BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100151

KeAi e

COntentS liStS aVailable at ScienceDirect Ben;hCur:lncilkTrasnlsaratinss
KeAS BenchCouncil Transactions on Benchmarks,
KE/A Standards and Evaluations

GLOBAL IMPACT
journal homepage: www.keaipublishing.com/en/journals/benchcouncil-transactions-on-

benchmarks-standards-and-evaluations/

Full length article ')

Check for

Characterizing and understanding deep neural network batching systemson &=t
GPUs

Feng Yu®P, Hao Zhang ¢, Ao Chen ®°, Xueying Wang ¢, Xiaoxia Liang ¢, Sheng Wang ¢,
Guangli Li *>%*, Huimin Cui »°, Xiaobing Feng *"

a State Key Lab of Processors, Institute of Computing Technology, Chinese Academy of Sciences, China
b University of Chinese Academy of Sciences, China

¢ China Mobile Research Institute, China

d Beijing University of Posts and Telecommunications, China

¢ Intel Corporation, China

f UNSW Sydney, Australia

ARTICLE INFO ABSTRACT

Keywords: As neural network inference demands are ever-increasing in intelligent applications, the performance opti-
Deep learning systems mization of model serving becomes a challenging problem. Dynamic batching is an important feature of
Dynamic batching contemporary deep learning serving systems, which combines multiple requests of model inference and

Neural networks executes them together to improve the system’s throughput. However, the behavior characteristics of each part

in deep neural network batching systems as well as their performance impact on different model structures
are still unknown. In this paper, we characterize the batching system by leveraging three representative
deep neural networks on GPUs, performing a systematic analysis of the performance effects from the request
batching module, model slicing module, and stage reorchestrating module. Based on experimental results,
several insights and recommendations are offered to facilitate the system design and optimization for deep
learning serving.

Performance characterization

1. Introduction Traditional deep learning serving systems represented by Triton [1]
and TensorFlow-Serving [2] relied on configuring the model-allowed
maximum batch size (MAX-BS), which limits the input that can be
batched, and the batching time window (TW), which indicates the
longest wait time for inputs for combining a batch, as hyper-parameters.
Unfortunately, these statically configured serving systems lack the

As the demand for deep learning algorithms based on deep neural
networks (DNNs) continues to increase, serving systems [1-3], which
provide DNN training and inference as services to users on computing
platforms, are sparking interest in both academia and industry. Given
the user’s real-time response desire, achieving low-latency inference

becomes a fundamental prerequisite in these serving systems. To ef- flexibility to dynamically adjust server traffic to accommodate varying
fectively handle model inference requests, dynamic batching plays loads, leading to sub-optimal performance. For instance, during periods
a crucial role in existing serving systems for improving the system of low-load inference request traffic, employing a large time window
throughput by leveraging parallelism and locality between batched results in over-provisioning, as queued requests within the window

inputs. Unlike training, where all training inputs are available before
training starts, inference presents a different challenge as input arrives
at the serving system over time, and its arrival rate depends on the
popularity of the deployed models. Therefore, inference batching must

increase the average response time. Conversely, in server congestion
scenarios, larger batch time windows and batch sizes may prove advan-
tageous. Traditional serving systems lack the capability of interrupting

carefully balance the trade-off between latency and throughput. For ongoing batches to serve new arriving requests. Recently, multi-entry
instance, larger batch sizes may improve throughput but introduce multi-exit batching systems, e.g., DVABatch [3], have arisen, which
longer waits for the scheduler to accumulate a sufficiently large input adopt sub-graphs as the scheduling granularity and introduce several
batch and thus increase latency, whereas smaller batch sizes may meta-operations to improve the system throughput.

reduce latency but at the cost of lower throughput.

* Correspondence to: Institute of Computing Technology, Chinese Academy of Sciences, 100190 Beijing, China.
E-mail addresses: yufeng@ict.ac.cn (F. Yu), zhanghao@chinamobile.com (H. Zhang), chenao23s@ict.ac.cn (A. Chen), wangxueying@bupt.edu.cn (X. Wang),
xiaoxia.liang@intel.com (X. Liang), wangshengyjy@chinamobile.com (S. Wang), liguangli@ict.ac.cn (G. Li), cuihm@ict.ac.cn (H. Cui), fxb@ict.ac.cn (X. Feng).

https://doi.org/10.1016/j.tbench.2024.100151

Received 2 November 2023; Received in revised form 3 January 2024; Accepted 6 January 2024

Available online 13 January 2024

2772-4859/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
mailto:yufeng@ict.ac.cn
mailto:zhanghao@chinamobile.com
mailto:chenao23s@ict.ac.cn
mailto:wangxueying@bupt.edu.cn
mailto:xiaoxia.liang@intel.com
mailto:wangshengyjy@chinamobile.com
mailto:liguangli@ict.ac.cn
mailto:cuihm@ict.ac.cn
mailto:fxb@ict.ac.cn
https://doi.org/10.1016/j.tbench.2024.100151
https://doi.org/10.1016/j.tbench.2024.100151
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tbench.2024.100151&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

F. Yu et al.

DNN serving systems are intrinsically intricate, influenced by nu-
merous factors encompassing neural network models, load levels, and
model slicing patterns, among others. However, existing studies pre-
dominantly focus on a localized perspective of batching systems, with-
out providing a comprehensive characterization and understanding of
batch behavior. As such, this paper aims to reveal the intricacies of
batching behavior in DNN serving systems, offering valuable insights
into resource management and system design, particularly concerning
typical neural network models and workloads encountered by service
providers. Meanwhile, we underscore the limitations of existing serving
system batching techniques while presenting innovative optimization
avenues for serving system developers.

To characterize the batch behavior within DNN serving systems, we
perform a comprehensive systematic evaluation on a GPU platform. We
conducted experimental evaluations using representative DNN models
from three different domains, including ResNet [4] for image classifica-
tion, BERT [5] for natural language processing (NLP), and LinkNet [6]
for image segmentation. As described in Section 3.2, ResNet has low
utilization of computing resources, BERT can saturate system resources
even with small batches, and LinkNet is memory-bounded. Leveraging
these three representative models, we conduct an in-depth investigation
into the behaviors of the request batching, model slicing, and stage
reorchestrating within batched serving systems. Regarding the request
batching module, we initially examine the impact of batch size on sys-
tem throughput and request average latency (Section 4.1), followed by
a comprehensive exploration of hyperparameters, specifically the MAX-
BS and TW, and their relationship with system throughput (Sections 4.2
and 4.3). For the model slicing module, we discuss the influence
of slicing positions and the number of stages on system through-
put (Sections 5.1 and 5.2), respectively. For the stage reorchestrating
module, we analyze the correlation between reorchestrating strategies
and system throughput across varying workloads and network models
(Section 6.1). Subsequently, we conduct a comprehensive analysis of
meta-operations in multi-entry multi-exit systems, including split and
stretch operations (Sections 6.2 and 6.3). Based on observations, we
present potential application scenarios, along with insights for various
research directions (Section 7). Our contribution can be summarized as
follows:

» We perform a comprehensive analysis of batching behavior within
deep learning serving systems on GPUs by leveraging three rep-
resentative neural network models from different application sce-
narios.

We characterize the effects of batch sizes and hyperparameters
on the behavior of the request batching module, explore different
slicing patterns associated with batching within the model slicing
module and analyze the influence of stage reorchestrating strate-
gies and meta-operations on the behavior of the reorchestrating
module.

Based on experimental studies, we provide several insights and
recommendations to facilitate the system design and optimization
for deep learning serving. We hope that these observations could
pave the road for developing high-efficiency deep neural network
batching systems.

2. DNN batching serving systems
2.1. Meta-operations

In traditional DNN serving systems, such as Triton, the batch size
remains constant until the inference is completed, as depicted in the
upper part of Fig. 1. In such a design, the next batch can only be
launched for execution after the ongoing batch inference is completed,
and the requests in the batch cannot be exited early, resulting in longer
response latency [7]. To support requests being able to exit or join the
serving system, DVABatch abstract the two actions of request exit and

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100151

join into meta-operations, namely split and stretch operations. Fig. 1
shows how meta-operations can reduce average latency. To simplify the
explanation, we assume that each operator completes in 1 time unit (T)
and the MAX-BS is 4. In this case, once 4 requests are received or the
batching time window ends, the received requests will be batched and
issued for execution.

Through the split operation, a large ongoing batch is split into
several smaller batches for individual processing, which makes it easier
for some queries in the batch to exit early. Fig. 2 shows the execution
time of two convolution operations in Resnet under different batch
sizes. Convolution operations dominate DNNs (accounting for 86% of
the computation time) [8]. As shown in the figure, the preferred batch
sizes of Convolution-A and Convolution-B are 4 and 1, respectively.
For Convolution-A, using a batch size smaller than 4 cannot fully
utilize the GPU (the processing time starts to increase only when the
batch size is greater than 4). For Convolution-B, batching will only
increase its execution time without improving processing throughput.
Fig. 1(a) shows how the split operation can reduce average latency,
where operator A has a preferred batch size of 4, operators B, C, and D
have a preferred batch size of 1, and the received requests have been
batched and are ready to be issued for execution. In Triton, (upper
half of Fig. 1(a)), the requests in the batch start processing at the same
time and end at the same time. The lower half of Fig. 1(a) shows the
split operation, i.e., operator A executes the full batch, then splits the
batch into four smaller batches with a batch size of 1 at operator B, and
executes these small batches in sequence. In this way, Requests @, @,
and ® can exit earlier. The average latency can be reduced by 28.1%
(from 4 T to 2.875 T).

