ubject is equipped with EECs, their evaluation outcomes are compara-
le. It goes without saying this axiom is related to the comparability of
he evaluation outcomes.

Only when each EC is well-defined, and two ECs achieve complete
quivalence at all levels can we refer to them as EECs. When each well-
efined subject is equipped with EECs, its evaluation outcomes possess
rue values. Additionally, when well-defined subjects are subjected
o EECs, their evaluation outcomes accurately reflect the impacts of
ifferent subjects under the same conditions, making them comparable.
The Fifth Axiom of Evaluation: The Axiom of Consistent Evalu-

tion Outcomes. This axiom asserts that when a well-defined subject
s evaluated using different samples from a population of ECs, their
valuation outcomes consistently converge towards the true evaluation
utcomes of the population of ECs. This axiom provides an estimate of
he true evaluation outcomes under the population of ECs.

According to the Second Axiom of Evaluation, when a well-defined
ubject is equipped with a well-defined population of ECs, the resultant
6

M possesses the true evaluation outcomes. When a sample is taken
from a population of ECs, it serves as an approximation of the entire
population. As a result, different samples yield consistent evaluation
outcomes that gradually converge towards the evaluation outcomes of
the entire population of ECs. This convergence is influenced by the
sample’s ability, which is determined by the chosen sampling policy, to
represent the underlying characteristics of the population accurately.

3.4. Basic evaluation methodology

This section outlines the fundamental methodology for evaluating a
single subject. Drawing upon the discussion of the essence of evalua-
tion in Section 3.2, we propose a rigorous evaluation methodology to
determine the impacts of the subjects as follows.

We create equivalent ECs (EECs) and apply EECs to diverse subjects
to constitute equivalent EMs. An EM element refers to a specific point
within the EM state space, and each EM element may have many
independent variables. To eliminate confounding, we propose a new
concept named a reference evaluation model (REM). An REM mandates
that each element of an EM change only one independent variable
at a time while keeping the other independent variables as controls.
Subsequently, we utilize the measurement to gauge the functioning of
the REM. Finally, from the amassed measurement data of the evaluation
systems, we then deduce the cause–effect impacts of the different
subjects.

In this methodology, we emphasize five essential steps to ensure a
comprehensive evaluation, as shown in Fig. 4. These steps are crucial
in accurately determining the impacts of the subjects.

The first step is to establish a rigorous definition of an EC. According
to The Second and Three Axioms of Evaluation, when a well-defined
subject is equipped with a well-defined EC, its evaluation outcomes
possess true values; when the same subject is equipped with different
ECs, any divergence in the evaluation outcomes can be attributed to
disparities in these ECs. Therefore, the key focus in this phase is to
clearly present a well-defined EC.

The second step involves the establishment of EECs. As outlined
in the Fourth Axiom of Evaluation, when EECs are applied to diverse
subjects, their evaluation outcomes become comparable. Since the
primary objective of evaluation is to compare different subjects, the
establishment of EECs becomes an essential step in the process.

The third step involves the elimination of confounding variables.
Given that each element of an EM consists of multiple independent
variables, it becomes essential to establish an REM. An REM serves
as a controlled evaluation environment where only one independent
variable is altered at a time while the other independent variables
remain constant as the control. This approach helps in isolating the
effects of individual variables and ensures a more accurate evaluation
of the subject’s performance.

The fourth step is to define the value functions that map the base
quantities and other quantities to composite evaluation metrics that
represent the stakeholders’ primary concerns or interests. According to
the first axiom of evaluation, the essence of the composite evaluation
metric either carries inherent physical significance or is solely dictated
by the value function. So, when defining a value function, it is crucial
to make it become the consensus of the community.

Finally, we utilize the measurement to gauge the functioning of the
REM. From the amassed measurement data of the REM, we then deduce
the cause–effect impacts of the different subjects.

3.5. Basic evaluation theory

This subsection presents the basic evaluation theory, including the
hierarchical definition of an EC, universal concepts across different
disciplines, the establishment of EECs, LLECs, evaluation standards, and

the establishment of an REM.
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Fig. 4. Basic evaluation methodology.

3.5.1. The hierarchical definition of an EC
In the preceding subsection, we deduced that there exists solely

one feasible approach to evaluation: applying the EECs to diverse
subjects and establishing an REM. Regrettably, even within a rudi-
mentary evaluation setting such as Case One, an EC has multifarious
components.

To address the above challenges, in this subsection, we propose a
hierarchy definition of an EC. We start defining an EC from the prob-
lems or task spaces that these stakeholders face and need to address
with the following two reasons. First, the concerns and interests of the
relevant stakeholders are at the core of the evaluation. These concerns
and interests are best reflected through the problems or tasks they
must face and resolve, which provide a reliable means to define an EC.
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Second, utilizing the same problem or task can ensure the comparability
of evaluation outcomes.

Taking Case One as an example, we observe that in Case One,
an EC encompasses numerous constituents. Notably, we identify four
primary components of an EC from the top to the bottom. The first top
component is a set of equivalent definitions of problems or tasks. While
the problem or task itself serves as the foundation for the evaluation
process, it cannot solely serve as the evaluation itself because the
problem or task is often abstract and requires further instantiation to
determine its specific parameters. The second component is the set of
a collective of equivalent problem or task instances, each of which is
instantiated from the element of the first component. Different from the
first component, an equivalent problem or task instance is specific and
could serve as the evaluation directly.

After a problem or task instance is proposed, it is necessary to
figure out a solution. The third component consists of the algorithms
or algorithm-like mechanisms, each of which provides the solution to a
specific problem or task instance. An algorithm-like mechanism refers
to a process that operates in a manner similar to an algorithm. This
term is proposed because, in numerous disciplines, such as social and
biological sciences, it is not currently feasible to formulate mathemat-
ical algorithms explicitly. These domains often involve complex and
nuanced phenomena that defy precise mathematical modeling.

The fourth component encompasses the implementation of an al-
gorithm or instantiation of an algorithm-like mechanism. Its imple-
mentation or instantiation involves understanding the algorithm or the
algorithm-like mechanism and implementing it in a specific system.
This process ensures that the algorithm or the algorithm-like mecha-
nism can effectively and efficiently solve the intended problem instance
or perform the desired task instance within the given context.

In addition to the four components of an EC that we discussed
above, other components can be involved in the other complex eval-
uation scenarios, which we will discuss later.

3.5.2. Universal concepts across different disciplines
In Section 3.1, we conducted an examination of the fundamental

constituents of an evaluation, which encompass ‘‘subjects’’ and ’’eval-
uation conditions’’. Additionally, we put forth definitions for various
fundamental concepts, namely ‘‘subject’’, ’’stakeholders’’, and ’’value
functions’’. Through this analysis, we unveiled that the core nature
of evaluation is to intentionally apply EECs to diverse subjects and
establish an REM to infer the impact of the subjects for judgments.

However, given the multiplicity of evaluation scenarios, two critical
questions must be addressed: (1) Do these concepts suffice for diverse
scenarios? (2) Can we formulate a comprehensive and universally appli-
cable conceptual framework? In this subsection, we delve deeper into
various evaluation cases across diverse disciplines, with the primary
aim of enhancing our comprehension of the evaluation process.

Evaluating an AI algorithm
In Case Two, the objective is to evaluate an AI algorithm, specif-

ically focusing on an Image Classification task as a case study. Real-
world images are gathered and annotated with accurate labels, such as
a cat or dog. A portion of these images is randomly selected to con-
struct the training, validation, and test datasets based on a designated
percentage. To assess the image classification algorithm (the subject in
this case), it must be implemented on a computer system utilizing a
specific programming framework, such as PyTorch or TensorFlow.

During the evaluation process, the test data is provided to the
algorithm, which generates an output. This output is then compared
to the ground truth labels. In Case Two, the ground truth can be
considered as a test oracle. Additionally, measurements are collected
for each run of the evaluation process.

The fundamental evaluation process in Case Two bears a resem-
blance to that of the baseline case. However, there exist three notable
distinctions. Firstly, an EC in Case Two differs. The presence of a
dataset labeled with ground truth constitutes a vital aspect of an EC.
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A dataset labeled with the ground truth represents a specific instance
of a problem or task. Regrettably, in Case Two, it is impractical to
define a problem or task mathematically. Hence, diverse problem or
task instances are devised in an ad-hoc manner, for example, selecting
images randomly to form training, validation, and test datasets based
on a predetermined percentage. This approach may introduce biases.

Secondly, both the subject and the algorithms must be implemented
on a computer, prompting the introduction of another concept called
‘‘a support system’’ to elucidate this facet, which may assume diverse
manifestations in alternative evaluation scenarios. The support system
represents an additional essential constituent of an EC. Therefore, in
Case Two, we introduce two novel concepts: ‘‘the support system’’ and
‘‘the subject instantiation’’. Fig. 5 shows a hierarchy definition of an
EC.

Thirdly, in Case Two, upon feeding the algorithm with the test data,
it generates an output that is then compared with the ground truth,
also known as the test oracle. Apart from measurements, there exist
other forms of activities in the evaluation process, namely testing, as
expounded upon in Section 2.3. Hence, in this instance, we modify the
essence and definition of evaluation, as delineated in Section 3.2, as
follows. The essence of an evaluation lies in ‘‘conducting deliberate
experiments where EECs are applied to a diverse range of subjects,
resulting in the establishment of equivalent EMs. Subsequently, we
can effectively evaluate the subjects by measuring and/or testing the
equivalent EMs’’. We formally define evaluation as ‘‘an experiment
that applies EECs to diverse subjects and establishes equivalent EMs,
enabling the measurement and/or testing of these equivalent EMs,
the inference of the subjects’ impact, and the subsequent judgment of
them’’.

Drug and policy evaluations
The Third Case (Case Three) and the Fourth Case (Case Four) exhibit

similarities, as they involve evaluating a drug and evaluating a policy
aimed at addressing drug addiction within a community. In these cases,
the subject refers to a specific drug or a policy aimed at addressing
drug addiction intervention, while the support system encompasses the
participants targeted by these interventions.

When comparing Cases Three and Four with Cases One and Two,
we have made three observations. Firstly, the specific problem or task
instances could be defined in a literal manner. Case Three focuses on
the cure of a specific illness, whereas Case Four aims to address drug
addiction and improve the overall well-being of individuals within a
designated community. Regrettably, we currently lack a mathematical
understanding of these problems or tasks, making it challenging to
provide a mathematical definition of the abstract problem or task.
Nevertheless, even if the problems can only be defined in a literal sense,
having detailed and comprehensive definitions of problem or task
instances, as well as a profound comprehension of the interrelationships
between different problem or task instances (from biological or social
perspectives), proves advantageous for the purposes of knowledge reuse
and sharing. Furthermore, it is anticipated that in the future, we will
strive to gain a deeper understanding of the connections between
various diseases or social issues, potentially through mathematical
means.

The second observation revolves around the distinctions of the
support systems found in Cases Two, Three, and Four, specifically
referring to the substantial variability in conditions within the target
participants. Evaluations commonly utilize a methodology known as
randomized controlled trials (RCT), which serves to eliminate con-
founding.

In practical application, Randomized Controlled Trials (RCTs) are
widely recognized as the gold standard for conducting evaluations.
In an RCT, subjects and support systems in the treatment group and
control group are randomly assigned. This random assignment helps
to minimize confounding variables that may arise from differences in
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support systems. Additionally, the allocation of participants to either
the treatment or control group is kept concealed from the evaluator
and relevant stakeholders.

