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A B S T R A C T

Convolutional neural networks for single-image super-resolution have been widely used with great success.
However, most of these methods use L1 loss to guide network optimization, resulting in blurry restored images
with sharp edges smoothed. This is because L1 loss limits the optimization goal of the network to the statistical
average of all solutions within the solution space of that task. To go beyond the L1 loss, this paper designs
an image super-resolution algorithm based on second-order gradient loss. We impose additional constraints by
considering the high-order gradient level of the image so that the network can focus on the recovery of fine
details such as texture during the learning process. This helps to alleviate the problem of restored image texture
over-smoothing to some extent. During network training, we extract the second-order gradient map of the
generated image and the target image of the network by minimizing the distance between them, this guides the
network to pay attention to the high-frequency detail information in the image and generate a high-resolution
image with clearer edge and texture. Besides, the proposed loss function has good embeddability and can be
easily integrated with existing image super-resolution networks. Experimental results show that the second-
order gradient loss can significantly improve both Learned Perceptual Image Patch Similarity (LPIPS) and
Frechet Inception Distance score (FID) performance over other image super-resolution deep learning models.
1. Introduction

As a well-known image restoration task, single-image super-resolu-
tion (SISR) aims to convert a low-resolution (LR) image into its corre-
sponding high-resolution (HR) version. In recent years, SISR has gained
significant attention from researchers owing to its practical applications
in various fields, including video surveillance [1–3], medical imag-
ing [4–6], and so on. Moreover, SISR can also be used in combination
with other high-level computer vision tasks, such as object detection [7,
8] and semantic segmentation [9,10], to improve their performance.
However, SISR is inherently a challenging and ill-posed task, as LR
images lack crucial texture details present in HR images, making it
difficult to generate HR images from LR images alone. Furthermore,
since a single LR image can be generated from multiple HR images that
have undergone different types of degradation, the solution to the SR
problem may not be unique.

Convolutional Neural Networks (CNNs) have recently shown im-
pressive performance in information recovery due to their ability to
handle complex data, and have thus been applied to the field of SISR.
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However, several CNN-based SISR methods currently popular priori-
tize high Peak Signal-to -Noise Ratio (PSNR) and Structural Similarity
(SSIM) scores, which can lead to visually blurry restored images. This
is because these methods often neglect the structural prior knowledge
within the image and focus only on minimizing the mean absolute
error between the recovered HR image and the ground truth image.
Consequently, the optimization objective of the network becomes the
statistical mean of all possible solutions in this one-to-many problem,
resulting in blurry reconstructed images.

Images can be broken down into various frequency components,
such as high-frequency and low-frequency components. The low-fre-
quency component corresponds to its smooth regions, such as the sky,
which are relatively simpler to restore. The high-frequency component
pertains to its detailed regions, such as the textures of buildings,
which are comparatively more challenging to restore. The human visual
system is particularly sensitive to the details in images, especially the
edges and textures, which play a crucial role in the perception of image
quality [11]. Therefore, the accuracy of restoring the high-frequency
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components is essential for achieving visually pleasing results, and
blurry images often occur when edge and texture details are lost due
to excessive smoothing.

Numerous studies have demonstrated that incorporating prior kno-
wledge of images, such as total variation prior [12,13], sparse prior
[14–16], and gradient prior [17,18], can partially alleviate the ill-
posedness of the SISR task. These prior knowledge can be viewed as
supplementary constraints on the optimization objective of the net-
work, which narrow down the solution space of the task. Among all
these prior knowledge, the gradient prior is one of the most effective,
as it can suppress noise and preserve edges during image reconstruc-
tion. In fact, an image can be regarded as a two-dimensional discrete
function, and the gradient of the image is actually the derivative of
this two-dimensional discrete function, which measures the change rate
of the pixel grayscale value of the image. As the grayscale values of
image pixels tend to vary greatly in edge and texture areas, the gradient
map of images can accurately capture the edges and texture details
of images. In the field of mathematics, the first-order derivative of a
function provides information that can be utilized to describe the shape
of the functional image, such as monotonicity. While the second-order
derivative of the function contains more information than the first-
order derivative, which has extremely important guiding significance
for accurately modeling the functional image. Similarly, in the field
of image processing, the second-order gradient map of images may
contain more informative prior knowledge than the first-order gradient
map. To validate this idea, we apply the principles of function deriva-
tion to generate the second-order gradient map of images and visualize
it for a more intuitive comparison with the first-order gradient map. As
shown in Fig. 1, the second-order gradient map shows more detailed
information than the first-order gradient map. If fully utilized during
network optimization, it can further compress the solution space of this
task and reduce the difficulty of image restoration.