Through the stretch operation, new incoming queries are added
to the ongoing batch to form a larger batch, thereby utilizing the
hardware computing power. Fig. 1(b) shows how the stretch operation
can reduce average latency, where the batching time window is 4 T and
the operator preferred batch size is 4. In Triton (i.e., the upper half
of Fig. 1(b)), Request @ starts running individually after waiting for
a time window, leaving the GPU underutilized. During the processing
of Request @, Requests @, @, and @ arrive, but they must wait to
be executed in the next batch. The lower half of Fig. 1(b) shows the
stretch operation, where the first batch (containing only Request @)
waits for the second batch after completing operator A, and then the
two insufficient batches are merged into a new large batch to fully
utilize the hardware. In this way, the average latency can be reduced
by 34.4% (from 8 T to 5.25 T).

2.2. Major components

In this section, we introduce three major components of contem-
porary DNN batching serving systems, including a request batching
module, a model slicing module, and a stage reorchestrating module.
These three components are ubiquitously present in DNN batching
serving systems, such as Triton [1], DVABatch [3], Ebird [9], and
LazyBatching [7], among others.

Request Batching Module (RBM). The serving system initiates by
placing end-users’ requests into a request queue. The RBM subsequently
organizes these requests into batches, based on two hyperparameters:
MAX-BS and TW. These formed batches are placed in a batch queue for
the request processing module to utilize. Fig. 3 illustrates the behavior
of different configurations of RBM under the circumstance where re-
quest R; enters the request queue at time ¢;. RBM with configuration
0 efficiently aggregates two requests within a specified time window
to form a batch. Conversely, RBM with configuration 1 can accumulate
three requests during the same time window, resulting in a batch of size
equal to MAX-BS. However, RBM with configuration 2, although also
capable of collecting three requests within the designated time window,
is constrained by MAX-BS, leading to the creation of a reduced-size
batch of 2.

F. Yu et al.

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100151

! 2@
D@ i D Twear e TW=4T |
i 619 s o s
| equest: ! % A B C D () A B C D
0 tor: ! A B € D I ® A B C D
i perator A E @ A B c D i@ A B C D
| . 1
1 Wasted: i @ : TW=4T |
|
. 1
i Idle: O AVBED [O) A B — —~
| Time | |) A 4T BEB) A B C D
! window: <> ! ©) A 3at 347 BED i ® A B @ D
: L@ AW sut sat am BEE | @ A B (¢ D
_________________ Timelne Timeline

(a) Split operation

(b) Stretch operation

Fig. 1. Illustration of how meta-operations address the long latency problem of user requests. Split operation enables requests to exit early when encountering operators with high
parallelism. Stretch operation enables the merging of multiple insufficient batches to reduce waiting time and fully utilize hardware.

—e— Convolution-A Convolution-B

0.25
-
172]
g/ 0.2
£
el 0.15 " where batching takes effect
§ 0.1 \
S
8005 | leg—
g °
oo

0 2 4 6 8 10 12 14 16
Batch Size

Fig. 2. Execution time of two convolution operators from ResNet with different batch
sizes on A100.

o ty tp t3 ty t5
Request

—

Configuration 1
(MAX-BS=3, TW=3t)

Configuration 2
(MAX-BS=2, TW=3t)

Batch
Queue 7

1

EIELT [RFIR] (Rl [Rol Rl [(el R [l]

Fig. 3. The behavior of the request batching module under various parameter config-
urations, namely, the maximum allowed batch size (MAX-BS) and the time window

(TW).
[pmr oo oisesmomoeomp(edhifomm

ﬂ Model Slicing

Stage, Stage,

(i JofComyseom-ofoms)ofa0) L Yol Com)-ofoms)sombofaaa) 7
X X

Fig. 4. Diagram of model slicing, where IN/OUT are input/output tensors, and FT are
feature tensors.

Model Slicing Module (MSM). To support interruptible batch ex-
ecution, the serving system needs to slice the models during deploy-
ment, which includes determining the slice positions and the number
of stages formed after slicing [3]. Fig. 4 provides an example of
graph slicing, where slicing occurs after the first Add operation and
only once, resulting in two stages with identical graph structures.
Batching serving systems frequently employ stage performance models
to guide meta-operation decisions, making model slicing critical for
system throughput due to its direct influence on stage determination.

Stage Reorchestrating Module (SRM). The stage reorchestrating
module typically employs a reorchestrating strategy involving split
and stretch operations to control batch and stage execution. The split
operation is employed to split large batches into multiple smaller sub-
batches, enabling the early completion of smaller sub-batches without
waiting for the entire large batch, thus reducing the average request

Stage,

anand
1oreg

anand

1oyeg
-

l !

-

g [z
S
o
S
£l

1%

g
-

E H

S

S

=

H

Fig. 5. Diagram of split and stretch operations, where the numbers inside the rounded
rectangles represent batch sizes.

latency. As illustrated in Fig. 5, the split operation divides a batch of
size 64 from the Stage, output into two sub-batches of size 32 each,
which are then processed sequentially by two stage instances (Stage,
and Stage,;). On the other hand, the stretch operation is used to merge
multiple small sub-batches into a larger batch, harnessing hardware
parallelism to enhance throughput. As shown in Fig. 5, when a new
batch arrives, the current batch is undergoing inference in Stage,.
Once the current batch completes the inference in Srage,, SRM passes
the new batch to Stage,, for processing. Subsequently, the stretch
operation increases the batch size from 16 to a larger batch of size
32, combining the outputs from these two stage instances for Stage,
inference.

3. Experimental setup

3.1. Hardware and software setting

Table 1 lists the setups of the experiments. In this paper, we
characterize and analyze the dynamic batching with two serving sys-
tems, Triton Inference Server (version 22.05) [1] and DVABatch (main
branch) [3], on a high-performance platform that integrates Intel
Xeon CPUs and an NVIDIA A100 GPU. As the latency of a DNN
model/operator varies with DNN frameworks or compilers [10-12],
we employ TensorRT (version 8.2.3) [13] as the inference engine for
both of these serving systems to provide SOTA operator performance.
Additionally, We use the NVIDIA Triton client [14], which employs an
approach similar to MLPerf [15] for generating workloads with arrival
times that conform to a uniform distribution. The client uses the HTTP
protocol to send requests and sets the QoS target to 200 ms. Regarding
DVABatch, we set request rates corresponding to 1/4, 3/5, and 9/10
of the peak throughput as low, medium, and high loads. For ease of
experimentation, we align the request rate with the number of client
threads, which is 64. Leveraging NVIDIA’s Model Analyzer tool [16],
we ascertain the maximum throughput attainable by the serving system
for specific models. Specifically, the Model Analyzer indicates peak
throughputs for ResNet, BERT, and LinkNet as 4288, 1088, and 3264
in DVABatch, respectively.

F. Yu et al.

Table 1
Evaluation specifications.

Hardware CPU: Intel Xeon Gold 6248
GPU: NVIDIA A100
OS & Driver Ubuntu: 18.04.2 (kernel 5.4.0-72)
GPU Driver: 515.43.04
Client NVIDIA Triton Client: v22.05
Software Server NVIDIA Triton inference server: v22.05
DVABatch: main branch
Inference engine TensorRT: v8.2.3
Computation Memory Access Computation Memory Access
100% 100%
o 80% o 80%
=] =]
«2 60% g 60%
% 40% g 40%
A 20% & 20%
0% 0%
/‘)YCP/O“’;’%@{P%@ /‘)VCP/G‘{’@@(PQ\F@
Batch Size Batch Size
(a) ResNet (b) BERT
Computation Memory Access ——ResNet BERT LinkNet
100%
o 80% g 200
g 60% 'az)]'[: 150
% 40% Té g 100
= 20% 55 50
Z S
0% k= 0 /
7 VAN
MR SRS 0 6 128 192 256
Batch Size Batch Size
(c) LinkNet (d) Inference time of models

Fig. 6. Performance of three benchmarked models.

3.2. Benchmarked deep neural networks

Incumbent Internet giants have been offering services for tasks
such as image classification, natural language processing, and image
segmentation, exemplified by Google Cloud Vision AI [17,18], Mi-
crosoft Azure Text Analytics [19,20], and Amazon Rekognition [21,
22]. This study focuses on these Al domains, employing benchmark
network architectures: ResNet [4], BERT [5], and LinkNet [6] for
experimental evaluation. Specifically, the study utilizes Torchvision’s
resnetl52 [23], HuggingFace’s bert-base-uncased [24], and LinkNet
from Purdue University’s e-Lab project.

