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A B S T R A C T

Cloud platforms, serving as fundamental infrastructure, play a significant role in developing modern appli-
cations. In recent years, there has been growing interest among researchers in utilizing machine learning
algorithms to rapidly detect and diagnose faults within complex cloud platforms, aiming to improve the quality
of service and optimize system performance. There is a need for online anomaly detection on cloud platform
metrics to provide timely fault alerts. To assist Site Reliability Engineers (SREs) in selecting suitable anomaly
detection algorithms based on specific use cases, we introduce a benchmark called StreamAD. This benchmark
offers three-fold contributions: (1) it encompasses eleven unsupervised algorithms with open-source code; (2)
it abstracts various common operators for online anomaly detection which enhances the efficiency of algorithm
development; (3) it provides extensive comparisons of various algorithms using different evaluation methods;
With StreamAD, researchers can efficiently conduct comprehensive evaluations for new algorithms, which can
further facilitate research in this area. The code of StreamAD is published at https://github.com/Fengrui-
Liu/StreamAD.
1. Introduction

Cloud platform [1] is a type of computing infrastructure that pro-
vides hardware and software resources over the internet, such as virtual
machines, storage, and networking capabilities. It can facilitate the
developers building and deploying software applications.

With the growing market of cloud platform, its scale has become
enormous. However, the prosperity of cloud platforms also brings
significant challenges to Site Reliability Engineers (SREs) in detecting
and diagnosing faults within large-scale cloud platforms. The comput-
ing infrastructures providing services need to guarantee Service Level
Agreements (SLAs) to customers. Unexpected service downtime can
greatly impact stability objectives and lead to substantial financial
losses.

Benefiting from the intuitive visualization form of time-series metric
data, such as metric dashboards, they are often the primary objects
for anomaly detection in cloud platforms. SREs can easily point out
whether the collected metrics are as expected. In order to reduce labor
and enhance the quality of service, major cloud providers such as
Microsoft Azure [2], Google Cloud [3], Amazon Cloud [4] and Alibaba
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Cloud [5] have adopted machine learning and artificial intelligence
technologies to assist SREs in detecting anomalies.

Metrics anomaly detection presents a challenging task due to the
following reasons [6,7]:

• Lack of labeled data. Anomalous data is rare compared to normal
data, and identifying specific anomalies that warrant attention
can be difficult. Practical application scenarios are open-ended,
making it difficult to define the anomalies that should be de-
tected. The confirmation of specific anomalies, such as their
beginning and duration, requires reliable input from SREs. As a
result, obtaining accurate labels is challenging [8]. The manually
labeling process is also prone to errors [7], with a wide-ranging
discussions regarding the flaws in current public datasets. This
issue stems from the subjective judgments made while assigning
ground truth labels. The lack of labeled data presents challenges
in designing, training, and evaluating models effectively.

• Online detection. Cloud platform metrics are often monitored
in real-time, in order to quickly alert when a fault is detected.
This helps reduce the mean time to repair (MTTR), which is
https://doi.org/10.1016/j.tbench.2023.100121
Received 3 May 2023; Received in revised form 3 July 2023; Accepted 5 July 2023
Available online 6 July 2023
2772-4859/© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of
BY license (http://creativecommons.org/licenses/by/4.0/).
KeAi Communications Co. Ltd. This is an open access article under the CC

https://doi.org/10.1016/j.tbench.2023.100121
https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tbench.2023.100121&domain=pdf
https://github.com/Fengrui-Liu/StreamAD
https://github.com/Fengrui-Liu/StreamAD
mailto:xujiahui21b@ict.ac.cn
mailto:linchengxiang21s@ict.ac.cn
mailto:liufengrui18z@ict.ac.cn
mailto:wangyang2013@ict.ac.cn
mailto:xiongwei20b@ict.ac.cn
mailto:zyli@ict.ac.cn
mailto:guanhongtao@ict.ac.cn
mailto:xie@cnic.com
https://doi.org/10.1016/j.tbench.2023.100121
http://creativecommons.org/licenses/by/4.0/


J. Xu, C. Lin, F. Liu et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100121

a
p
A
m

p
c
f
d
o
s

d
l
h
p
r

critical for maintaining service level agreements. Thus, there is a
high demand for algorithms to accurately and efficiently detect
metric anomalies with an online manner. An effective online
anomaly detection algorithm must continually process incoming
data streams and update its model online to ensure accurate and
reliable detection. In the situations when metrics experience sig-
nificant changes in data distribution, known as concept drift [9],
algorithms need to adapt to these changes promptly to prevent
false alarms from occurring.

• Data dimension. A cloud platform metric can describe a specific
aspect of a cloud platform, such as CPU utilization, network
received packets or memory usage. Each metric is represented
as an univariate time series, where the series is independent of
others, i.e. the data dimension is univariate. However, in the
event of a host fault in a cloud platform, multiple metrics may
exhibit anomalous behavior. An underlying assumption is that
there is internal interaction between different metrics. Thus, they
can be used together to detect anomalies utilizing a process
known as multivariate detection. However, simply combining the
anomaly detection results of each univariate time series performs
poorly for multivariate anomaly detection methods [10]. This
naive approach fails to capture the inter-dependencies among
metrics within a service. Therefore, there is a growing need for
dedicated algorithms that can effectively handle multivariate data
streams.

• Domain-specific datasets and benchmarks. Although researchers
have published several datasets and benchmarks for anomaly
detection [11–13], they are not specific to a particular domain.
Nevertheless, there are significant differences in data characteris-
tics across various fields. For instance, ECG datasets [14], voice
datasets [15], and cloud platform metrics datasets [8] are all in
time-series format, they can differ greatly in periodicity, range of
values, and other key characteristics. The lack of domain-specific
datasets and benchmarks for cloud platform metrics still persists.

