
BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100120

a

b

Contents lists available at ScienceDirect

BenchCouncil Transactions on Benchmarks,
Standards and Evaluations

journal homepage: www.keaipublishing.com/en/journals/benchcouncil-transactions-on-
benchmarks-standards-and-evaluations/

Full length article

DPUBench: An application-driven scalable benchmark suite for
comprehensive DPU evaluation
Zheng Wang a,b, Chenxi Wang a,b,∗, Lei Wang a,b

Institute of Computing Technology, Chinese Academy of Sciences, China
University of Chinese Academy of Sciences, China

A R T I C L E I N F O

Keywords:
DPU
Evaluation
Benchmark
Application-driven

A B S T R A C T

With the development of data centers, network bandwidth has rapidly increased, reaching hundreds of Gbps.
However, the network I/O processing performance of CPU improvement has not kept pace with this growth
in recent years, which leads to the CPU being increasingly burdened by network applications in data centers.
To address this issue, Data Processing Unit (DPU) has emerged as a hardware accelerator designed to offload
network applications from the CPU. As a new hardware device, the DPU architecture design is still in the
exploration stage. Previous DPU benchmarks are not neutral and comprehensive, making them unsuitable
as general benchmarks. To showcase the advantages of their specific architectural features, DPU vendors
tend to provide some particular architecture-dependent evaluation programs. Moreover, they fail to provide
comprehensive coverage and cannot adequately represent the full range of network applications. To address
this gap, we propose an application-driven scalable benchmark suite called DPUBench. DPUBench classifies
DPU applications into three typical scenarios — network, storage, and security, and includes a scalable
benchmark framework that contains essential Operator Set in these scenarios and End-to-end Evaluation
Programs in real data center scenarios. DPUBench can easily incorporate new operators and end-to-end
evaluation programs as DPU evolves. We present the results of evaluating the NVIDIA BlueField-2 using
DPUBench and provide optimization recommendations. DPUBench are publicly available from https://www.
benchcouncil.org/DPUBench.
1. Introduction

In the past decade, the growth rate of CPU performance has been
relatively slow due to the physical limitations it faces [2]. As the size of
transistor circuits approaches the scale of atoms, increasing challenges
caused by physical limitations, such as leakage, have led to the failure
of Dennard Scaling Law [3]. In contrast, many emerging computing
fields, such as artificial intelligence (AI), big data, and the Internet of
Things, are thriving as computing resources reach a threshold scale.
The demand for computing resources in these fields is rapidly growing,
resulting in CPU becoming increasingly incapable of meeting it in data
centers. As a result, deploying specialized chips, such as GPU, TPU [4],
and DPU, in data centers has become a new trend for both academia
and industry.

DPU is a hardware accelerator designed to offload network applica-
tions from CPU in data centers. With the increase in network bandwidth
from 10 Gbps to 25 Gbps, 40 Gbps, 100 Gbps, 200 Gbps, and even 400
Gbps, CPU has become increasingly burdened by network applications,
and its computing resources are heavily consumed before processing

∗ Corresponding author.
E-mail addresses: wz917942636@gmail.com (Z. Wang), wangchenxi21s@ict.ac.cn (C. Wang), wanglei_2011@ict.ac.cn (L. Wang).

computing applications. To ensure that CPU’s computing resources are
focused on CPU-bound applications, DPU has emerged.

DPU typically consists of multiple hardware accelerators for net-
work applications, a multi-core CPU for scheduling and programming,
and high-bandwidth network IO interfaces [5]. As an emerging hard-
ware accelerator, the DPU architecture has not yet been standardized
and is decided by DPU manufacturers. Typical DPU architectures in-
clude those that can fully offload infrastructural network applications
in data centers, such as NVIDIA Bluefield [6]; those that offload specific
network application scenarios in data centers, such as YUSUR KPU
[7–10]; and programmable architectures developed based on FPGA,
such as Intel Mount Evans [11].

Benchmarking is a widely-used research method in computer sci-
ence for evaluating the performance of systems. Benchmarking evalua-
tions can provide insights into the actual performance of the evaluated
object and can guide future co-design and optimization of software
and hardware. With the development of DPU and data centers, a DPU
benchmark suite is necessary. However, to the best of our knowledge,
there is currently no benchmark suite available for comprehensive
https://doi.org/10.1016/j.tbench.2023.100120
Received 2 June 2023; Received in revised form 4 July 2023; Accepted 5 July 202
Available online 7 July 2023
2772-4859/© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
3

KeAi Communications Co. Ltd. This is an open access article under the CC

https://doi.org/10.1016/j.tbench.2023.100120
https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tbench.2023.100120&domain=pdf
https://www.benchcouncil.org/DPUBench
https://www.benchcouncil.org/DPUBench
mailto:wz917942636@gmail.com
mailto:wangchenxi21s@ict.ac.cn
mailto:wanglei_2011@ict.ac.cn
https://doi.org/10.1016/j.tbench.2023.100120
http://creativecommons.org/licenses/by-nc-nd/4.0/


Z. Wang, C. Wang and L. Wang BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100120

i
T
r

D
v
s
f
c
T
m
n
f
b
a
l
m

d
a
m
a
p
t
w
s
a
a
a
d
a
g
i

m
a
t
c

t
a

Fig. 1. The overview of DPUBench. Inspired by Zhan’s [1] benchmarking methodology, DPUBench comprises problem definition, instantiation, and measurement. The solid lines
n the figure indicate the current implementations of DPUBench, while the dashed lines indicate future implementations that can be added or other benchmark implementations.
he elliptical box represents the problem definition, the thin arrow, and circle denote the specific instantiation, and the thick arrow at the bottom represents the measurement
esults output of DPUBench.
PU evaluation. Existing DPU evaluation programs are either pro-
ided by DPU manufacturers [7–10,12,13], which are based on their
pecific DPU architecture design, or they are selected and rewritten
rom some open source benchmark programs based on the architecture
haracteristics of the evaluated DPU in previous research [14–19].
hese previous DPU evaluation programs are architecture-dependent,
eaning that they are designed based on a specific architecture and
ot suitable to evaluate DPU with different architectures. To per-
orm a comprehensive DPU evaluation, the architecture-dependent DPU
enchmark programs are not feasible at this stage because the DPU
rchitecture has not yet been standardized and is undergoing rapid evo-
ution. Even evolving DPU architectures from the same manufacturer
ay have significant differences.

Zhan [1] proposed a benchmarking methodology from the problem
efinition, instantiation, and measurement, making benchmark design
nd research more standardized and theoretical. We utilized Zhan’s
ethodology to develop our benchmark suite, DPUBench and adopted

n application-driven approach at the problem definition stage. For
roblem instantiation, we selected network, storage, and security as the
ypical DPU application scenarios. At the solution instantiation stage,
e constructed operators in these scenarios to evaluate early DPU de-

igns and developed end-to-end evaluation programs to obtain results in
real data center environment. DPUBench is an application-driven scal-
ble benchmark framework that can easily incorporate new operators
nd end-to-end evaluation programs as DPU evolves. As an application-
riven benchmark, DPUBench can add new DPU application scenarios
nd corresponding operators and end-to-end evaluation programs, re-
ardless of any changes to the DPU architecture. A DPUBench overview
s presented in Fig. 1.

Our contributions are as follows.
(1) We present DPUBench, an application-driven scalable bench-

ark suite for comprehensive DPU evaluation. DPUBench is scalable
nd standardized, which can accommodate new operators and end-
o-end evaluation programs as DPU architecture evolves, making it a
omprehensive and fair benchmark suite for DPU evaluation.

