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A B S T R A C T

Hybrid Transactional/Analytical Processing (HTAP) databases are designed to execute real-time analytics and
provide performance isolation for online transactions and analytical queries. Real-time analytics emphasize
analyzing the fresh data generated by online transactions. And performance isolation depicts the performance
interference between concurrently executing online transactions and analytical queries. However, HTAP
databases are extreme lack micro-benchmarks to accurately measure data freshness. Despite the abundance
of HTAP databases and benchmarks, there needs to be more thorough research on the performance isolation
and real-time analytics capabilities of HTAP databases. This paper focuses on the critical designs of mainstream
HTAP databases and the state-of-the-art and state-of-the-practice HTAP benchmarks. First, we systematically
introduce the advanced technologies adopted by HTAP databases for real-time analytics and performance
isolation capabilities. Then, we summarize the pros and cons of the state-of-the-art and state-of-the-practice
HTAP benchmarks. Next, we design and implement a micro-benchmark for HTAP databases, which can
precisely control the rate of fresh data generation and the granularity of fresh data access. Finally, we devise
experiments to evaluate the performance isolation and real-time analytics capabilities of the state-of-the-art
HTAP database. In our continued pursuit of transparency and community collaboration, we will soon make
available our comprehensive specifications, meticulously crafted source code, and significant results for public
access at https://www.benchcouncil.org/mOLxPBench.
1. Introduction

Hybrid Transactional/Analytical Processing (HTAP) databases are
expected to meet the needs of real-time analytics applications [1–
4] because they eliminate the extract-transform-load (ETL) processing
between the OLTP database and data warehouse. HTAP databases
aim to perform real-time analytics on the fresh data generated by
online transactions and mitigate the performance interference between
online transactions and analytical queries. To achieve the objectives
mentioned above, the mainstream HTAP databases use dual data stores
to guarantee performance isolation and optimize the data update prop-
agation between the dual data stores to speed up real-time analytics.

To achieve performance isolation between online transactions and
analytical queries, HTAP databases process online transactions in the
row-based data store and analytical queries in the column-based data
store. HTAP databases optimize the row-based and the column-based
data stores, respectively, to speed the execution of online transactions
and analytical queries. The row-based data store utilizes indexing and
concurrency control mechanisms to facilitate update-intensive online
transactions [2,5–8]. In addition, the column-based data store achieves
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a high compression rate and enhanced access for read-intensive analyti-
cal queries [9,10]. HTAP databases generally deploy the row-based and
column-based data store on the different data nodes [11–13] to avoid
high resource contention between online transactions and analytical
queries. This would result in considerable latency when propagating
data updates from the row-based to the column-based data store.
Consequently, optimizing the data update propagation mechanism is
another issue for HTAP databases to address.

Fast data update propagation from the row-based to the column-
based data stores is essential for real-time analytics. The latency of
data update propagation determines the freshness of the analytical
data. The process of data update propagation is divided into three
steps. The first step is moving the data update from the row-based
to the column-based data stores. The second step is translating the
row-format data into column-format data. The last step is merging
the delta updates into the column-based data store. HTAP databases
optimize one or all of the above steps to improve the freshness of
analytical data. For example, TiDB [11] preserves only the committed
change log and removes redundant information before translating it
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Table 1
The key designs of HTAP databases: can HTAP benchmarks evaluate them?

Benchmark name Performance isolation Real-time analytics Component performance

OLTP workloads OLAP workloads Fresh data generation rate Fresh data access granularity Index mechanism Query range control

CH-benCHmark
√ √

HTAPBench
√ √

CBTR
√ √

OLxPBench
√ √

HATtrick
√ √

ADAPT
√ √ √

HAP
√ √ √

Micro-benchmark
√ √ √ √ √ √
into column-format data to decrease data movement. In contrast to
TiDB, which deploys the row-based and column-based data stores on
separate data nodes, some HTAP databases [9,14–17] deploy the row-
based and column-based data stores on the same server to prevent data
update propagation across the different data nodes. It slows down the
latency of delta updates moving but poses a significant challenge to
performance isolation.

Equally as important as it is to track advanced technologies for
HTAP databases is to evaluate these HTAP databases. HTAP bench-
marks must measure how well the HTAP databases can do performance
isolation and real-time analytics. We will introduce the existing HTAP
benchmarks from schema design, workload composition, and metrics
as shown in Table 1.

Firstly, there are stitched schema and semantically consistent sch-
ema. The stitched schema is combined with the TPC-C schema [18] and
TPC-H [19] schema. It extracts the New-Order, Stock, Customer, Order-
line, Orders, Item, Warehouse, District, and History relationships from
TPC-C schema [18] to integrate them with the Supplier, Country, and
Region relationships of TPC-H schema [19]. CH-benCHmark [20] pro-
poses the stitched schema, which is followed by HTAPBench [21] and
Swarm64 [22]. Analytical queries cannot access the valuable data gen-
erated by online transactions and stored in the History table when using
the stitched schema. And the stitched schema will affect the semantics
of HTAP benchmarks. Therefore, OLxPBench [23] advocates that HTAP
benchmarks should employ the semantically consistent schema instead
of the stitched schema. The semantically consistent schema emphasizes
that online transactions and analytical queries access the same schema.
Analytical queries can access all business data generated by online
transactions. The semantically consistent schema can thus reveal the
performance inference between OLTP and OLAP workloads. CBTR [24,
25], OLxPBench [23], HATtrick [26], ADAPT [27], and HAP [28]
benchmark all employ semantically consistent schema described in
Sections 5 and 6.