Lastly, when it comes to Cases Three and Four, the third component
of an EC often lacks a mathematical-form algorithm, although it relies
on a scientifically valid mechanism that includes biological, social, or
psychological interactions. That is the right reason for us proposing
the term ‘‘algorithm-like mechanism’’, which we have explained before.
Moreover, Case Four presents a significantly more intricate situation
compared to Case Three, as the instantiation of the algorithm-like
mechanism encounters challenges in maintaining consistent quality due
to diverse factors, such as different attitudes towards interventions
and varying levels of communication skills that hold considerable
importance.

In summarizing, across various evaluation scenarios in different
disciplines, such as Cases One, Two, Three, and Four, it is possible to
develop a comprehensive conceptual framework that can be universally
applied.

3.5.3. The establishment of EECs
To lay the groundwork for the formalization of an EC, it is essential

to establish a clear understanding of some crucial notations. The nota-
tions 𝐸′, 𝑆, and 𝑈 represent three crucial components. Specifically, 𝐸′

represents the problem or task space. 𝑆 represents the support system
space. Finally, 𝑈 represents the subject space. 𝑒′, 𝑠, 𝑢 is an element of
𝐸′, 𝑆, and 𝑈 respectively. We note 𝑒′ ∈ 𝐸′, 𝑠 ∈ 𝑆, 𝑢 ∈ 𝑈 .

In addition to the aforementioned notations, we also define several
other fundamental notations. For each problem or task, 𝑒′𝑖 ∈ 𝐸′, there
is a set of problem or task instances noted as 𝐸𝑖. For all problems or
tasks in 𝐸′, there is a collection of a set of problem or task instances,
which we noted as 𝑆𝐸 = (𝑒′𝑖 , 𝐸𝑖). We use the division notation 𝑆𝐸∕𝐸′

to denote 𝐸. 𝐸 can be defined as the union of all 𝐸𝑖.
We introduce the notation 𝑆𝐴′ to represent the algorithm-like

mechanism space. This space, denoted as 𝑆𝐴′, consists of a set of
algorithm-like mechanisms that are associated with each problem or
task instance. Specifically, for a given problem or task 𝑒′𝑖 in the problem
or task space 𝐸′, and for each instance 𝑒𝑖𝑗 in the corresponding instance
space 𝐸𝑖, we define a set of algorithm-like mechanisms as 𝑆𝐴′ =
(𝑒′𝑖 , 𝑒𝑖𝑗 , 𝐴

′
𝑖𝑗 ).

To represent the algorithm-like mechanism space 𝑆𝐴′ in relation to
the problem or task space 𝐸′ and the problem or task instance space
𝐸, we use the division notation 𝑆𝐴′∕𝐸′∕𝐸 to denote 𝐴′. 𝐴′ is a union
of all 𝐴′

𝑖𝑗 .
We introduce the notation 𝑆𝐴 to represent the instantiations of the

algorithm-like mechanism space. This space, denoted as 𝑆𝐴, consists of
a set of instantiations of algorithm-like mechanisms that are associated
with each problem or task instance, algorithm-like mechanism, and
support system. Specifically, for a given problem or task 𝑒′𝑖 in the prob-
lem or task space 𝐸′, for each instance 𝑒𝑖𝑗 in the corresponding instance
space 𝐸𝑖, for each algorithm-like mechanism 𝑎′𝑖𝑗𝑘 in the algorithm-like
mechanism space 𝐴′

𝑖𝑗 , and for each support system 𝑠𝑙 in the support
system space 𝑆, we define a set of instantiations of algorithm-like
mechanisms as 𝑆𝐴 = (𝑒′𝑖 , 𝑒𝑖𝑗 , 𝑎

′
𝑖𝑗𝑘, 𝑠𝑙 , 𝐴𝑖𝑗𝑘𝑙).

To represent the instantiations of the algorithm-like mechanism
space 𝑆𝐴 in relation to the problem or task space 𝐸′, the problem or
task instance space 𝐸, the algorithm-like mechanism space 𝐴′, and the
support system space 𝑆, we use the division notation 𝑆𝐴∕𝐸′∕𝐸∕𝐴′∕𝑆
to denote 𝐴. 𝐴 is a union of all 𝐴𝑖𝑗𝑘𝑙.

By introducing these notations, we establish a comprehensive frame-
work that allows us to delineate the various components of an EC and
their respective roles. This formalization enhances our understanding of
the key components and their relationships within the EC framework.

We can formalize an EC as 𝐶 = 𝐸′ × 𝐸 × 𝐴′ × 𝐴 × 𝑆.
In the realm of EC spaces, the concept of EECs plays a significant

role. Two EC spaces, denoted as 𝐶1 and 𝐶2, are considered to be EECs
if and only if there exists a bijection, denoted as 𝛽, between the two
spaces: 𝛽 ∶ 𝐶1 ↦ 𝐶2; 𝛽−1 ∶ 𝐶2 ↦ 𝐶1. This equivalence is denoted as

𝐶1 ∼ 𝐶2.
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Fig. 5. The hierarchical definition of an EC.
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3.5.4. LEECs and evaluation standard
In certain cases, establishing EECs can be a challenging task. It

proves to be an arduous or unattainable task to ensure the equivalence
of two ECs at all levels. However, it is crucial to ensure the relative
comparability of evaluation outcomes.

In this section, we propose the concept of the least equivalent eval-
uation conditions (LEECs) as the foundation to attack this challenge. In
the event where we are unable to guarantee or establish the equivalence
of two ECs at all levels in the hierarchy, we propose a minimum
requirement of ensuring uniformity in the most essential components
of the two ECs, which we refer to as the least equivalent evaluation
conditions (LEECs).

We propose the establishment of LEECs at the levels of the first
and second top components of ECs. Firstly, the first and second top
components of an EC serve as the foundation upon which the other
two lower-level components are derived. Therefore, they provide the
most primitive components when setting ECs. Secondly, to enable
effective comparison of evaluation outcomes, it is crucial to establish
equivalence between the first high-level components of two ECs. If the
first high-level components are not equivalent, the evaluation outcomes
cannot be compared reliably. Thirdly, relying solely on the first com-
ponent may not provide enough specificity and certainty. To address
this, in addition to the equivalence of the first high-level component,
it is necessary for two ECs to possess two sets of definite and solvable
problem or task instances that are equivalent.

In certain situations, it is possible to relax the requirement of strict
equivalency between the second high-level component if the scale of
the problem or task instances can be defined. In such cases, we can
consider a scenario where two ECs have the same problem or task but
differ in the scales of problem or task instance as LEECs.

We formally define LEECs as follows:
For two ECs, denoted as 𝐶1 = 𝐸′

1 × 𝐸1 × 𝐴′
1 × 𝐴1 × 𝑆1 and 𝐶2 =

𝐸′
2 × 𝐸2 × 𝐴′

2 × 𝐴2 × 𝑆2, if there is equivalence between their first two
′
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ubspaces (𝐸 and 𝐸), that is, if and only if there is a bijection, denoted a
as 𝛽, between 𝐸′
1 × 𝐸1 and 𝐸′

2 × 𝐸2, we can establish that they are
LEECs, denoted as 𝐶1 ≈ 𝐶2. In other words, 𝛽 is a function mapping
rom 𝐸′

1×𝐸1 to 𝐸′
2×𝐸2, and its inverse function 𝛽−1, maps from 𝐸′

2×𝐸2
o 𝐸′

1 ×𝐸1, denoted as 𝛽 ∶ 𝐸′
1 ×𝐸1 ↦ 𝐸′

2 ×𝐸2; 𝛽−1 ∶ 𝐸′
2 ×𝐸2 ↦ 𝐸′

1 ×𝐸1.
To effectively define the least equivalent ECs (LEECs), it is crucial

o identify the most governing component of ECs that must exhibit
quivalency. This component, known as the evaluation standard, plays
crucial role in defining the LEECs. By establishing and adhering to

his evaluation standard, we can ensure that the evaluation outcomes
re relatively comparable.

An evaluation standard should embody the characteristics that are
olvable, definite, and equivalent (abbreviated as SDE). First, it should
e amenable to a solvable framework, employing specific mechanisms.
hese mechanisms could encompass mathematical steps executed in a
echanical fashion [20] or incorporate biological, social, and psycho-

ogical mechanisms and interactions. It is noteworthy that algorithms
an be regarded as specific applications of mathematical steps executed
n a mechanical manner. If an evaluation standard does not lend itself
o a solvable framework, it becomes essentially meaningless. Second, it
hould possess definiteness, whereby there exists a unanimous under-
tanding among evaluators without any uncertainty. Third, it should
xhibit equivalence across multiple evaluators, ensuring consistency
mong their assessments.

We propose the establishment of an evaluation standard at the level
f the definition of an individual problem or task instance. There are
everal valid reasons for this approach.

Firstly, the first and second high-level components define LEECs,
nd they are the cornerstone of the evaluation conditions. These two
igh-level components serve as the foundation upon which the other
wo low-level components are derived.

Secondly, the first high-level component, which pertains to the
efinition of a problem or task, is not definite and specific, as it may
ncompass a population of different instances. To be precise, an equiv-

lent, definite, and solvable problem or task instance qualifies as ‘‘an
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Fig. 6. The relationships among evaluation configurations, evaluation conditions (C),
Evaluation models (M), and evaluation standards. Please note that 𝐶 = 𝑀∕𝑈 .

evaluation standard’’. This definition serves as the basis for conducting
evaluations on the subjects. Fig. 6 shows the relationships among the
evaluation standard, evaluation conditions, evaluation configuration,
and evaluation standard.

We discuss the subtle differences between LEECs and evaluation
standards. LEECs are defined on the first and the second high-level com-
ponents, while the evaluation standard is only defined at the second
high-level component, and they are closely related but with distinct
implications. Their shared objective is to guarantee the comparability
of evaluation outcomes. The aim of LEECs is to ensure the least equiva-
lence between two ECs, while the evaluation standard is to provide the
most governing component of an EC that ensures the comparability of
the evaluation outcomes. Second, LEECs imply a state space, while an
evaluation standard is an evaluation criterion.

3.5.5. The establishment of an REM
Based on the notations defined in Section 3.5.3, we formalize an EM

as 𝑀 = 𝐶 × 𝑈 = 𝐸′ × 𝐸 × 𝐴′ × 𝐴 × 𝑆 × 𝑈 .
An element of an EM, denoted as 𝑚 ∈ 𝑀 , can be expressed as

𝑚 = (𝑐, 𝑢) = (𝑒′, 𝑒, 𝑎′, 𝑎, 𝑠, 𝑢). Here, 𝑒′ ∈ 𝐸′ represents a given problem or
task, 𝑒 ∈ 𝐸 represents a specific instance of the problem or task, 𝑎′ ∈ 𝐴′

represents a particular algorithm-like mechanism, 𝑎 ∈ 𝐴 represents
an instantiation of the algorithm-like mechanism, 𝑠 ∈ 𝑆 represents a
support system, and 𝑢 ∈ 𝑈 represents a subject instantiation.

In addition, we will define how to establish an REM. We assume
that an EM element, denoted as 𝑚 ∈ 𝑀 , is made of 𝑛′ independent
variables, rewritten as 𝑚 = (𝑘1,… , 𝑘𝑛′ ) = (𝑒′, 𝑒, 𝑎′, 𝑎, 𝑠, 𝑢). We note
𝑀 = 𝐾1 × ⋯ × 𝐾𝑛 = 𝐶 × 𝑈 = 𝐸′ × 𝐸 × 𝐴′ × 𝐴 × 𝑆 × 𝑈 . Please bear
in mind that the number of variables 𝑛 is greater than 𝑛′.