(2) We select network, storage, and security as typical DPU applica-
ion scenarios and extract 16 representative operators from real-world
pplications. Our experiments demonstrate that these operators have
2

good representativeness, diversity, and coverage, making them suitable
for low-cost evaluation of early-stage DPU designs.

(3) We develop two end-to-end DPU workloads for typical DPU
applications and measure their throughput, packet loss ratio, Server
CPU utilization ratio and latency in a real data center machine. Our
experiments demonstrate the effectiveness of end-to-end evaluation
programs in assessing the performance of DPUs in real-world network
applications.

(4) We evaluate NVIDIA BlueField-2 [6] using DPUBench and
provide optimization recommendations. Our experiments reveal that
NVIDIA BlueField-2 can efficiently offload network applications from
the CPU, particularly network storage protocol and DPI applications.
In the end-to-end evaluation, we demonstrate that NVIDIA BlueField-
2 can effectively reduce the server CPU utilization ratio in network
applications and allocate more CPU computing resources for computing
applications.

The rest of this paper is structured as follows: Section 2 provides
the background and motivation. Section 3 introduces the methodology
of DPUBench. Section 4 presents the Operator Set in DPUBench and
the corresponding experimental results. Section 5 discusses the End-
to-end Evaluation Programs in DPUBench along with their respective
experiment results. Section 6 concludes with a discussion of related
work, while Section 7 outlines the conclusions and plans for further
work.

2. Background and motivation

In this section, we will first introduce the background of DPUBench,
including existing DPU benchmarks, DPU evaluation programs, and
DPU characterization studies. Next, we will have a brief introduction
to the NVIDIA BlueField-2 DPU. Based on the above discussion, we will
provide the motivation for DPUBench.

2.1. Background of DPUBench

DPU is a new hardware accelerator in data centers designed to
offload network applications from the CPU. However, due to the lack of
standardized DPU architectures, DPU evaluation is typically conducted

by DPU manufacturers who provide evaluation programs that are



Z. Wang, C. Wang and L. Wang BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100120
Table 1
The overview of representative existing DPU evaluation studies.

Benchmark/Programs Provider Workload Metric Evaluation object

RXPBench [12] NVIDIA Regular Expression Matching Time NVIDIA BlueField DPU

Evaluation Programs [13] Liguori Hypervisor Performance Metric Amazon Nitro DPU

Evaluation Programs [7–10] YUSUR SQL Program Latency YUSUR DPU

Evaluation Programs [14] Wei RDMA Read/Write & Send/Recv Request End-to-end Latency
Throughput
Bottleneck

NVIDIA BlueField-2

Evaluation Programs [15] Ibanez RPC Program Wire-to-wire Lattency
Throughput

RPC SmartNIC

Evaluation Programs [16] Ma Matrix Multiplication Time
Training Time

AI SmartNIC

Evaluation Programs [17] Mandal RDMA Read/Write Throughput Storage SmartNIC

Evaluation Programs [18] Sabin RDMA Read/Write Throughput Security SmartNIC

Evaluation Programs [19] Bosshart Network Transport Protocol Latency SDN SmartNIC
tailored to their own products or by researchers who select and rewrite
existing benchmark programs based on the architectural characteristics
of a specific DPU product. Currently, there is no benchmark suite
available for comprehensive DPU evaluation. Table 1 has summarized
some representative DPU evaluation studies from previous work.

From Table 1, we observe that all of the DPU evaluation pro-
grams [7–10,12–19] listed are designed for DPUs with similar archi-
tecture or for SmartNICs with specific acceleration units. Moreover,
eight out of nine of these programs are [7–10,12,13,15–19] designed
for one single specific application scenario, which results in inadequate
coverage for comprehensive DPU evaluation. The lack of evaluation
programs in a real network environment also limits the efficacy and
reliability of the results. Three out of nine of these programs [12,13,16]
are not conducted in a real network environment in data centers,
further limiting their relevance to real-world network applications
evaluation. Additionally, three out of nine of these programs [12,13,16]
only measure performance metrics commonly used for CPU evalua-
tion, which are insufficient for DPU evaluation as they do not take
into account network-related metrics such as network throughput and
latency.

2.2. NVIDIA BlueField-2 DPU

NVIDIA BlueField-2 is a typical DPU that is designed to fully offload
infrastructural network applications in data centers. Its architecture, as
shown in Fig. 2, integrates a variety of hardware acceleration units
for network applications, high bandwidth network IO interfaces, a
multi-core ARM AArch64 processor, and optional on-board DRAM of
either 16 GB or 32 GB [6]. The hardware acceleration units of NVIDIA
BlueField-2 can help offload infrastructural network application opera-
tors, such as the regular expression matching acceleration unit (Reg-Ex)
for regular expression matching operator and the public key encryption
and decryption acceleration unit (Public-Key Crypto) for public key
encryption and decryption operator. The high bandwidth network IO
interfaces include the ConnectX interface with two 100 Gbps Remote
Direct Memory Access (RDMA) [20] ports or one single 200 Gbps
Ethernet/InfiniBand [21] port, which are used in production environ-
ments. The ARM AArch64 processor contains 8 Cortex-A72 cores with
a 2.75 GHz frequency, sharing a 4 MB L2 Cache between cores and an
8MB L3 Cache among the units of NVIDIA BlueField-2. As for memory
units, NVIDIA BluField2 equips with DDR4-1600 DRAM and eMMC
flash memory, which are used for storage that will not be lost after
a power failure.

2.3. Motivation of DPUBench

Section 2.1 has provided a brief introduction of representative
existing DPU benchmarks or evaluation programs, all of which are
3

Fig. 2. The architecture of NVIDIA BlueField-2.

used for one specific DPU or DPU with one specific architecture.
However, there is currently no DPU benchmark that can effectively
evaluate DPUs with different architectures, which is a significant gap
in the field. Furthermore, DPU architecture is rapidly evolving due to
the increasing CPU computing resources that need to be offloaded in
data centers, resulting in significant differences in DPU architectures
between different DPU manufacturers or even the adjacent generations
of the same manufacturer. Therefore, a scalable DPU benchmark that
can evaluate DPUs of different architectures is needed, and it should be
able to support the addition of new evaluation programs and metrics
to accommodate the rapid development of DPUs.

Another motivation behind DPUBench is to ensure the representa-
tiveness and coverage of the benchmark suite, as well as the effective-
ness and reliability of the evaluation results. In terms of coverage, the
benchmark programs should not only be at a certain scale to handle
basic network application scenarios but also not impose excessive eval-
uation costs in terms of time and resource utilization. Additionally, to
ensure the reliability of the evaluation results, network-related metrics
should be carefully selected, and DPUs should be evaluated in a real
network environment within data centers.

3. Methodology

A study is typically aimed at solving a specific problem or class of
problems with corresponding solutions. To construct DPUBench, we di-
vide the process into problem space and solution space and implement
it step by step in these two spaces. Our methodology for DPUBench
is illustrated in Fig. 1, which includes problem definition, problem
instantiation, solution instantiation, and measurement results. This
methodology is inspired by Zhan’s benchmark science methodology [1]



Z. Wang, C. Wang and L. Wang BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100120
of problem definition, instantiation, and measurement. By providing
a clear and detailed description of each step in the construction of
DPUBench, our methodology makes it easy to develop, maintain, and
update. In this section, we will provide a detailed introduction to the
various steps involved in constructing DPUBench.