Secondly, HTAP benchmarks include OLTP workloads, OLAP work-
loads, and hybrid workloads. OLTP workloads combine read and write
operations, whereas OLAP workloads are read-intensive. Hybrid work-
load refers to the analytical query performed between online transac-
tions. Existing HTAP benchmarks include OLTP and OLAP workloads
to investigate performance inference between them. OLxPBench is the
only benchmark that evaluates the true HTAP capability of HTAP
databases using hybrid workloads. Complex online transactions and
analytical queries have a lot of operations, so it is hard to judge how
well each operation works on its own. ADAPT [27] and HAP [28]
are Micro-benchmarks for a specific operation. However, the ADAPT
and HAP benchmarks only include a handful of typical HTAP work-
loads. ADAPT and HAP, for instance, include an insufficient number of
scan queries to evaluate index performance. Micro-benchmarks should
provide point scans, small-range and large-range queries for HTAP
database evaluation. There are a few Micro-benchmarks available for
HTAP databases.

Thirdly, the metrics of HTAP databases are separated into two
categories: throughput metrics and latency metrics. The HTAP database
evaluates the throughput of OLTP workloads using the transactions per

second (tps) and transactions per minute (tpmC) metrics. The HTAP

2

database evaluates the throughput of OLAP workloads using the queries
completed per second (qps) and queries completed per hour (QphH)
metrics. CH-benCHmark [20] proposes the metrics 𝑡𝑝𝑚𝐶

𝑄𝑝ℎ𝐻
@𝑡𝑝𝑚𝐶 and

𝑡𝑝𝑚𝐶
𝑄𝑝ℎ𝐻

@𝑄𝑝ℎ𝐻 for evaluating the performance isolation between OLTP
and OLAP workloads. The former metric considers online transactions
the primary workload, while the latter considers analytical queries
the primary workload. In contrast, Anja Bog et al. [26]. establish
the HATtrick benchmark, which equalizes transactional and analytical
workloads. HATtrick [26] defines the throughput frontier and freshness
metrics for measuring performance isolation and data freshness, as
specified in Section 5.5. HTAP benchmarks utilize average latency and
tail latency metrics in addition to throughput metrics. Average latency
is the average time it takes for a transaction/query to be processed,
whereas tail latency refers to the high percentile latency. Tail latency
is an important metric to consider in HTAP databases where a small
number of lengthy transactions/queries can substantially impact overall
performance or user experience.

This paper makes the following contributions. (1) We systematically
introduce the advanced technologies adopted by HTAP databases for
these key designs; (2) We summarize the pros and cons of the state-
of-the-art and state-of-the-practice HTAP benchmarks for key designs
of HTAP databases; (3) We quantitatively compared the differences
between micro-benchmarks and macro-benchmarks in evaluating the
real-time analytical capabilities of HTAP databases. Micro-benchmark
can control the generation and access granularity of fresh data, en-
abling precise measurement of real-time analytical capabilities of HTAP
databases. (4) We measure the performance of individual components
of the HTAP database, such as the indexing mechanism. By isolating
specific operations, developers can test the performance of these com-
ponents under different workloads and configurations, which is the
foundation of component optimization.

2. Motivation — Micro-benchmarks can control the rate at which
fresh data is generated and the granularity of access, which dis-
tinguishes them from macro-benchmarks

HTAP databases are extreme lack the micro-benchmark because
there is no open-source micro-benchmark. We design and implement
a micro-benchmark to investigate the distinction between the micro-
benchmark and the macro-benchmark. We select the state-of-the-art
HTAP benchmark OLxPBench as the micro-benchmark comparison ob-
ject. Micro-benchmark is better suited for real-time analytics evaluation
because it precisely controls the rate at which fresh data is generated
and the granularity of fresh data access. Micro-benchmark queries
typically consist of a single statement. For instance, the analytical query
calculates the number of rows within a specified range. This indicates
that the computational intensity of analytical queries can be managed
by adjusting their computational range. And the transactional query
updates the value of the specified column in a random row.

Micro-benchmark can adjust the rate at which fresh data is gener-
ated to assess the performance of data update propagation between the
transactional and analytical instances. The performance interference

between transactional and analytical queries can be disregarded when
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Fig. 1. This figure reveals that the micro-benchmark can accurately measure the
real-time analytical capabilities of the HTAP database by controlling read and write
interference.

the number of concurrent requests is low. Consequently, almost all of
the growing proportion of analytical latency is due to the propagation
of data updates. The online transactions and analytical queries in OLxP-
Bench are too complex to control the write and read ranges precisely.
The New-Order transaction, for instance, involves numerous inserting
and updating operations. The analytical query (Q6) includes operations
involving aggregation and sub-selection. This causes the New-Order
transaction to generate fresh data that is only partially required by
the analytical query (Q6). However, the analytical query must wait for
all data updates to propagate before accessing the fresh data. Unlike
OLxPBench, micro-benchmark makes it simple to control the rate at
which fresh data is generated and the granularity of access to analytical
queries on fresh data.