As can be seen from the aforementioned challenges, metrics
nomaly detection algorithms for real cloud platforms need to be unsu-
ervised, since high-quality labeled data may not always be accessible.
dditionally, these algorithms should detect anomalies with an online
anner, enabling them to report fault alarms timely.

Although researchers have designed and contributed various unsu-
ervised algorithms for online anomaly detection, there is a lack of a
omprehensive benchmark to evaluate their effectiveness in cloud plat-
orm metrics. To tackle above issue, we propose StreamAD, which is a
omain-specific benchmark for unsupervised online anomaly detection
f cloud platform metrics. The primary contributions of StreamAD are
ummarized as follows:

• StreamAD collects eleven unsupervised online anomaly detection
algorithms, encapsulating them using a unified and easy-to-use
application programming interface (API). It can serve as an out-
of-the-box anomaly detection module for quick case validation.
All the code is open-source.

• We abstracts various common operators for different online
anomaly detection, accompanied by data process methods. It
can greatly facilitate researchers using StreamAD to develop new
algorithms.

• StreamAD focuses on cloud platform metrics dataset, providing
extensive comparisons of various algorithms using different eval-
uation methods. The results form a benchmark for cloud platform
metrics anomaly detection.

StreamAD is dedicated to quickly verifying the effectiveness of
ifferent algorithms on use cases, enabling the application of machine
earning-based algorithms for real-world cloud platform metrics. It also
elps researchers in rapidly developing and comparing new algorithms,
romoting further research and development in this rapidly evolving

esearch domain.

2

Fig. 1. Example of anomalies for cloud platform metrics.

2. Background

2.1. Cloud platform metrics

The primary focus of anomaly detection is on the observable data
objects within cloud platforms. Observability refers to the ability to
monitor and comprehend the operational state of a system’s under-
lying infrastructure, platform, and applications through their external
outputs. In a complex cloud platform system, observability assists in
describing the system’s current status, verifying the proper execution
of each component’s intended logic, identifying performance bottle-
necks, and tracking optimizations for better system management. In
the event of anomalies, observable data objects play a crucial role in
real-time data collection and visualization of various key metrics. By
analyzing these observable data, SREs can swiftly identify and address
faults within complex cloud platforms, leading to optimized system
performance and enhanced system reliability.

Metrics serve as a fundamental component of observable data ob-
jects in cloud platforms. A metric is a numerical value or counter that
represents the state of the system, which is atomic and cumulative.
Each metric can be regarded as a logical measurement unit, typically
representing data statistics updated over time. Although the specific
metrics monitored by vary cloud platforms can be different. Take
Google Cloud metrics [16] as an example. A typical set of cloud plat-
form metrics includes five categories, including CPU, System, Memory,
Block, and Network, which can cover various aspects of the cloud
platform.

As each cloud-platform metric can be represented in a time se-
ries, it is natural to conduct independent analysis on each metric,
namely univariate metric anomaly detection. For instance, a Mem-
Stat.GuestAvaliable metric from a cloud platform, as shown in Fig. 1(a).
The metric is represented as time-series data which is continuously
extended as long as it is under continuous observation. This nearly real-
time data observation process enables the system status to be monitored

online, making it possible to alert the faults in a timely manner.
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f

Fig. 2. Architecture example of metrics online detection in a cloud platform.
In addition, some cloud platform faults may be reflected in multiple
etrics. Take Fig. 1(b) as an example, a network issue causes a sharp

ncrease in the NetStats.RxDrops metric, accompanied with a decrease
n the CpuStat.UsagePercent and CpuStat.GuestUsage metrics. The root

cause of this fault is that the host has suffered from receiving pack-
ets (RxPackets) loss. The deployed services fail to response external
equests, resulting in low CPU usage. In this case, multiple metrics
xhibit abnormal behaviors during the fault. Under the assumption that
here is an internal interaction among different metrics, they can be
nalyzed together, leading to achieve multivariate metrics anomaly de-
ection. StreamAD covers for both univariate and multivariate metrics
etection.

.2. The role of metric anomaly detection

In real production environments of cloud platforms, as depicted in
ig. 2, different metrics can be collected and reformatted by various
gents or probes. These metrics may include data from fundamen-
al host machines, resource management controllers, and applications
onstructed using different programming languages. Both short-lived
nd long-lived jobs generate metrics in an online manner and export
hem to the metrics server using push and pull methods respectively.
he metrics server stores data streams into a time series database,
chieving data persistence that can be utilized for data retrieval and
acktracking. Some popular metrics servers, such as Prometheus [17]
nd Skywalking [18], have built-in rule modules that allow SREs to
mplement anomaly detection by pre-setting rules. However, manual
perations by setting alert rules struggle to adapt to large-scale cloud
latforms, as they heavily rely on expert knowledge and are error-
rone. Thus, fully-automated operation pipelines powered by machine
earning capabilities become a promising approach for achieving SLA
oals.

StreamAD can serve as a logical unit that is dedicated to utilizing
achine learning technology for metric monitoring. It is capable of

ubscribing to message queues, allowing it to receive and analyze
treaming data based on algorithmic processing logic. Once the ob-
erved data has been analyzed, it will be scored accordingly. Those data
ith a high anomaly score are then sent to the alert exporter, and then

urther notify the users in time. SREs can trace the metrics records via
customized dashboard and deal with the faults in the cloud platform.

. Related work

Anomaly detection is a broad topic that has been applied in dif-

erent applications, leading to significant research efforts over the

3

years [24–27]. Researchers have devoted substantial effort publishing
benchmarks, and we provide a summary of related work in Table 1.

ADBench [11] is a comprehensive anomaly detection benchmark
that includes unsupervised, semi-supervised, and fully-supervised algo-
rithms. It analyzes the performance of thirty algorithms under different
types of anomalies by simulating different environments. However, this
benchmark only focuses on tabular data, which may not be suitable for
time-series data in cloud platforms.