3.1. Problem definition

The first step in constructing DPUBench is problem definition,
which involves clarifying the research object and establishing a clear
research direction. The problem definition is critical in the problem
space as there are numerous problems, and failure to define the
problem may lead to deviations or even irrelevance in the final research
results. For example, DPU is used to offload network applications from
CPU in data centers, so the evaluation of DPU should focus on network
application issues. Without proper problem definition, the evaluation
metrics may be directly determined as performance metrics, such as
time, resulting in evaluation results that do not accurately reflect the
DPU’s capabilities.

The problem definition of DPUBench aims to determine the con-
struction of the benchmark suite from an application perspective,
specifically for network applications. In this regard, network-related
metrics such as latency and throughput are selected as the evaluation
metrics of DPUBench, and the throughput acceleration ratio is chosen
as the performance metric, along with the CPU utilization ratio. Other
approaches for problem definition in the problem space for conducting
a DPU benchmark include determining the construction of the bench-
mark suite from an architecture perspective, a simulation perspective,
and a real object perspective, among others.

However, due to the rapidly evolving nature of DPU architecture
and products, adopting an application-driven benchmark construction
as the problem definition of DPUBench methodology is more compre-
hensive, clear, and easy to expand and update while maintaining the
authenticity and effectiveness of DPU evaluation. Since DPU is used to
offload network applications from the CPU in data centers, developing a
benchmark suite with a focus on network applications provides a stable
platform for DPU evaluation, as network application development is
in a relatively stable stage compared to the rapidly iterating DPU
architecture.

3.2. Problem instantiation

After the problem definition, the next step in constructing DPUBench
is problem instantiation. This involves concretizing the defined problem
within a certain scope, thereby transforming research from abstract
theory into concrete practice. Different researchers may approach
the same defined problem from different perspectives and research
different aspects of it. Even the same research team may have dif-
ferent understandings of the problem at different stages of research,
resulting in differences in the research focus. Problem instantiation
serves to unify the specific boundaries of the research problem after the
problem definition and before the solution instantiation. This makes
subsequent research solutions more standardized and unified, with a
clear methodology roadmap.

The problem instantiation of DPUBench involves selecting network,
storage, and security as typical network application scenarios and im-
plementing DPUBench based on these three scenarios. These scenarios
are chosen based on previous work [7–10,12–15,17–19], which iden-
tifies them as common representative scenarios for DPU at the current
stage of offloading network applications from CPU in data centers.

By selecting these three scenarios, DPUBench covers different as-
pects of network applications. The network scenario covers various
network transmission protocols, the storage scenario includes com-
pression and decompression algorithms as well as storage protocols,
and the security scenario encompasses various encryption and decryp-
tion algorithms. As a result, DPU evaluation with DPUBench is more
comprehensive.
4

To maintain focus on the network applications, we do not select AI
or other computation-intensive scenarios as representative scenarios,
as only a few DPUs [16,22] can assist with those scenarios at the
current stage. However, as DPUs and data centers continue to develop,
these scenarios may become representative scenarios for network ap-
plications in data centers, and we will add them in future versions of
DPUBench.

3.3. Solution instantiation

We then do the solution instantiation and implement DPUBench.
Solution instantiation is to solve the instantiated problems and provide
the research outcomes. It is a critical step in scientific research as it
enables the provision of tangible research outcomes, such as tools,
products, and research papers. And in DPUBench, solution instantiation
is one step of the methodology.

The solution instantiation of DPUBench involves the extraction
and implementation of basic operators from network, storage, and
security scenarios, which compose the DPUBench’s Operator Set for
DPU evaluation. We also implement end-to-end evaluation programs
to conduct DPU evaluation in a real network environment. Operators
represent the most common algorithms in these three scenarios, and
their combination can construct typical programs in each scenario. The
end-to-end evaluation programs simulate the business of a real data
center machine and evaluate the performance of DPU in a real network
environment through communication between the Client and Server.
We do not include a separate application set in DPUBench because the
main execution part of application programs can be implemented with
operators combination, and their evaluation cost is higher compared
to operators, as well as their evaluation results are less reliable and
effective compared to end-to-end evaluation programs.

Table 2 provides a brief summary of the methodology used in
DPUBench. And the overview of DPUBench’s methodology is shown in
Fig. 1, which consists of problem definition, problem instantiation, and
solution instantiation.

4. Operator set of DPUBench

Operator Set is a component of the solution instantiation in
DPUBench, as mentioned in Section 3. In this section, we will out-
line the process of extracting the fundamental operators from net-
work, storage, and security scenarios for DPUBench. We will then
present the experimental results of the Operator Set, which include
validating its representativeness and coverage, as well as evaluat-
ing the NVIDIA BlueField-2 using the micro-benchmarks of Operator
Set. Based on these evaluation results, we will provide optimization
recommendations for utilizing DPU effectively.

4.1. The extraction of operator set of DPUBench

We initially establish two rules for extracting the operators in
DPUBench, and then conclude the typical programs and protocols in
network, storage, and security scenarios based on previous work [7–10,
12–19] in Table 3 to comply with Rule1. Additionally, upon breaking
down these programs, we observe that certain processes, such as the
three-way handshake in TCP/IP protocol [23] and the establishment of
a secure initial key in an IPSec session [24], are executed only once
during program initialization and have a relatively small proportion
of execution time. Therefore, we do not extract operators from these
processes to ensure representativeness. Instead, we decompose the most
time-consuming and frequently executed processes within these typical
programs to derive the operators for DPUBench based on Rule2. The
two rules for extracting DPUBench operators are defined as follows.

Rule1. Operators should be integral components of typical pro-
grams on the network applications DPU has offloaded.

Rule2. The combinations of operators should constitute the primary
execution portion of the typical programs on the network applications
DPU has offloaded.



Z. Wang, C. Wang and L. Wang BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100120
Table 2
The brief summary of DPUBench’s methodology. We construct DPUBench from the perspectives of the problem definition, the problem
instantiation, the solution instantiation.

Benchmark suite Problem definition Problem instantiation Solution instantiation

DPUBench Network Applications
Network Scenario

Operator Set
End-to-end
Evaluation
Programs

Storage Scenario
Security Scenario
Table 3
The typical programs and protocols in network, storage, and security scenarios.

Network TCP/IP [23], RDMA [25], OVS [26]

Storage VirtIO-Blk [27], NVMe-Of [28]

Security OpenSSL [29], IPSec [24], IDS

Table 4
The Operator Set of DPUBench.

Network LPM, TCPSeg, IPSeg, CheckSum, CRC, Toeplitz

Storage LZ77, Huffman, Snappy, CheckSum

Security RSA, AES, DSA, ECDSA, MD5, SHA256, LPM, RXPMatch

4.1.1. Operators extraction in network scenario
From Table 3, we start with decomposing the data packet processing

of the TCP/IP protocol [23] in network scenario, as it serves as the
fundamental protocol used in networking. As illustrated in Fig. 3, the
data packet processing of the TCP protocol is decomposed into three
parts: TCP fragmentation, TCP checksum, and data copying. Similarly,
the data packet processing of the IP protocol is decomposed into
four parts: IP fragmentation, IP route lookup, IP checksum, and data
copying.