Fig. 1 compares the impact of simple write operations and the
New-Order transaction on the measurement of data freshness. The
New-Order transaction includes an excessive number of updating and
inserting operations, thereby introducing data synchronization that is
unnecessary for measuring data freshness. The greater the ratio, the
more data needs to be synchronized. It demonstrates that the tail la-
tency of analytical queries (Baseline) increases approximately one-fold
when the micro-benchmark is used to simulate write interference. The
New-Order transaction contains numerous inserting and updating op-
erations, so the tail latency of the baseline (Q6) increases by more than
36 times when OLxPBench is used. The greater the number of inserting
and updating operations, the greater the number of data updates that
must be synchronized between transactional and analytical instances.
However, not all data updates resulting from online transactions are
required for analytical queries. The data freshness measurement will be
affected by data updates that are not required by the analytical query.
Measuring data freshness requires precise control over the rate of fresh
data generation and access granularity.

3. Key designs of mainstream HTAP databases

The mainstream HTAP databases are designed for two objects:
real-time analytics and performance isolation. Performance isolation
emphasizes that online transactions and analytical queries execute
concurrently without affecting each other’s performance. Real-time an-
alytics means analyzing the fresh data generated by online transactions
as soon as possible. Online transactions and analytical queries can
achieve superior isolation performance through the use of indepen-
dent storage engines. However, the necessity of data synchronization
between row-based and column-based storage engines undeniably in-
troduces data synchronization latency. Consequently, real-time access
to fresh data during analytical queries becomes a formidable challenge.
Therefore, it is challenging for HTAP databases to provide real-time

analytics and performance isolation capabilities. Some HTAP databases
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deploy the transactional and analytical instances on the same server
to avoid long turnaround times for delta updates. And other HTAP
databases handle online transactions and analytical queries on sepa-
rate servers to prevent performance interference. This section studies
how HTAP databases accomplish real-time analytics and performance
isolation.

3.1. Performance isolation

Single-node HTAP databases implement row-based data storage
for online transactions and column-based data storage for analyti-
cal queries. Because of the intense resource contention, single-node
HTAP databases cannot provide performance isolation [29]. Previous
works [30,31] have proposed various approaches to partitioned hard-
ware resources to ensure performance isolation. Raza et al. [30] divide
the CPU and memory resources into two groups: the first group binds
with the specified transactional instance and analytical instance. In
contrast, the second group comprises reserved resources assigned based
on actual requirements. By dividing the last-level cache (LLC) between
the analytical queries and the online transactions, Sirin et al. [31]
reduce the performance impact of the analytical queries on the online
transactions. Polynesia [15] identifies the root cause of performance
interference as the sharing of hardware resources and consequently
provides an isolated computing resource for online transactions and
analytical queries.

Distributed HTAP databases [11–13] deploy row-based and column-
based data stores on separate servers, thereby wholly resolving the issue
of resource contention. TiDB [11] implements the 𝑇 𝑖𝐾𝑉 and 𝑇 𝑖𝐹 𝑙𝑎𝑠ℎ
instances for row-based and column-based data stores, respectively.
It employs the raft algorithm to replicate asynchronously 𝑇 𝑖𝐾𝑉 logs
to 𝑇 𝑖𝐹 𝑙𝑎𝑠ℎ instances. Due to the collaborative capabilities of Google’s
internal systems, F1 Lightning [12] contributes a loosely coupled HTAP
solution that enables the 𝐹1 𝑄𝑢𝑒𝑟𝑦 𝑒𝑛𝑔𝑖𝑛𝑒 to function with existing
OLTP systems and data sources [32–37]. As a result, F1 Lightning [12]
need to utilize the 𝐿𝑖𝑔ℎ𝑡𝑛𝑖𝑛𝑔 component to capture the data updates
from various data sources and translate them into the unified format
data.

SingleStore [13] and OceanBase [38] are well-known distributed
HTAP databases. They all utilize unified storage to facilitate online
transactions and analytical queries. OceanBase [38] demonstrates com-
mendable proficiency in resource isolation. PolarDB-IMCI [39] also
provides effective resource isolation for transactional and analytical
queries.

3.2. Real-time analytics

Initially, HTAP databases deploy the transactional and analytical
instances on a single server to obtain the fresh data generated by
online transactions. SAP HANA [9,40] maintains multiple delta update
stores for the same table, allowing online transactions updating and
existing data updates merging process to be performed in different
delta stores. It is permitted for analytical queries to simultaneously
access the freshest data in multiple deltas and column-based data stores.
SAP HANA [9,40], DB2 BLU [17] and Oracle [14] have implemented
an in-memory column-based data store for fast analytics. DB2 [17]
supports HTAP workloads with BLU acceleration. Oracle [14] and DB2
BLU [17] make use of numerous analytical optimization technologies,
including compression and single-instruction multiple-data (SIMD). It
cannot update column data in real-time because data updates are only
merged to the column-based data store when the ratio of data updates
exceeds a certain threshold.