TODS [13,19] constructs a full-stack automated machine learning
system for anomaly detection. It is a benchmark that identifies four
multivariate real-world datasets from different domains and bench-
marks nine algorithms on synthetic and real-world datasets. TODS
also publishes preprocess and synthetic scripts, as well as algorithm
implementations.

NAB [20,21] focuses on scenarios of online anomaly detection in
practical applications. Although all algorithms in this benchmark are
designed for online anomaly detection and use a scoring algorithm
designed for streaming data, it only evaluates univariate anomaly
detection algorithms and lacks the discussion of multivariate time series
data. Furthermore, this benchmark is not currently maintained and
does not cover new online anomaly detection algorithms.

Exathlon [22] is a benchmark that focuses on time series data. It
provides a new analytical perspective on time series anomaly detection,
which is the interpretability of the detection results. It focuses on
Spark application monitoring and provides an end-to-end pipeline for
explainable time series anomaly detection. However, this benchmark is
for offline analysis.

UTSD [23] is a benchmark that focuses on univariate time series
and provides a user-friendly visual interface for those series. This
benchmark contributes a large number of datasets and their variants.
However, the use case of this benchmark directly applies tabular data
anomaly detection algorithms to time series data, which has great
limitation on modeling the features of time series data.

TSB-UAD [12] is benchmark for univariate time series. It contributes
a principled methodology for generating labeled anomaly detection
datasets. It also reviews factors affecting the performance of methods.
However, this benchmark is also for offline anomaly detection and
cannot meet the requirements of online anomaly detection for cloud
platforms.

Regarding the benchmark for anomaly detection of cloud platform
metrics, it should have the following properties. Firstly, the bench-
mark should focus on time-series data, including both univariate and
multivariate metrics. Secondly, the anomaly detection methods can
be updated in a streaming manner, without periodic offline training.
Finally, it requires an extensive validation on cloud platform metrics.
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Table 1
Comparison of anomaly detection benchmarks across various properties.

Properties/Benchmark # Algorithms Time series Multivariate Streaming updates Domain specific

ADBench [11] 30 ✗ ✓ ✗ ✗

TODS [13,19] 9 ✓ ✓ ✗ ✗

NAB [20,21] 12 ✓ ✗ ✓ ✗

Exathlon [22] 3 ✓ ✓ ✗ ✓

UTSD [23] 3 ✓ ✗ ✗ ✗

TSB-UAD [12] 12 ✓ ✗ ✗ ✗

StreamAD (Ours) 11 ✓ ✓ ✓ ✓
Fig. 3. The framework of StreamAD.

owever, comparing the existing anomaly detection benchmarks, we
ave found that it is challenging for them to meet all required prop-
rties. Therefore, we propose StreamAD, which aims to fill this gap
nd serve as the benchmark for anomaly detection on cloud platform
etrics.

. StreamAD: benchmark details

.1. Overview

Streaming data refer to an infinite sequence of discrete data points
hat are continuously generated at a constant rate over time, donated as
= {𝑥1, 𝑥2, 𝑥3,… , 𝑥𝑡,…}, where 𝑥𝑡 represents the data point generated

at time 𝑡. Compared to tabular data and static time series data, stream-
ing data do not have a predetermined length. It refers to a continuous
flow of data points arriving in real time. Based on this, online anomaly
detection for streaming data can be defined as the process of identifying
data points or patterns in a data streams that significantly deviate from
the expected behaviors.

StreamAD is proposed for metrics online anomaly detection and
its framework is shown in Fig. 3. It can ingest data streams directly
from message queues like Kafka or RabbitMQ. Additionally, it pro-
vides a data stream generator that can simulate a streaming data
environment using the loaded dataset. Each observation in the data
stream can be formulated as (𝑡, 𝑥 ), which represents an observation
𝑡

4

Table 2
Anomaly detection algorithms included in StreamAD.

Algorithm Sliding window Seasonal

Univariate

KNN-CAD [31] ✓ ✗

SPOT [32] ✗ ✗

SR [2] ✗ ✓

Z-Score [33] ✗ ✗

OC-SVM [34] ✓ ✗

MAD [35] ✗ ✗

Multivariate

xStream [36] ✓ ✗

RShash [37] ✗ ✗

HSTree [38] ✗ ✗

LODA [39] ✓ ✗

RRCF [40] ✗ ✗

𝑥𝑡 with a timestamp 𝑡, note that 𝑥𝑡 can be univariate or multivariate
data. As each streaming data is observed, StreamAD first preprocesses
the data. Typical data preprocessing methods include downsampling
(aggregating data), scaling (transforming the data to a specific range),
and normalization (scaling the individual samples to have unit norm).

The preprocessed data is then forwarded to the anomaly detection
models. In StreamAD, there are eleven different detection algorithms
as candidate models. The common methods of these algorithms are
extracted as calculation operators, such as online statistics and sliding
Fourier transformation [28–30]. These operators facilitate our analysis
and detection of data streams in a continuous and online manner. The
detection model assigns a score to each piece of data to reflect its
anomaly degree. However, the output scores by different algorithms are
on different scales due to their varying designs. Therefore, StreamAD
provides score calibration methods that standardize the anomaly scores
into a common scale and outputs them to the alert exporter. Since
StreamAD is designed for online anomaly detection, when a data point
is scored as normal by the detection model, the model should update
itself based on the latest streaming data.

4.2. Anomaly detection algorithms

As detection models in StreamAD, anomaly detection algorithms
play a crucial rule. They are the primary research objective in our
benchmark. Numerous researchers [2,31,32,36–40] have contributed
to the development of various algorithms, leading a prosperous re-
search community. In pursuit of practical cloud platform metrics
anomaly detection applications, StreamAD focuses on unsupervised
online detection and has integrated eleven widely popular algorithms.