Based on the aforementioned discussion, this paper proposes an
image super-resolution algorithm based on the second-order gradient
(SG) loss. This algorithm replaces the loss function of the network with
a combination of the SG loss and the L1 loss. The SG loss takes the
second-order gradient map of the image as the starting point. To be
specific, it first extracts the second-order gradient maps of the restored
image and the HR image and then minimizes the distance between
them to fully exploit the high-frequency information contained in the
second-order gradient map of the image. This encourages the network
to concentrate on the restoration of high-frequency components such
as textures and image boundaries, improving the blurring of restored
images caused by some existing methods that only use L1 loss as a
constraint. The main contributions of this paper can be summarized
as follows:

• We propose an image super-resolution algorithm based on the
second-order gradient (SG) loss. By combining the SG loss with
the L1 loss, our algorithm effectively guides the network opti-
mization process and mitigates the problem of excessive blurring
in the images restored by some existing image restoration meth-
ods to some extent. The SG loss can be easily integrated into most
existing SR methods without adding extra training parameters.

• The experimental results on five widely used benchmark datasets
demonstrate that the proposed SG loss can enhance high-freq-
uency information in images and help the network recover clearer
and more natural textures and edges.

2. Related works

This section provides a review of relevant image super-resolution
methods from two perspectives: single-image super-resolution methods
2

and gradient-guided super-resolution methods.
Fig. 1. Visualization of the first-order and second-order gradient maps of images.

2.1. Single image super-resolution methods

To date, numerous SISR methods have been proposed by researchers,
which can be broadly classified into three categories: interpolation-
based methods [19], signal processing-based methods [20–22], and
deep learning-based methods [23–50].

In the initial stages of research on SISR, interpolation-based meth-
ods were commonly used. The main idea of these methods is to infer
the pixel value at a specific position in the HR image by performing a
weighted average of the known pixel values in the LR image surround-
ing that position. Different weighting schemes have been designed for
image interpolation based on the fact that common pixel variations in a
local region of an image can be approximated by a continuous function.
For instance, bilinear interpolation, which leverages local linearity,
and bicubic interpolation [19], which utilizes high-order continuity,
are two examples of interpolation methods that have been proposed.
Despite their simplicity and computational efficiency, these methods
often result in generated images that exhibit unnatural artifacts and
structural distortions. This is primarily due to the fact that the pixel
variations within an image are often highly complex and cannot be ac-
curately described by such simple predefined functions, particularly in
the case of images with intricate textures. Signal processing-based SISR
methods have been designed to address this issue. They apply signal
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processing techniques such as sparse representation [22], local adaptive
filtering [21], and wavelet transform [20] to LR images to obtain
their corresponding HR images. While signal processing-based methods
have shown improvements in image restoration quality compared to
interpolation-based methods, they often come with high computational
complexity and are susceptible to noise.