For each EM element, represented as 𝑚 = (𝑘1,… , 𝑘𝑛′ ), we follow
a specific methodology in which only one independent variable at a
time, from the set 𝑘1, 𝑘2,… , 𝑘𝑛′ , is allowed to vary while keeping the re-
maining variables constant. This controlled experimentation approach
is referred to as an REM, as defined in Section 3.4.

We define the evaluation cost of an EM or ES as the costs of
constructing, traversing, and assessing its corresponding REM, where
‖𝑀‖ stands for the capacity of an EM or ES and 𝜇 stands for a constant
coefficient:

cost(𝑀) = 𝜇‖𝑀‖ = 𝜇‖𝐾1‖ × ‖𝐾2‖ ×⋯ × ‖𝐾𝑛‖
10
Fig. 7. Universal evaluation methodology in complex scenarios.

3.6. Universal evaluation methodology in complex scenarios

From the revealed essence of the evaluation, it seems that perform-
ing an evaluation is straightforward. Unfortunately, in reality, there are
evaluation scenarios with different levels of complexity. Fig. 7 presents
a universal evaluation methodology in complex scenarios.

We refer to the entire population of real-world systems that are used
to evaluate specific subjects as the real-world ES. Assuming no safety
concerns are present, the real-world ES serves as a prime candidate for
the assessment of the subjects of interest. Unfortunately, there are five
significant obstacles to consider when assessing diverse subjects within
a real-world ES.

Firstly, the presence of numerous confounding in the real-world ES
poses a considerable challenge. It is often difficult, if not impossible,
to completely eliminate these confounding. They can complicate the
evaluation process by introducing variables that make it challenging to
isolate the effects of different independent variables.

Secondly, manipulating the real-world ES is a formidable task, mak-
ing it virtually impossible to establish controlled environments, known
as REM, for evaluating subjects. Additionally, the interconnected nature
of subjects, support systems, and other components of ECs further
complicates the establishment of an REM.

Thirdly, the vast state spaces of ECs and the large populations of
subjects result in high evaluation costs. The sheer scale of these sys-
tems makes it expensive and time-consuming to thoroughly performing
assessment and analysis.
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Fourthly, within the real-world ES, multiple irrelevant concurrent
problems or tasks may be taking place simultaneously, which may
not directly align with the subject being assessed. This further adds
complexity to the evaluation process and introduces confounding.

Lastly, it is important to acknowledge that the real-world ES, re-
gardless of the nature of its problems or tasks, tends to exhibit a
bias towards certain clusters. This bias can manifest through problem
or task instances, algorithm-like mechanisms, and their instantiations.
However, this bias towards specific groups can limit our ability to fully
explore and understand the entire range of possibilities available to us.

When assessing a specific quantity of interest in an evaluation
experiment, it is crucial to closely examine the relationship between
the quantity of the EM and the corresponding quantity of the real-world
ES. The ratio between these two quantities serves as a key indicator of
accuracy. Ideally, a ratio closer to 100% signifies higher accuracy in
the EM’s modelling of the real-world ES.

In our research, we propose the concept of a ‘‘perfect EM’’ that
aims to replicate the real-world ES with the highest level of fidelity,
achieving a remarkable ratio of 100%. In theory, a perfect EM would
possess several characteristics that enhance the evaluation of subjects
within the EC framework.

Firstly, it would eliminate irrelevant problems or tasks that may be
used to establish ECs, ensuring that the evaluation focuses on specific
and directly applicable contexts. This targeted approach would enhance
the relevance and applicability of the evaluation process.

Secondly, a perfect EM would facilitate easy manipulation, allowing
for the free and artificial configuration of different evaluation settings.
This flexibility would enable researchers to explore various scenarios
and assess subjects under a range of conditions, enhancing the depth
and breadth of the evaluation process.

Thirdly, a perfect EM would support the establishment of an REM,
effectively eliminating confounding. By isolating and controlling vari-
ables of interest, researchers could gain more accurate insights into the
impact of specific factors on the subjects being evaluated.

Furthermore, a perfect EM would have the capability to thoroughly
explore and understand the entire spectrum of possibilities within
an EC. This would include problem or task instances, algorithms-like
mechanisms, and their instantiations. By encompassing this comprehen-
sive range, researchers could gain deeper insights into the behavior and
performance of subjects within the EC framework.

However, it is important to note that achieving a truly ‘‘perfect EM’’
may be challenging, if not impossible. The real-world ES is complex and
dynamic, and replicating it with absolute fidelity is a monumental task.
While we can strive to create more accurate and representative evalu-
ation environments, it is crucial to recognize the inherent limitations
and constraints that exist in the real world.

Nevertheless, by considering the concept of a perfect EM and its
accompanying characteristics, we can strive to improve the evaluation
of subjects within the EC framework and enhance our understanding of
their performance within real-world contexts.

The characteristics of the perfect EM, such as encompassing large
populations of problem or task instances, algorithm-like mechanisms,
instantiations, and support systems, as well as a vast number of inde-
pendent variables, can lead to significant evaluation costs. However, to
address this challenge, it is important to propose a pragmatic EM that
simplifies the perfect EM in two key ways.

Firstly, to reduce the evaluation costs associated with a large num-
ber of independent variables, it is crucial to identify and focus on the
variables that have a significant impact on the evaluation outcomes. By
identifying and prioritizing these variables, researchers can streamline
the evaluation process and allocate resources more efficiently. Negligi-
ble variables that have a minimal effect can be excluded or controlled
for, reducing complexity and costs. It is worth emphasizing that the
simplification involved in creating a pragmatic EM will inevitably lead
to a decrease in the accuracy of the evaluation model.
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Secondly, sampling techniques can be employed to manage the
extensive populations of problem or task instances, such as algorithm-
like mechanisms, their instantiations, and support systems. Rather than
evaluating every single possibility, researchers can select representative
samples that capture the diversity and range of the population. This
approach allows for a more manageable evaluation process while still
maintaining a good level of coverage and representation.

In nature, a pragmatic EM is a subject equipped with a simplified and
sampled EC. It can be considered as a sample of a perfect EM without
taking into account any potential decrease in its accuracy. In order to
measure the extent to which the statistics of a pragmatic EM can infer
the parameters of a perfect EM, we employ the criterion of confidence
interval and confidence level. The confidence level provides us with
the probability that the estimated parameters of a perfect EM fall
within a specific range of values. Meanwhile, the confidence intervals
establish a range of values within which we can reasonably expect the
true parameters of a perfect EM to fall. By utilizing these statistical
measures, we can assess the degree of alignment between the statistics
of a pragmatic EM and the parameters of a perfect EM. This allows us
to gauge the effectiveness and validity of the pragmatic EMs.

By implementing these simplifications in a pragmatic EM,
researchers can strike a balance between comprehensiveness and fea-
sibility. The pragmatic EM allows for a more practical and efficient
evaluation of subjects within the EC framework, mitigating the chal-
lenges posed by evaluation costs and the complexity of the perfect
EM.

In representing different ECs, we use specific symbols. The symbol
𝐶𝑟 denotes the EC in a real-world ES (a real-world EC), which can be
calculated as 𝐸′

𝑟 × 𝐸𝑟 × 𝐴′
𝑟 × 𝐴𝑟 × 𝑆𝑟. Similarly, the EC in a perfect EM

a perfect EC) is denoted by 𝐶𝑝, calculated as 𝐸′
𝑝 × 𝐸𝑝 × 𝐴′

𝑝 × 𝐴𝑝 × 𝑆𝑝.
Lastly, the EC in a pragmatic EM (a pragmatic EC) is represented by
𝐶𝑔 , calculated as 𝐸′

𝑔 × 𝐸𝑔 × 𝐴′
𝑔 × 𝐴𝑔 × 𝑆𝑔 .

Likewise, we use symbols to denote a real-world ES (𝑀𝑟), a perfect
EM (𝑀𝑝), and a pragmatic EM (𝑀𝑔). These are represented as:

𝑀𝑟 = 𝐸′
𝑟 × 𝐸𝑟 × 𝐴′

𝑟 × 𝐴𝑟 × 𝑆𝑟 × 𝑈𝑟

𝑀𝑝 = 𝐸′
𝑝 × 𝐸𝑝 × 𝐴′

𝑝 × 𝐴𝑝 × 𝑆𝑝 × 𝑈𝑝

𝑀𝑔 = 𝐸′
𝑔 × 𝐸𝑔 × 𝐴′

𝑔 × 𝐴𝑔 × 𝑆𝑔 × 𝑈𝑔

These symbols help us distinguish and calculate the various compo-
nents of ECs and EMs in different contexts.

3.7. Fundamental issues in evaluatology

This subsection presents three fundamental issues in Evaluatology.

3.7.1. Ensure transitivity of EMs
The key to the effectiveness and efficiency of evaluations in different

scenarios is to establish a series of EMs that ensure the transitivity of
the primary characteristics.

In Section 3.6, we have effectively examined and described a real-
world ES, along with its corresponding EM, which we call a perfect EM,
and their interconnections.

The real-world ES system presents three notable obstacles. Firstly,
the presence of numerous confounding creates a challenge as they
cannot be completely eliminated. Secondly, the existence of multiple
irrelevant problems or tasks adds another layer of complexity. Lastly,
regardless of the nature of the problems or tasks involved, there is
a tendency for the system to exhibit bias towards certain clusters
exhibited by problem or task instances, algorithmic mechanisms, and
their instantiations.

To overcome these obstacles, a perfect EM, which possesses several
key characteristics, is proposed. Firstly, the model eliminates any irrele-
vant problems or tasks that may be used to derive evaluation standards
for assessing different subjects. Secondly, the model enables the free
setting of an REM. Thirdly, the model allows for a comprehensive
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Fig. 8. A perfect EM resembles a real-world ES.

exploration and understanding of the entire spectrum of possibilities in
terms of problem or task instances, algorithmic mechanisms, and their
instantiations.

Compared to a real-world ES 𝑀𝑟 = 𝐸′
𝑟 × 𝐸𝑟 × 𝐴′

𝑟 × 𝐴𝑟 × 𝑆𝑟 × 𝑈𝑟,
a perfect EM eliminates its irrelevant problems or tasks, represented
by 𝑀𝑝 = 𝐸′

𝑝 × 𝐸𝑝 × 𝐴′
𝑝 × 𝐴𝑝 × 𝑆𝑝 × 𝑈𝑝. Transforming a real-world

ES into a perfect EM should ensure the transitivity of the following
characteristics (see Fig. 8).

𝐸′
𝑝 ⊂ 𝐸′

𝑟

𝑆𝐸𝑝∕𝐸′
𝑝 ⊃ 𝑆𝐸𝑟∕𝐸′

𝑝

𝑆𝐴′
𝑝∕𝐸

′
𝑝∕𝐸𝑝 ⊃ 𝑆𝐴′

𝑟∕𝐸
′
𝑝∕𝐸𝑝

𝑆𝐴𝑝∕𝐸′
𝑝∕𝐸𝑝∕𝐴′

𝑝∕𝑆𝑝 ⊃ 𝑆𝐴𝑟∕𝐸′
𝑝∕𝐸𝑝∕𝐴′

𝑝∕𝑆𝑝.

The perfect EM encompasses large populations of problem or task
instances, algorithm-like mechanisms, their instantiations, and support
systems. Also, it entails a vast number of independent variables.

To overcome this difficulty, it becomes essential to propose a prag-
matic EM that simplifies the perfect EM in two ways: (1) reducing
the number of independent variables and (2) sampling from the ex-
tensive populations of support systems, problem or task instances,
algorithm-like mechanisms, and their instantiations.