TCP/IP protocol defines a maximum length for data packets to
ensure efficient transmission in a network [23]. Therefore, the first
step in transmitting a data packet is to perform packet fragmentation,
which divides the packet into smaller fragments that do not exceed
the maximum length specified in the protocol. From this process, we
extract the TCPSeg and IPSeg operators. And in the IP protocol, when
processing a data packet, it needs to perform a route lookup in the
route table to determine the destination IP address and update the route
table accordingly. For this operation, we extract the Longest Prefix
Match (LPM) operator. To ensure the integrity of transmitted data
packets, TCP/IP protocol uses the Checksum algorithm for verification
when the receiving node in the data center receives the data packet.
From this process, we extract the CheckSum operator. Since TCP/IP
protocol programs run in the kernel space, data packets that need to be
transferred typically undergo at least one data copying process. From
this operation, we extract the MemCpy operator. However, please note
that the MemCpy operator is currently under development and some
bugs still need to be fixed.

In the Ethernet protocol, we focus on the data packet reception
processing and decompose it into several key operations. As shown in
Fig. 4, we extract LPM, CRC and Toeplitz operators from those opera-
tions. The Longest Prefix Match (LPM) operator is used for ARP MAC
address resolution, which involves looking up the MAC address in the
ARP table based on the destination IP address. The Cyclic Redundancy
Check(CRC) operator is used for error detection and verification of
the received data packet, as well as the Toeplitz operator used for
performing a hash map for Receive Side Scaling (RSS) core selection
in a multi-core processor.

The operators in the RDMA protocol [25] and Open vSwitch (OVS)
protocol [26] are encompassed by the extracted operators in the pre-
vious network scenario. All the extracted operators in the network
scenario of DPUBench are summarized in Table 4.

4.1.2. Operators extraction in storage scenario
In storage scenario, we focus on the data packet processing in

storage protocols such as VirtIO-Blk [27] and NVMe-OF [28]). As
5

Fig. 3. The operators extracted in TCP/IP protocol.

Fig. 4. The operators extracted in Ethernet protocol.

Fig. 5. The operators extracted in Storage protocols.

shown in Fig. 5, we extract LZ77, Huffman, and Snappy operators. The
Lempel–Ziv-77(LZ77) operator is based on a lossless data compression
algorithm that achieves compression by replacing repeated occurrences
of data with references to a dictionary [30]. The Huffman operator is
based on the Huffman coding algorithm [31], which is a variable-length
prefix coding technique used for lossless data compression. And the



Z. Wang, C. Wang and L. Wang BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100120
Table 5
The validation of Rule1 and Rule2 for operator set in DPUBench.

Programs Scenarios Operators

L3fwd Network LPM, CheckSum, CRC, IPSeg, Toeplitz
IPSec Network & Security LPM, RSA, CheckSum, CRC
File-Compress Storage Compress
File-Integrity Network & Security & Storage SHA256, SHA1, MD5
IPS Security RXPMatch, TCPSeg
Url-Filter Security RXPMatch
Fig. 6. The operators extracted in IPSec protocol.

Snappy operator is based on a fast, block-based compression algorithm
that aims to provide high compression and decompression speeds with
reasonable compression ratios.

These compression operators are commonly used in storage scenar-
ios to compress data packets before transmission to effectively utilize
network bandwidth. The detailed network protocols and their opera-
tors are discussed in Section 4.1.1, while in the storage scenario, we
primarily focus on extracting compression operators. All the operators
of DPUBench in the storage scenario are summarized in Table 4.

4.1.3. Operators extraction in security scenario
In a security scenario, programs can be primarily classified into

network protocols (such as OpenSSL [29] and IPSec [24]) for ensuring
data security during transmission, as well as application programs
(e.g., Firewall) based on Deep Packet Inspection (DPI). We decom-
pose the IPSec protocol [24] in Fig. 6 and extract four additional
encryption operators, in addition to the network operators extracted in
Section 4.1.1. We implement RAS [32], AES [33], DSA, and ECDSA [34]
operators for data compression. The operators in OpenSSL [29] are
already included in the operators extracted from IPSec [24].

The decomposition of DPI is illustrated in Fig. 7. In the network con-
text, data packets undergo regular expression matching before trans-
mission. The outcome of the regular expression matching determines
whether the data packet is transmitted over the network. In addition to
the operators extracted in the network scenario, we include the RXP-
Match operator for performing regular expression matching. Table 4
presents all the operators implemented in DPUBench.

4.2. The experiments of operator set of DPUBench

4.2.1. Experimental configurations
The experiments are conducted on two platforms: the Intel Xeon

E5-2620 v3 CPU (with 2 processors), which has 10 GB of memory and

runs Ubuntu 18.04 OS, and the NVIDIA BlueField-2 DPU, which has

6

Fig. 7. The operators extracted in DPI.

16 GB of memory and runs Ubuntu 20.04 OS. The development and
profiling tools used in the experiments are DPDK (version 20.11.3.1.18)
and DOCA (version 1.2.1). Each experiment is repeated more than three
times, and the average values are reported for analysis.

4.2.2. Validate the representativeness, diversity and coverage of the opera-
tor set of DPUBench

To evaluate the representativeness, diversity, and coverage of the
workload characteristics of Operator Set in DPUBench, we have se-
lected 6 real workloads from the network, storage, and security sce-
narios for comparison. These selected workloads are representative
application programs that are primarily offloaded by the DPU or es-
sential components in real network applications. Each workload can be
implemented using the combination of operators in DPUBench. The de-
tailed information on these workloads, along with their corresponding
operators, is presented in Table 5. This validation process also confirms
the effectiveness of the two rules (Rule1 and Rule2) for extracting the
representative operators, as discussed in Section 4.1.

The radar charts presented in Fig. 8 illustrate seven workload char-
acteristics of the operators in DPUBench: IPC, iTLB-Miss-Ratio, dTLB-
Miss-Ratio, L1D-Cache-Miss-Ratio, Integer instruction ratio, Branch in-
struction ratio, and Load&Store instruction ratio. The shapes of these
radar charts demonstrate the diversity of workload characteristics cov-
ered by the Operator Set in DPUBench.

In Fig. 9, we compare the coverage of workload characteristics be-
tween the set of real workloads and the Operator Set in DPUBench. The
radar charts representing the real workloads show that most of their
workload characteristics can be effectively covered by the composed
operators in DPUBench. This comparison validates the capability of the
Operator Set in capturing the workload characteristics of real-world
applications.

In addition to the radar charts, we have employed Principal Com-
ponent Analysis (PCA) [35] to compare the diversity and coverage
of workload characteristics between the Operator Set in DPUBench
and the set of real workloads. The results are presented in Fig. 10.
For visualization purposes, we have selected the top four principal
components that contribute the most to the variance, accounting for
84.8% of the total variance contribution.

The area covered by the principal components of the Operator Set in
DPUBench is capable of encompassing the area covered by the principal



Z. Wang, C. Wang and L. Wang BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100120
Fig. 8. The coverage experiment results of Operator Set under single thread 64B packet size configuration.
Fig. 9. Compare the coverage of operators with real application programs for val-
idation. The composed operators for each real application program are shown in
Table 5.

components of the real workloads, and it covers a significant portion
of that area as well.