For the last few years, deep learning-based methods have revealed
extraordinary capabilities in feature learning and extraction, allowing
neural networks to theoretically simulate any function. Through end-
to-end model training, these deep learning networks can learn the
mapping relationship between LR and HR images from massive data
directly. These data-driven deep learning approaches lead to momen-
tous performance gains compared to earlier traditional approaches. As
trailblazers, Dong et al. are the first to establish a connection between
CNN and image SR reconstruction. They devise a super-resolution
convolutional neural network composed of three convolutional layers,
which lay the groundwork for deep learning-based SISR methods.
Nonetheless, the limited receptive field of the three convolutional
layers restricts their capacity to perfectly leverage the surrounding
pixel information, leading to constrained performance enhancement.
For the purpose of enlarging the receptive field, Kim et al. [27] stack
more convolutional layers and integrate residual learning to tackle the
problem of gradient vanishing triggered by network thickening. Given
the distinct sizes of LR and HR images in SISR, the aforementioned
methods typically necessitate preprocessing of LR images utilizing bicu-
bic interpolation to upscale them to match the size of HR images
before feeding them into the network for training. Nevertheless, this
preprocessing is time-consuming and exacerbates the noise and blur in
LR images. To deal with this issue, a deconvolution layer is appended
by Dong et al. [30] at the end of the network to accomplish end-to-
end mapping from LR images to HR images. Shi et al. [32] present
a novel sub-pixel convolutional layer that can achieve magnification
by dynamically adjusting the number of feature channels. Both of
them place the upscaling operation of the LR image at the final stage
of the network and make it learnable. This can not only decrease
the computational burden but also enhance the precision of image
restoration.

Subsequently, SR models based on neural networks have emerged
continuously. For instance, Zhang et al. [34] employ a dense connection
structure to augment feature propagation through feature reuse. Li
et al. [35] devise a multi-scale network to selectively extract image
features of varying scales to facilitate image reconstruction, which leads
to further performance improvement compared to the model using only
a single scale. According to Zhang et al. [36], most existing methods
treat LR input features indiscriminately and disregard the correlation
between low-frequency information. Consequently, they integrate the
attention mechanism into the SR network to enable it to concentrate
on the more critical parts of the image for restoration. Several recent
studies have attempted to combine transformers from the field of nat-
ural language processing with SR networks, obtaining state-of-the-art
performance.

2.2. Gradient guided super-resolution methods

By exploiting gradient prior knowledge in many traditional meth-
ods [12,51–54], the solution space can be narrowed to generate a
sharper image. For example, Fattal [52] designs a method that lever-
ages image gradient edge statistics to learn the prior correlations across
different resolutions. Zhu et al. [51] introduce an innovative method
that gathers a dictionary of gradient patterns and characterizes de-
formable gradient combinations. Yan et al. [53] propose a stochastic
resonance method based on gradient contour sharpness. Motivated by
the effectiveness of gradient prior in traditional methods, some recent
works have also endeavored to integrate image prior knowledge with
neural networks [17,18,55]. Yang et al. [17] employ a pre-trained edge
3

detector to extract image gradients, which are subsequently utilized to
guide the deep network in reconstructing SR images. Ma et al. [18]
construct a dual-branch joint optimization network consisting of a main
SR branch and a gradient-assisted branch, where the gradient-assisted
branch takes the gradient map extracted from the LR image as input,
and the optimization target becomes the gradient map of its corre-
sponding HR image. While previous methods leverage gradient prior
knowledge to enhance the visual quality of restored images, they often
incorporate learnable parameters associated with gradient information
into the model significantly increasing its complexity and diminishing
its computational efficiency. Unlike them, the proposed method in this
paper utilizes a second-order gradient prior solely during network op-
timization to provide supplementary supervision information, without
adding any learnable parameters. Hence, the computational cost can be
disregarded.