A pragmatic EM adopts a sampling approach on the perfect EM,
resulting in a smaller space to work with. To formalize this process,
we introduce the notation 𝑠(⋅) to represent the sampling function.
Additionally, the pragmatic EM streamlines the independent variables
within the perfect EM by excluding those that have minimal impact.

For each element 𝑚𝑔 in the sampled space 𝑀𝑔 , which is a subset of
the perfect EM 𝑀𝑝, we denote the corresponding element in 𝑀𝑝 as 𝑚𝑝.
When transforming a perfect EM into a pragmatic EM, it is essential to
maintain the transitivity of the following characteristics:

𝑀𝑔 = 𝑠(𝑀𝑝): The sampled space 𝑀𝑔 is obtained through the
application of the sampling function 𝑠 on the perfect EM 𝑀𝑝.

𝑀𝑔 ⊂ 𝑀𝑝: The sampled space 𝑀𝑔 is a subset of the perfect EM 𝑀𝑝.
𝑚𝑔 = (𝑘1,… , 𝑘𝑛′ ) ∈ 𝑀𝑔 : Each element 𝑚𝑔 in the sampled space 𝑀𝑔

consists of a set of independent variables (𝑘 ,… , 𝑘 ).
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1 𝑛′
𝑚𝑝 ∈ 𝑀𝑝 is the matched element in the perfect EM 𝑀𝑝 correspond-
ing to 𝑚𝑔 . 𝑚𝑝 consists of a set of independent variables (𝑘1,… , 𝑘𝑛′′ ).
𝑛′′ is greater than 𝑛′, ensuring that the corresponding element in the
perfect EM includes at least as many independent variables as that of
the element in the pragmatic EM.

3.7.2. Perform cost-efficient evaluation with controlled discrepancies
By disregarding the accuracy of an EM, conducting evaluations

solely through the establishment of an REM within a perfect EM may
indeed result in maximum confidence. However, this approach also
comes with a significant drawback — the exorbitant cost it entails. The
process of creating an REM within a perfect EM can be prohibitively
expensive, making it impractical for many organizations. Therefore,
it is crucial to strike a balance between ensuring the discrepancy
threshold of the evaluation outcomes and managing the associated costs
when implementing evaluation processes.

When creating a pragmatic EM from a perfect EM, the discrepancy
threshold 𝜖, which is a discrepancy limit that can be tolerated in an
evaluation scenario, holds the potential to exert a profound influence
on the evaluation results and, in certain instances, it would give rise to
grave concerns, particularly in the context of safety-critical tasks where
failure could lead to detrimental side effects such as harm, loss of life, or
significant environmental damage. So, after thoroughly understanding
the stakeholders’ evaluation requirements, a risk function 𝛾(⋅) could
be predefined. When the stakes are high, and there is a greater risk
associated with the evaluation outcomes, it becomes imperative to have
a lower discrepancy threshold between the evaluation outcomes of a
pragmatic EM and a perfect EM. This is because the potential conse-
quences of making a wrong decision or drawing inaccurate conclusions
become more significant.

In Section 3.7.1, we use the notation 𝑠(⋅) to represent the sampling
function. In creating a pragmatic EM from a perfect EM, the accuracy
of EM decreases. We use the notation 𝑚(⋅) to represent this modeling
process. We use the notation 𝑒(⋅) to represent the process of ensuring
different equivalency levels of EC.

We introduce a discrepancy function of the evaluation outcomes
disc(⋅) between 𝑀𝑔 and 𝑀𝑝. When the discrepancy is 0, it indicates that
𝑀𝑔 and 𝑀𝑝 are equivalent.

The discrepancy function of the evaluation outcomes disc(⋅) between
𝑀𝑔 and 𝑀𝑝 is defined as follows. In the formulation, 𝜌(⋅) is a mea-
surement function, and 𝑣(⋅) is a value function. Besides, we define the
evaluation cost as the product of a constant 𝜇 and the space capacity of
𝑀𝑔 . This cost factor allows us to incorporate the resource constraints
and practical considerations associated with the evaluation process.

⎧

⎪

⎨

⎪

⎩

discrepancy threshold 𝜖 = 𝛾(⋅),

disc(Mg,MP) = disc(𝑣(𝜌(𝑒(𝑚(𝑠(𝑀𝑝)))))), 𝑣(𝜌((𝑀𝑝))),

cost(Mg) = 𝜇‖𝑀𝑔‖.

Based on the above formulation, the evaluation issue of balancing
evaluation cost and the discrepancies in the evaluation outcomes can
be framed as an optimization problem. The objective is to minimize the
evaluation cost, represented by cost while ensuring the discrepancies
in the evaluation outcomes, denoted as disc(𝑀𝑔 ,𝑀𝑝), do not exceed a
predefined discrepancy threshold 𝜖 (see Fig. 9).

The optimization problem can be formulated as follows:

argmin cost(Mg) subject to (disc(𝑀𝑔 ,𝑀𝑝) < 𝜖).

3.7.3. Ensure evaluation traceability
According to the third axiom of evaluation, for a well-defined

subject, the divergence in the evaluation outcomes can be attributed
to disparities in ECs, thereby establishing evaluation traceability.

Conceptually, traceability asks for a quantified mapping between
the differences in the input and output of the value function 𝑣(⋅) de-
cided by the evaluation community and the measurement function 𝜌(⋅)
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Fig. 9. Proposing a pragmatic EM based on the evaluation risk function.

Fig. 10. Evaluation traceability.

through the evaluation process, described by the mathematical model
we formulated above, and the model in the following formulation
is a perfect EM. We discover that this concept aligns well with the
mathematical notation of the gradients of a function, which gives the
rate of changes in the output for each input variable. Fig. 10 shows how
to ensure the evaluation traceability. In the context of evaluation, the
gradient of evaluation outcomes can be written as follows, which is a
matrix or tensor:

∇𝑣(𝜌(𝑒(𝑚(𝑠(𝑀𝑝))))) = ∇𝑣(𝜌(𝑒(𝑚(𝑠(𝑀𝑝(𝑘1,… , 𝑘𝑛))))))

= ( 𝜕𝑣
𝜕𝜌

𝜕𝜌
𝜕𝑒

𝜕𝑒
𝜕𝑚

𝜕𝑚
𝜕𝑠

𝜕𝑠
𝜕𝑀𝑝

𝜕𝑀𝑝

𝜕𝑘1
,… , 𝜕𝑣

𝜕𝜌
𝜕𝜌
𝜕𝑒

𝜕𝑒
𝜕𝑚

𝜕𝑚
𝜕𝑠

𝜕𝑠
𝜕𝑀𝑝

𝜕𝑀𝑝

𝜕𝑘𝑛
).

The closed-form mathematical expression is not always available
for various EC components in evaluation. Nevertheless, we can follow
the method of acquiring gradients in numerical methods by creating
perturbations in the ECs for various input variables and observing the
differences in the composite evaluation outcomes, thus approximating
the gradients.

3.7.4. Connect and correlate evaluation standards across diverse disciplines
While the constituents comprising ECs may differ across distinct

evaluation scenarios, a governing fundamental component of ECs
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emerges as the evaluation standard. The shared qualities of evaluation
standards, as denoted by the SDE characteristics, indicate the potential
for establishing a correlation between evaluation standards across
diverse disciplines.

The evaluation standard serves as a fundamental pillar within any
evaluation model. By establishing connections between evaluation stan-
dards across various disciplines, we have the potential to construct
a comprehensive framework encompassing evaluation issues in all
fields. This holistic framework, known as the grand unified theory of
evaluatology, allows for a thorough exploration of evaluation-related
matters.

Before defining an evaluation standard, it is essential to understand
the nature of the stakeholders’ primary problems or tasks. In the rest
of this article, a problem or task refers explicitly to a computational
problem. Make sure to distinguish between a problem and a problem
instance: A problem is an infinite collection of problem instances, each
of which is a problem with concrete configurations, which we have
elaborated in Section 3.5.1.

Computational complexity theory provides the basis for understand-
ing the nature of primary problems. For example, complexity classes –
that are defined by bounding the time or space used by the algorithm
– can be used to understand the problem’s nature [21]. Computability
theory [22] seeks a more general question about all possible algorithms
that could be used to solve the same problem. That is to say, the
computability theory provides a viable solution to answer whether a
problem is solvable. In understanding the problem instance, the theory
of analysis of algorithms [23] can be used to analyze the amount of
resources needed by a particular algorithm to solve a problem instance.

While the computational complexity and other theories mentioned
above lay the foundation, the formulation of evaluation standards
introduces novel concerns. The first challenge lies in addressing sce-
narios where articulating a mathematical model explicitly becomes an
insurmountable task. Regrettably, this circumstance is not uncommon,
as numerous problems defy expression through a mathematical model
at present.

To ensure the definitiveness and equivalency of the evaluation stan-
dard, it is imperative to establish a rigorous problem space definition
and a problem instance space definition, which provides the quanti-
tative foundation for the comparability and traceability of different
EMs.

The representativeness of the evaluation standard is a crucial aspect
that warrants discussion. Understanding the composition of problems is
crucial in identifying the problem or task that best represents the whole.
For instance, across various scientific and engineering disciplines, prob-
lems often exhibit a hierarchical structure, where a significant problem
can be broken down into several smaller problems commonly referred
to as ‘‘dwarfs’’ [24]. This pattern can be considered one of the foun-
dational structures within problem domains. Gaining profound insights
into the structural aspects of problems proves immensely valuable when
assessing complex and multifaceted subjects.

Fig. 11 shows how to correlate evaluation standards across diverse
disciplines. In an optimal scenario, we can identify evaluation stan-
dards that embody the SDE characteristics across various disciplines.
Ultimately, we can establish connections and correlations between eval-
uation standards from different fields, giving rise to the grand unified
theory of evaluatology. The objective of this theory is to present a hier-
archical framework of evaluation standards. Within this framework, we
can identify a minimal set of fundamental evaluation standard ‘‘dwarfs’’
along with their respective variations. Complex evaluation standards
are formed by combining two or more of these evaluation standard
dwarfs and their variants. This hierarchical structure of evaluation
standards will greatly facilitate the reuse and sharing of knowledge.

4. Benchmarkology: the engineering of evaluation

This section unveils the core essence of a benchmark and introduces
the benchmark-based engineering of evaluation, which we call bench-
markology. Furthermore, we provide guidelines and workflows within
the realm of benchmarkology.
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Fig. 11. Correlating evaluation standards across diverse disciplines.
.1. The essence of a benchmark

Benchmarks are extensively employed across various disciplines,
lbeit lacking a formal definition. Based on the science of evaluation,
e propose a precise delineation of a benchmark as a simplified and
ampled EC, specifically a pragmatic EC, that ensures different levels of
quivalency, ranging from LEECs to EECs.

Within the framework of this definition, a benchmark comprises
hree essential constituents. The first constituent is the stakeholder’s
valuation requirements, which encompass various factors. These include
he risk function, which evaluates the potential risks associated with
he benchmark. Additionally, the discrepancy threshold of the evalua-
ion outcomes, which determines the acceptable level of deviation in
valuation outcomes, is considered. The evaluation confidence interval
lays a crucial role in predicting the parameter of a perfect EM. Lastly,
he evaluation cost of EM is taken into account, and the resources
equired for conducting the evaluation are assessed. By considering
hese elements, the benchmark can effectively address the evaluation
equirements of stakeholders.

The second constituent of the benchmark framework is the EC
configuration and mechanisms. This includes several elements crucial for
he benchmark’s effectiveness. Firstly, it involves defining the set of
roblems or tasks that the stakeholders face when addressing them.
dditionally, it encompasses the set of equivalent problem or task

nstances, which helps ensure specificity in the evaluation process. The
enchmark also considers algorithm-like mechanisms and their instan-
iations, which play a significant role in solving the defined problems
r tasks. The support systems, which provide necessary resources and
nvironments, are also taken into account.