In conclusion, all of the experimental results consistently demon-
strate that the Operator Set in DPUBench provides better coverage of
workload characteristics compared to real workloads. Furthermore, the
workload characteristics covered by the Operator Set in DPUBench ex-
hibit a diverse range in terms of IPC, iTLB-Miss-Ratio, dTLB-Miss-Ratio,
L1D-Cache-Miss-Ratio, Integer instruction ratio, Branch instruction ra-
tio, and Load&Store instruction ratio.
7

4.2.3. Evaluate the NVIDIA BlueField-2 using operator set of DPUBench
We have conducted a performance evaluation on the NVIDIA

BlueField-2 DPU, specifically the BlueField-2 model with encryption
disabled and 25GbE capability. To ensure the micro-benchmarks, which
are based on the operators in DPUBench, are representative, we have
implemented them using general optimizations commonly used in
real DPU applications. These optimizations include multi-threading,
resource pooling, and cache-line alignment.

The micro-benchmarks can be configured with different input data
sizes and number of threads. In our experiments, we have used input
data sizes of 64B, 128B, 256B, 512B, and 1024B, which facilitates
cache-line alignment. The number of threads can be configured as 1, 2,
4, 6, 8, 12, or 16. It is worth noting that the number of threads set to
16 exceeds the number of physical cores on the CPU (12 cores) and the
number of ARM cores on the NVIDIA BlueField-2 (8 cores). The results
of the performance evaluation are presented in Fig. 11. Each sub-figure
correspond to the experiment result for one operator in the Operator
Set, and each line in the figure shows micro-benchmark throughput for
the different number of threads. Different lines in the same sub-graph
correspond to different input data sizes.

The throughput of 10 operators, such as CRC, Checksum, toeplitz,
RSA, DSA, ECDSA, AES, SHA256, SHA1, and MD5, exhibits linear scal-
ability with the number of threads and is constrained by the number of
physical cores. In these cases, the throughput increases proportionally
with the number of threads, and the limiting factor is the number of
available cores. Additionally, the throughput of these operators shows
a fluctuation of approximately 10% to 20% when varying the input data
size. This level of fluctuation is within the normal range, considering
that the experiments are conducted under the same thread number and
input data configuration, and the observed throughput variations fall
within a consistent range.

The throughput of operators LPM, TCPSeg, and IPSeg demonstrates
linear scaling with the input data size. This behavior can be attributed
to the fact that these operators process a fixed amount of data within
the input data. Consequently, in real-world applications, we can reduce
the workload by encapsulating the data into fewer packets.

The Compress and RXPMatch operators are implemented using
DOCA and deployed on the dedicated hardware accelerator of the
BlueField-2. Their performance is not constrained by the number of
physical cores available on the BlueField-2. Hence, when deploying

these operators on the BlueField-2, it is possible to utilize more threads



Z. Wang, C. Wang and L. Wang BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100120

t
m

b
F
d
t
a
2
C
l
u
t
f

5

s
t
P

Fig. 10. PCA visualization results of Operator Set in DPUBench and typical Application Programs.
Fig. 11. The throughput of NVIDIA BlueField-2 using Operator Set in DPUBench under different data packet size and threads.
han the number of physical cores to further enhance their perfor-
ance.

The comparison of throughput ratios between deploying micro-
enchmarks on the NVIDIA BlueField-2 and Intel CPU is depicted in
ig. 12. For the majority of operators, the throughput is lower when
eployed on the BlueField-2 compared to the Intel CPU. However,
wo exceptions are observed for the RXPMatch and Compress oper-
tors. These operators exhibit peak performance that can be 1.5 to
times higher when deployed on the BlueField-2 than on the Intel

PU. Consequently, applications such as IPS and Url-Filter (which uti-
ize the RXPMatch operator) and NVMe-oF and File-Compress (which
tilize the Compress operator) are more suitable for deployment on
he BlueField-2 rather than the Intel CPU based on our experimental
indings.

. End-to-end evaluation programs of DPUBench

End-to-end Evaluation Programs are the other component of the
olution instantiation in DPUBench, as mentioned in Section 3. In
his section, we will outline the framework of End-to-end Evaluation
rograms in DPUBench, which consists of both Client and Server. We
8

will then provide the workloads of End-to-end Evaluation Programs
in DPUBench and use them to do an evaluation of NVIDIA BlueField-
2. Finally, We will present the experimental results of the End-to-end
Evaluation Programs, which show the advantages of DPU in data
centers.

5.1. The framework of end-to-end evaluation programs in DPUBench

Fig. 13 shows the framework of End-to-end Evaluation Programs in
DPUBench, consisting of a Client with a dataset and traffic generator
and a Server with applications that DPU can offload and cannot offload.
Client device only contains CPU and is used for generating and sending
data to the network. The server device can be a node that only contains
a CPU or a node contains both CPU and DPU in data centers. The server
receives and processes data packets sent by the Client, and transmits the
results to the Client through the network.

The dataset in Client is used to generate the data and the traffic
generator is used to send data packets with specified traffic according
to network protocols. The network applications in Server are the ap-
plication programs that DPU can offload and implement by DOCA SDK
and DPDK SDK for DPU and programs for CPU. The applications in



Z. Wang, C. Wang and L. Wang BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100120

t
e

5

T
t
i
t
n
p

e
t
c
e

5

F

Fig. 12. The ratio of throughput of NVIDIA BlueField-2 and Intel CPU using Operator Set in DPUBench under different data packet sizes and threads.
Fig. 13. The framework of end-to-end evaluation programs in DPUBench.

he Server are application programs that DPU cannot offload and are
xecuted by the CPU.

.1.1. The workloads
We have implemented two end-to-end DPU workloads in DPUBench.

he first workload focuses on evaluating the performance of offloading
he flow table to the DPU. This process is crucial as it enables the
mplementation of various network applications such as Packet Fil-
ers, Quality of Service, and Load Balancing. However, it should be
oted that the first workload does not encompass the complete packet
rocessing procedure found in real-world applications.

To address this limitation, we have developed a second end-to-
nd DPU workload that closely resembles a real application struc-
ure. By evaluating this workload, we gain deeper insights and un-
over additional information that may remain hidden when conducting
xperiments solely on the first workload.

.2. The experiments of end-to-end evaluation programs of DPUBench

The structure of the two end-to-end DPU workloads is based on
ig. 13. In the first workload, we utilize pktgen, which is available
9

in the released version of the Linux kernel, as the traffic generator.
And the dataset consists of randomly generated data by pktgen. The
logic of the network application is straightforward: when packets arrive
at the Server node, the Server searches the entries in the flow table
based on the 5-tuple information (source IP, destination IP, destination
port IP, source MAC, destination MAC) extracted from the packet
header. If the tuple matches an existing entry, the count value of that
entry is incremented. Otherwise, a new entry is added to the flow
table. It is important to note that in this workload, the flow table is
typically populated solely from the application layer, and therefore, the
workload does not encompass the application part illustrated in Fig. 13.

The second workload encompasses both the network application
and application parts depicted in Fig. 13. The network application
in this workload focuses on application recognition, which involves
inspecting the payload of received packets to determine if they contain
specific character strings based on regular expression matches. Depend-
ing on the recognition results, the application performs different tasks.
These tasks include calculating the hash value of the entire packet,
compressing the payload section of the packet, or directly sending
the packet back to the Client. By incorporating both the network
application and application parts, this workload can provide a complete
packet processing procedure compared to the first workload.

5.2.1. Experimental configurations
The Server is the same as the configurations mentioned in

Section 4.2.1 and we just introduce the Client. We deploy the exper-
iments on the Intel Xeon E5-2620 v3 CPU (4 processors) equipped
with 10 GB of memory for the Client. The OS is Ubuntu 20.04 and
the profiling tool is DPDK (version 20.11.3.1.18). We also repeat each
experiment more than three times and report the average values.