3. Second-order gradient loss guided single-image super-resolution

3.1. Problem definition

For the task of SISR, the goal is to predict a reasonable HR image
𝐼𝑆𝑅 from a LR input image 𝐼𝐿𝑅, given its corresponding ground truth
HR image 𝐼𝐻𝑅, and ensure that the predicted HR image 𝐼𝑆𝑅 is as
similar as possible to the ground truth HR image 𝐼𝐻𝑅. Consequently,
during the actual model training, it is imperative to use pre-existing
paired LR and HR image pairs (𝐼𝐿𝑅, 𝐼𝐻𝑅). In reality, the LR image
is typically obtained from the HR image through various types of
degradation, but due to the complex and diverse forms of degradation
and difficult modeling, for convenience of research, most works simply
model the degradation process of the image as a bicubic interpolation
downsampling operation. Therefore, the corresponding LR image can
be generated from the HR image by the following formula:

𝐼𝐿𝑅 = (𝐼𝐻𝑅) ↓𝑠 (1)

where ↓𝑠 denotes a bicubic interpolation downsampling operation with
a scaling factor of 𝑠. Typically, both LR and HR images are 3-channel
RGB images, with sizes of 3×ℎ×𝑤 and 3×𝑠⋅ℎ×𝑠⋅𝑤, respectively, where
ℎ and 𝑤 are the height and width of the LR image. If we represent the
SR network as 𝐹 with parameters 𝜃, then the process of image SR can
be expressed as:

𝐼𝑆𝑅 = 𝐹 (𝐼𝐿𝑅; 𝜃) (2)

Assuming that the loss function 𝐿 can be applied to guide the network
learning. In this case, we can formulate the optimization process of the
network as follows:

𝜃 = 𝑎𝑟𝑔min
𝜃
E𝐼𝑆𝑅𝐿(𝐹 (𝐼𝐿𝑅; 𝜃), 𝐼𝐻𝑅) (3)

3.2. Second-order gradient loss

Most existing deep learning-based SR methods primarily rely on
the L1 loss to constrain network training. The L1 loss is computed
by measuring the mean absolute error between the predicted image
𝐼𝑆𝑅 generated by the network and the ground truth HR image 𝐼𝐻𝑅

at each pixel. This loss function tends to yield high Peak Signal-to-
Noise Ratio (PSNR) values for the restored image. In fact, one of the
limitations of using the L1 loss function in SR is that the visual results
often exhibit blurriness and lack of preservation of sharp edges present
in the original image. Despite the limitation aforementioned, the L1
loss function remains the most popular choice due to its effectiveness
in accelerating convergence and improving the overall performance.

𝐿1 = E𝐼𝑆𝑅‖(𝐼
𝐻𝑅 − 𝐼𝑆𝑅)‖1 (4)

Considering that the L1 loss treats high-frequency and low-frequency
information equally, without taking into account the fact that the inher-
ent difficulty in recovering high-frequency details, this paper proposes

to utilize the second-order gradient map of the image as additional
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Fig. 2. Overall framework of our proposed pluggable SISR algorithm based on second-order gradient loss. The left half of this figure represents a generic deep learning-based
image SR network architecture which can be easily replaced. 𝐼𝐻𝑅𝐺 , 𝐼𝑆𝑅𝐺 respectively represent the second-order gradient map extracted by using the gradient extraction function
𝑀(⋅) twice from high-resolution image 𝐼𝐻𝑅 and super-resolution image 𝐼𝑆𝑅.
Table 1
Quantitative comparisons of cnn-based SISR models with and without second-order gradient loss on five benchmark datasets for ×4 SR. Best
results are highlighted.

DataSet Metric EDSR EDSR+SG RDN RDN+SG RCAN RCAN+SG SwinIR SwinIR+SG

Set5 LPIPS ↓ 0.1728 0.1446 0.1716 0.1560 0.1720 0.1401 0.1700 0.1412
FID ↓ 58.86 56.52 57.88 52.65 59.74 54.27 58.80 55.75

Set14 LPIPS ↓ 0.2776 0.2353 0.2808 0.2564 0.2783 0.2268 0.2705 0.2262
FID ↓ 86.45 80.94 88.75 86.55 91.95 86.51 89.17 82.09

Urban100 LPIPS ↓ 0.2037 0.1837 0.2107 0.1984 0.2047 0.1756 0.1923 0.1698
FID ↓ 25.56 23.10 26.12 23.85 25.71 22.39 24.54 21.63