Moreover, the benchmark provides the means to eliminate con-
ounding variables that may affect the evaluation outcomes. Also, the
enchmark provides the mechanism to ensure varying levels of EC
quivalency, determining the extent to which different benchmark
nstances can be considered equivalent.

By considering these EC configurations and mechanisms, the bench-
ark can provide a comprehensive and standardized approach to eval-
ating problems or tasks.

The third constituent is the metrics and reference, including the defi-
itions of quantities, the value function, composite evaluation metrics,
he reference subject, and the reference evaluation outcomes.

In the subsequent sections of this article, we will refer to these three
onstituents as the complete constituents of a benchmark. Fig. 12 shows
he three essential constituents of a benchmark.

.2. The goal of benchmarkology

As expounded upon in Section 3, the science and engineering of
valuation, known as evaluatology, aims to apply the EECs to various
ubjects and establish an REM. A benchmark can be viewed as a
implified and sampled EC, specifically a pragmatic EC, that ensures
ifferent levels of equivalency, ranging from LEECs to EECs. In this
ontext, a benchmark-based approach to the evaluation problem is
onsidered a feasible engineering methodology, given the widespread
14

se of benchmarks across various disciplines. Consequently, we propose
the formal definition of benchmarkology as an engineering discipline
concerned with the quantitative assessment of diverse subjects using
benchmarks.

Undoubtedly, the theory of evaluatology serves as the foundation
for benchmarkology. Nevertheless, benchmarkology has its unique ob-
jective — to furnish guiding principles and engineering evaluation
methodologies.

4.3. The principles in building benchmarks

In Section 3, we have extensively discussed the fundamental axioms
of evaluatology. Nonetheless, this particular subsection delves deeper
into the principles that underpin the creation of benchmarks derived
from these four evaluation axioms.

The first principle focuses on the validity of metrics within a
benchmark. According to the First Axiom of Evaluation, also known
as the Axiom of the Essence of Composite Evaluation Metric, there are
three criteria to determine the validity of metrics in benchmarks. If a
metric does not meet these criteria, it is considered invalid. The three
criteria are as follows:

1. The metric should be a base quantity.
2. The metric should represent another quantity that has inherent

physical significance.
3. The metric should be a composite evaluation metric that is

explicitly defined by a value function.

The second principle pertains to the comprehensiveness of the
configurations of a valid benchmark. According to the Second Axiom
of Evaluation, known as the Axiom of True Evaluation Outcomes,
when a well-defined subject is equipped with a well-defined EC, its
evaluation outcomes possess true values. A well-defined EC should
reveal all its well-defined components. Each component within the EC
plays a critical role in determining the evaluation outcomes. When the
components of the EC are not well-defined, uncertainty is introduced
into the evaluation process. Without clear and specific components, the
evaluation outcomes become unpredictable and lack reliability.

The evaluation outcome using a benchmark should reveal the com-
plete evaluation configurations. Unfortunately, many contemporary
benchmarks, both in terms of state-of-the-art and state-of-the-practice,
have failed to disclose their comprehensive evaluation configurations
fully.

Some benchmarks, like the widely-used CPU benchmark SPECCPU,
may omit certain constituents or their components, e.g., the support
system. In such cases, it becomes essential to clearly define the con-
ditions under which the simplification is made, ensuring that the
benchmark can still provide meaningful and valid results. By provid-
ing these detailed evaluation configurations, we can ensure that the
benchmark remains a reliable tool for evaluation purposes.

The third principle centers around the concept of benchmark
traceability. In accordance with the Third Axiom of Evaluation, also
known as the Axiom of Evaluation Traceability, it is crucial to establish
benchmark traceability to enable the comparison of different bench-

marks. This means that it is a top priority to trace the discrepancies
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Fig. 12. A benchmark comprises three essential constituents.
in evaluation outcomes back to variations in the configurations of
different benchmarks.

The fourth principle encompasses the validity of the speedup of
two evaluations obtained using the benchmark. It emphasizes the
importance of understanding the implications of the speedup obtained
in different pragmatic EMs in relation to those of the real-world ES or
perfect EM.

Comparison is a common practice using benchmarks. In practice,
the speedup is often a key metric of interest that is obtained in dif-
ferent pragmatic EMs. When we compare two evaluations, we use the
benchmarks as a means to infer the true speedup in the real-world ES
or pefect EM.

To illustrate this principle, let us consider a specific example where
we compare two subjects, Subjects A and B, and obtain a speedup
(either greater than or less than 1).

In a simulated CPU scenario (a pragmatic EM), the reported speedup
is 1.3, indicating an improvement in performance for Subject A com-
pared to Subject B. However, the ratio between the speedup in the
EM and the corresponding speedup in the real-world ES has a 90%
confidence interval of [0.7, 1.9]. This means that the ratio could be
any value within this interval, including 1.6.

If the ratio of speedup is indeed 1.6, the actual speedup in the real-
world ES would be 1.3 divided by 1.6, resulting in a value of 0.8.
This indicates a degraded performance for Subject A in comparison to
Subject B, reported on the real-world ES, which is contradicted by an
improvement in performance reported on a simulated system.

It is crucial to note that relying solely on the reported speedup
in the EM without considering its implication in the real-world ES
can lead to misleading interpretations and decisions. To ensure the
validity of evaluation outcomes, it is essential to take into account the
confidence interval associated with the speedup ratio between the EMs
and real-world ES.

4.4. The universal methodology in benchmarkology

The aforementioned principles offer valuable insights into the fun-
damental components of a benchmarkology workflow, as shown in
Fig. 13.
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4.4.1. Understand stakeholders’ evaluation requirements
During the initial phase, it is essential for evaluators to gain a

comprehensive understanding of the stakeholders’ evaluation require-
ments, the first constituent of the benchmark, which we discussed in
detail in Section 4.1. This crucial step allows for the alignment of these
requirements with the overall purpose of the evaluation.

During this phase, a thorough examination of the evaluation risk
function, the discrepancy threshold of evaluation outcomes, and the
evaluation cost should be conducted. Additionally, for quantities or
variables of interest, it is crucial to establish their evaluation confidence
interval when using the benchmark. This quantification allows for an
assessment of how effectively the benchmark can infer or predict the
parameters of a perfect EM.

Unfortunately, in state-of-the-art or state-of-the-practice
benchmarks, the importance of this phase is often overlooked. There
are two possible reasons for this oversight.

Firstly, in certain evaluation scenarios, the discrepancy in evalua-
tion outcomes, whether intermediate or large, may not have significant
consequences. However, it is crucial to note that this is not the case in
scenarios involving safety-critical, mission-critical, and business-critical
applications. In these situations, even minor deviations can have severe
impacts on the overall outcome.

Secondly, the benchmark process itself is an engineering practice
that emphasizes iterative and refined operation. As a result, it implicitly
incorporates some procedures of this phase.

Therefore, it is imperative to recognize the significance of under-
standing stakeholders’ evaluation requirements, particularly in scenar-
ios where the stakes are high and any discrepancy from expected
outcomes can have critical implications.

4.4.2. Design and implement intricate evaluation mechanisms and policies
This phase plays a crucial role, particularly in complex evaluation

scenarios, and can be quite costly. Its primary aim is to provide a solid
foundation for generating a benchmark.

The real-world ES reflects the complexities and nuances of ac-
tual evaluation environments. In this phase, the evaluator takes on
the crucial task of building and investigating the real-world ES. The
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methodology discussed in Section 3.6 can serve as a helpful guide for
this process.

During the investigation, evaluators need to consider several aspects
carefully. One aspect involves identifying and eliminating irrelevant
problems or tasks that may not be applicable to the assessment of the
subjects under evaluation. This ensures that the evaluation focuses on
relevant and meaningful aspects of the subject. Another important con-
sideration is that evaluators must recognize any constraints or factors
that may impact the evaluation process. This understanding lays the
groundwork for creating a perfect EM that explores all the possibilities.
A perfect EM serves as an ideal evaluation model, and the design and
implementation of this model are also key focus in this phase. We have
discussed its main concerns in Section 3.6.

Additionally, in this phase, two key policies and their accompanying
procedures are of utmost importance. Firstly, the modeling policy and
procedure guide the process of transforming the real-world ES into
an EM, striking a balance between accuracy and cost. This involves
capturing the essential elements and characteristics of the real-world
ES in the model while ensuring that the modeling process is efficient
and cost-effective.

Secondly, the sampling policy and procedure play a vital role in
transitioning from a perfect EC to a pragmatic EC. This transition aims
to save on evaluation costs while still maintaining a high level of
confidence in the evaluation results. The sampling policy and proce-
dure guide the selection of representative samples from the perfect
EC, ensuring that the pragmatic EC captures the essential aspects
and characteristics of the perfect EC while being more practical and
resource-efficient.

By following these policies and procedures, the evaluation process is
adapted to real-world conditions and constraints. The modeling policy
and procedure enable the creation of an EM that accurately represents
the real-world ES, while the sampling policy and procedure ensure
that the pragmatic EC reflects the essential elements of the perfect EC.
This allows for a more effective and efficient evaluation process that
balances accuracy, cost, and confidence.

Overall, with the facilitation of the study of real-world ES and
the perfect EM, these modeling and sampling policies and procedures
are essential in this phase to guide the modeling and sampling pro-
cesses, ensuring that the evaluation process is well-suited to real-world
conditions and constraints.

4.4.3. Decide representative evaluation standards
The third phase is to decide the representative evaluation standards

that guarantee the least EECs, ensuring the comparability of the evalua-
tion outcomes. The main objective of this phase is to carefully consider
the relevant stakeholders involved and gain a deep understanding of
their principal interests and concerns. This phase requires evaluators
to identify and comprehend the primary problems or tasks that need to
be addressed.

It is important to note that each stakeholder has a unique perspec-
tive, leading to subtle differences in the problems or tasks they face.
Therefore, it is crucial for evaluators to recognize and take into account
these varying perspectives, ensuring that the evaluation standards are
comprehensive and reflective of the diverse interests of the stakeholders
involved.

In Section 3.5.4, we have explored the concept of evaluation stan-
dards and how they are derived from the abstract problem or task at
hand. Building upon this understanding, the evaluator’s next step is to
determine the specific evaluation standards by selecting representative
instances of the primary problems or tasks faced by the stakeholders.

It is important to recognize that different stakeholders will have
distinct evaluation standards. This is because their perspectives and
priorities vary based on their unique roles and interests. As a result,
it is essential for evaluators to consider these differences and tailor
the evaluation standards accordingly to ensure that they capture the
16

specific needs and concerns of each stakeholder involved.
It is true that previous evaluation and benchmark practices have
often lacked consistent discussions on what qualifies as an evalua-
tion standard. However, we believe that our universal definition of
evaluation standards has the potential to be applicable across various
evaluation scenarios in different disciplines. Our aim is to provide a
comprehensive framework that can guide evaluators in establishing
effective evaluation standards.

Furthermore, we acknowledge the importance of recognizing that a
realistic benchmark can only capture a small sample of huge popula-
tions of instances that are derived from a large population of problems
or tasks. Despite the challenges that may arise when explicitly stating
the problem or task, we remain committed to adopting a systematic
approach to our thinking. This allows us to navigate through such
complexities and develop meaningful evaluation standards that align
with the objectives of the evaluation process.