5.2.2. Evaluate the NVIDIA BlueField-2 using end-to-end evaluation pro-
grams of DPUBench

In Fig. 14, the throughput and packet loss ratio are depicted for
different time intervals between packets sent by the Client. The network
application is accomplished in two ways: hardware and software. The
hardware version implementation uses BlueField’s flow table offloading
capacity and all of the flow table operations are offloaded to Blue-

Field, while in the software implemented version, the flow table and



Z. Wang, C. Wang and L. Wang BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100120

(
i

a
F
i
t
C
s

t
s
a
t
a
s
a
l
e
t
a
p

s
e
o
2
s
a
n
u

r

Fig. 14. The throughput and packet loss ratio of NVIDIA BlueField-2 using the first end-to-end DPU workload (flow-table) in DPUBench under different data packet sizes and time
intervals. Fig. 14(a) corresponds to experiment results for throughput, Fig. 14(b) shows experimental results for packet loss rate. 64B_sft means software-implemented flow table
under 64 Byte packet size, and 64B_hw means hardware-implemented flow table under 64B packet size.
Fig. 15. The Server CPU utilization ratio for the second end-to-end DPU workload
application-recognition) in DPUBench under different data packet size and time
ntervals.

ll of the flow table operations are implemented by the C++ codes.
or ease of comparison, the results for both software and hardware
mplementations are presented in the same sub-figure. Additionally,
he experiments are conducted with different packet sizes sent by the
lient, and a different color in the sub-figure represents each packet
ize.

The experiment results demonstrate that offloading the flow table to
he DPU can yield greater throughput improvement when the packet
ize sent by the Client is small and when the Client sends packets
t a fast speed (with low time intervals). This can be attributed to
he fact that with larger packets, the Client’s ability to send packets
t maximum speed is limited by the network port’s bandwidth. In
uch cases, the data processing speed does not become a bottleneck,
nd therefore, the DPU’s ability to improve the system’s throughput is
imited. Conversely, when the Client sends packets at high speed that
xceeds the Server’s processing capacity, packet loss occurs. Offloading
he flow table to the DPU can provide greater throughput improvement
nd reduce the packet loss ratio in such situations since the DPU can
rocess packets at a faster speed.

Fig. 15 illustrates the Server CPU utilization ratio when the Client
ends packets of different packet sizes at varying time intervals. For
ase of comparison, the experiment results are presented in two ways:
ffloading the application recognition to the DPU (NVIDIA BlueField-
) and deploying the application on the Server CPU, depicted in the
ame sub-figure. The results indicate that when the Client sends packets
t a slow speed, although offloading the application to the DPU does
ot improve the system’s throughput, it can reduce the Server CPU
tilization ratio by 10% to 20%.

Fig. 16 presents the results of experiments conducted to measure the

eduction in process delay achieved by deploying the app-recognition

10
Fig. 16. The latency of the second end-to-end DPU workload (application recognition)
in DPUBench under different data packet size.

workload on NVIDIA BlueField-2. The results indicate that offloading
the application recognition to the DPU can result in a decrease of
10% to 15% in process delay. However, this reduction ratio is lower
compared to the results obtained for the RXPMatch operator. This
is because the packet processing procedure in the app-recognition
workload involves both processing on the Server CPU and on the DPU
(NVIDIA BlueField-2), and the DPU can only accelerate the latter part
of the processing procedure.

6. Related work

Modern computer chips can be broadly categorized into two types:
general-purpose processors (CPU) and specialized processors designed
for specific acceleration tasks, including GPU, TPU [4], and DPU.
As the performance gains predicted by Moore’s Law [36] and Den-
nard’s Scaling Law [3] have been slowing down, CPU performance
improvement is also slowing down. This poses a challenge in meeting
the increasing demand for computing resources in emerging fields
like artificial intelligence, big data, and the Internet of Things. To
address this challenge, specialized processors optimized for specific
acceleration tasks are being developed. For instance, as the field of
artificial intelligence has grown, AI models have significantly increased
in size and complexity, with parameters ranging from 62 million in
AlexNet [37] to 175 billion in GPT-3 [38] and beyond, with even larger
models on the horizon.

As chip development progresses, research on evaluating various
types of chips is also ongoing, with benchmarks being a key focus.
CPU evaluation is supported by representative benchmarks such as

SPEC CPU [39] provided by the Standard Performance Evaluation



Z. Wang, C. Wang and L. Wang BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100120
Corporation (SPEC), which assesses single-core performance, and PAR-
SEC [40] provided by Princeton University, which evaluates multi-core
performance. The latest version of SPEC CPU is SPEC CPU2017 [41],
which is the sixth iteration of the benchmark. Additionally, a new
version of SPEC CPU, temporarily referred to as SPEC CPU v8 [42],
is currently in development.

For evaluating AI chips, there are representative benchmarks such
as MLPerf [43] and AIBench [44]. MLPerf focuses on selecting models
from various AI tasks, including image classification, object detection,
and machine translation, and constructs workloads for both training
and inference evaluations [43]. AIBench, on the other hand, extracts 13
operators from typical AI scenarios and constructs micro-benchmarks
using these operators [44]. These benchmarks provide standardized
and comprehensive evaluation metrics for assessing the performance
of AI chips in different AI tasks.

In the field of DPU evaluation, there are several existing studies
and benchmarks. NVIDIA has developed RXPBench [12] using the
DOCA SDK for their BlueField DPU, which currently focuses on regular
expression matching as the evaluation program and measures the exe-
cution time on the chip. Amazon has conducted performance improve-
ment tests in virtual machines by deploying the hypervisor on Nitro
chips [13]. YUSUR has developed evaluation programs for their four
DPU products [7–10] in different scenarios, such as using SQL queries
for financial scenarios and measuring query latency [8]. Wei et al. [14]
and Sun et al. [45] have evaluated the latency and throughput of
NVIDIA BlueField-2 and provided optimization recommendations for
DPUs with specific characteristics. These studies contribute to assessing
and optimizing DPUs in specific architectures and scenarios.

As a new generation of programmable SmartNIC, the evaluation
studies on SmartNIC can provide valuable insights for designing DPU
benchmarks. Ibanez et al. [15] introduced the wire-to-wire latency
metric to measure the time taken from receiving RPC requests to send-
ing them over the network, using a SmartNIC placed in the network.
Ma et al. [16] evaluated the performance of matrix multiplication
and other operators in AI applications on a SmartNIC for distributed
AI training, as well as the impact on AI model training time after
deploying the SmartNIC in a distributed training framework. Mandal
et al. [17] evaluated a SmartNIC for storage applications, focusing on
the throughput of processing storage system read and write requests
after connecting the SmartNIC to the network. Sabin et al. [18] eval-
uated a SmartNIC for security applications, measuring the throughput
of processing encrypted communication requests in the corresponding
scenarios. Bosshart et al. [19] offloaded a network layer protocol using
a SmartNIC for SDN and evaluated the latency of communication with
a data center node where the SmartNIC was deployed. These studies
provide valuable performance metrics and insights that can inform the
design of DPUBench.