Fig. 6 visually illustrates the end-to-end inference latency of these
neural network models for different batch sizes, while also presenting
a detailed breakdown of time allocation for computation and memory
access. We observe that for the ResNet and BERT models, computation
time takes the lead (see Fig. 6(a) and (b)), whereas in the LinkNet
model, memory access time predominates (see Fig. 6(c)). Furthermore,
Fig. 6(d) illustrates the relationship between inference time and batch
size. It is evident from the figure that as the batch size increases, the
time of the ResNet model increases relatively slowly, whereas the time
of the BERT model experiences a sharp rise. In other words, under small
batch sizes, ResNet exhibits lower resource utilization, while BERT
potentially leads to system resource saturation.

In summary, ResNet and BERT primarily emphasize computational
resources, with ResNet demonstrating efficient resource utilization un-
der small batch sizes, while BERT’s resource demands quickly saturate
the system. In contrast, LinkNet places a stronger focus on memory
access, making it more memory-bound compared to the other models.

3.3. Evaluation metrics

The evaluation metrics include:

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100151

+ Latency, defined as the average time taken by the serving system
to process a query, encompassing both the waiting time and the
inference time for the query.

» Throughput, defined as the average number of queries processed
by the system per second.

« Inference time, defined as the time required for a DNN model to
perform inferences on input data. Unlike request latency, infer-
ence time does not encompass the waiting time associated with
the request.

Since batching is a technique employed to enhance the throughput of
the serving system, in this paper, we will use “system performance”
interchangeably with system throughput.

4. Analysis of request batching
4.1. Performance of different batch sizes

Popular DNN serving systems such as Triton support batch execu-
tion of multiple requests. In this experiment, as the serving system
receives batched inputs that are already formed, it does not wait for
them to be collected; thus, we set the time window to 0. Fig. 7 presents
the throughput of batching for three typical networks across various
batch sizes. Additionally, we demonstrate the benefits of batching in re-
ducing request latency, indicated by the blue line in the corresponding
figure.

Finding 1. In general, the system’s throughput can be enhanced by in-
creasing the batch size while meeting QoS requirements. Observing Fig. 7, it
becomes apparent that as the batch size increases, effective throughput
rapidly rises, amortizing the inference cost and significantly reducing
the request latency. This phenomenon occurs because larger batch sizes
increase the computational workload required for inference, allow-
ing better saturation of the GPU’s computational resources, thereby
achieving higher throughput.

Finding 2. Enlarging the batch size does not always lead to an im-
provement for the system throughput. Once a specific threshold for batch
size is exceeded, GPU resources are fully utilized, and further in-
creasing the batch size may lead to request latency exceeding users’
expected response time, without yielding additional enhancements in
throughput.

4.2. Effects of max batch size settings

We evaluate Triton’s performance across various workloads by run-
ning three typical neural networks under different MAX-BS configu-
rations. In this experiment, for ResNet, BERT, and LinkNet, the time
windows are set to 500 ps, 10 ps, and 10 ps, respectively, aligning with
the observations presented in Section 4.3. Our corresponding results
are presented in Tables 2, 3, and 4. In these tables, “Collected-BS”
represents the batch size formed by the batcher, and “Latency” denotes
the average request latency (in milliseconds).

Finding 3. For ResNet and BERT models, enlarging the MAX-BS param-
eter has the potential to improve the system throughput. We observe that
as MAX-BS gradually increases, the batch size formed by the RBM also
increases correspondingly. For both ResNet and BERT models, Triton’s
throughput steadily increases with the increasing values of MAX-BS,
eventually plateauing, regardless of the workload. In situations where
MAX-BS is configured with a smaller value, such as 1, it may lead
to a substantial number of requests being blocked in the queue. This
occurrence stems from Triton’s operational design, where a new batch
will initiate execution only upon the completion of the preceding batch.
To mitigate this, we can increase MAX-BS to maximize the batch size
per execution, thereby reducing the average wait time for requests.
However, as MAX-BS increases to a certain extent, although the batch
scheduler can form larger batches to amortize inference overhead, it
also leads to longer waiting times for requests in the queue.

F. Yu et al.

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100151

== Throughput =O=Latency
6000 1.6 1200 1.6 5000 1.6
% 5000 12 7 1000 125 24000 125
7] o~ 7] A 7])
2 4000 g g 800 g S 3000 £
83000 08 g 600 085 § 08 >
£ 00 TS g 22000 B
= 5 = 042 2 2
B 1000 H 0'4§ £ 200 & E1000 045
2 o n 0 2 o 0 2 o 0
& 1 2 4 8 16 32 64128256 & 1 2 4 8 16 32 64 128256 & 1 2 4 8 16 32 64 128256
Batch Size Batch Size Batch Size
(a) ResNet (b) BERT (b) LinkNet

Fig. 7. Effect of batching on throughput and latency of batched execution as a function of batch size. For this experiment, we assume that the batched inputs are already formed,

without waiting for them to be collected.

Table 2
Performance of Triton with varying MAX-BS for ResNet model across three workloads.
MAX-BS Low load Medium load High load
Throughput Latency Collected-BS Throughput Latency Collected-BS Throughput Latency Collected-BS
1 211.40 406.73 1 212.76 410.08 1 212.37 411.79 1
2 414.65 214.52 2 415.43 218.64 2 413.89 220.13 2
4 798.72 109.98 4 810.27 114.45 4 801.31 116.01 4
8 1082.94 8.33 6 1475.22 63.29 8 1476.97 63.67 8
16 1083.26 8.32 6 2356.09 38.30 16 2485.64 37.93 16
32 1082.79 8.34 6 2604.12 13.35 22 3458.38 27.19 32
64 1083.20 8.38 6 2606.72 13.63 22 3463.90 27.28 47
Table 3
Performance of Triton with varying MAX-BS for the BERT model across three workloads.
MAX-BS Low load Medium load High load
Throughput Latency Collected-BS Throughput Latency Collected-BS Throughput Latency Collected-BS
1 319.33 2.83 1 664.29 64.48 1 663.88 91.08 1
2 319.37 2.95 1 702.70 4.17 1 797.73 74.48 2
4 319.33 2.83 1 700.26 7.56 2 889.94 65.50 4
8 319.32 2.75 1 700.13 13.19 4 1002.18 37.82 8
16 319.30 2.93 1 696.00 22.00 3 1000.02 50.39 13
32 319.32 2.83 1 695.00 22.00 3 989.57 53.73 18
64 319.32 2.84 1 697.06 22.41 5 1003.20 48.88 23
Table 4
Performance of Triton with varying MAX-BS for the LinkNet model across three workloads.
MAX-BS Low load Medium load High load
Throughput Latency Collected-BS Throughput Latency Collected-BS Throughput Latency Collected-BS
1 830.63 1.37 1 1977.77 1.80 1 2044.28 30.63 1
2 830.34 1.47 1 1976.69 2.52 2 2453.50 25.37 2
4 830.27 1.45 1 1975.77 4.15 3 2541.31 24.58 4
8 830.18 1.55 1 1974.40 8.74 5 2570.41 24.44 8
16 830.31 1.61 1 1967.48 16.67 10 2195.27 28.68 13
32 830.31 1.75 1 1964.68 24.64 16 2006.76 31.41 21
64 829.64 2.26 1 1966.96 23.27 16 1947.94 32.37 20
observed throughput initially increases but then decreases as MAX-BS
mOthers = Wait = Computation = Memory Access values continue to grow. To further analyze this behavior, we provide a
40 decomposition graph of request latency for different MAX-BS values, as
’g 30 shown in Fig. 8. Fig. 8 shows that as the batch size gradually increases,
= the waiting time decreases, but memory access time increases due
220
g to the growing data volume. In Triton, excessive batch sizes cause a
5 10 significant increase in request latency, as the memory access time for
0 == - = = = a request equals that of the entire batch.
1 2 4 8 16 32 64
MAX-BS

Fig. 8. Performance breakdown with different MAX-BS for the LinkNet model.

Finding 4. MAX-BS mainly influences the queue wait time, the data
transmission time, and the computation time. For the LinkNet model,
Triton exhibits similar behavior to ResNet and BERT models under
medium to low workloads. However, under high workloads, Triton’s

4.3. Effects of batching time window

Fig. 9 depicts the influence of time windows on system through-
put. In this experiment, for ResNet, BERT, and LinkNet, we configure
MAX-BS as 64, 16, and 8, respectively, based on the observations in
Section 4.2. The x-axis represents the request rate (the number of client
requests sent per second), while the y-axis signifies the system through-
put. In addition, the positions of symbols L, M, and H correspond to
low, medium, and high rates, respectively.