4.4.4. Design and implement ECs with different levels of equivalency
Based on the outputs from Phases Two and Three, the subsequent

stage involves the design and implementation of ECs with different
levels of equivalency. This task varies from different subjects. In gen-
eral, this phase needs to consider algorithm-like mechanisms and their
instantiations, as well as the support systems.

Furthermore, in this phase, it is essential to address the levels of EC
equivalency. This involves determining the extent to which different
benchmark instances can be considered equivalent. It requires careful
consideration of which components can be disregarded or simplified
in order to streamline the benchmark process while maintaining its
validity and reliability.

Additionally, the benchmark needs to establish mechanisms to elim-
inate confounding that may impact the evaluation outcomes. Confound-
ing variables can introduce biases or distortions into the evaluation
results, affecting their accuracy and reliability. One approach to address
confounding is by employing our proposed REM methodology. This
methodology provides a systematic framework to identify and eliminate
confounding variables and ensure that the evaluation outcomes are not
influenced by extraneous factors.

4.4.5. Perform measurement and/or testing
The fourth phase encompasses measurements and/or testing, guided

by the principles and practices of the metrology and testing theory.
The measurement and testing process serves multiple purposes. Firstly,
evaluators must determine which properties or quantities to measure,
keeping in mind what base quantities and other quantities that carry
physical meaning are.

Furthermore, evaluators must also consider the cost of measure-
ment and testing, ensuring that it aligns with budgetary constraints. It
becomes imperative for them to make informed decisions on various
aspects, such as how, when, and to what extent to perform testing,
sampling, and measuring these properties or quantities. By doing so,
they can effectively manage resources while still obtaining valuable
data for their research.

4.4.6. Perform assessments
The fifth phase entails assessment, wherein the defining of a value

function takes precedence. The rationale behind establishing a value
function lies in the aim of encapsulating numerous quantities that
surpass our capacity for recognition into a singular metric. This value
function serves as a proposed function, mapping the target properties or
quantities measured during the preceding phase to the evaluation out-
comes in order to reflect the concerns or interests of the stakeholders.
Given that stakeholders often possess varying concerns or interests, it
is common to propose multiple value functions from different perspec-
tives. Different communities may reach a consensus on how to define a
value function. Generally, evaluators must engage in consultation with

the stakeholders to define a composite evaluation metric in the form of
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Fig. 13. The universal methodology in benchmarkology.

value function that truly encapsulates the stakeholders’ concerns or
nterests.

Subsequently, evaluators can compare the obtained evaluation out-
omes to the reference evaluation outcomes, ultimately enabling judg-
ent on different subjects, such as performance, value, merit, weak-
esses, worth or significance, as well as positive or negative effects.

.4.7. Perform meta-evaluation
The last phase involves conducting meta-evaluations. The eval-

ators are tasked with reviewing all the evaluation processes and
etermining whether the theory, data, or evidence produced can sub-
tantiate the conclusions drawn in the evaluations. In this phase of
eta-evaluation, various perspectives are taken into account, including

he dimensionality of measurement data [7], the reliability of measure-
ent results, the validity of evaluation outcomes, the traceability of

enchmarks, as well as the cost and cost-efficiency of the evaluation
tself [1].

The ‘‘dimensionality’’ of measurement data refers to the number
nd nature of variables that are reflected in the assessment [7]. The
eliability of measurement results pertains to the extent to which the
easured values accurately reflect the true values. The validity of the

valuation outcome denotes the degree to which the statistics of the
enchmark can infer the parameter of the real-world evaluation setting
r a perfect evaluation model in terms of the metrics of confidence level
nd confidence interval.

Two approaches can be undertaken to manage benchmark trace-
bility. Firstly, it is essential to develop a comprehensive mathematical
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model capable of capturing the influence of the discrepancies of the
evaluation configurations on the evaluation results. This model will
serve as a foundation for interpreting and comprehending the evalu-
ation outcomes. Additionally, the community must engage in contin-
ual benchmark comparisons. Drawing inspiration from the calibration
practices in the field of metrology, this consistent comparison and align-
ment of different benchmarks will ensure consistency and accuracy in
evaluation procedures.

Constrained by the limitations of the budget, the aforementioned
six phases can be carried out iteratively, employing a trial-and-error
methodology.

5. Why it is essential to develop evaluatology?

In this section, we will begin by conducting a comprehensive review
of the state-of-the-art and state-of-the-practice evaluation methods and
benchmarks. This review will provide us with a solid understanding of
the current landscape and help identify areas where advancements are
needed.

To illustrate the importance of advancing the science and engineer-
ing of evaluation, we will focus on the evaluation of CPU performance
as a prime example. Meanwhile, we will critically reflect on the ex-
isting state-of-the-art and state-of-the-practice evaluation methods and
benchmarks. This reflection will enable us to identify any limitations
or gaps that need to be addressed for more accurate and meaningful
evaluations.

Furthermore, we will explore the advantages that the field of eval-
uatology brings to the table. To ensure clarity and understanding, we
will provide a concise summary of the distinctions between evaluation,
measurement, and testing.

To ensure consistency and alignment with our proposed universal
terminology, we will utilize our established terminology framework
when discussing state-of-the-art and state-of-the-practice evaluation
and benchmark cases.

5.1. Evaluations across different academic fields

This subsection presents a concise overview of the cutting-edge
evaluations in a range of academic disciplines, as well as the prevailing
evaluation practices.

5.1.1. Observation study methodologies
Observational study methodologies are widely used in the fields

of business science, finance, and education. Even based on a random
sample, an observational study still falls short of effectively revealing
the cause-and-effect relationships.

Evaluations in the field of business science:
Camp [8] defines benchmarking as ‘‘the search for those best prac-

tices that will lead to the superior performance of a company’’. Bench-
marking consists of two primary steps [8]: (1) establishes operation
targets based on industry best practices; (2) ‘‘a positive, proactive,
structured process leads to changing operations and eventually achiev-
ing superior performance and competitive advantage’’. In the study
conducted by Andersen et al. [25], the essence of benchmarking is
summarized as the quest for knowledge and learning from others.

Evaluations in the fields of finance and education:
In the fields of finance and education, indices are widely used

as benchmarks to assess the overall performance of the individuals
or systems under study. These indices are derived by calculating the
weighted average of a selected group of individuals or systems [9].

For example, stock market indices are used as benchmarks to assess
the stock market’s performance in the finance field. These indices are
derived by calculating the weighted average of a selected group of
representative stocks [9]. Some widely recognized stock market indices
include the Dow Jones Industrial Average, the S&P 500, the NASDAQ
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Table 1
The base quantity, value function, and the reference machine specified in different CPU benchmark suites in Section 5.

Benchmark Category Base quantity Value function Reference machine

SPEC CPU2006

SPECspeed Execution time 𝑥𝑖 = time on a reference machine/time on the

evaluation machine [27]; 𝑥 = 𝑛

√

𝑛
∏

𝑖
𝑥𝑖 The Ultra Enterprise 2 with 296 MHz

UltraSPARC II chips [28]
SPECrate Execution time 𝑥𝑖 = number of copies * (time on a reference

machine/time on the evaluation machine) [27];

𝑥 = 𝑛

√

𝑛
∏

𝑖
𝑥𝑖

SPEC CPU2017

SPECspeed Execution time 𝑥𝑖 = time on a reference machine/time on the

evaluation machine [27]; 𝑥 = 𝑛

√

𝑛
∏

𝑖
𝑥𝑖 The Sun Fire V490 with 2100 MHz

UltraSPARC-IV+ chips [27]
SPECrate Execution time 𝑥𝑖 = number of copies * (time on a reference

machine/time on the evaluation machine) [27];

𝑥 = 𝑛

√

𝑛
∏

𝑖
𝑥𝑖

PARSEC Execution time 𝑥𝑖 = time on the evaluation machine
Composite, and the Shanghai Stock Exchange Composite Index. Dif-
ferent indices employ varying calculation methods. The most common
approach is the weighted average method, which determines the index
value based on the weighted average of the constituent stock prices.
Another method is the geometric mean method, which calculates the
geometric average of the stock prices and adjusts it using a base period
price. Typically, stock market indices are published at the close of each
trading day. Some index providers offer real-time index data, enabling
investors to stay informed about the latest market conditions.

The Brent benchmark is used to determine the price of Brent crude
oil [26]. Brent crude oil is a type of light and low-sulfur crude oil
produced from oil fields in the North Sea region. Due to its relatively
stable supply and high quality, Brent crude oil has become a significant
benchmark in the international oil market. Traders, investors, and
industry participants worldwide reference the Brent benchmark to track
and evaluate the price of Brent crude oil.

In the finance discipline, indexes or benchmarks serve as reference
measurements or evaluation results. However, these practices often pri-
oritize data collection and processing over building a solid evaluation
theory framework.

5.1.2. Experimental methodologies
Experimental methodologies are widely used in the fields of social

sciences, computer sciences, psychology, and medicine.

Evaluations in the field of social sciences:
According to Rossi et al. [1], at the earliest, Thomas Hobbes and

his contemporaries tried to ‘‘use numerical measures to assess social
conditions and identify the cause of mortality, morbidity, and social
disorganization in the discipline of social science’’.

Rossi et al. [1] define program evaluation as the process of using
social research methods to systematically assess programs aimed at
‘‘improving social conditions and our individual and collective well-
being’’, with the goal of providing answers to the stakeholders. Rossi
et al. [1] summarize the five domains of evaluation questions and
methods that exhibit strong interplays: (1) the need for the programs,
(2) program theory and design, (3) program process, (4) program
impacts, and (5) program efficiency.

Evaluations in the Field of Computer Science:
The SPEC CPU benchmark suite, known as SPEC CPU [29], is

widely recognized as the most renowned benchmark suite for CPU
performance evaluation. Throughout its history, six versions of the
SPEC CPU benchmark suite have been released, with the latest version
being SPEC CPU2017, which can be found in Table 1. The SPEC CPU
workloads cover a broad range of CPU-intensive tasks.

The performance evaluation metric used in SPECCPU is based on
the execution time. The reported score of SPECCPU represents the ratio
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of its execution time compared to that of a reference machine. The
specific details of a reference machine can be found in Table 1. To
ensure the credibility of the results, the overall metrics are calculated
as the geometric mean of each respective ratio. Each ratio is based on
the median execution time from three runs or the slower of the two
runs.

Dongarra et al. [30] proposed the LINPACK benchmark for evaluat-
ing high-performance computing (HPC) systems. The LINPACK Bench-
mark is designed to solve dense linear systems of equations of order n,
represented by the equation 𝐴𝑥 = 𝑏. It originated from the development
of the LINPACK software package in the 1970s.

The LINPACK benchmark is commonly used to evaluate HPC sys-
tems, and the measurement metric is the number of floating-point
operations per second (FLOPS). FLOPS represents the count of floating-
point operations (FLOPs) performed by the solving algorithm of the
LINPACK benchmark, which is calculated as (2 ∗ 𝑛3∕3 + 2 ∗ 𝑛2)
operations divided by the execution time of the benchmark.

As shown in Fig. 14, ImageNet is a significant benchmark in the
field of computer vision, consisting of 14,197,122 high-resolution im-
ages manually annotated across 21,841 distinct categories, commonly
known as ImageNet-21K [31]. These categories encompass a wide
range of objects, animals, and scenes. The ILSVRC (ImageNet Large
Scale Visual Recognition Challenge) is an annual computer vision com-
petition that focuses on a subset of ImageNet-21K called ImageNet-
1K [32]. It aims to evaluate the performance of deep learning models
in tasks such as image classification and object detection, providing
specific task configurations and evaluation criteria. ImageNet-1K is
primarily used for image classification tasks and consists of 1,281,167
training images, 50,000 validation images, and 100,000 test images.
The evaluation metrics commonly used in ILSVRC include Top-1 accu-
racy, which measures the match between the predicted category and
the true category of the image, and Top-5 accuracy, which indicates
if the true category of the image is among the top five predicted
categories by the model.