B100 LPIPS ↓ 0.3589 0.3018 0.3634 0.3274 0.3602 0.2906 0.3549 0.2894
FID ↓ 96.08 88.47 96.36 90.86 98.15 83.83 95.59 84.28

Manga109 LPIPS ↓ 0.0997 0.0856 0.1018 0.0931 0.0991 0.0810 0.0938 0.0787
FID ↓ 12.58 10.77 13.25 11.39 12.48 10.80 11.82 9.97
supervision information in the optimization process to encourage the
network to pay more attention to high-frequency information during
the recovery process and alleviate the problem of smoothing sharp
edges. The reason why not utilizing higher-order gradient maps of the
image is that studies have indicated that as the order of the gradient
increases, the detail information in the gradient map becomes more
intricate and complex, which may lead to instability during training
and introduce additional errors. The loss function proposed in this
paper involves the extraction of the second-order gradient map of the
image. More precisely, to obtain the first-order gradient map of the
image, we calculate the pixel-wise differences between adjacent pixels
in both the horizontal and vertical directions. Subsequently, the second-
order gradient map of the image is derived by calculating the pixel-wise
differences between adjacent pixels of the first-order gradient map.
During the actual training process, an additional constraint is imposed
on the predicted high-resolution image 𝐼𝑆𝑅. This constraint is to min-
imize the discrepancy between the second-order gradient maps of 𝐼𝑆𝑅
and 𝐼𝐻𝑅. The gradient map of the image 𝐼 can be generated using the
following formula:

𝑑𝑥(𝑖, 𝑗) = 𝐼(𝑖 + 1, 𝑗) − 𝐼(𝑖 − 1, 𝑗)

𝑑𝑦(𝑖, 𝑗) = 𝐼(𝑖, 𝑗 + 1) − 𝐼(𝑖, 𝑗 − 1)

∇𝐼(𝑥, 𝑦) = (𝑑𝑥(𝑖, 𝑗), 𝑑𝑦(𝑖, 𝑗))

𝑀(𝐼) = ‖∇𝐼‖

(5)

where (𝑖, 𝑗) represents the coordinates of any point in the image, and
𝐼(𝑖, 𝑗) represents the pixel value of the image at (𝑖, 𝑗). The operation
𝑀(⋅) refers to the process of extracting image gradients. It can be im-
plemented by designing a convolution layer with fixed-weight kernels.
In this paper, the weights of the convolution kernel are designed by
simulating the Sobel filter. The Sobel filter is capable of detecting edge
4

information in both the horizontal and vertical directions, making it an
effective way to extract the gradient map from the image. Compared
with other edge detection filters, it is not only simple to implement
and fast in computation but also accurate in edge localization and good
noise suppression in images. By applying the operation 𝑀(⋅) twice, we
can obtain the second-order gradient map of the image. In summary,
the proposed second-order gradient loss in this paper can be formulated
as follows:

𝐿𝑆𝐺 = E𝐼𝑆𝑅‖𝑀(𝑀(𝐼𝐻𝑅)) −𝑀(𝑀(𝐼𝑆𝑅))‖1 (6)

Nevertheless, the second-order gradient loss primarily captures high-
frequency information while lacking low-frequency information. To
provide comprehensive guidance for network optimization, it is weigh-
ted and combined with the L1 loss to form the final loss function:

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿1 + 𝜆𝐿𝑆𝐺 (7)

where 𝜆 is a hyperparameter that controls the weight of the SG loss
𝐿𝑆𝐺 in the total loss 𝐿𝑡𝑜𝑡𝑎𝑙.