F. Yu et al.

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100151

—0 10 50 100 — 500 1000 = 5000 =—10000 = 50000
5000 L M H 2000 L MoH 4000 L M H
. i i i . i i i . i i i
2 4000 1 i j @ 1 1 1 2 3500 i i i
$ i i g 1500 i i i 8 i i i
3000 i i g i i i 5 2400 i i i
= i d <1000 i i = i ! !
£ 2000 ! 1 ES ! ! ! £, 1600 ! 1 1
5 \ i & 500 1 1 1) \ i i
2’ 1000 i : 2 5 ; o 2 500 : :
= i i = | i i = i i i
~ 0 1 1 1 == 0 1 1 1 (== 0 1 1 1
0 1000 2000 3000 4000 5000 0 500 1000 1500 2000 0 800 1600 2400 3200 4000

Request Rate Request Rate Request Rate

(a) ResNet (b) BERT (c) LinkNet

Fig. 9. Effects of time windows on Triton throughput with different request rates. At low and medium loads, the impact of the time window on system throughput is limited,
indicating a linear correlation between system throughput and request rate. At high loads, BERT exhibits lower sensitivity to the time window compared to ResNet and LinkNet.

Finding 5. Under medium to low workloads, the effect of time windows
on the system throughput is limited. As the request rate increases, system
throughput exhibits linear growth. This behavior stems from the fact
that, under medium to low workloads, the RBM collects a relatively
small number of requests. Elevating the request rate can augment the
quantity of requests gathered by the RBM, consequently amplifying
the system throughput. Nonetheless, once the request rate surpasses
a certain threshold, further increases do not contribute to enhanced
throughput. This is because, when the request rate surpasses the sys-
tem’s processing capability, requests will be blocked in the queue,
resulting in heightened latency.

Finding 6. Under high workloads, for models that do not fully utilize
the resources, time windows impact the system throughput through wait-
ing times and batch sizes. When subjected to high workloads, Triton’s
peak throughput for the BERT model exhibits minimal variance across
different time windows. Since the BERT model saturates the system’s
resources with small batches, necessitating requests to wait in the
batch queue until resources become available. The time window serves
as a parameter for regulating the waiting time of requests in the
request queue and the size of batches formed. Selecting an appropriate
time window size can enhance the overall throughput of the system.
A shorter window reduces queue wait times but limits batch size,
underutilizing hardware. Conversely, a longer window extends waits
but yields larger batches, maximizing hardware utilization. Therefore,
compared to models like BERT, the impact of the time window is more
pronounced for models that underutilize resources, such as ResNet and
LinkNet.

5. Analysis of model slicing
5.1. Effects of slice positions

In this section, we slice the model into two subgraphs (i.e., stages)
and investigate the impact of varying the slicing position on system
throughput. We use a slicing ratio to denote the slicing position,
specifically, the percentage of the total network compute time allocated
to Stage,, that is, %. The evaluation results are presented
in Fig. 10, with the x-axis denoting the slicing ratio and the y-axis
representing throughput.

Finding 7. The choice of slice positions has an impact on both the
model’s computation time and memory access time. Fig. 11 illustrates
the breakdown of end-to-end model inference time at various slice
positions. In Fig. 11, there are slight variations in computation time at
different slice positions. This phenomenon is attributed to the fact that
model slice disrupts operator fusion and other optimizations within the
graph. Furthermore, we observe that memory access time at different
slice positions is closely related to the model’s architecture, specifically,
it is influenced by the volume of data exchanged between stages. In
addition, although Fig. 11 shows that the model inference time is the
lowest when the model is not sliced (i.e., the slicing ratio is 100%),
this also implies that meta-operations cannot be applied, so the system
throughput is not necessarily optimal, as shown in Table 5.

Finding 8. When selecting slice points, the computation time, the model
structure, and the memory access time are important factors that need
to be considered. Fig. 10 demonstrates the impact of slice points on
system throughput. ‘“Naive Batching” refers to a system devoid of meta-
operations and pipelined execution. The x-axis represents the slice
ratio, and the y-axis represents throughput. Fig. 10 clearly indicates
that slice points significantly influence the performance of pipelining
execution systems by affecting pipeline balance. We also note that for
ResNet, optimal throughput is achieved when slicing occurs in the
model’s middle, while for LinkNet, it is more advantageous towards the
model’s end. This variation is attributed to data transfer costs between
stages, as depicted in Fig. 11.

5.2. Effects of stage counts

In this experiment, we employ the PipeDream [25] tool to slice the
model into several stages with approximately equal execution time,
aligning with the experimental methodology of the DVABatch. Fig. 12
illustrates the impact of the number of stages on system through-
put, where the x-axis represents the number of stages, and the y-axis
represents throughput.

Finding 9. The optimal number of stages is typically small and, in
most cases is not equal to 1. As the number of stages increases, sys-
tem throughput experiences a brief increase followed by a gradual
decline. In contrast to schemes without model slicing, multi-stage
designs support batch interruptions to leverage meta-operations for
enhanced system throughput. However, increasing the number of stages
introduces additional system overhead, such as synchronization costs
between stages, resulting in finer scheduling granularity that under-
mines graph optimizations like layout selection and operator fusion,
subsequently reducing system throughput. Additionally, we observe
that pipelined execution is highly sensitive to the number of stages;
as the stage count increases, system throughput deteriorates rapidly.
Increasing the number of pipelined stages can enhance system through-
put, but surpassing a specific threshold may reduce throughput due to
resource contention.

6. Analysis of stage reorchestrating
6.1. Effects of reorchestrating strategies

Reorchestrating strategy is a method that prescribes execution in
batches or stages, aimed at enhancing system throughput. In batch-
ing serving systems, reorchestrating strategy manages batch execution
through meta-operations while also determining whether pipelining
execution of stage instances is permissible. Stretch, split and pipeline
execution are mutually independent, thereby allowing users to config-
ure strategies to determine how these three operations are employed.
Table 5 presents the system throughput of eight strategies for the model
under various workloads. It can be observed from this table that the
impact of strategies on system performance is limited in medium and

F. Yu et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100151
= Naive Batching Batching with Pipelined Execution Batching with Split Operation Batching with Stretch Operation
4000 1100 3000
= —~ 3800 PR /=~ 1000 ——— =~ 2800
22 APAT~AT 13 22
—go :"’) 3600 %D %’ 900 %D % 2600 ‘/\
S 53400 S 5 800 S 22400 “AS CQA e
= O = 9 = O N~ v
==3200 \ == 700 = =2200
3000 600 2000
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Stage,/(Stage, + Stage;) Stage,/(Stage, + Stage;) Stage,/(Stage, + Stage,)
(a) ResNet (b) BERT (c) LinkNet

Fig. 10. Effects of slice position on the system’s throughput. The optimal slicing position is related to the model structure. For example, the optimal slicing position for ResNet
models is in the middle, while the optimal slicing position for LinkNet models is at the end. Pipeline parallel execution is highly sensitive to the selection of the slicing position.

BERT models are not suitable for pipeline parallel execution.

Table 5

Effects of reorchestrating strategies on the system’s throughput. At low and medium loads, the system throughput is hardly affected by variations with different reorchestrating
strategy. Under high loads, however, the performance of the reorchestrating strategy differs among different types of models.

Strategy Stretch Split Pipeline ResNet BERT LinkNet
Low Medium High Low Medium High Low Medium High

1 0 0 0 1083.14 2608.62 3455.97 319.32 698.61 999.95 830.10 1974.27 2315.73
I 0 0 1 1081.07 2603.97 3867.68 319.33 692.98 749.00 830.02 1974.22 2774.40
it 0 1 0 1083.07 2607.60 3087.69 319.34 697.34 999.47 829.97 1974.36 2409.07
v 0 1 1 1081.04 2604.87 3740.58 319.35 695.63 997.73 829.98 1974.86 2351.10
A 1 0 0 1081.12 2605.03 3854.02 319.30 696.19 995.43 830.03 1974.49 2368.43
VI 1 0 1 1080.92 2602.08 3866.82 319.33 686.51 752.64 829.91 1973.39 2764.35
VI 1 1 0 1080.89 2604.82 3756.22 319.34 695.99 993.90 829.94 1974.31 2322.81
VIII 1 1 1 1080.88 2602.44 3867.37 319.33 681.77 737.95 829.99 1974.06 2746.51

O Stage,-Computation B Stage,-Computation B Stage,-Memory Access B Stage,-Memory Access

40
235 2-Stage ResNet 2-Stage LinkNet
Ex Position - -
o o5 D #Operators | Proportion | #Operators | Proportion
En (Stage) | (Stageo) | (Stageo) | (Stageo)
g 15 1 18 10% 1 14%
210
£ 5 2 47 20% 8 25%
<0
= 12345678910 3 88 30% 16 34%

Position ID 4 133 40% 32 45%

o (a) ResNet 5 178 50% 5 55%

E 6 214 60% 62 64%
23 7 272 70% 69 74%
S 8 337 80% 73 84%
8
510 l:l 9 401 90% 76 91%
B
£ 0 10 465 100% 77 100%
= 12345678910

Position ID

(b) LinkNet (c) Instructions for 10 slice positions

Fig. 11. Performance breakdown of 2-stage models with different slice positions. The
impact of slicing positions on memory access time is notably significant and correlates
with the model structure.

low-load scenarios. Under high load, the impact of strategies varies
depending on the model type.