With the growing amount of real-time data, the single-node HTAP
database cannot meet the high scalability and availability require-
ments. Oracle, for instance, releases a new distributed version that
provides scale-out compute and storage resources and implements a
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real-time column-based data duplication mechanism for high avail-
ability requirements [41]. And then comes the issue of data update
propagation. Because data updates must propagate from transactional
servers to analytical servers, it is challenging for distributed HTAP
databases to guarantee that analytical queries can access the most
recent data updates [42]. Both TiDB and F1 Lightning have special-
ized components for data update propagation. TiDB [11] utilizes the
𝐿𝑜𝑔𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 process asynchronously to maintain data consistency
between 𝑇 𝑖𝐾𝑉 and 𝑇 𝑖𝐹 𝑙𝑎𝑠ℎ instances. The 𝐶ℎ𝑎𝑛𝑔𝑒𝑝𝑢𝑚𝑝 component of
1 Lighting [12] provides a consistency protocol that enables analytical
ueries to access in-memory delta updates generated by online transac-
ions immediately. Once a system failure occurs, the in-memory delta
pdates are recoverable through the transactional log.

. Can existing HTAP benchmarks evaluate the key design of
TAP databases?

HTAP databases provide performance isolation for OLTP work-
oads and OLAP workloads while ensuring that OLAP workloads have
ccess to fresh data generated by OLTP workloads. Evaluating the
erformance of individual HTAP database components is paramount in
ptimizing their efficiency.

Table 1 summarizes the existing HTAP benchmarks. Currently,
pen-source HTAP benchmarks are macro-benchmarks, encompassing
ntricate online transactions and analytical queries. This approach
acilitates a comprehensive assessment of the performance isolation
apabilities inherent in HTAP databases. However, due to the extensive
umber of statements within online transactions and analytical queries,
ccurately evaluating the performance of specific HTAP database com-
onents, such as index performance, presents a considerable challenge.
enchmarking can utilize range scan queries to measure the perfor-
ance of various index mechanisms in HTAP databases. For instance,

heoretically, point queries can effectively evaluate the performance
f Hash indexes and LSM-Tree indexes. In an ideal scenario, a Hash
ndex only needs to perform a single hash computation on the primary
ey to find the corresponding record, while an LSM-Tree index, using
binary search algorithm, requires multi-level searching. However,

ince Hash indexes are unordered, handling range queries necessitates
canning the entire index space, in contrast, the ordered LSM-Tree
ndexes perform more efficiently during range queries. Hence, range
can queries can effectively test and compare the performance of
ifferent index mechanisms. In this research, the impact of query scope
n computational workload intensity is meticulously investigated. By
trategically manipulating the scope of a query, it is possible to exert
reater control over the computational demands of the workload. A
omparative analysis is performed, examining point queries, small-
ange queries, and large-range queries, all with identical transmission
ates. The results reveal distinct discrepancies in the required compu-
ational resources and the subsequent performance outcomes for each
uery type. This study offers valuable insights into optimizing query
xecution and enhancing system performance.

Concurrently, the complexity of workloads makes it arduous to
egulate the generation rate and access the granularity of fresh data.
his predicament leads to measurement biases concerning data fresh-
ess. Section 2 elucidates the distinctions between macro-benchmarks
nd micro-benchmarks in the context of controlling fresh data. Micro-
enchmarks are indispensable for appraising the real-time analysis
apabilities of HTAP databases. Despite their importance, there is a
otable absence of open-source micro-benchmarks explicitly designed
or HTAP databases. Consequently, there is an urgent need within
he industry and academia to develop tailor-made micro-benchmarks

pecifically intended for HTAP databases.

4

5. Macro-benchmarks for HTAP databases

5.1. CH-benchmark

5.1.1. Schema design
CH-benCHmark [20] combines the TPC-C [18] and TPC-H [19]

schema. The CH-benCHmark schema retains all TPC-C tables and adds
the Supplier, Nation, and Region tables of TPC-H. Fig. 2 depicts the
relationships between nine tables.

5.1.2. Workload description
CH-benCHmark provides both online transactions and analytical

queries. The OLTP workloads are the same as the TPC-C transactions
which are New-Order, Payment, Order-Status, Delivery, and Stock-
Level transactions. The default percentages for the aforementioned five
transactions are 44%, 44%, 4%, 4%, and 4%, respectively. Order-Status
and Stock-Level are read-only transactions, and the remaining three
are update-intensive transactions. The 22 analytical queries in CH-
benCHmark are derived from the TPC-H benchmark. Analytical queries
retain the majority of business semantics but make adjustments based
on the CH-benCHmark schema.

5.1.3. Evaluation and metrics
CH-benCHmark evaluates the OLTP, OLAP, and mixed performance

of HTAP databases. It regulates the rate at which online transactions
and analytical queries are sent by setting the number of request-
sending threads. It measures the performance of HTAP databases using
response time and throughput metrics. The transactions per minute
(tpmC) metric is utilized to measure the throughput of OLTP workloads.
And the queries per hour (QphH) metric is utilized to measure the
throughput of OLAP workloads. CH-benCHmark inventively designs the
𝑡𝑝𝑚𝐶
𝑄𝑝ℎ𝐻

@𝑡𝑝𝑚𝐶 and 𝑡𝑝𝑚𝐶
𝑄𝑝ℎ𝐻

@𝑄𝑝ℎ𝐻 metrics to measure the performance
of mixed workloads that consist of both OLTP and OLAP workloads.
@𝑡𝑝𝑚𝐶 indicates OLTP as the dominant workload, whereas @𝑄𝑝ℎ𝐻
indicates OLAP as the dominant workload.