To facilitate a more intuitive comprehension of the proposed seco-
nd-order gradient loss, we have visualized it for illustrative purposes.
As shown in Fig. 2, the left half of the figure represents a generic
image SR network architecture, which consists of three parts: shallow
feature extraction module, deep feature extraction module, and high-
quality image reconstruction module. Typically, the shallow feature
extraction module is composed of two convolutional layers that are
intended to extract low-level features from the image and capture local
information. The deep feature extraction module is more intricate and
lacks a standardized structure, as it aims to extract high-level features
from the image to capture global information. The high-quality image
reconstruction module usually comprises an upsampling module and a
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convolutional layer. The upsampling module is responsible for increas-
ing the size of the features, while the convolutional layer is responsible
for transforming the features into an HR image. It is important to note
that the specific architecture of the deep feature extraction module
varies across different super-resolution networks, contributing to the
variations in their restoration performance. The right half of the figure
represents our proposed SG loss, it can be easily observed that it is
a plug-and-play loss function, as the left half of the figure can be
substituted with any image SR network. In summary, our proposed SG
loss is generalizable. For ease of understanding, we list the meanings
of the symbols used in this paper in Table 4.

4. Experiments

This section commences with an overview of the datasets, evalua-
tion metrics, and implementation details employed in the experiment.
Subsequently, a comparative analysis is presented, comparing the per-
formance and visualization of several state-of-the-art SISR networks
before and after the integration of the proposed SG loss. Furthermore,
we investigate the influence of the 𝜆 value on the model performance.

4.1. DataSets and metrics

All the models are trained on the 800 images from the DIV2K [57]
dataset. It is a widely recognized high-quality visual dataset in the field
of SISR. For testing purposes, we utilize five standard public datasets:
Set5 [58], Set14 [59], Urban100 [60], B100 [61], and Manga109 [62],
which contain various scenes and can comprehensively analyze the
effectiveness of the proposed loss. Since paired HR and LR images are
required for training, the corresponding LR images are obtained by
downsampling the HR images with a scaling factor of 4 using bicubic
interpolation before conducting experiments. Considering that evalua-
tion metrics such as Peak Signal-to-Noise Ratio (PSNR) and Structural
Similarity (SSIM) often contradict human perceptual quality, this paper
adopts perceptual metrics Learned Perceptual Image Patch Similarity
(LPIPS) [63] and Frechet Inception Distance score (FID) [64], which
are more consistent with human perception, as evaluation metrics to
quantitatively compare the restoration results of the datasets. Lower
LPIPS and FID values indicate better visual quality.

4.2. Implementation details

For the purpose of conducting a fair comparison, several represen-
tative deep learning-based SR networks were retrained to establish a
consistent benchmark. Specifically, during the training process, data
augmentation techniques are performed on the training dataset. This
includes random cropping, rotation by 90◦, 180◦, and 270◦, as well
s flipping the original images, resulting in approximately 32,000 HR
mages of size 480 × 480. In each training iteration, we take in 16 LR
mage patches with the size of 48 × 48 as input. The ADAM optimizer
s employed for training, with default values of 𝛽1 = 0.9, 𝛽2 = 0.999 and
= 1×10−8. The learning rate is initialized as 1×10−4 and undergoes a
alving operation every 2×105 iterations of back-propagation. Through
mpirical analysis, the hyperparameter 𝜆 is determined to be 1. Further
etails regarding the selection and impact of different 𝜆 values will

be discussed in Section 4.5. The entire process is carried out on the
PyTorch 2.0 platform, leveraging a Nvidia GeForce RTX 3090 24 GB
GPU for accelerated computations.

4.3. Quantitative comparison

We select several widely recognized SR network models, including
EDSR [56], RDN [34], RCAN [36], and SwinIR [37], to assess the
effectiveness of our proposed SG loss function. No modifications have
been made to their network architectures. Rather than using the L1
5

loss function alone, we augment it by adding an SG loss term to
Table 2
Comparison of model restoration results trained with some training strategy and
hyperparameters..