Although these algorithms rely on different techniques, they can be
compared from two aspects. One aspect is the observation method of
data streams. Some algorithms [31,34,36,39] observe the data stream
through a sliding window. This kind of algorithms detect anomalies by
comparing the differences between the latest window and the historical
windows. While other methods [32,33,35,37,38,40] estimate the data
distribution from historical data and examine whether the latest data
point belongs to the distribution. The other aspect is the ability of
different algorithms to capture the seasonal characteristics of a data
stream. When a data pattern appears periodically in a data stream, it is
usually regarded as normal. Some methods [2] can capture the seasonal
patterns, while most distribution-based methods [32,33,35] cannot. In
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addition, these algorithms can be categorized into two types, namely
univariate and multivariate, based on the data dimension that they can
handle, as outlined in Table 2. The introduction of anomaly detection
algorithms for both univariate and multivariate data streams are as
follows.

Univariate data streams anomaly detection refers to the algo-
ithms that identify anomalies in the data streams containing only a
ingle variable. These algorithms focus on analyzing the individual
ata. The advantages of these algorithms are their simplicity and
ature intuition, as well as the great interpretability. KNN-CAD [31]
s a sliding window-based method, it constructs a Hankel matrix to
haracterize the data streams and calculate the distance among ob-
ervation windows using Mahalanobis distance. Streaming data that
esults in large distances may be potential anomalies. SPOT [32] and
-Score [33] respectively assume normal streaming data conform to
areto distribution and Gaussian distribution. Observations that fall out
f the distribution are regarded as anomalies. SR [2] leverages Fourier
ransform to convert data streams from time domain to frequency
omain, simplifying the anomaly detection task to identifying rare
requencies. OC-SVM [34] regards normal streaming data as belonging
o the same class. It uses the support vector machine to determine
he boundaries of normal data. Those data that cannot be classified as
ormal are considered anomalies. MAD [35] compares the deviation
etween newly arrived data and the median value of data stream
istories. This detection algorithm has been proven to be effective in
nfluxDB community [35].
Multivariate data streams anomaly detection identifies anomalies

n data streams containing multiple variables. Different from univariate
ata streams, it takes into account the relationships, correlations and
ependencies among various variables. This kind of anomaly detection
lgorithms provides us a comprehensive perspective, which enables the
etection process to go beyond a specific metric and extend to a com-
onent within the cloud platform. For instance, we can simultaneously
nput the CPU, memory, and network metrics of a virtual machine into
he algorithm to obtain an anomaly score.

xStream [36] tackles anomaly detection tasks for feature-evolving
treams. As a density-based ensemble anomaly detection algorithm, it
pproximates the density of a point by counting its nearby neighbors at
ultiple scales. RShash [37] employs randomized hashing to score data
oints and features an elegant subspace interpretation. HSTree [38] is
fast one-class anomaly detector for evolving data streams. Utilizing
ass [41] as a measure to rank anomalies, it can construct a ranking
ith small samples, enabling the anomaly detector to learn quickly
nd adapt to changes in data streams promptly. LODA [39] recognizes
hat the probability of observed samples valuable in determining their
nomalousness. It approximates the joint probability using a collection
f one-dimensional histograms, while each constructed on an input
pace projected onto a randomly generated vector. The use of one-
imensional histograms allows for efficient construction in one pass
ver the data, with simple query operations needed during classifica-
ion. RRCF [40] introduces a robust random cut data structure that can
erve as a sketch or synopsis of the input stream. This sketch can be
fficiently updated in a dynamic data stream environment.

The above discussion presents a quick overview of eleven anomaly
etection algorithms for both univariate and multivariate data streams.
ome of these algorithms detect anomalies within a sliding observation
indow, while others incrementally update the detection model based
n arriving data. Moreover, various algorithms have different capabil-
ties in capturing seasonal patterns in data streams. Table 2 illustrates
hat the SR algorithm, which transforms data streams from the temporal
omain into the frequency domain, can effectively detect anomalies in
ata streams that exhibit periodic features.

StreamAD offers a user-friendly API to access the aforementioned
lgorithms. Fig. 4 provides an usage example for SPOT anomaly detec-
or, which is also the benchmark code snippet. The example code loads
benchmark dataset and simulates a stream environment using a loop.
fter that, the detector fits and scores each piece of data. The example

llustrates how StreamAD assist users in evaluating their own use cases.
 b

5

Fig. 4. API example for SPOT anomaly detector.

.3. Incremental calculation operators

Due to the requirement for online detection of cloud platform
etrics, an important property of online calculation is the incremen-

al updating scheme of detection models. It differs significantly from
ffline calculation. In StreamAD, we extract the common online cal-
ulation methods of these algorithms as operators, which can help to
nhance the efficiency of algorithm development.

A series of the operators are used for statistics. Take the vari-
nce calculation operator [42] as an example. A naive formula for
alculating the variance 𝜎2,𝑜𝑓𝑓𝑙𝑖𝑛𝑒 of an offline dataset is:

𝜇𝑜𝑓𝑓𝑙𝑖𝑛𝑒 = 1
𝑛

𝑛
∑

𝑖=1
𝑥𝑖

𝜎2,𝑜𝑓𝑓𝑙𝑖𝑛𝑒 = 1
𝑛

𝑛
∑

𝑖=1
(𝑥𝑖 − 𝜇𝑜𝑓𝑓𝑙𝑖𝑛𝑒)2

(1)

where 𝑛 is the size of dataset, and 𝜇𝑜𝑓𝑓𝑙𝑖𝑛𝑒 represents the mean value of
the dataset. However, consider the online detection is under an infinite
data stream setting, we cannot store all the history of data stream.
Thus, we use the Welford’s online algorithm [43] to handle the online
calculation. For each incoming 𝑥, the variance incrementally updates
as:

𝑛 = 𝑛 + 1

𝜇𝑜𝑛𝑙𝑖𝑛𝑒
𝑖+1 = 𝜇𝑖 +

𝑥 − 𝜇𝑜𝑛𝑙𝑖𝑛𝑒
𝑖
𝑛

𝑠𝑖+1 = 𝑠𝑖 + (𝑥 − 𝜇𝑖) × (𝑥 − 𝜇𝑖+1)
2,𝑜𝑛𝑙𝑖𝑛𝑒
𝑖+1 =

𝑠𝑖+1
𝑛

(2)

where 𝜇𝑜𝑛𝑙𝑖𝑛𝑒
𝑖+1 is the mean value of the first 𝑖+1 data from a stream, and

is the running sum of squares.
StreamAD has already included seven calculation operators for data

tatistics, and one operator for sliding Fourier transformation [28–30].
hese incremental calculation operators play a vital role in efficiently
rocessing data streams and updating models in real-time. By incorpo-
ating these calculation operators, StreamAD provides a comprehensive
oolkit for developing and implementing new online anomaly detection
lgorithms, catering to the dynamic nature of data streams and the
volving requirements of online anomaly detection tasks.

.4. Selection of datasets

The selection of datasets could have significantly impact on the
enchmark results, as datasets from different domains exhibit varying
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Table 3
Comparison of anomaly detection datasets across various properties in StreamAD.

Properties/Datasets # Series Avg. length Anomaly ratio Avg. span (# h) Dimension Metrics object

AIOPS_KPI [8] 29 103,588 2.65% 20.88 Univariate container_cpu, queue, db, ping_time
MICRO [8] 29 228 1.26% 5.96 Univariate oracle, container, docker, redis, linux
AWSCloudwatch [20] 17 3,984 0.05% 20.06 Univariate cpu, network, request, grok, rds
GAIA [44] 279 10,156 0.78% 18.21 Univariate zookeeper, redis, mysql
SMD [45] 28 25,300 4.16% – Multivariate server machine instance
characteristics. Thus, we have chosen 5 public datasets that primarily
focus on cloud platforms.

AIOPS_KPI [8] is a large-scale real-world public dataset, consisting
of 27 key performance indicators (KPIs) for artificial intelligence for IT
operations (AIOps). This dataset is collected from five large internet
companies, including Sougo, eBay, Baidu, Tencent and Alibaba. The
duration of each KPI data ranges from two to seven months, and
each KPI is labeled by experienced SREs in these companies. The KPI
patterns in this dataset are various.

MICRO [8] consists of metrics data from a public microservices
monitoring dataset. It contains fine-grained metrics, including con-
tainer, Linux system, Oracle, and Redis. The attributes of the spans on
each component are aggregated into KPIs that reflect the overall status
of each component. Anomalies in this dataset are simulated by fault
injection (e.g., database close, container CPU stress, etc.), with labeled
data recorded as fault injection timestamps.

AWSCloudwatch [20] features AWS server metrics collected by the
Amazon Cloudwatch service. Example metrics include CPU Utilization,
Network Bytes In, and Disk Read Bytes. This is a real-world dataset
which shows us the behavior of AWS server.

GAIA [44] is comprised of one-month cloud platform monitoring
data, selected from a login-action scenario in a business cloud platform
system. The monitoring data includes Zookeeper, Redis and MySQL.
This dataset covers different types of time series data, including change
point, concept drift, periodic and stationary data. This dataset with rich
variety of anomaly types can provide more comprehensively validation
scenario for anomaly detection.

SMD [45] is a five-week dataset from a large Internet company,
encompassing 28 different server machines. The data for each machine
is divided into two equal-length segments for training and testing. It
also provides labels indicating whether a point is an anomaly and the
dimensions that contribute to each anomaly.

Table 3 presents a comparison of five anomaly detection datasets
used in StreamAD, considering their various properties such as the
number of instances, average length, anomaly ratio, average span,
and metrics objects. The diversity of these selected datasets enables
StreamAD to comprehensively evaluate anomaly detection algorithms.

4.5. Evaluation criteria

For time series anomaly detection evaluation, there are several
measures have been proposed to assess the quality of anomaly detection
algorithms. In general, these evaluation criteria can be classified into
two categories, point-aware evaluation and series-aware evaluation.
For these evaluation methods, precision and recall are both considered
as evaluation criteria. Precision measures the proportion of relevant
instances among the retrieved instances, and recall measures the pro-
portion of relevant instances that were successfully retrieved. StreamAD
includes both point-aware and series-aware evaluations to ensure a
comprehensive assessment of the detection methods.

4.5.1. Point-aware evaluation
The point-aware evaluation criteria treats time series data as a

collection of static data points, considering each point individually,
as Fig. 5 shows. To perform the point-wise evaluation, let P and 𝑁
epresent the number of actual positive and negative points, while TP,
P, TN, and FN denote true positive, false positive, true negative, and
6

Fig. 5. Example of point-aware evaluation.

false negative classifications, respectively. The following metrics are
then defined:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑃 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙𝑃 = 𝑇𝑃
𝑃

= 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(3)

Based on Eq. (3), the point-aware balanced 𝐹 𝑃
1 score is calculated

as the harmonic mean of the 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑃 and 𝑅𝑒𝑐𝑎𝑙𝑙𝑃 , as:

𝐹 𝑃
1 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑃 × 𝑅𝑒𝑐𝑎𝑙𝑙𝑃

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑃 + 𝑅𝑒𝑐𝑎𝑙𝑙𝑃
(4)

Point-aware evaluation criteria are commonly employed in the lit-
erature for assessing the performance of anomaly detection algorithms.
This approach offers a simple way to compare different methods in
terms of their ability to identify individual anomalous data points
within a time series.

However, point-aware evaluation exhibits certain limitations. By
treating time series data as an uncorrelated set of individual data
points, it overlooks the inherent temporal dependencies and relation-
ships within the data, leading to a less accurate understanding of an
algorithm’s performance in capturing the underlying patterns and dy-
namics of the time series. Furthermore, point-aware evaluation overem-
phasizes the ability of algorithms to identify overall labeled anomalies,
instead of considering more practical, application-specific concerns like
cloud platform metric alerts. In real-world applications, SREs tend
to focus on accurately detecting the starting positions of abnormal
fragments, which are crucial for timely alerting and effective incident
response. Point-aware evaluation may not adequately address this as-
pect, necessitating alternative evaluation methods that consider the
practical requirements and goals of cloud platform monitoring and
anomaly detection.