Evaluations in the field of medicine:
The evaluation in the field of medicine can be traced back to

the early medical eras, although there are no documented records.
A rigorous modern medical evaluation methodology and system were
established as early as 1938 [34]. Clinical trials, with a history spanning
over 250 years, are the primary and widely recognized method for med-
ical evaluation. They are defined as experimental designs to evaluate
the potential impact of medical interventions on human subjects [35].

Currently, clinical trials based on experimental designs can be cat-
egorized into various types, including randomized trials, double-blind
trials, prospective trials, and retrospective trials [36].

As illustrated in Fig. 15, Randomized Controlled Trials (RCTs),
considered the gold standard for medical evaluation, possess a rig-

orous and reliable theoretical framework [37]. However, their high
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Table 2
The evaluation outcomes of the Intel Xeon Gold 5120T Processor using different CPU benchmarks show significant discrepancies. SPEC CPU2017 includes two sub-suites: SPECrate
and SPECspeed. The results derived from SPECrate and SPECspeed are further categorized into two groups, known as floating-point (FP) and int.

Benchmark Support platform Workload Time (s) Score Result Score meaning
503.bwaves_r 1483 379.0
508.namd_r 636 83.7
510.parest_r 1742 84.1
511.povray_r 1128 116.0
519.lbm_r 1420 41.6
521.wrf_r 1682 74.6
526.blender_r 787 108.0
527.cam4_r 998 98.2
538.imagick_r 1479 94.2
544.nab_r 893 106.0
549.fotonik3d_r 2001 109.0
554.roms_r 1429 62.3

500.perlbench_r 926 96.3

96.9 (FP)

502.gcc_r 758 105.0
505.mcf_r 1059 85.5
520.omnetpp_r 1217 60.4
523.xalancbmk_r 786 75.3
525.x264_r 1179 83.2
531.deepsjeng_r 715 89.8
541.leela_r 1197 77.5
548.exchange2_r 1338 110.0

SPECrate

Unix
(AIX,
HP-UX,
Linux,
Mac OS X,
Solaris),
Windows [27]

557.xz_r 824 73.4

84.3 (INT)

Higher scores mean that more work is
done per unit of time [27]

603.bwaves_s 224 263.0
619.lbm_s 182 28.8
621.wrf_s 522 25.4
627.cam4_s 155 57.2
628.pop2_s 532 22.3
638.imagick_s 507 28.4
644.nab_s 191 91.5
649.fotonik3d_s 244 37.3
654.roms_s 245 64.2

600.perlbench_s 832 2.1

48.7 (FP)

602.gcc_s 823 4.8
605.mcf_s 1369 3.5
620.omnetpp_s 815 2.0
623.xalancbmk_s 444 3.2
625.x264_s 703 2.5
631.deepsjeng_s 651 2.2
641.leela_s 999 1.7
648.exchange2_s 807 3.6

SPECspeed

Unix
(AIX,
HP-UX,
Linux,
Mac OS X,
Solaris),
Windows [27]

657.xz_s 492 12.6

3.2 (INT)

Higher scores mean that less time is needed [27]

blackscholes 133 133
bodytrack 346 346
canneal 258 258
facesim 771 771
fluidanimate 974 974
freqmine 776 776
streamcluster 2037 2037
swaptions 424 424
x264 144 144
dedup 58 58
raytrace 245 245

PARSEC3.0

Linux/i386,
Linux/AMD64,
Linux/Itanium,
Solaris/Sparc [33]

vips 179 179
400.perlbench 742 13.2
401.bzip2 603 16.0
403.gcc 373 21.6
429.mcf 283 32.2
445.gobmk 567 18.5
456.hmmer 433 21.6
458.sjeng 880 13.7
462.libquantum 409 50.6
464.h264ref 983 22.5
471.omnetpp 434 14.4

CINT2006
(speed)

Unix
(AIX,
HP-UX,
Linux,
Mac OS X,
Solaris),
Windows [28]

473.astar 553 12.7

19.6 Higher scores mean that less time is needed [27]

(continued on next page)
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410.bwaves 406 33.5
433.milc 549 16.7
434.zeusmp 400 22.8
435.gromacs 334 21.4
436.cactusADM 385 31.1
437.leslie3d 229 41.0
444.namd 485 16.5
450.soplex 278 30.0
453.povray 276 19.2
454.calculix 963 8.57
459.GemsFDTD 354 30.0
465.tonto 497 19.8
470.lbm 337 40.8

CFP2006
(speed)

Unix
(AIX,
HP-UX,
Linux,
Mac OS X,
Solaris),
Windows [28]

482.sphinx3 665 29.3

23.9 Higher scores mean that
less time is needed [27]
Fig. 14. The ImageNet evaluation working process.

ime and financial costs limit their application. To compensate for the
hortcomings of RCTs, emerging clinical evaluation methods, such as
eal-World Data (RWD) assessment and digital clinical trials, have
een proposed [38,39]. These novel medical assessments are still in
heir early stages and have noticeable deficiencies in their theoretical
oundations, such as lacking rigor and reliability.

valuations in the field of psychology:
In the field of psychology, social and personality psychologists often

ely on scales, such as psychological inventories, tests, or question-
aires [7], to evaluate psychometric variables [7]. These variables
nclude attitudes, traits, self-concept, self-evaluation, beliefs, abilities,
otivations, goals, social perceptions, and more [7].

It is important to note that cognitive biases, which are systematic
atterns of deviation from norm or rationality in judgment [41], may
ntroduce distortions in self-report style evaluations.

.2. A case study on CPU benchmarks

Within this scenario, we assess the same CPU utilizing diverse
PU benchmarks, namely SPEC CPU2006 [28], PARSEC 3.0 [33], and
PEC CPU2017 [27], which are proposed by distinct entities employing
20

iverse methodologies.
Fig. 15. The randomized controlled trials (RCT) evaluation process [40].

Employing these benchmark suites, we evaluate the performance of
a subject, the Intel Xeon Gold 5120T processor, and proceed to compare
the resultant evaluation outcomes. During the experiments, apart from
the processor itself, we provide the support system in the following
manner: a 384 GB of memory, a 16TB disk, and the utilization of
Ubuntu 20.04 as the operating system. To facilitate the compilation
process, we employ the GNU Compiler Collection (GCC) version 9.4.
We also use the largest data set of each benchmark suite (for SPEC
CPU, it is a ‘ref’ data set, and for PARSEC, it is a ‘native’ data set) and
run each workload three times for a comprehensive evaluation. For the
SPEC CPU2006 benchmark suite, we use the default configuration file
of SPECspeed Metric.

The evaluation outcomes are presented in Table 2. The discernible
discrepancies observed in the evaluation outcomes can be compre-
hensively elucidated by taking into account the significant disparities
inherent in different benchmark suites. The variations encompass the
selection of distinct problem or task instances, the algorithms, the im-
plementation of algorithms, the value functions utilized, the composite
metrics employed for evaluation, the reference support system, and the
reference subject, which is witnessed by Table 1.
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The experimental findings illustrated in Table 2 reveal significant
discrepancies in the evaluation outcomes of the same CPU when as-
sessed using different CPU benchmark suites (the SPEC CPU and PAR-
SEC benchmark suites). Furthermore, comparing evaluation outcomes
from different evaluators becomes challenging when they employ dif-
ferent benchmarks. There are several reasons as follows. Firstly, they
utilize different value functions. Secondly, the SPEC CPU benchmark
suite encompasses a reference machine, whereas the PARSEC bench-
mark suite lacks such a basis for comparison. Moreover, the EECs can-
not be ensured even when using the same value function and reference
machine. This is because different benchmark suites introduce varia-
tions in problem or task instances, algorithms, and the implementation
of algorithms.

Moreover, there are significant differences in evaluation outcomes
of the same CPU, even when using the same benchmark suite with
different versions. It stems from the different implementations of al-
gorithms on varied support systems. Let us take the gcc workload in
the SPEC CPU benchmark suite as an example. When evaluated under
the CPU2006 benchmark suite, the CPU achieved a score of 21.6 in the
403.gcc workload, while it scored 4.8 in the 602.gcc_s workload under
the SPECspeed benchmark of SPEC CPU2017. These scores show a dis-
parity of nearly five-fold. The discrepancies in evaluation outcomes can
be mainly attributed to variations in the reference machine used by the
respective benchmark suites, as outlined comprehensively in Table 1.
Moreover, the two workloads utilize different GCC compiler versions,
with the 403.gcc workload utilizing GCC version 3.2 and the 602.gcc_s
workload utilizing GCC version 4.5. Although the command flag of both
workloads is ‘ref,’ the input data of the 403.gcc workload consists of
nine C-code workloads, while the input data of the 602.gcc_s workload
is the preprocessed GCC compiler code. Additionally, 403.gcc is not
multi-threaded, while the multi-threaded is permitted for 602.gcc_s.

Furthermore, when being implemented with the same version of
GCC compiler and using the same input data, the variances in eval-
uation outcomes for the gcc workload between the 502.gcc_r workload
in SPECrate benchmark suite and 602.gcc_s in SPECspeed benchmark
suite are more than twentyfold, which stem from the adoption of
disparate value functions and the distinct implementations of the same
algorithm. The SPECrate benchmark suite workloads are designed to
assess throughput, employing multiple copies of a single-thread imple-
mentation during evaluations, while the SPECspeed benchmark suite
workloads solely measure execution time, and the utilization of mul-
tiple threads is optional throughout the evaluation process. For the
evaluation condition, 502.gcc_r workload makes fifty-six copies, run-
ning with a single thread, while 602.gcc_s workload has only one copy
but runs with fifty-six threads.

The observed variations in evaluation outcomes for a particular
CPU across different benchmark suites underscore the necessity of
advancing the science and engineering of evaluation. While state-of-
the-art CPU benchmarks have made significant progress, they do have
certain drawbacks that need to be addressed. Firstly, the lack of com-
parability among evaluation results from different evaluators is a sig-
nificant concern. Secondly, the significant discrepancies in evaluation
outcomes cannot be traceable. Lastly, state-of-the-art CPU benchmarks
often struggle to provide a realistic estimate of the parameters of
real-world systems (ES) with a high level of confidence.

According to the comprehensive elements of a benchmark dis-
cussed in Section 4.1, many CPU benchmarks, such as the SPEC CPU
benchmark suites, primarily focus on the reference implementation of
algorithms, metrics, and references while neglecting other essential
constituents and components. In the following section, we will care-
fully analyze and highlight the shortcomings of state-of-the-art and
state-of-the-practice evaluation and benchmarks, employing our own
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terminology.
5.3. The reflections on state-of-the-art and state-of-the-practice benchmarks
and evaluation

To further illustrate the limitations of existing evaluation and bench-
marking practices, we present Fig. 16, which showcases these short-
comings within the evaluatology framework. By examining this figure,
we can gain a clearer understanding of the areas where state-of-the-art
and state-of-the-practice evaluation and benchmarks fall short.

It is evident that a lack of consensus exists regarding concepts and
terminologies across different areas of study. This lack of consensus often
leads to confusion and misinterpretation, especially when the same
terms are used in different disciplines with varying meanings.

For example, the term ‘‘benchmark’’ is commonly employed in
computer science, finance, and business disciplines but without a for-
mal definition. Moreover, even within these fields, the definition of
‘‘benchmark’’ can be vague and subject to interpretation. In contrast,
psychology may use the term ‘‘scale’’ as a concept similar to benchmark,
while social science and medicine may not have an analogous concept
at all.