DataSet Metric 1 2 3 4 5

Set5 LPIPS ↓ 0.1446 0.1443 0.1447 0.1443 0.1441
FID ↓ 56.52 57.07 56.67 56.65 56.96

Set14 LPIPS ↓ 0.2353 0.2361 0.2351 0.2355 0.2360
FID ↓ 80.94 81.54 80.89 80.05 81.36

Urban100 LPIPS ↓ 0.1837 0.1837 0.1838 0.1836 0.1838
FID ↓ 23.10 22.92 23.08 22.95 22.87

B100 LPIPS ↓ 0.3018 0.3018 0.3020 0.3023 0.3018
FID ↓ 88.47 88.64 88.03 87.63 87.32

Manga109 LPIPS ↓ 0.0856 0.0856 0.0855 0.0856 0.0857
FID ↓ 10.77 10.67 10.65 10.70 10.80

provide extra supervision information. The computational overhead
incurred by this operation is negligible. The ×4 SR results on five
benchmark datasets are presented in Table 1. The results marked
with ‘‘+SG’’ indicate the outcomes obtained by adding the SG loss
for auxiliary optimization to the original SR methods. The data in
Table 1 demonstrates that the incorporation of the SG loss function as
an auxiliary network optimization leads to lower LPIPS and FID values
on all datasets for all models, compared to the original models. This
observation strongly supports the belief that the second-order gradient
map of the image, which contains high-frequency information, plays
a crucial role in aiding the network to restore images with better
perceptual quality. In particular, on the more severely degraded B100
dataset, our method achieves a substantial reduction in LPIPS scores
for the SwinIR and RCAN models, with descents of 0.0655 and 0.0696,
respectively. Additionally, the FID scores of these two models also
exhibit notable improvements compared to the original method.

4.4. Qualitative comparison

In order to provide further evidence of the effectiveness of our
proposed SG loss, this section showcases visual results of the restored
images obtained from the Set14, B100, and Urban100 datasets, with the
majority of images selected from the Urban100 dataset. The Urban100
dataset was chosen for its collection of 100 images depicting buildings
in urban areas. These images are rich in intricate texture details,
making it an ideal dataset to demonstrate the effectiveness of the SG
loss in restoring fine details. As illustrated in Fig. 3, the methods trained
only using the L1 loss are capable of restoring the main contours of
objects. However, they struggle to accurately restore complex image
boundaries, often resulting in distorted and deformed textures. In con-
trast, after integrating the SG loss as supplementary supervision, the
network preserves the fine details within images to a greater extent,
and the reconstructed textures appear more natural and realistic.

4.5. Robustness experiment

To substantiate the robustness of the proposed SG loss function, we
retrain the EDSR model multiple times using the same training strategy
and hyperparameters, and the results of each training are exhibited
in Table 2. We can find that although there are discrepancies in the
recovery results of the models trained each time, these discrepancies
are extremely minimal. This provides substantial evidence that the
enhancement in model recovery performance attributed to the SG loss
function is not incidental.

4.6. Ablation study of 𝜆

To investigate the influence of different 𝜆 values on the performance
of image restoration models, we train four distinct models with 𝜆 values
of 0.01, 0.1, 1, and 10, respectively, employing the same training
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Fig. 3. Visual comparison of restoration results of different models before and after adding second gradient(SG) loss, where the first column of each image represents the GT
high-resolution (HR) image, the second column represents the results recovered by EDSR [56], RDN [34], RCAN [36] and SwinIR [37], the third column represents the recovery
results after integrating the SG loss by above methods.
Table 3
Comparison of model restoration results trained with different 𝜆 values.