Finding 10. Pipelined parallel execution is suitable for models with
unsaturated computational resources or those encountering memory access
bottlenecks. Stretch operations enhance the utilization of system computa-
tional resources, and split operations are effective for models bottlenecked
by memory access. For the ResNet model, strategies involving pipelined
execution or stretch operations effectively improve resource utilization,
thereby enhancing system throughput. However, for strategies that only
involve split operations, performance decreases due to the sequential
execution of the sub-batches, which prolongs request completion times.
For models with saturated system resources, such as BERT, pipelined
execution exacerbates resource contention and leads to performance
degradation. In contrast, strategies incorporating meta-operations pre-
vent performance degradation because the timing of operations is based
on stage-specific performance models. For models with memory access
bottlenecks, such as LinkNet, strategies involving pipelined execution
effectively hide memory latency and enhance the system’s throughput,
while stretch operations only marginally reduce average computational

time. Furthermore, split operations enable requests to finish in advance,
enhancing system throughput by eliminating the need to wait for the
entire batch to complete.

6.2. Performance analysis on split operations

The split operation allows requests to exit early, reducing average
latency, but the resulting sub-batches may suffer from lower resource
utilization, potentially reducing throughput. Therefore, the timing of
split operations is a critical factor affecting system throughput. In this
section, we explore the impact of the slice position, initial batch size
for split, and the number of final sub-batches on the effectiveness of
split operations. The evaluation results are presented in Figs. 13 and 14,
where the x-axis represents the slice ratio, and the y-axis represents the
speedup achieved by split operations compared to naive batching. We
divide the model into two stages, Stage, and Stage;, and the slice ratio
refers to the percentage of the total network compute time allocated to
Stage.

Finding 11. Split operations yield more pronounced acceleration when
occurring earlier (i.e., with lower slice ratios). Observing Figs. 13 and
14, it is evident that split operations achieve their optimal effects with
lower slice ratios. As the slice ratio increases, split operations gradually
degrade into graph batching. This is because the benefits of split
operations stem from the reduced average latency during the execution
of sub-batches in the Stage, sequence. Therefore, a higher percentage
of time allocated to Stage;, the primary contributor to performance
gains, implies greater potential benefits from split operations.

Finding 12. Split operations are effective for the system under large
batches, and the larger the batch to be divided, the greater the performance
gain of split operations achieved. Examining Fig. 13, it becomes apparent
that, given a fixed slice ratio (e.g., 5%), split operations yield higher
benefits as the batch size to be divided increases. Large batches may
lead to resource contention due to the system’s limited resources. Split
operations mitigate resource competition by subdividing large batches
into smaller sub-batches, thereby reducing average latency. Smaller
sub-batches, on the other hand, are often unable to fully utilize hard-
ware resources, and split operations further decrease hardware resource
utilization, consequently reducing system throughput. Additionally,

F. Yu et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100151
= Naive Batching = Batching with Pipelined Execution Batching with Split Operation Batching with Stretch Operation
— [
2500 S~ L o o0 N~
=~ =~ —_
2% 3000 Zoomin 1,101 2% 500 2% 2400 A Zoom in[IT0]
28 2500 28 700 28 2000 : ,,r\)/\\m
£ 2000 - 25 600 1600 AR
Eg \ FE Y EE AR
= | =3 \
~ 1500 ~ 500 | 1200 \\\
1000 400 800
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
Stage Count Stage Count Stage Count
(a) ResNet (b) BERT (c) LinkNet

Fig. 12. Effects of stage counts on the system’s throughput. As the number of stages increases, the system throughput initially experiences a transient increase, followed by a

gradual decline.

—2x(BS=2) —— 2X(BS=4) —— 2x(BS=8) —— 2X(BS=16) — 2x(BS=32) —— 2x(BS=64)
_ 14 _ 14 _ 14
13 13 P13
£ 12 £ 12 £ 12
£zl \ giu g5
B B2 B2
2509 / 2509 2209 J—
9708 AZ 08 AZ 08
807 507 507
206 Bo6 206
R T N N N N R R SN NN R R TR R N N

Stage,/(Stage, + Stage,)
(a) ResNet

Stage,/(Stage, + Stage,)
(b) BERT

Stage, /(Stage, + Stage;)
(c) LinkNet

Fig. 13. Effects of split operations on batching process across varying batch sizes, where the legend “2x(BS = N)” represents dividing a batch of size N into two sub-batches,

each of size N/2.

—2x(BS=64) = 4x(BS=64) 8X(BS=64)

[N
=N

S
IS

Speedups
(over Naive Batching)
s
Speedups
(over Naive Batching)
=) =3
- o

o
=3

T e S>E S >
Stage,/(Stage, + Stage;)
(a) ResNet

/

Speedups
(over Naive Batching)
o -
%

FOR IR R O
Stage,/(Stage, + Stage;)
(b) BERT

16X(BS=64) == 32X(BS=64) == 64x(BS=64)

>

|

<
~

=3

9

O J P

ORI IRONCI IS
Stage,/(Stage, + Stage;)

(c) LinkNet

%

Fig. 14. Effects of split operations on batching process across varying sub-batch counts, where the legend “nx(BS = 64)” represents dividing a batch of size 64 into n sub-batches,

each of size 64/n.

—BS, =BS,=1 — BS, =BS, =2 BS, =BS, =4 BS, =BS,=8 ~—— BS, =BS,=16 = BS, =BS, =32

=16 _ 16 _ 16

g 2 g

=12 £ 12 £12

n 2 % 2 o 2

a s as as
N \ 2204 280y /=
o o O > —
Q.2 3 2 Q.2

2.3 a’s s
Az 04 n'Z 0.4 nNZ 4

g o 30 2o

TS >E S T S>E S RO D I

Stage,/(Stage, + Stage;)
(a) ResNet

Stage,/(Stage, + Stage;)
(b) BERT

Stage,/(Stage, + Stage;)
(c) LinkNet

Fig. 15. Effects of stretch operations on the batching process across varying batch sizes.

since the BERT model saturates system resources with small batches,
split operations result in acceleration across various batch sizes.
Finding 13. The optimal number of sub-batches could be guided by the
stage’s performance model and does not follow the “more is better” principle.
Split operation is applicable to the scenario where resource utilization
is saturated, that is, batching only increases its inference time without
improving the processing throughput, such as Convolution-B in Fig. 2.
Consequently, the split operation can split the original batch into sev-
eral sequentially executed sub-batches to reduce the average latency, as
shown in Fig. 1 (a). Observing the speedups of the split operation for
the slice ratio of 5% in Fig. 14, we can find that the optimal number of
sub-batches is not 64 (i.e., the green line), that is, the number of sub-
batches is not the more the better. This is because when the sub-batch
size reaches a certain threshold, further reducing the batch size will

lead to insufficient hardware resource utilization due to the small batch
size, which does not meet the premise of using the split operation, and
thus leads to the ineffectiveness of the split operation or even negative
effects. For this reason, we recommend that the timing of using the
split operation should be referenced to the curve of the execution time
of the stage with the batch size (such as Fig. 2), that is, the performance
model.

6.3. Performance analysis on stretch operations

The stretch operation enhances system throughput by consolidating
multiple small batches into a larger batch to fully exploit hardware
resources. Fig. 5 illustrates the stretch operation process: when a new

F. Yu et al.

-1.4
-1.2

16 11 162126311611 1621263116 111621 26 31

Sy Si Si
(a) ResNet (b) BERT (c) LmkNet

Fig. 16. Effects of various batch combinations on the effectiveness of stretch oper-
ations, where B.S, and BS, denote two batches arriving subsequently. The intensity
of color shading indicates the acceleration effect of stretch operations. For clarity, we
also use 1 to represent negative effects. Stretch operations have a significant effect on
ResNet models.

batch (B.S)) arrives, the current batch (B.S)) is in the middle of infer-
ence at Stage,. The stretch operation first completes the inference of
BS|, at Stage,, then proceeds to perform inference on BS, at Stage,
and finally merges them into a larger batch for Stage, inference. While
stretch operations maximize computational resources by forming larger
batches, they introduce waiting time during the batching process. This
section analyzes the impact of the sizes and combinations of BS,, and
BS,, as well as slice positions, on the effectiveness of stretch operations.
For ease of analysis, we consider the scenario where BS, has just
started execution at stage 0 and BS, arrives as our target scenario.
Fig. 15 illustrates the impact of slice positions on the effectiveness of
stretch operations, where the x-axis represents the slice ratio, and the
y-axis represents the speedups over not using stretch operations. Fig. 16
illustrates the influence of various combinations of BS, and BS,; on
stretch operation efficacy. The brightness of the color signifies speedup
levels relative to non-stretch operation scenarios, with instances of
negative effect (speedups less than 1) marked as 1 for clarity.