For instance, as shown in expression (1), when transactional and an-
alytical workloads are executed sequentially, their respective through-
puts are assumed to be 5084 tpmC and 895.6 QphH.

𝑃1(𝑂𝐿𝑇𝑃 ) =
5084𝑡𝑝𝑚𝐶
895.6𝑄𝑝ℎ𝐻

@5084𝑡𝑝𝑚𝐶. (1)

As shown in expression (2), when executing mixed workloads concur-
rently, the OLTP and OLAP throughputs are assumed to be 5188 tpmC
and 804.2 QphH, respectively.

𝑃2(𝑂𝐿𝑇𝑃 ) =
5188𝑡𝑝𝑚𝐶
804.2𝑄𝑝ℎ𝐻

@5188𝑡𝑝𝑚𝐶. (2)

𝑃1(𝑂𝐿𝑇𝑃 ) equals 5.7@5084𝑡𝑝𝑚𝐶, which is less than 6.5@
5188𝑡𝑝𝑚𝐶 of 𝑃2(𝑂𝐿𝑇𝑃 ). The results indicate that analytical queries

do not hinder the performance of online transactions in this experiment.
In addition, CH-benCHmark is the first HTAP benchmark that defines
data freshness. CH-benchmark decides whether to use the most recent
data for analytical queries by setting either a time threshold or a
number of transactions.

5.2. HTAPBench

HTAPBench [21] adopts the same schema as CH-benCHmark, which
integrates TPC-C and TPC-H schema. HTAPBench takes five online
transactions from TPC-C and 22 analytical queries from TPC-H.

The most distinct aspect between HTAPBench and CH-benCHmark
is that HTAPBench proposes a unified metric for HTAP databases, as
shown in the expression (3).

𝑄𝑝𝐻𝑝𝑊 =
𝑄𝑝ℎ𝐻

#𝑂𝐿𝐴𝑃𝑤𝑜𝑟𝑘𝑒𝑟𝑠
@𝑡𝑝𝑚𝐶. (3)

QpHpW represents the analytical queries completed in an hour per
analytical worker. When the throughput of online transactions remains
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Fig. 2. The schema of CH-benCHmark.
constant, the greater the number of analytical queries completed per
hour per analytical worker, the better the performance of the HTAP
database.

5.3. CBTR

CBTR [24,25] is the first HTAP benchmark that adopts the seman-
tically consistent schema. The semantically consistent schema, unlike
the stitched schema, allows OLTP and OLAP workloads to operate on
the same tables as opposed to separate tables for each workload. The
schema of CBTR includes 18 tables, which are extracted from the real-
world order-to-cash scenario. The normalization of CBTR’s schema is
configurable, with 1NF being the default. Different normalization levels
produce varying degrees of data redundancy, which has a direct impact
on the total number of columns. For instance, the schema with the
highest degree of redundancy contains 2316 columns in total.

CBTR provides four online read-update transactions, three online
read-only transactions, and four online analytical queries. CBTR utilizes
data from actual business scenarios rather than synthetic data gener-
ated by data generators. However, CBTR is not widely recognized due
to its closed-source nature.

5.4. OLxPBench

5.4.1. Schema design
The OLxPBench suite [23] proposes creatively that HTAP bench-

marks necessitate a semantically consistent schema. Semantically con-
sistent schema emphasizes that online transactions and analytical quer-
ies should use the same data. There are three benchmarks in the
OLxPBench suite: subenchmark for general scenarios, fibenchmark for
financial scenarios, and tabenchmark for telecom scenarios. Subench-
mark reuses the schema of the TPC-C [18], which consists of nine
tables. The schema of fibenchmark is derived from that of Small-
Bank benchmark [43] and has three tables: 𝐴𝐶𝐶𝑂𝑈𝑁𝑇 , 𝑆𝐴𝑉 𝐼𝑁𝐺,
and 𝐶𝐻𝐸𝐶𝐾𝐼𝑁𝐺 tables. TATP [44], which has four tables, includ-
ing 𝑆𝑈𝐵𝑆𝐶𝑅𝐼𝐵𝐸𝑅, 𝑆𝑃𝐸𝐶𝐼𝐴𝐿 𝐹𝐴𝐶𝐼𝐿𝐼𝑇𝑌 , 𝐴𝐶𝐶𝐸𝑆𝑆 𝐼𝑁𝐹𝑂, and
𝐶𝐴𝐿𝐿 𝐹𝑂𝑅𝑊𝐴𝑅𝐷𝐼𝑁𝐺 tables, is the source of inspiration for tabench-
mark. Tabenchmark modifies the SUBSCRIBER table by expanding a
composite primary key.

5.4.2. Workload description
The OLxPBench benchmark suite consists of 18 online transactions,

18 analytical queries, and 17 hybrid transactions. The online trans-
actions of the original OLTP benchmarks remain the same. Just 8%
of online transactions in Subenchmark are read-only. 15% of online
5

transactions in Fibenchmark are read-only. 80% of online transactions
in Tabenchmark are read-only. In addition, it increases the analytical
queries and hybrid transactions based on the semantically consistent
schema. The analytical queries consist of complicated analytical state-
ments like aggregation and multi-join. The hybrid transaction incor-
porates an analytical statement into an online transaction. Read-only
hybrid transactions make up 60%, 20%, and 40% of the subenchmark,
fibenchmark, and tabenchmark, respectively.