Recognizing this challenge, our work has aimed to propose universal
concepts and terminologies that can bridge these disciplinary gaps. By
establishing clear and standardized definitions, we seek to promote
a shared understanding and facilitate effective communication and
collaboration across different areas of study.

Few works discuss the essence of evaluation, let alone reaching a consen-
sus on it. Evaluation is often mistakenly equated with measurement or
testing without clear differentiation. For instance, in computer science
and psychology, evaluation and measurement are often used inter-
changeably. In the context of testing, where the goal is to determine
whether an individual or a system aligns with the expected behavior
defined by test oracles, evaluation is often conflated with testing. For
instance, according to the SPEC terminology, a benchmark refers to
‘‘a test, or set of tests, designed to compare the performance of one
computer system against the performance of others’’ [42,43]. SPEC is a
highly influential benchmark organization. Our work has revealed the
essence of the evaluation.

The proposed evaluation theories and methodologies are often domain-
specific, with a lack of universally applicable foundational principles and
evaluation methodologies that transcend diverse disciplines. Different dis-
ciplines do not delve into the underlying principles of evaluation.
Instead, they adopt a pragmatic approach and prioritize guidelines for
conducting evaluations within specific contexts.

For instance, in the medical discipline, the focus is primarily on
eliminating confounding variables within the specific groups or cohorts
being studied. In the business discipline, efforts are concentrated on
searching the state of the practice.

The most rigorous theoretical foundation can be found in the field
of clinical trials. For instance, Randomized Controlled Trial (RCT)
techniques are employed to rule out the effect of confounding variables.
However, there is a lack of universal problem formulations or funda-
mental solutions that fully consider the intricate interactions among the
key components of EMs in diverse scenarios.

There are two serious drawbacks to the RCT methodology and its
variants. Firstly, there is a lack of a stringent hierarchical definition of
EC and EECs. The variations in ECs can introduce confounding that may
affect the results and make meaningful comparisons difficult. Without
ensuring EECs, it becomes an illusion to expect comparable evaluation
outcomes.

Secondly, when it comes to studying complex systems such as
human beings or experimental animals, which we refer to as support
systems, the RCT methodology and its variants may struggle to establish
an REM. This kind of support system is characterized by a multitude
of independent variables, making it difficult to isolate and control all
relevant factors in a controlled experimental setting. Consequently, it
becomes challenging to eliminate confounding variables and ensure

unbiased evaluation outcomes completely.
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Fig. 16. The reflections on state-of-the-art and state-of-the-practice benchmarks and evaluation are based on the science and engineering of evaluation.
In the realms of business and finance, different observational study
methodologies are widely used, and we have revealed their inherent
limitations in Section 2.1. An observational study is not even an exper-
iment. Certainly, it cannot eliminate confounding variables and reveal
the cause-and-effect relationships. In the business discipline, bench-
marking assumes the state-of-the-art instantiation of the algorithm-like
mechanism and the reference evaluation outcomes. In finance and edu-
cation disciplines, benchmarks or indexes assume the role of reference
evaluation outcomes in an observational study that measures variables
of interest but does not attempt to influence the response [2].

Rossi et al. [1] propose a valuable framework for evaluating
methodologies in the field of social science. However, they do not
provide a universal theory that can be applied to different disciplines.
Their limitations stem from their narrow focus on assessing social
programs without developing a generalized theory for evaluating other
subjects in complex conditions.

Rossi et al. indeed utilized or developed some approaches to iso-
late the social programs’ impacts, e.g., comparison group designs and
randomized controlled trials (RCT), but they failed to explicitly state
the underlying principles and methodology for universal science and
engineering of evaluation.

Within the computer science field, there are varying viewpoints and
perspectives. For example, Hennessy et al. [4] highlight the significance
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of benchmarks and define them as programs specifically selected for
measuring computer performance. On the other hand, John et al. [3]
compile a book on performance evaluation and benchmarking without
providing formal definitions for these concepts. Kounev et al. [42]
present a formal definition of benchmarks as ‘‘tools coupled with
methodologies for evaluating and comparing systems or components
based on specific characteristics such as performance, reliability, or
security’’. The ACM SIGMETRICS group [5,6] considers performance
evaluation as the generation of data that displays the frequency and
execution times of computer system components, with a preceding
orderly and well-defined set of analysis and definition steps.

In psychology, social and personality psychologists often utilize
scales, such as psychological inventories, tests, or questionnaires, to
assess psychometric variables [7,7]. While these tools are commonly
used, it is important to recognize that they rely on virtual assess-
ments and self-report-style evaluations, which may introduce potential
distortions.

To overcome this limitation, we suggest implementing a physical
application of an EC to the subjects, supplemented with a variety of
measurement instruments. This approach aims to provide a more ob-
jective and accurate assessment of various aspects, including attitudes,
traits, self-concept, self-evaluation, beliefs, abilities, motivations, goals,
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and social perceptions [7], by incorporating tangible and observable
data.

Various disciplines have proposed engineering approaches to evalua-
tions. However, they fail to provide universal benchmark concepts, theories,
principles, and methodologies.

For instance, benchmarks are commonly utilized in finance, com-
puter science, and business, albeit with inconsistent meanings and
practices. Regrettably, there have been limited discussions in previ-
ous works regarding universal benchmark principles and methodolo-
gies that can be applied across different disciplines. From a com-
puter science standpoint, Kounev et al. [42] provide a comprehensive
foundation for benchmarking, including metrics, statistical techniques,
experimental design, and more.

Most state-of-the-art and state-of-the-practice benchmarks overlook
an essential aspect: the stakeholders’ evaluation requirements. This
oversight leads to a failure to consider different and diverse evaluation
requirements. For instance, they do not enforce the discrepancy thresh-
old in evaluation outcomes, nor do they consider evaluation confidence,
among other crucial factors. As a result, most CPU benchmarks are ill-
equipped to meet the evaluation requirements in scenarios involving
safety-critical, mission-critical, and business-critical applications.

Another issue is the lack of a stringent definition for similar con-
cepts, such as an EECs or LEECs. For example, most CPU or AI (deep
learning) benchmarks, like ImageNet, fail to provide a clear definition
of an EECs or LEECs. Instead, they jump directly into the implementa-
tion of algorithms or a specific dataset labeled with the ground truth
without proper justification. Additionally, the support system, which
plays a crucial role in some cases, is omitted without any explanation of
the condition of simplifying the benchmarks. Furthermore, most of the
methodologies fail to discuss the confounding elimination mechanism.
This oversight can potentially introduce bias and inaccuracies in the
evaluation outcomes.

Not surprisingly, the intricate evaluation mechanisms and policies
introduced in Section 4.4.2 are not explicitly discussed in the de-
sign and implementation of most benchmarks. For instance, it fails
to address important aspects such as investigating and characterizing
real-world ES, the design and implementation of a perfect EM, the
modeling policy and procedure from a real-world ES to an EM, and the
sampling policy and procedure from a perfect EC to a pragmatic EC.
This omission makes it difficult for the benchmark to adapt to intricate
evaluation scenarios.

It is crucial to include these mechanisms and policies to ensure
the benchmark’s applicability and effectiveness in complex evaluation
scenarios. Without explicit discussion of the real-world ES, it is difficult
to establish an EC that captures the characteristics and requirements of
real-world evaluations. Furthermore, exploring different sampling and
modeling policies is essential to gain the confidence of the evaluation
community in using the benchmark for inferring parameters of real-
world ES. By carefully designing these policies, we can strike a balance
between achieving high accuracy in evaluation outcomes and managing
the associated evaluation costs.

There are many widely used AI (deep learning) benchmarks. Taking
the ImageNet dataset as an illustrative example [31], we reveal their
limitations. Firstly, a specific AI benchmark like ImageNet cannot
be traced back to an explicit formulation of a problem or task and
instead manifests itself in the form of a dataset containing ground
truth, which may possess certain biases. In other scenarios, we also
encounter challenges in identifying a precise mathematical function
that accurately models the chemical and biological activities within
the human body (Case Three in Section 3.5.2) or the social dynamics
within the target population (Case Four in Section 3.5.2). Secondly, the
benchmark relies on an unverified assumption that the data distribution
within the real world closely aligns with that of the collected dataset
to a considerable extent. Thirdly, in real-world applications, we use the
statistic of a sample – a specific benchmark – to infer the parameters
of the entire population. However, we do not know their confidence
23

levels and intervals.
5.4. What is the benefit of evaluatology?

Evaluatology serves as the foundational theory that encompasses
evaluations in various fields of study. It provides a universal framework
for optimizing the evaluation process, with four fundamental axioms
serving as its basis. Formulating the core evaluation issues mathemat-
ically presents opportunities for seeking optimal solutions based on
theoretical grounds. As a subdivision of evaluatology, benchmarkology
offers a comprehensive engineering approach and methodology for
evaluation, applicable across diverse disciplines.

Together, evaluatology and benchmarkology contribute reusable
knowledge to different domains, encompassing universal terminology,
principles, and methodologies. By sharing this knowledge base, they
facilitate advancements in both the state-of-the-art and state-of-the-
practice of evaluation in various realms. This unification of commu-
nities embarks on a collective journey to address future challenges.

5.5. The differences between evaluation, measurement and testing

Drawing on the preceding analysis, this subsection elucidates the
marked disparity between evaluation, measurement, and testing.

First and foremost, it is important to acknowledge that measure-
ment or testing serves as a preliminary constituent within the broader
framework of evaluation. In addition to measurement and testing, an
evaluation encompasses a series of steps, which we have discussed
in Section 3. These steps involve defining and applying evaluation
conditions to a diverse range of subjects, which ultimately leads to
the creation of an evaluation model or system. Once the evaluation
model or system is established, the impacts of different subjects can
be inferred through the process of measuring and/or testing.

Furthermore, it is crucial to recognize that the measurement results
are of an objective nature, assuming the existence of an inherent truth
value for each measured quantity. Similarly, testing results also possess
an objective nature as they typically yield either a positive or negative
outcome for each test conducted.

Conversely, evaluation results possess a certain degree of subjectiv-
ity, such as the formulation of value functions based on the underlying
measurement data, which we have discussed in the first evaluation
axiom in Section 3.3.

By virtue of the aforementioned reasons, we can assert that metrol-
ogy or testing serves as but one foundational aspect in the realm of
evaluations.

6. Conclusion

This article formally introduces evaluatology, a discipline encom-
passing both the science and engineering of Evaluations. Our contribu-
tions are three-fold.

First, in order to promote consistency and facilitate cross-
disciplinary understanding, we propose the adoption of universal eval-
uation concepts and terminologies centered around evaluation condi-
tions.

Secondly, we reveal the essence of evaluation and propose five eval-
uation axioms as the foundational evaluation theory. Furthermore, we
introduce the universal evaluation theory, principles, and methodology
that govern the field of evaluation.

We create evaluation conditions with different levels of equivalency
and apply them to diverse subjects to establish reference evaluation
models that alter a single independent variable at a time while keeping
all other variables as controls. We discover that the key to effective and
efficient evaluations in various complex scenarios lies in establishing a
series of evaluation models that maintain transitivity.

Third, building upon the science of engineering, we formally define
a benchmark as a simplified and sampled evaluation condition that
ensures different equivalency levels. We present a benchmark-based
universal engineering of evaluation across different disciplines, which

we refer to as benchmarkology.
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cloud system software, contributing to the advance-
ment of parallel and distributed systems in China and
globally.
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