4.5.2. Series-aware evaluation
To alleviate shortcomings of the traditional Precision and Recall

measures for time series anomaly detection, researchers [20,46–48]
have proposed extensions for series-aware evaluation. The key insight
behind series-aware evaluation is that an anomalous segment usually
represents a single anomaly event, which may encompass multiple
labeled anomaly points. In this context, anomalies at different po-
sitions within the segment owing varying weights. By considering
anomaly events as continuous segments rather than isolated points,
series-aware evaluation provides a more holistic assessment of an algo-
rithm’s ability to detect anomalies, accounting for temporal dependen-
cies, and practical alerting considerations in real-world cloud platform
applications.

Fig. 6 shows a typical example of series-aware evaluation. In this
case, the detected anomalies may partially overlap with the ground
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Fig. 6. Example of series-aware evaluation.

truth. Despite the small number of overlapping points lead to a low
point-aware evaluation score, the detection still successfully identified
the two anomalous sequence fragments, which holds practical value
for cloud platform metrics monitoring. Additionally, considering the
timeliness of alerts for metric anomalies, algorithms that detect the
earlier portion of an anomaly sequence are preferred. Such early de-
tection can help reduce the time required to respond to and address
these anomalies. For example, in Fig. 6, the detection results that
identify the true anomalies for the second ground truth sequence carry
greater practical significance than those for the first sequence due
to their earlier identification of the problematic segment. This aspect
demonstrates the advantage of series-aware evaluation in assessing
anomaly detection algorithms in practical applications.

Based on the above observations, we follow the idea from [46] and
set series-aware evaluation criteria in StreamAD. Given a set of ground
truth anomaly segments 𝑅 = {𝑅1, .., 𝑅𝑁𝑟

} and a set of detected anomaly
segments 𝑃 = {𝑃1, .., 𝑃𝑁𝑝

}, the 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑆 and 𝑅𝑒𝑐𝑎𝑙𝑙𝑆 are defined as

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑆 = 1
𝑁𝑃

𝑁𝑝
∑

𝑖=1
𝐶(𝑃𝑖, 𝑅) ×

𝑁𝑟
∑

𝑗=1
𝜔(𝑃𝑖, 𝑃𝑖 ∩ 𝑅𝑗 , 𝜎)

𝑅𝑒𝑐𝑎𝑙𝑙𝑆 = 1
𝑁𝑟

𝑁𝑟
∑

𝑖=1
[𝛼𝐸(𝑅𝑖, 𝑃 )+

(1 − 𝛼)𝐶(𝑅𝑖, 𝑃 ) ×
𝑁𝑝
∑

𝑗=1
𝜔(𝑅𝑖, 𝑅𝑖 ∩ 𝑃𝑗 , 𝜎)]

(5)

where 𝐶(⋅) is the cardinality factor, which is used for scaling the
rewards earned based on the overlap size and position of detected
anomalies. 𝐸(⋅) represents the existing reward function, which encour-
ages to detect every anomaly segments. In addition, 𝛼, 𝜔, 𝜎 serve as
yperparameters that depend on the specific practical applications. For
he evaluation of cloud platform metric monitoring scenarios, these
arameters are selected to prioritize early detection, accommodating
hat the front-end bias is often observed in such contexts.

Based on Eq. (5), the series-aware balanced 𝐹𝑆
1 score is calculated

s the harmonic mean of the 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑆 and 𝑅𝑒𝑐𝑎𝑙𝑙𝑆 , as:

𝑆
1 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑆 × 𝑅𝑒𝑐𝑎𝑙𝑙𝑆

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑆 + 𝑅𝑒𝑐𝑎𝑙𝑙𝑆
(6)

Compared to point-aware evaluation, series-aware evaluation can
yield more informative evaluation of anomaly detection algorithms in
terms of their real-world performance and utility.

5. Experimental results

In this section, we provide a comprehensive analysis of our bench-
mark results, addressing various aspects of the anomaly detection
algorithms. Firstly, we describe the experimental settings, encompass-
ing the configurations of datasets, hyperparameters, evaluation criteria,
and the evaluation platform. Next, we present in-depth results aiming
at addressing the following questions:

1. How effective are the anomaly detection algorithms across dif-
ferent datasets?

2. Can the efficiency of the anomaly detection algorithms satisfy
the requirements of practical applications?

3. Do the space complexities of detection algorithms remain static?
7

5.1. Experiment setting

Datsets. As described in Section 4.4, StreamAD includes five public
eal-world datasets, focusing specifically on cloud platform applica-
ions. Due to the online detection paradigm employed by various
etection algorithms, we allocate the first one hundred points of each
treaming data for algorithm initialization. These detection algorithms
re primarily designed for the transductive setting, and outputting
nomaly scores for the incoming data.
Hyperparameters. Each anomaly detection algorithm in StreamAD

described in Section 4.2) has its own hyperparameters, such as the
bservation window for KNN-CAD algorithm and the number of trees
or RRCF algorithm. To ensure a fair comparison, we used the default
yperparameter settings from the original papers for all algorithms in
treamAD.
Evaluation criteria. The benchmark of StreamAD incorporates

oth point-aware and series-aware evaluation methods. The point-
ware evaluation adheres to the standard definition of evaluation
riteria, while the series-aware evaluation accounts for the front-
nd bias introduced in cloud platform metric evaluation scenarios, as
iscussed in [46].
Evaluation platform. All experiments are conducted on a server

ith the following configurations: Intel(R) Xeon(R) Platinum 8260 CPU
2.40 GHz, 16 cores, 32 GB RAM. The server runs Debian GNU/Linux

0 (64-bit). All the code is implemented with Python 3.8.