7. Conclusion and plan

In conclusion, we have proposed DPUBench, an application-driven
scalable benchmark suite for comprehensive DPU evaluation. DPUBench
follows a methodology comprising problem definition, problem instan-
tiation, and solution instantiation. We focus on network applications
and select network, storage, and security as typical application scenar-
ios. We extract essential operators from these scenarios and develop
end-to-end evaluation programs, forming the Operator Set and Work-
load Programs of DPUBench. We present evaluation results of the
NVIDIA BlueField-2 using DPUBench and provide optimization recom-
mendations. DPUBench will be continuously maintained and updated
to keep pace with DPU’s development, and we will evaluate other DPUs
in our future version of DPUBench. We will also investigate the IO
virtualization application scenario in the future, as it plays a vital role
in modern data centers.
11
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

[1] J. Zhan, A BenchCouncil view on benchmarking emerging and future computing,
BenchCouncil Trans. Benchmarks, Stand. Eval. (2022) 100064.

[2] J. Shalf, The future of computing beyond Moore’s law, Phil. Trans. R. Soc. A
378 (2166) (2020) 20190061.

[3] R.H. Dennard, F.H. Gaensslen, H.-N. Yu, V.L. Rideout, E. Bassous, A.R. LeBlanc,
Design of ion-implanted MOSFET’s with very small physical dimensions, IEEE J.
Solid-State Circuits 9 (5) (1974) 256–268.

[4] N.P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers, et al., In-datacenter performance analysis
of a tensor processing unit, in: Proceedings of the 44th Annual International
Symposium on Computer Architecture, 2017, pp. 1–12.

[5] The NVIDIA’s definiton of DPU, https://resources.nvidia.com/en-us-accelerated-
networking-resource-library/whats-a-dpu-data-product?lx=LbHvpR&topic=
networking-cloud.

[6] NVIDIA BlueField-2, https://resources.nvidia.com/en-us-accelerated-networking-
resource-library/bluefield-2-dpu-datasheet?lx=LbHvpR&topic=networking-
cloud.

[7] YUSUR’s DPU evaluation programs for cloud data center, https://www.yusur.
tech/solution/cloudDataCenter.

[8] YUSUR’s DPU evaluation programs for financial data calculation acceleration,
http://www.yusur.tech/solution/financialDataCalculationAcceleration.

[9] YUSUR’s DPU evaluation programs for high performance computing, https://
www.yusur.tech/solution/highPerformenceComputing.

[10] YUSUR’s DPU evaluation programs for industrial Internet, https://www.yusur.
tech/solution/industrialInternet.

[11] The information of Intel Mount Evans, https://www.intel.com/content/www/us/
en/newsroom/resources/press-kit-architecture-day-2021.html#gs.xbri9l.

[12] Doca document v1.5.1 :nvidia doca rxpbench user guide, https://docs.nvidia.
com/doca/sdk/rxpbench/index.html.

[13] A. Liguori, The nitro project–next generation AWS infrastructure, in: Hot Chips:
A Symposium on High Performance Chips, 2018.

[14] X. Wei, R. Chen, Y. Yang, R. Chen, H. Chen, A comprehensive study on off-path
SmartNIC, 2022, arXiv preprint arXiv:2212.07868.

[15] S. Ibanez, A. Mallery, S. Arslan, T. Jepsen, M. Shahbaz, N. McKeown, C. Kim, The
nanoPU: Redesigning the CPU-network interface to minimize RPC tail latency,
2020, arXiv preprint arXiv:2010.12114.

[16] R. Ma, E. Georganas, A. Heinecke, S. Gribok, A. Boutros, E. Nurvitadhi, FPGA-
based AI smart NICs for scalable distributed AI training systems, IEEE Comput.
Archit. Lett. 21 (2) (2022) 49–52.

[17] P.C. Mandal, N. Mariyappa, S. Das, A. Venkataraman, Storage Offload on
SmartNICs.

[18] G. Sabin, M. Rashti, Security offload using the SmartNIC, A programmable 10
Gbps ethernet NIC, in: 2015 National Aerospace and Electronics Conference,
NAECON, IEEE, 2015, pp. 273–276.

[19] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Izzard, F.
Mujica, M. Horowitz, Forwarding metamorphosis: Fast programmable match-
action processing in hardware for SDN, ACM SIGCOMM Comput. Commun. Rev.
43 (4) (2013) 99–110.

[20] R. Recio, B. Metzler, P. Culley, J. Hilland, D. Garcia, A remote direct memory
access protocol specification, Technical Report RFC 5040, October, 2007.

[21] G.F. Pfister, An introduction to the infiniband architecture, in: High Performance
Mass Storage and Parallel I/O, Vol. 42, (617–632) 2001, p. 102.

[22] NVIDIA BlueField-3, https://resources.nvidia.com/en-us-accelerated-networking-
resource-library/datasheet-nvidia-bluefield?lx=LbHvpR&topic=networking-
cloud.

[23] G.R. Wright, W.R. Stevens, TCP/IP Illustrated, Volume 2 (Paperback): The
Implementation, Addison-Wesley Professional, 1995.

[24] N. Doraswamy, D. Harkins, IPSec: The New Security Standard for the Internet,
Intranets, and Virtual Private Networks, Prentice Hall Professional, 2003.

[25] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye, M. Lipshteyn, RDMA
over commodity ethernet at scale, in: Proceedings of the 2016 ACM SIGCOMM
Conference, 2016, pp. 202–215.

[26] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme, J. Gross, A.
Wang, J. Stringer, P. Shelar, et al., The design and implementation of open
vswitch, in: 12th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 15), 2015, pp. 117–130.

[27] R. Russell, Virtio: towards a de-facto standard for virtual I/O devices, Oper. Syst.
Rev. 42 (5) (2008) 95–103.

[28] D. Minturn, Nvm express over fabrics, in: 11th Annual OpenFabrics International
OFS Developers’ Workshop, 2015.

[29] OpenSSL, https://www.openssl.org.