5.4.3. Evaluation and metrics
OLxPBench suite evaluates the performance isolation between the

online transactions and analytical queries. It begins by determining
the peak throughput of online transactions and analytical queries. Fix
the request send rate for online transactions or analytical queries 𝑥𝑓 ,
and progressively increase the request send rate for the other instances
𝑥𝑖. If the throughput and latency of 𝑥𝑓 vary minimally, there is no
performance interference between online transactions and analytical
queries; contrarily, the higher the fluctuation in performance of 𝑥𝑓 , the
greater the performance interference between online transactions and
analytical queries. In addition, the OLxPBench suite evaluates the HTAP
performance of HTAP databases using hybrid transactions. Moreover,
the scalability of HTAP databases is evaluated.

5.5. HATtrick

5.5.1. Schema design
The schema of the HATtrick benchmark [26] is modified based on

Star-Schema Benchmark (SSB) [45]. The schema of the HATtrick bench-
mark newly adds the HISTORY and FRESHNESS table and appends new
attributes to the CUSTOMER, SUPPLIER, and PART table The schema
consists of seven tables, as shown in Fig. 3.

5.5.2. Workload description
HATtrick includes both online transactions and analytical queries.

It offers three online transactions comparable to the TPC-C benchmark.
The transactional workloads consist of 48 percent New-Order, 48 per-
cent Payment, and 4 percent Count orders. The New-order and Payment
transactions are update-intensive, while the Count orders transaction is
read-only.

Thirteen analytical queries are derived from the SSB benchmark and

modified slightly to conform with the schema.
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Fig. 3. The schema of SSB.

.5.3. Evaluation and metrics
HATtrick proposes the throughput frontier and freshness score met-

ics to measure the performance isolation and data freshness of HTAP
atabases. The throughput frontier is visualized as a curve with the
ransactional throughput 𝑥𝑡 on the horizontal axis and the analyti-
al throughput 𝑦𝑎 on the vertical axis. The maximum transactional
hroughput is 𝑋𝑡, and the maximum analytical throughput is 𝑌𝑎. The

line formed by the coordinates (0, 𝑌𝑎), (𝑋𝑡, 𝑌𝑎), and (𝑋𝑡, 0) is the bound-
ing line. And the line formed by the coordinates (0, 𝑌𝑎) and (𝑋𝑡, 0) is
he proportional line. If the throughput frontier is close to the bounding
ine, HTAP database performance isolation is stable. If the throughput
rontier is below the proportional line, it indicates a significant perfor-
ance interference between online transactions and analytical queries.
he freshness score metric refers to the delay when analytical queries
an access the latest data generated by online transactions.

.6. Advantages and disadvantages

Evaluations of HTAP databases require the proper schema, work-
oads, and metrics. Ch-benCHmark and HTAPBench are the first HTAP
enchmarks to implement the stitched schema, separated online trans-
ctions and analytical queries, and metrics described in Section 5.1.
BTR, OLxPBench suite, and HATtrick implement a semantically con-
istent schema to analyze the performance isolation between online
ransactions and analytical queries. The CBTR schema is derived from
he actual production environment. The OLxPBench suite implements
omain-specific benchmarks and innovative hybrid transactions. HAT-
rick contributes the throughput frontier and freshness score metrics.

. Micro-benchmarks for HTAP databases

.1. ADAPT

ADAPT [27] is a synthetic benchmark that extracts typical opera-
ions from the production environment [46]. The schema contains both
arrow and wide tables. The narrow table contains 50 columns, and the
ide table contains 500 columns. ADAPT benchmark contributes five
ueries: insert query, scan query, maximum aggregate query, sum ag-
regate query, and join query. ADAPT benchmark lacks delete, update,
nd point scan queries.

.2. HAP

Based on the ADAPT benchmark, the HAP benchmark [28] reduces
he number of columns in narrow and wide tables. The narrow table has
6 columns, whereas the wide table has 160 columns. HAT benchmark
ontains six queries: point query, count aggregate query, sum aggre-
ate query, insert query, delete query, and update query. The delete,
pdate, and point scan queries have recently been added to the HAP

enchmark. At the same time, it deletes the scan and the join queries.

6

.3. Advantages and disadvantages

The ADAPT [27] and HAP [28] benchmarks abstract the basic HTAP
perations. However, they contain a limited number of typical HTAP
orkloads and are not open-source. The micro-benchmark should pro-
ide a variety of scan queries, including point queries, small-range
ueries, and large-range queries. The variety of scan queries is crucial
or the index optimization of HTAP databases. In addition, micro-
enchmarks must ensure that the read and write operations access the
ame columns to evaluate the date update propagation capability.