.2. Benchmark effectiveness evaluation

The effectiveness of an algorithm plays a critical role in identifying
nomalies accurately from data streams. As introduced in Section 4.5,
e use point-aware and series-aware 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑃∕𝑆 , 𝑅𝑒𝑐𝑎𝑙𝑙𝑃∕𝑆 and 𝐹 𝑃∕𝑆

1
as criteria to evaluate the effectiveness of various algorithms.

Table 4 shows the details of evaluation results. We conduct effec-
tiveness experiments on all algorithms on univariate datasets, including
AIOPS_KPI, MICRO, AWSCloudWatch, and GAIA. We also test the
multivariate algorithms on the SMD dataset. The results indicate that
no algorithm consistently exhibits high performance across all datasets,
and the effectivenesses varies significantly. For instance, the Z-Score
algorithm has the highest 𝐹 𝑃

1 score on the MICRO dataset but performs
poorly on other datasets. Overall, xStream has a great 𝑅𝑒𝑐𝑎𝑙𝑙, it wins
seven times out of ten experiments, which indicates that it can alert
most true anomalies. On the other hand, the 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 of SPOT ranks
first, it wins six times out of ten experiments, indicating that most of
the alerts generated by SPOT are true anomalies.

Additionally, point-aware evaluation and series-aware evaluation
lead to significantly different results on the MICRO dataset. This is
attributed to the short and concentrated anomaly duration of the
MICRO dataset, as its average length is 228 and the anomaly rate is
1.26%. The experiments on this dataset demonstrate the differences
between point-aware and series-aware evaluations.

According to the experimental results, it is noteworthy that there
is still a considerable scope for effectiveness improvement in these
algorithms. The limitations of logical designs of the algorithms impact
their performance, and some known flaws [7] in the existing datasets,
such as unrealistic anomaly density and mislabeled ground truth, also
have an unignorable impact.

In summary, selecting the best algorithm to detect cloud platform
metrics anomalies is a challenging task. It is difficult to guarantee that
an algorithm can cover all application scenarios. Users still need to try
it out based on their specific use cases. As the promising effectiveness
from our benchmark results, we recommend using SPOT for univariate
data streams and xStream for multivariate data streams as the first

attempt method.
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Table 4
Effectiveness comparison of anomaly detection algorithms across various datasets in StreamAD.

Datasets AIOPS_KPI MICRO AWSCloudWatch GAIA SMD

Point-aware evaluation

Criteria/Algorithms 𝑃 𝑃 𝑅𝑃 𝐹 𝑃
1 𝑃 𝑃 𝑅𝑃 𝐹 𝑃

1 𝑃 𝑃 𝑅𝑃 𝐹 𝑃
1 𝑃 𝑃 𝑅𝑃 𝐹 𝑃

1 𝑃 𝑃 𝑅𝑃 𝐹 𝑃
1

KNN-CAD 0.24 0.24 0.19 0.52 0.62 0.54 0.04 0.66 0.06 0.21 0.40 0.18

–

SPOT 0.44 0.06 0.08 0.32 0.39 0.33 0.07 0.70 0.12 0.37 0.47 0.29
SR 0.10 0.17 0.11 0.24 0.36 0.27 0.02 0.76 0.04 0.10 0.56 0.11
Z-Score 0.23 0.15 0.13 0.62 0.56 0.58 0.04 0.79 0.07 0.10 0.63 0.11
OC-SVM 0.13 0.26 0.14 0.50 0.63 0.54 0.02 0.77 0.03 0.13 0.68 0.15
MAD 0.32 0.24 0.22 0.58 0.54 0.56 0.04 0.72 0.06 0.23 0.67 0.23

xStream 0.05 0.27 0.06 0.11 0.79 0.17 0.01 0.79 0.01 0.01 0.75 0.01 0.04 0.21 0.06
RShash 0.18 0.18 0.15 0.06 0.39 0.08 0.02 0.75 0.04 0.14 0.63 0.17 0.06 0.02 0.02
HSTree 0.14 0.16 0.11 0.04 0.17 0.06 0.01 0.50 0.01 0.12 0.72 0.08 0.19 0.10 0.11
LODA 0.07 0.19 0.08 0.45 0.50 0.47 0.02 0.40 0.03 0.09 0.44 0.09 0.09 0.04 0.05
RRCF 0.14 0.13 0.11 0.56 0.39 0.33 0.04 0.73 0.06 0.12 0.55 0.12 0.13 0.05 0.06

Series-aware evaluation

Criteria/Algorithms 𝑃 𝑆 𝑅𝑆 𝐹 𝑆
1 𝑃 𝑆 𝑅𝑆 𝐹 𝑆

1 𝑃 𝑆 𝑅𝑆 𝐹 𝑆
1 𝑃 𝑆 𝑅𝑆 𝐹 𝑆

1 𝑃 𝑆 𝑅𝑆 𝐹 𝑆
1

KNN-CAD 0.17 0.33 0.18 0.88 0.89 0.87 0.02 0.66 0.04 0.21 0.44 0.18

–

SPOT 0.43 0.09 0.13 0.84 0.86 0.85 0.06 0.70 0.11 0.37 0.49 0.28
SR 0.08 0.31 0.12 0.82 0.84 0.82 0.02 0.76 0.03 0.08 0.62 0.09
Z-Score 0.18 0.23 0.15 0.89 0.89 0.89 0.04 0.79 0.06 0.08 0.73 0.09
OC-SVM 0.07 0.33 0.09 0.86 0.91 0.87 0.01 0.77 0.02 0.10 0.76 0.12
MAD 0.25 0.25 0.21 0.93 0.92 0.93 0.03 0.72 0.05 0.18 0.70 0.18

xStream 0.03 0.23 0.05 0.67 0.92 0.70 0.01 0.79 0.01 0.04 0.74 0.02 0.04 0.14 0.05
RShash 0.15 0.22 0.15 0.70 0.81 0.71 0.02 0.75 0.04 0.14 0.67 0.17 0.05 0.01 0.01
HSTree 0.06 0.07 0.01 0.89 0.90 0.89 0.01 0.50 0.01 0.10 0.77 0.07 0.15 0.05 0.06
LODA 0.06 0.10 0.06 0.89 0.91 0.90 0.02 0.40 0.03 0.08 0.41 0.06 0.08 0.05 0.06
RRCF 0.10 0.27 0.12 0.88 0.85 0.82 0.03 0.73 0.04 0.10 0.61 0.11 0.10 0.12 0.09