http://refhub.elsevier.com/S2772-4859(23)00037-6/sb1
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb1
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb1
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb2
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb2
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb2
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb3
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb3
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb3
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb3
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb3
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb4
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb4
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb4
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb4
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb4
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb4
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb4
https://resources.nvidia.com/en-us-accelerated-networking-resource-library/whats-a-dpu-data-product?lx=LbHvpR&topic=networking-cloud
https://resources.nvidia.com/en-us-accelerated-networking-resource-library/whats-a-dpu-data-product?lx=LbHvpR&topic=networking-cloud
https://resources.nvidia.com/en-us-accelerated-networking-resource-library/whats-a-dpu-data-product?lx=LbHvpR&topic=networking-cloud
https://resources.nvidia.com/en-us-accelerated-networking-resource-library/whats-a-dpu-data-product?lx=LbHvpR&topic=networking-cloud
https://resources.nvidia.com/en-us-accelerated-networking-resource-library/whats-a-dpu-data-product?lx=LbHvpR&topic=networking-cloud
https://resources.nvidia.com/en-us-accelerated-networking-resource-library/bluefield-2-dpu-datasheet?lx=LbHvpR&topic=networking-cloud
https://resources.nvidia.com/en-us-accelerated-networking-resource-library/bluefield-2-dpu-datasheet?lx=LbHvpR&topic=networking-cloud
https://resources.nvidia.com/en-us-accelerated-networking-resource-library/bluefield-2-dpu-datasheet?lx=LbHvpR&topic=networking-cloud
https://resources.nvidia.com/en-us-accelerated-networking-resource-library/bluefield-2-dpu-datasheet?lx=LbHvpR&topic=networking-cloud
https://resources.nvidia.com/en-us-accelerated-networking-resource-library/bluefield-2-dpu-datasheet?lx=LbHvpR&topic=networking-cloud
https://www.yusur.tech/solution/cloudDataCenter
https://www.yusur.tech/solution/cloudDataCenter
https://www.yusur.tech/solution/cloudDataCenter
http://www.yusur.tech/solution/financialDataCalculationAcceleration
https://www.yusur.tech/solution/highPerformenceComputing
https://www.yusur.tech/solution/highPerformenceComputing
https://www.yusur.tech/solution/highPerformenceComputing
https://www.yusur.tech/solution/industrialInternet
https://www.yusur.tech/solution/industrialInternet
https://www.yusur.tech/solution/industrialInternet
https://www.intel.com/content/www/us/en/newsroom/resources/press-kit-architecture-day-2021.html#gs.xbri9l
https://www.intel.com/content/www/us/en/newsroom/resources/press-kit-architecture-day-2021.html#gs.xbri9l
https://www.intel.com/content/www/us/en/newsroom/resources/press-kit-architecture-day-2021.html#gs.xbri9l
https://docs.nvidia.com/doca/sdk/rxpbench/index.html
https://docs.nvidia.com/doca/sdk/rxpbench/index.html
https://docs.nvidia.com/doca/sdk/rxpbench/index.html
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb13
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb13
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb13
http://arxiv.org/abs/2212.07868
http://arxiv.org/abs/2010.12114
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb16
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb16
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb16
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb16
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb16
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb18
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb18
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb18
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb18
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb18
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb19
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb19
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb19
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb19
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb19
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb19
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb19
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb20
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb20
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb20
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb21
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb21
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb21
https://resources.nvidia.com/en-us-accelerated-networking-resource-library/datasheet-nvidia-bluefield?lx=LbHvpR&topic=networking-cloud
https://resources.nvidia.com/en-us-accelerated-networking-resource-library/datasheet-nvidia-bluefield?lx=LbHvpR&topic=networking-cloud
https://resources.nvidia.com/en-us-accelerated-networking-resource-library/datasheet-nvidia-bluefield?lx=LbHvpR&topic=networking-cloud
https://resources.nvidia.com/en-us-accelerated-networking-resource-library/datasheet-nvidia-bluefield?lx=LbHvpR&topic=networking-cloud
https://resources.nvidia.com/en-us-accelerated-networking-resource-library/datasheet-nvidia-bluefield?lx=LbHvpR&topic=networking-cloud
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb23
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb23
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb23
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb24
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb24
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb24
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb25
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb25
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb25
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb25
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb25
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb26
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb26
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb26
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb26
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb26
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb26
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb26
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb27
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb27
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb27
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb28
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb28
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb28
https://www.openssl.org


Z. Wang, C. Wang and L. Wang BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100120
[30] J. Ziv, A. Lempel, A universal algorithm for sequential data compression, IEEE
Trans. Inform. Theory 23 (3) (1977) 337–343.

[31] D.A. Huffman, A method for the construction of minimum-redundancy codes,
Proc. IRE 40 (9) (1952) 1098–1101.

[32] W. Diffie, M.E. Hellman, New directions in cryptography, in: Democratiz-
ing Cryptography: The Work of Whitfield Diffie and Martin Hellman, 2022,
pp. 365–390.

[33] D. Joan, R. Vincent, The design of Rijndael: AES-the advanced encryption
standard, Inf. Secur. Cryptogr. (2002).

[34] D.B. Johnson, A.J. Menezes, Elliptic curve DSA (ECDSA): an enhanced DSA, in:
Proceedings of the 7th Conference on USENIX Security Symposium, Vol. 7, 1998,
pp. 13–23.

[35] I.T. Jolliffe, Principal Component Analysis for Special Types of Data, Springer,
2002.

[36] G.E. Moore, et al., Cramming More Components onto Integrated Circuits,
McGraw-Hill New York, 1965.

[37] A. Krizhevsky, I. Sutskever, G. Hinton, Imagenet classification with deep con-
volutional networks, in: Proceedings of the 26th Annual Conference on Neural
Information Processing Systems, NIPS, pp. 1106–1114.
12
[38] T. Brown, B. Mann, N. Ryder, M. Subbiah, J.D. Kaplan, P. Dhariwal, A.
Neelakantan, P. Shyam, G. Sastry, A. Askell, et al., Language models are few-shot
learners, Adv. Neural Inf. Process. Syst. 33 (2020) 1877–1901.

[39] SPEC CPU, https://www.spec.org./benchmarks.html#cpu.
[40] PARSEC, https://parsec.cs.princeton.edu/index.htm.
[41] J. Bucek, K.-D. Lange, J. v. Kistowski, SPEC CPU2017: Next-generation compute

benchmark, in: Companion of the 2018 ACM/SPEC International Conference on
Performance Engineering, 2018, pp. 41–42.

[42] SPEC CPU v8, https://www.spec.org/cpuv8.
[43] V.J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C.-J. Wu, B.

Anderson, M. Breughe, M. Charlebois, W. Chou, et al., Mlperf inference bench-
mark, in: 2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture, ISCA, IEEE, 2020, pp. 446–459.

[44] W. Gao, F. Tang, J. Zhan, X. Wen, L. Wang, Z. Cao, C. Lan, C. Luo, X. Liu,
Z. Jiang, Aibench scenario: Scenario-distilling ai benchmarking, in: 2021 30th
International Conference on Parallel Architectures and Compilation Techniques,
PACT, IEEE, 2021, pp. 142–158.

[45] S. Sun, C. Huang, R. Zhang, L. Chen, Y. Huang, M. Yan, J. Wu, A comprehensive
study on optimizing systems with data processing units, 2023, arXiv preprint
arXiv:2301.06070.

http://refhub.elsevier.com/S2772-4859(23)00037-6/sb30
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb30
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb30
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb31
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb31
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb31
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb32
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb32
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb32
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb32
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb32
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb33
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb33
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb33
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb34
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb34
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb34
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb34
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb34
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb35
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb35
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb35
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb36
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb36
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb36
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb38
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb38
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb38
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb38
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb38
https://www.spec.org./benchmarks.html#cpu
https://parsec.cs.princeton.edu/index.htm
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb41
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb41
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb41
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb41
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb41
https://www.spec.org/cpuv8
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb43
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb43
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb43
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb43
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb43
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb43
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb43
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb44
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb44
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb44
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb44
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb44
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb44
http://refhub.elsevier.com/S2772-4859(23)00037-6/sb44
http://arxiv.org/abs/2301.06070

	DPUBench: An application-driven scalable benchmark suite for comprehensive DPU evaluation
	Introduction
	Background and Motivation
	Background of DPUBench
	NVIDIA BlueField-2 DPU
	Motivation of DPUBench

	Methodology
	Problem Definition
	Problem Instantiation
	Solution Instantiation

	Operator Set of DPUBench
	The Extraction of Operator Set of DPUBench
	Operators Extraction in Network Scenario
	Operators Extraction in Storage Scenario
	Operators Extraction in Security Scenario

	The Experiments of Operator Set of DPUBench
	Experimental configurations
	Validate the representativeness, diversity and coverage of the Operator Set of DPUBench
	Evaluate the NVIDIA BlueField-2 using Operator Set of DPUBench


	End-to-end Evaluation Programs of DPUBench
	The Framework of End-to-end Evaluation Programs in DPUBench
	The Workloads

	The Experiments of End-to-end Evaluation Programs of DPUBench
	Experimental configurations
	Evaluate the NVIDIA BlueField-2 using End-to-end Evaluation Programs of DPUBench


	Related Work
	Conclusion and Plan
	Declaration of competing interest
	References