Metrics 𝜆 = 0 𝜆 = 0.01 𝜆 = 0.1 𝜆 = 1 𝜆 = 10

LPIPS ↓ 0.2037 0.2013 0.1948 0.1837 0.1946
FID ↓ 25.56 25.07 24.31 23.10 36.31
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strategy. Subsequently, we conduct a comprehensive evaluation of the
4× SR performance of these four models on the Urban100 dataset.
The results are presented in Table 3, with the highlighted numbers
indicating the lowest LPIPS and FID scores in each row. To guarantee
a fair comparison, all four models adopt the EDSR network structure.
Fig. 4 is provided to offer a more intuitive observation of the differences
in visual. The reference model, which does not incorporate the SG
loss (i.e. 𝜆 = 0), exhibits the highest LPIPS and FID scores compared
to the other models. As we increase the value of 𝜆 from 0 to 1, the
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Fig. 4. Visual comparison of restoration results of models which trained with different 𝜆 values.
importance of the SG loss supervision gradually grows, resulting in a
positive impact on the quality of the SR results. The best performance
is attained when 𝜆 = 1. In this case, the model reaches a better
balance between emphasizing image boundaries and preserving smooth
regions. Nonetheless, if the 𝜆 value is excessively large, the model may
overemphasize the textures and edges within images, and may even
introduce unnatural artifacts in the smooth areas, resulting in a decline
in model performance. Summarizing the above analysis, we recommend
setting 𝜆 to 1 when using the SG loss.
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4.7. Ablation study of different loss functions

We compare several loss functions commonly used in this field with
our proposed SG loss function to further demonstrate its effectiveness,
EDSR is still selected as the baseline for a fair comparison. Here,
l2 loss [65] is a commonly used loss in the early days, charbonnier
loss [66] is a variant of the l1 loss, which can better handle outliers
and enhance model robustness, and ssim loss [67] can better simulate
the perception of images by the human eyes. As shown in Table 5, when
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Table 4
The meanings of symbols used in this paper..

Symbols Meanings

𝐼𝐿𝑅 Low-Resolution Image.
𝐼𝐻𝑅 High-Resolution Image.
𝐼𝑆𝑅 Super-Resolution Image generated by our method.
↓𝑠 Bicubic interpolation downsampling operation with a scaling factor of s.
𝐼𝐻𝑅𝐺 The second-order gradient map of the high-resolution image.
𝐿𝑆𝑅𝐺 The second-order gradient map of the super-resolution image generated by our method.
𝑑𝑥(𝑖, 𝑗) Horizontal gradient at the point (i, j).
𝑑𝑦(𝑖, 𝑗) Vertical gradient at the point (i, j).
∇𝐼(𝑥, 𝑦) Horizontal and vertical gradient of image I.
𝑀(𝐼) The first-order gradient map of image I.
𝑀(𝑀(𝐼)) The second-order gradient map of image I.
𝐿1 L1 loss.
𝐿𝑆𝐺 Second-Order Gradient Loss.
𝐿𝑡𝑜𝑡𝑎𝑙 The total loss used in this paper.
𝜆 The hyperparameter to balance the L1 loss and SG loss.
Table 5
Comparison of model restoration results trained with different loss
functions.

Loss LPIPS↓ FID↓

L1 loss 0.2037 25.56
L2 Loss 0.2064 25.04
SSIM loss 0.2057 24.98
Charbonnier Loss 0.2026 25.37
L1 loss + SG loss 0.1837 23.10

combined with the l1 loss function, our proposed SG loss can help the
model achieve the best performance in all the quality metrics.

5. Conclusion

In this paper, an innovative high-frequency texture detail enhance-
ment loss, referred to as the second-order gradient loss, is proposed
to alleviate the problem of blurry high-resolution images generated by
most existing SISR methods trained only with L1 loss. More specifically,
the proposed second-order gradient loss function offers supplemen-
tary supervision for network optimization so that the solution space
is compressed. This is accomplished by minimizing the discrepancy
between the second-order gradient maps of the restored image and
the high-resolution image. Furthermore, it can be seamlessly integrated
with existing deep learning-based SISR methods without the need for
introducing extra training parameters. This makes it a practical and
convenient solution for enhancing the performance of SISR models
without significant modifications to their existing architectures. The
evaluation conducted on five public benchmark datasets indicate that
the integration of this loss function significantly enhances the quality
and fidelity of the restored images.
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