Finding 14. Stretch operations yield more significant acceleration when
performed earlier. As seen in Fig. 15, stretch operations are more likely
to achieve noticeable acceleration when the slice ratio is low. This is
because a lower slice ratio implies less waiting time, and with a higher
proportion in stage 1 when system resources are not saturated, batch
processing benefits more. As the slice ratio increases, the acceleration
ratio of stretch operations tends to converge to 0.75. This is because
when the slice ratio approaches 100, the proportion of stage 1 be-
comes nearly zero. Due to the necessity to wait for BS; to finish at
stage 0, BS|, cannot exit prematurely, resulting in an average delay of
approximately 1.75 times that of batch processing.

Finding 15. Applying stretch operations can usually enhance the system
throughput under small batches. As shown in Fig. 15, stretch operations
exhibit noticeable acceleration when merging small batches, as the
system cannot efficiently utilize hardware resources with small batches.
However, for models like BERT, the system resources are already
saturated with small batches, making stretch operations unsuitable for
such models.

Finding 16. Stretch operations are more suitable for ResNet-like models
when computational resources are not saturated, and they are influenced
by waiting time and batch processing gains. Fig. 16 shows that in ResNet
models, stretch operations generally have an acceleration effect, par-
ticularly when BS|, is small, as it reduces the waiting time for B.S)
execution and still improves resource utilization after merging. How-
ever, for BERT models, stretch operations have minimal acceleration
as the system resources are already saturated with small batches. For
LinkNet models, stretch operations produce acceleration only with
specific batch combinations. Thus, systems should decide whether to
adopt stretch operations based on stage-specific performance models.

7. Discussion

In this work, an in-depth analysis and appraisal of the DNN batching
serving system were undertaken, offering significant findings. This

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100151

section gives the application scenarios and potential inspirations based
on these findings.

7.1. Serving system configuration

In existing serving systems, the configuration of hyperparameters
is a critical factor that affects the effectiveness of batching. However,
there is a lack of comprehensive analysis and guidance on the configu-
ration of these hyperparameters. This work fills this gap by providing
insights into the impact of hyperparameters on batching effectiveness.
Model deployment personnel can use the Finding 3 to configure MAX-
BS to a larger value when deploying computationally intensive models.
This will help to improve hardware resource utilization by forming
larger batches. Furthermore, Finding 5 suggests that deployment per-
sonnel need not overly focus on the time window under medium to low
loads. Serving system developers can adhere to the recommendations
in Finding 9 for setting the number of stages. With these findings and
suggestions in place, users of the serving system can more easily obtain
appropriate parameter settings without undergoing complex, tedious,
and time-consuming experiments and adjustments, thereby accelerating
the application of the serving system.

7.2. DNN system optimization

We explore the potential directions outlined by the findings in this
paper for promoting optimization and design of DNN serving systems.
We first analyzed the relationship between the hyperparameters in the
request batching module and the batching effect, and revealed the con-
stituents of request latency (Findings 3-6). This provides a foundation
for researchers to design adaptive parameter tuning systems for serving
systems. Considering that workloads in practical scenarios often exhibit
burstiness [26], and the inference serving time is deterministic [27],
we can fit the collected request arrival traces to a Markov arrival pro-
cess [28] at runtime to capture the burstiness. Based on the components
of latency and deterministic inference time, we design a parameter
tuner. The tuner determines optimal hyperparameter configurations
based on the arrival process and QoS, maximizing throughput while
meeting the QoS. Furthermore, we discover that in the model slicing
module, the selection of slicing positions should consider computation
time, model structure, and memory access time. Additionally, the num-
ber of stages correlates with runtime synchronization overhead. The
aforementioned analysis offers possibilities for researchers to automat-
ically determine optimal slicing positions and the number of stages.
This inspires researchers to design an profiler to obtain computation
time and access time under different slicing locations. Then, they
can model the inference process under different stage reorchestrating
strategies and query arrival processes, subsequently automatically de-
termining the optimal slicing positions and stage numbers based on
the performance model. Lastly, we examine the stage reorchestrating
module and find that the conditions for utilizing pipelined execution
and meta-operations should consider model characteristics and stage
performance models. This insight guides researchers designing multi-
tenant serving systems to execute computation- intensive stages and
memory access-intensive stages in a pipelined manner to fully utilize
hardware resources. Concurrently, performance models of stages in-
form the execution of meta-operations and resource allocation for the
stages.

7.3. DNN application development

The findings in this paper also have implications for neural network
application developers. Findings 1 and 2 indicate that the performance
improvements achieved through batching techniques primarily arise
from the efficient utilization of hardware computing resources, particu-
larly when larger batch sizes are employed. Therefore, in the design of
neural network models, efforts should be made to reduce the proportion

F. Yu et al.

of memory access time. This hints at the importance for application
developers to use lightweight operators whenever possible, such as
employing depth-wise convolution operations in place of naive convo-
lutions, and adopting quantization techniques to reduce memory access
time. Finding 8 indicates that the position of model slices affects data
flow and tensor lifecycle management. Long-lived tensors occupy mem-
ory resources for extended periods, increasing memory consumption
and limiting the number of batching requests. Thus, DNN application
developers should avoid designing long-lived tensors. Finding 9 sug-
gests that model slicing may impact graph optimization techniques like
operator fusion. Therefore, our advice to model designers is to construct
network models using small, reusable blocks as much as possible to
minimize the impact on graph optimization techniques such as operator
fusion.

7.4. Impact on large language models

In various applications, the significance of language generation
tasks has escalated, sparking heightened interest in optimizing serv-
ing systems via batching techniques. Orca represents the inaugural
adaptation of DVABatch tailored for Large Language Models (LLMs).
A pivotal insight of Orca posits that Transformer-based generative
models function iteratively, so the batching should focus on iterations
rather than individual requests. Consequently, Orca aligns DVABatch
stages with LLM iterations and supports batching arbitrary requests by
executing the iterations in a batch that are in prefill and decode states
separately. In this study, we conducted a comprehensive evaluation of
the DVABatch system, yielding several critical insights.

BERT and Transformer models differ in terms of task objectives
and output layers. Transformer is a sequence processing model that
uses SoftMax for probability distribution computation at the output
layer, while BERT focuses on learning language representations from
text data, which is typically used to generate context-related word
embeddings. However, they are both implemented based on multiple
stacked transformer layers (i.e., including attention layers and forward
feedback layers). In this paper, we discover that BERT can saturate
hardware resources even with small batch sizes. Furthermore, serving
systems utilizing pipeline parallelism exhibit lower throughput when
confronted with the BERT model compared to naive serving systems.
Consequently, this insight suggests that designers of LLM serving sys-
tems should refrain from employing pipeline parallelism on a single
GPU platform.

Given that LLMs typically operate iteratively, and the behavioral
characteristics during the prefill and decode phases exhibit significant
differences [29,30], this constitutes the most prominent distinction
between LLM and BERT. Researchers can leverage the findings of this
paper and integrate the unique features of LLM to design serving
systems effectively. In this context, we propose two potential research
directions and offer possible solutions to stimulate further scholarly
discourse. Findings 4 and 6 elucidate that the queue’s waiting time
markedly impacts the serving system, primarily due to the unpre-
dictable request distribution. In LLM, the arrival time distribution and
iteration count remain indeterminate. Hence, researchers may formu-
late a multi-feedback queue scheduler for handling unknown arrival
times [31] and develop a compact model consistent with LLM to
forecast request iteration counts [32], facilitating batch processing of
requests with analogous iteration counts to minimize latency. Find-
ing 10 suggests that the design and use of meta-operations should
align with model characteristics, offering insights for researchers in
designing new meta-operations for LLM serving systems. This prompted
researchers to develop new meta-operations that couple multiple itera-
tions in decoding states with a iteration in prefill states, utilizing weight
data reuse to reduce memory access and thereby improve system
throughput [33].

In future work, we will augment the characterization of batching be-
havior within the LLM serving system and undertake a more profound
exploration based on the aforementioned two research directions.

10

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100151
7.5. Multi-GPU platforms

In existing DNN serving system designs, the batching module and
the inference engine module are independently designed, encompassing
serving systems such as Triton, DVABatch, and Orca. In contemporary
DNN serving systems, tensor parallelism and pipeline parallelism are
commonly utilized for inference services across multiple GPUs [34],
primarily within the confines of the inference engine module. While
this paper focuses on the batching system, insights into the design
of the inference engine remain beneficial. For instance, in Section 5,
we highlight that the selection of model slicing positions is associated
with the model structure, which can provide guidance for the design
of the pipeline stages of the pipeline parallelism paradigm in the
execution engine layer. Furthermore, this work clarifies existing DNN
serving system designs, laying the groundwork for future collaborative
designs between the batching system and the inference engine. For
example, considering a machine equipped with two GPU cards (GPU,
and GPU,) using the pipeline parallelism paradigm—where GPU,
handles the front portion of the model and GPU, manages the rear
portion. Assuming two batches of varying sizes, A and B (with A having
a larger batch size than B), arrive sequentially. Orca would first execute
A on GPU, (front portion of the model) followed by A on GPU, (rear
portion) while simultaneously processing B on GPU, (front portion).
Due to A’s larger batch size compared to B, a bubble occurs on GPU,. If
the batching system layer can perceive that the execution engine layer
uses the pipeline parallelism paradigm, it can reduce the occurrence of
bubbles by dividing the requests into finer granularities.