* 𝑃 and 𝑅 are abbreviations for 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑅𝑒𝑐𝑎𝑙𝑙, respectively.
** Not conduct univariate algorithms experiments for multivariate data streams.
Fig. 7. Efficiency comparison for eleven algorithms on univariate data streams.

5.3. Benchmark efficiency evaluation

For online anomaly detection in cloud platform, there are numerous
metrics to be monitored. It is crucial to consider the efficiency of
the detection methods in terms of the time required to respond to
anomalous events, i.e., the execution time. The efficiency comparison
provides a valuable assessment for the performance of various detection
algorithms, which can help users to find.
8

Fig. 8. Efficiency comparison for five algorithms on multivariate data streams.

Although different experimental environments, especially differ-
ent computational resources, can greatly affect the implementation
efficiency of algorithms, we believe that the horizontal comparison
of different algorithms on the same experimental platform still has
great significance. It allows us to intuitively compare the efficiency
advantages and disadvantages of different algorithms.

In order to evaluate the efficiency of various algorithms across a
range of existing datasets, we evaluate the number of detected stream-
ing data per second for each algorithm, which provides us with an
insight into the throughput rate. A higher throughput rate is generally
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Fig. 9. Memory resource usage during online detection.

indicative of a more efficient algorithm, which is capable of addressing
the anomaly detection task in large-scale cloud platforms.

Fig. 7 presents the efficiency comparison results of eleven algo-
rithms for univariate data streams. In Fig. 7(a), we list the average
throughout rate with the upper and lower bounds for various algo-
rithms. It can be observed that SPOT outperforms other algorithms in
this efficiency experiment, processing 14,687 data points per second.
This exceptional performance can be attributed to its underlying as-
sumption that most of the data is normal and does not require model
fitting. Conversely, RRCF demonstrates the slowest performance among
these algorithms due to its requirement to adjust each basic unit,
i.e., random cut tree, when new streaming data arrives. It is a time-
consuming process that slows down the overall detection performance.
In this efficiency experiment, the fastest algorithm displays a significant
performance advantage, processing data over 30 times faster than the
slowest algorithm. The efficiency of the other algorithms varies, and
their rankings based on performance are summarized in Fig. 7(b).

Additionally, we conducted the efficiency evaluation on multivari-
ate datasets, as illustrated in Fig. 8. Among these algorithms, RShash
and HSTree demonstrate similar efficiency, which can process more
than one thousand points per second. Compared to Fig. 7(a), we
observed that even when employing the same algorithm, processing
multivariate data streams is slower than detection in univariate data
streams.

Upon analyzing the results of all efficiency experiments, it can be
observed that even the worst-performing algorithm, RRCF, is capable of
detecting hundreds of points per second. Although a higher throughput
rate generally signifies better performance, it is essential to consider
the context of the practical application. For cloud platform anomaly
detection, each metric requires a corresponding detection model in-
stance, and the typical collection interval is 30 s per point. In this
context, all algorithms in StreamAD, including the least efficient ones,
can effectively satisfy the requirements regarding detection efficiency,
ensuring timely anomaly detection and response in real-world cloud
platform monitoring scenarios.

5.4. Memory limitation evaluation

As cloud platform metrics should be detected in real-time, the
anomaly detection algorithm needs to be deployed and run for a long
time. It is essential to ensure that the memory resources required by the
algorithm do not increase continuously with data streaming, i.e., the
memory resources should have a static limitation.

To evaluate the memory usage of various algorithms, we record the
memory usage for the first one hundred data points under a univariate

data stream. The results in Fig. 9 demonstrate that all the algorithms in
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StreamAD do not enlarge the occupied space after their initialization.
Among all these algorithms, the tree-based method HSTree consumes
the highest amount of memory. This can be attributed to the ini-
tialization of a tree by the algorithm, which arranges the historical
stream data within it, and the size of the tree impacts the memory
consumption of HSTree. We also find that the MAD algorithm has the
lowest memory requirement. This is because MAD only needs to keep
statistical information of the historical data streams without retaining
all the records, which makes it more lightweight than others.

Thus, we believe that they can all comply with the memory lim-
itation requirements for online applications. These results encourage
the practical application of anomaly detection algorithms on cloud
platforms, without a worry about the memory consumption.

6. Future work

With the development of the online anomaly detection community,
the construction of benchmarks is a long-term process. In our future
work, we are going to follow the state-of-the-art work, and integrate
them into StreamAD. In addition, we plan to evaluate benchmarks
from more perspectives, such as the impact of hyperparameters on the
detection performance of different algorithms, and the interpretability
of various algorithms. We hope that these future work can provide a
more comprehensive view for benchmark evaluation.

7. Conclusion

In this work, we propose StreamAD, a cloud metrics-oriented bench-
mark for unsupervised online anomaly detection. StreamAD comprises
eleven anomaly detection algorithms and conducts comprehensive ex-
periments on five existing public datasets. The benchmark includes
comparisons for the effectiveness, efficiency and memory resource
consumption for various algorithms. StreamAD is open-source, and it
provides a user-friendly API to help SREs evaluate anomaly detection
applications in their specific use cases. Researchers can even develop
new algorithms with StreamAD, which can facilitate further research
in this area.
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