. Micro-benchmark

.1. Range setting method

Informed by a theoretical framework, the parameters of a scan
uery range are thoughtfully established. We start by supposing that
he total count of records in a table is represented as 𝑆. The range for
his operation is defined between two integer values, a lower bound
, and an upper bound 𝑈 . As described in Eqs. (4) and (5), the
oundaries of 𝐿 and 𝑈 are established with the essential stipulation
hat 𝐿 must always remain less than 𝑈 . The desired range for our scan
uery is the calculated difference between 𝑈 and 𝐿. Our ultimate aim
s to determine the average range, and then to utilize this average as

pivotal point. Upon establishing this pivotal point, we then select
catter points of several orders of magnitude beneath it to determine
he scan query range.

A key strategy in achieving this objective involves a recalibration
f the range values, effecting a transformation into a summation of
ultiple terms by increasing them by 1. This process is illustrated

n Eq. (6). Following this, we examine the pattern of the data, accu-
ulate the range values, and then divide this sum by the number of

ange values. This leads us to the determination of the average range,
s represented in Eq. (7). Our calculations reveal that the proximate
alue of the average range in this random configuration is equivalent
o one-third of 𝑆, as demonstrated in Eq. (8). Based on these findings,
e establish the range of the scan query to fall within the parameters of
.5% and 10% of the total record count, 𝑆. Aggregate and scan queries
xhibit the capacity to meticulously regulate the granularity of access
o fresh data by expertly delineating the scope of the inquiry. This
tands as a distinguishing hallmark, setting micro-benchmarks apart
rom conventional HTAP benchmarks.

∈ [1, 𝑆 − 2] ∩ Z. (4)

∈ [𝐿 + 1, 𝑆] ∩ Z. (5)

𝑣𝑔𝑆𝑐𝑎𝑛𝑆𝑖𝑧𝑒 =
−1 +

∑𝑆−1
𝑥=1 𝑥(𝑆 − 𝑥)

−1 +
∑𝑆−1

𝑥=1 𝑥
, (6)

=

1
6
(𝑆 − 1)𝑆(𝑆 + 1) − 1

1
2
(𝑆 − 1)𝑆 − 1

, (7)

≈ 1
3
𝑆. (8)

7.2. The design and implementation

There is no open-source micro-benchmark for HTAP databases. The
micro-benchmark could precisely regulate the read/write ratio for a
comprehensive evaluation of HTAP databases. Therefore, we mimic
the ADAPT and HAP benchmarks to design and implement the micro-
benchmark, which accomplishes the six queries listed below. Moreover,
the micro-benchmark contains a single table with 59 attributes named
𝐼𝑇𝐸𝑀 . The attributes in the 𝐼𝑇𝐸𝑀 table are derived from the actual
e-commerce applications.
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Fig. 4. This figure illustrates the distinction between the micro-benchmark and
OLxPBench, the state-of-the-art HTAP benchmark.

Q1 is a point-get query retrieves the record where the primary key
equals a random number. Q4 is a small-range scan query that randomly
retrieves 0.5% of the records. Q5 is a large-range scan query that
randomly retrieves 10% of the records. Q3 is an update query that
updates the specific value of a random record. HTAP database indexing
and writing speeds can be measured with Q1, Q4, Q5, and Q3. Q2 is
an aggregate query that counts the records in a random range. Q6 is a
small-range aggregate query that counts 0.5% of the records. Q2 and
Q6 are useful to measure the OLAP performance of HTAP databases. All
experimental results reported in this paper are the mean and standard
deviation of five independent runs.

1 : SELECT 𝑖1 , 𝑖2 , . . . , 𝑖𝑘 FROM ITEM
WHERE 𝑖𝑖𝑑 = v ;

2 : SELECT COUNT(∗ ) FROM ITEM
WHERE 𝑖𝑖𝑑 ∈ [𝑣𝑠 , 𝑣𝑒 ] ;

3 : UPDATE ITEM SET 𝑖𝑟 = 𝑣𝑟
WHERE 𝑖𝑖𝑑 = 𝑣𝑠 ;

4 : SELECT 𝑖1 , 𝑖2 , . . . , 𝑖𝑘 FROM ITEM
WHERE 𝑖𝑖𝑑 ∈ [𝑣𝑠 , 𝑣𝑝 ] ;

5 : SELECT 𝑖1 , 𝑖2 , . . . , 𝑖𝑘 FROM ITEM
WHERE 𝑖𝑖𝑑 ∈ [𝑣𝑠 , 𝑣𝑞 ] ;

6 : SELECT COUNT(∗ ) FROM ITEM
WHERE 𝑖𝑖𝑑 ∈ [𝑣𝑠 , 𝑣𝑞 ] ;

. Evaluation

.1. Experimental setup

.1.1. Environment
The server node has two Intel Xeon E5-2699v4@2.20 GHz CPUs,

28 GB memory, and two 2TB SSD. The client node has two Intel Xeon
5645@2.40 GHz CPUs, 48 GB memory, and eight 2TB HDDs. The
erver and client run on Ubuntu 20.04 version and are connected by
10 Gbps Ethernet network.

.1.2. Database
TiDB is an industry-standard HTAP database, and its version is

.1.0. We deploy the 𝑡𝑖𝑑𝑏 instance, the 𝑇 𝑖𝐾𝑉 instance, and the 𝑇 𝑖𝐹 𝑙𝑎𝑠ℎ
instance on the same server in order to evaluate the real-time analytics
and performance isolation capabilities in depth. The components of
TiDB are described in detail in Section 3.
7

Fig. 5. Small aggregate query performance.