8. Related work

Dynamic Batching. In the realm of model training, researchers
focused on adjusting batch sizes to strike a balance between training
efficiency and model generalization [35-37]. In the training phase, all
input data is available, allowing for the efficient collection of multiple
samples without latency. However, in the inference phase, since the ML
serving systems receive input at different times, and batching system
needs to balance latency and throughput, which poses challenges.
Therefore, our paper focuses on analyzing batching techniques in the
inference phase.

Regarding batching techniques during model inference, there are
three primary types, as delineated in prior studies [7,38]: static batch-
ing, dynamic batching, and application-specific batching. Static batch-
ing, as exemplified by systems such as Triton and TensorFlow-Serving,
relied on two critical hyperparameters: the model-allowed maximum
batch size and the time window, which govern request batching be-
havior. In a static batching system, new batches can only be executed
after the current batch inference is done, causing longer request wait
times.

Therefore, researchers have proposed dynamic batching, allowing
batch size modification during the inference process, with some typ-
ical serving systems including LazyBatching [7] and DVAbatch [3].
In dynamic batching techniques, models are sliced into different sub-
graphs to support the addition of new requests and the early exit
of old requests. LazyBatching slices the model at the granularity of
operators and employs a QoS-aware slack time prediction algorithm to
delay request processing, creating larger batches. DVABatch, built upon
LazyBatching, uses subgraphs as the slice granularity and introduces
stretch and split operations to adapt to different application scenarios.

Furthermore, there have been batching techniques tailored for spe-
cific applications. As the number of iterations varies for different
requests in the generation model, Orca [39] introduces iteration-level
batching, i.e., considering whether to incorporate new iterations or
early exit the iteration from the batch. In applications involving diverse
sequence lengths, researchers explored strategies for concatenating
requests into larger inputs [40] or adopting finer-grained grouping
techniques [41] to improve performance.

F. Yu et al.

Despite numerous DNN serving system batching techniques, their
applicability and operational contexts remain unclear. Additionally,
these methods often target specific modules, such as static batching for
request batching module and dynamic batching for stage reorchestrat-
ing modules. This work delivers a holistic assessment of the influence of
parameter configurations, model slicing strategies, and stage reorches-
trating strategies on batching serving systems across diverse models and
workloads. To the best of our knowledge, this is the first study that
comprehensively evaluates and analyzes DNN batching serving system.

Serving Systems. In serving systems, batch processing was often
considered in conjunction with factors such as resource allocation and
QoS. Various approaches were devised to employ adaptive strategies,
enhancing efficiency and ensuring equitable resource distribution to
fulfill users’ inference demands. DyBatch [42] adjusted batch sizes
based on device workloads and task requisites to uphold fairness.
Nanily [43] dynamically allocated computational resources, aiming to
meet QoS requirements while optimizing resource utilization. Ebird [9,
44] excelled in performance maximization across fluctuating work-
loads. In the design of serving systems, batching techniques typically
need to be collaboratively designed with other optimization techniques.
This study contributes to a better understanding of batching techniques
for developers and lays the foundation for designing superior serving
systems.

9. Conclusion

Optimizing and deploying DNN serving systems lay in understand-
ing the behavior of batching throughout the entire system. In this
paper, we characterized the behavior of the request batching module,
model slicing module, and stage reorchestrating module, in deep neu-
ral network batching systems on GPUs, by using three representative
models. Based on experimental results, several meaningful insights
and findings are provided for future research to further enhance deep
learning serving systems.

CRediT authorship contribution statement

Feng Yu: Writing - original draft, Methodology, Conceptualiza-
tion. Hao Zhang: Software, Formal analysis. Ao Chen: Validation,
Investigation. Xueying Wang: Validation, Formal analysis. Xiaoxia
Liang: Software, Investigation. Sheng Wang: Validation, Investigation.
Guangli Li: Project administration, Methodology, Conceptualization.
Huimin Cui: Supervision, Methodology. Xiaobing Feng: Supervision,
Methodology.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work is supported by the National Natural Science Foundation
of China (62232015, 62090024, 62302479), the China Postdoctoral
Science Foundation (2023M733566), and the Innovation Funding of
ICT, CAS, China (E361010).

References

[1]1 N. Inc., NVIDIA triton inference server, 2023, URL https://docs.nvidia.com/
deeplearning/triton-inference-server/, Accessed: August, 2023.

[2] C. Olston, N. Fiedel, K. Gorovoy, J. Harmsen, L. Lao, F. Li, V. Rajashekhar,
S. Ramesh, J. Soyke, Tensorflow-serving: Flexible, high-performance ml serving,
2017, arXiv preprint arXiv:1712.06139.

11

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100151

[3] W. Cui, H. Zhao, Q. Chen, H. Wei, Z. Li, D. Zeng, C. Li, M. Guo, DVABatch:
Diversity-aware Multi-Entry Multi-Exit batching for efficient processing of DNN
services on GPUs, in: 2022 USENIX Annual Technical Conference, 2022, pp.
183-198.

K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 770-778.

J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of deep
bidirectional transformers for language understanding, 2018, arXiv preprint
arXiv:1810.04805.

A. Chaurasia, E. Culurciello, Linknet: Exploiting encoder representations for
efficient semantic segmentation, 2017, arXiv preprint arXiv:1707.03718.

Y. Choi, Y. Kim, M. Rhu, Lazy batching: An SLA-aware batching system for cloud
machine learning inference, in: International Symposium on High-Performance
Computer Architecture, 2021, pp. 493-506.

X. Li, G. Zhang, H.H. Huang, Z. Wang, W. Zheng, Performance analysis of GPU-
based convolutional neural networks, in: 2016 45th International Conference on
Parallel Processing, ICPP, IEEE, 2016, pp. 67-76.

W. Cui, M. Wei, Q. Chen, X. Tang, J. Leng, L. Li, M. Guo, Ebird: Elastic
batch for improving responsiveness and throughput of deep learning services,
in: International Conference on Computer Design, 2019, pp. 497-505.

T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan, L. Wang,
Y. Hu, L. Ceze, et al., TVM: An automated End-to-End optimizing compiler for
deep learning, in: 13th USENIX Symposium on Operating Systems Design and
Implementation, 2018, pp. 578-594.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al., Pytorch: An imperative style, high-performance
deep learning library, Adv. Neural Inf. Process. Syst. 32 (2019).

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadar-
rama, T. Darrell, Caffe: Convolutional architecture for fast feature embedding,
in: Proceedings of the 22nd ACM International Conference on Multimedia, 2014,
pp. 675-678.

N. Inc., NVIDIA tensorRT, 2021, URL: https://developer.nvidia.com/tensorrt,
Accessed on 2023-09-04.

N. inc, Triton client libraries and examples, 2021, URL: https://github.com/
triton-inference-server/client, Accessed on 2023-09-04.

V.J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C.-J. Wu, B. Ander-
son, M. Breughe, M. Charlebois, W. Chou, et al., Mlperf inference benchmark,
in: International Symposium on Computer Architecture, 2020, pp. 446-459.

D. Yastremsky, Maximizing deep learning infer-ence performance with NVIDIA
model analyzer, 2020, URL https://developer.nvidia.com/blog/maximizing-deep-
learning-inference-performance-with-nvidia-model-analyzer, Accessed: August,
2023.

S.V. Saavedra, A.L. Uribe, Google cloud vision and its application in image
processing using a raspberry Pi, in: Colombian Conference on Computing,
Springer, 2022, pp. 102-113.

D. Avinash, J.A. Kumar, R. Chandansingh, Use of Al in cloud-based certificate
authentication for travel concession, in: Mobile Computing and Sustainable
Informatics: Proceedings of ICMCSI 2023, Springer, 2023, pp. 349-361.

A. Satapathi, A. Mishra, Build a multilanguage text translator using azure
cognitive services, in: Developing Cloud-Native Solutions with Microsoft Azure
and. NET: Build Highly Scalable Solutions for the Enterprise, Springer, 2022, pp.
231-248.

H.-M. Sormunen, Enhancing customer feedback processing with machine learning
in Microsoft Azure, 2022.

M. Singh, Single stage facial recognition based on YOLOVS5, in: 2022 International
Conference on INnovations in Intelligent SysTems and Applications, INISTA,
IEEE, 2022, pp. 1-6.

T. Leonor Estévez Dorantes, D. Bertani Hernandez, A. Leén Reyes, C. Elena
Miranda Medina, Development of a powerful facial recognition system through
an API using ESP32-Cam and amazon rekognition service as tools offered by
industry 5.0, in: 2022 the 5th International Conference on Machine Vision and
Applications, ICMVA, 2022, pp. 76-81.

S. Marcel, Y. Rodriguez, Torchvision the machine-vision package of torch, in:
Proceedings of the 18th ACM International Conference on Multimedia, 2010,
pp. 1485-1488.

S.M. Jain, Hugging face, in: Introduction to Transformers for NLP: With the
Hugging Face Library and Models to Solve Problems, Springer, 2022, pp. 51-67.
D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N.R. Devanur, G.R.
Ganger, P.B. Gibbons, M. Zaharia, PipeDream: Generalized pipeline parallelism
for DNN training, in: Proceedings of the 27th ACM Symposium on Operating
Systems Principles, SOSP 19, Association for Computing Machinery, New York,
NY, USA, ISBN: 9781450368735, 2019, pp. 1-15, http://dx.doi.org/10.1145/
3341301.3359646.

A. Ali, R. Pinciroli, F. Yan, E. Smirni, Batch: machine learning inference serving
on serverless platforms with adaptive batching, in: International Conference for
High Performance Computing, Networking, Storage and Analysis, 2020, pp. 1-15.
F. Yan, O. Ruwase, Y. He, E. Smirni, SERF: Efficient scheduling for fast deep
neural network serving via judicious parallelism, in: SC’16: Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis, IEEE, 2016, pp. 300-311.

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

https://docs.nvidia.com/deeplearning/triton-inference-server/
https://docs.nvidia.com/deeplearning/triton-inference-server/
https://docs.nvidia.com/deeplearning/triton-inference-server/
http://arxiv.org/abs/1712.06139
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb3
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb3
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb3
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb3
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb3
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb3
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb3
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb4
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb4
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb4
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb4
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb4
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1707.03718
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb7
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb7
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb7
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb7
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb7
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb8
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb8
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb8
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb8
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb8
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb9
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb9
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb9
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb9
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb9
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb10
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb10
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb10
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb10
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb10
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb10
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb10
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb11
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb11
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb11
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb11
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb11
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb12
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb12
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb12
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb12
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb12
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb12
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb12
https://developer.nvidia.com/tensorrt
https://github.com/triton-inference-server/client
https://github.com/triton-inference-server/client
https://github.com/triton-inference-server/client
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb15
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb15
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb15
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb15
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb15
https://developer.nvidia.com/blog/maximizing-deep-learning-inference-performance-with-nvidia-model-analyzer
https://developer.nvidia.com/blog/maximizing-deep-learning-inference-performance-with-nvidia-model-analyzer
https://developer.nvidia.com/blog/maximizing-deep-learning-inference-performance-with-nvidia-model-analyzer
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb17
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb17
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb17
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb17
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb17
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb18
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb18
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb18
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb18
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb18
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb19
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb19
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb19
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb19
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb19
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb19
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb19
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb20
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb20
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb20
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb21
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb21
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb21
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb21
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb21
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb22
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb22
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb22
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb22
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb22
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb22
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb22
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb22
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb22
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb23
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb23
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb23
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb23
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb23
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb24
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb24
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb24
http://dx.doi.org/10.1145/3341301.3359646
http://dx.doi.org/10.1145/3341301.3359646
http://dx.doi.org/10.1145/3341301.3359646
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb26
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb26
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb26
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb26
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb26
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb27
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb27
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb27
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb27
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb27
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb27
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb27

F. Yu et al.

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

M.F. Neuts, A versatile Markovian point process, J. Appl. Probab. 16 (4) (1979)
764-779.

K. Hong, G. Dai, J. Xu, Q. Mao, X. Li, J. Liu, K. Chen, H. Dong, Y. Wang,
FlashDecoding++: Faster large language model inference on GPUs, 2023, arXiv
preprint arXiv:2311.01282.

W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C.H. Yu, J. Gonzalez, H. Zhang,
I. Stoica, Efficient memory management for large language model serving with
pagedattention, in: Proceedings of the 29th Symposium on Operating Systems
Principles, 2023, pp. 611-626.

B. Wu, Y. Zhong, Z. Zhang, G. Huang, X. Liu, X. Jin, Fast distributed inference
serving for large language models, 2023, arXiv preprint arXiv:2305.05920.

Q. Su, C. Giannoula, G. Pekhimenko, The synergy of speculative decoding
and batching in serving large language models, 2023, arXiv preprint arXiv:
2310.18813.

A. Agrawal, A. Panwar, J. Mohan, N. Kwatra, B.S. Gulavani, R. Ramjee,
SARATHI: Efficient LLM inference by piggybacking decodes with chunked
prefills, 2023, arXiv preprint arXiv:2308.16369.

X. Miao, C. Shi, J. Duan, X. Xi, D. Lin, B. Cui, Z. Jia, SpotServe: Serving
generative large language models on preemptible instances, 2023, arXiv preprint
arXiv:2311.15566.

A. Devarakonda, M. Naumov, M. Garland, Adabatch: Adaptive batch sizes for
training deep neural networks, 2017, arXiv preprint arXiv:1712.02029.

A. Lydia, S. Francis, Adagrad—an optimizer for stochastic gradient descent, Int.
J. Inf. Comput. Sci. 6 (5) (2019) 566-568.

M. Zaheer, S. Reddi, D. Sachan, S. Kale, S. Kumar, Adaptive methods for
nonconvex optimization, Adv. Neural Inf. Process. Syst. 31 (2018).

12

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100151

[38]

[39]

[40]

[41]

[42]

[43]

[44]

E.L. Cade Daniel, R. Liaw, How continuous batching enables 23x throughput in
LLM inference while reducing p50 latency, 2023, URL: https://www.anyscale.
com/blog/continuous-batching-1lm-inference, Accessed on 2023-09-04.

G.-L. Yu, J.S. Jeong, G.-W. Kim, S. Kim, B.-G. Chun, Orca: A distributed serving
system for transformer-based generative models, in: USENIX Symposium on
Operating Systems Design and Implementation, 2022, pp. 521-538.

B. Fu, F. Chen, P. Li, D. Zeng, TCB: Accelerating transformer inference services
with request concatenation, in: Proceedings of the 51st International Conference
on Parallel Processing, 2022, pp. 1-11.

Y. Zhai, C. Jiang, L. Wang, X. Jia, S. Zhang, Z. Chen, X. Liu, Y. Zhu,
ByteTransformer: A high-performance transformer boosted for variable-length
inputs, in: International Parallel and Distributed Processing Symposium, 2023,
pp. 344-355.

S. Zhang, W. Li, C. Wang, Z. Tari, A.Y. Zomaya, DyBatch: Efficient batching
and fair scheduling for deep learning inference on time-sharing devices, in:
International Symposium on Cluster, Cloud and Internet Computing, 2020, pp.
609-618.

X. Tang, P. Wang, Q. Liu, W. Wang, J. Han, Nanily: A qos-aware scheduling
for dnn inference workload in clouds, in: International Conference on High
Performance Computing and Communications, 2019, pp. 2395-2402.

W. Cui, Q. Chen, H. Zhao, M. Wei, X. Tang, M. Guo, E2bird: Enhanced elastic
batch for improving responsiveness and throughput of deep learning services,
IEEE Trans. Parallel Distrib. Syst. 32 (6) (2020) 1307-1321.

http://refhub.elsevier.com/S2772-4859(24)00003-6/sb28
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb28
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb28
http://arxiv.org/abs/2311.01282
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb30
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb30
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb30
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb30
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb30
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb30
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb30
http://arxiv.org/abs/2305.05920
http://arxiv.org/abs/2310.18813
http://arxiv.org/abs/2310.18813
http://arxiv.org/abs/2310.18813
http://arxiv.org/abs/2308.16369
http://arxiv.org/abs/2311.15566
http://arxiv.org/abs/1712.02029
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb36
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb36
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb36
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb37
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb37
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb37
https://www.anyscale.com/blog/continuous-batching-llm-inference
https://www.anyscale.com/blog/continuous-batching-llm-inference
https://www.anyscale.com/blog/continuous-batching-llm-inference
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb39
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb39
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb39
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb39
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb39
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb40
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb40
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb40
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb40
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb40
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb41
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb41
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb41
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb41
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb41
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb41
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb41
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb42
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb42
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb42
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb42
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb42
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb42
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb42
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb43
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb43
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb43
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb43
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb43
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb44
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb44
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb44
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb44
http://refhub.elsevier.com/S2772-4859(24)00003-6/sb44

	Characterizing and understanding deep neural network batching systems on GPUs
	Introduction
	DNN Batching Serving Systems
	Meta-Operations
	Major Components

	Experimental Setup
	Hardware and Software Setting
	Benchmarked Deep Neural Networks
	Evaluation Metrics

	Analysis of Request Batching
	Performance of Different Batch Sizes
	Effects of Max Batch Size Settings
	Effects of Batching Time Window

	Analysis of Model Slicing
	Effects of Slice Positions
	Effects of Stage Counts

	Analysis of Stage Reorchestrating
	Effects of Reorchestrating Strategies
	Performance Analysis on Split Operations
	Performance Analysis on Stretch Operations

	Discussion
	Serving System Configuration
	DNN System Optimization
	DNN Application Development
	Impact on Large Language Models
	Multi-GPU Platforms

	Related Work
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