8.2. Comparing micro-benchmark to the state-of-the-art HTAP benchmark

As the experimental workload, we selected the New-Order trans-
action and analytical query (Q6) from the Subenchmark in the OLxP-
Bench suite. In addition, we utilize Q2 and Q3 as experimental work-
loads. Each experiment is performed five times independently, and
the mean and standard deviation are reported. To avoid performance
interference between transactional and analytical instances, concurrent
requests are limited to 100 transactional and analytical requests per
second. As depicted in Fig. 4, the average and tail latency of Q2 nearly
doubles with interference from Q3. Due to the interference of the
New-Order transaction, the average and tail latency of Q6 increased
by 19 and 34 times, respectively. This is because the New-Order
transaction in OLxPBench contains an excessive number of inserting
and updating operations, resulting in an excessive number of data
updates to propagate. However, not all New-Order data update records
are required by the analytical query (Q6). In micro-benchmark, Q2
requires all data updates produced by Q3. Unnecessary data updates
introduce excessive synchronization latency, resulting in inaccurate
data freshness measurements. The premise of measuring data freshness
is therefore to strictly control the generation rate and gain access to the
granularity of fresh data.

8.3. Scan performance

We set up the point query, small range query, and large range query
to fully evaluate the index performance of HTAP databases. The scan
performance is shown in Fig. 9, Fig. 11, and Fig. 10. The diagonal area
represents the average latency, while the area with the gray shading
represents the tail latency. Every experiment is shown in this manner
and will not be discussed below. Peak throughput for point query,
small-range scan query, and large-range scan query exceed 20,000,
10,000, and 400 tps, respectively. Peak throughput decreases as the
total of scan records expands. The average latency of the point query
illustrated in Fig. 9 is less than five milliseconds. The average latency
of the small-range scan query illustrated in Fig. 11 is less than ten mil-
liseconds. 𝑇 𝑖𝐾𝑉 has implemented a scalable, ordered LSM-Tree index,
with experimental results demonstrating that the latency for both point
queries and small-range scan queries is within the millisecond level.
When handling point queries, TiDB performs binary searches based on
the primary key’s value, necessitating multi-level searching to locate
the relevant data block. Furthermore, TiDB has parallel optimizations
for range queries, using a Coprocessor to concurrently access ordered
blocks, thereby accelerating the processing speed for range queries.

The average latency of the large-range scan query illustrated in
Fig. 10 is the greatest and exceeds twenty milliseconds. And the 99.9th
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Fig. 6. Random aggregate query performance.

Fig. 7. Performance interference of Q5 on Q2.

Fig. 8. Performance interference of Q2 on Q5.

ercentile latency of the large-range scan query is greater than 45 ms.
he point query retrieves the targeted record by primary key. The range
ueries push the task down to 𝑇 𝑖𝐾𝑉 instance execution and summarize

the 𝑇 𝑖𝐾𝑉 instance return results in the SQL engine. In addition, range
scan queries retrieve the continuous records stored in a small number
of regions, which can lead to access hotspot issues.
8

Fig. 9. Point-get query performance.

Fig. 10. Large-range scan query performance.

Fig. 11. Small-range scan query performance.

8.4. Update performance

We use the update queries that follow the uniform distribution
to measure the update performance. The performance results of the
update operation are depicted in Fig. 12. The average latency increases
1.9× with the transactional requests increasing from 1000 tps to 10000
tps. Meanwhile, the 99.9th percentile latency increases from 10.4 ms
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Fig. 12. Update query performance.

Fig. 13. Real-time analytic performance.

o 72.8 ms. In the experiment, write conflicts gradually appear as
he number of concurrent update requests increases. The reason for
his experimental phenomenon is that TiDB uses the pessimistic model
y default, and the ‘‘autocommit’’ option is enabled. A transaction is
nitially committed as an optimistic transaction and then, if a write
onflict occurs, as a pessimistic transaction. If there are violent write
onflicts, it is recommended to disable ‘‘autocommit’’ option.

.5. Aggregate performance

Q2 and Q6 return the number of rows retrieved. When analytical
equests per second are less than 4000 tps, the average latency of Q2
nd Q6 is around four milliseconds. As shown in Figs. 5 and 6, the
aximum 99.9th percentile latency for Q2 is 34.39 ms, and that for
6 is 26.79 ms. Q6 has a greater peak throughput and a shorter tail

atency than Q2 due to the fact that Q2 requires more calculations.
or data aggregation, TiDB implements the hash aggregation operator
nd the stream aggregation operator. The SQL engine uses the stream
ggregation operation to deal with the COUNT(*) function. The stream
ggregation operator requires less memory than the stream aggregation
perator.

.6. Hybrid performance

.6.1. Performance isolation evaluation
To investigate the performance isolation issue, we deploy the 𝑇 𝑖𝐾𝑉

nd 𝑇 𝑖𝐹 𝑙𝑎𝑠ℎ instances on the same server. We employ read-only queries
9

for the performance isolation evaluation to prevent the interference
of data update propagation. 𝑇 𝑎𝑏𝑙𝑒𝑅𝑎𝑛𝑔𝑒𝑆𝑐𝑎𝑛 and 𝑆𝑡𝑟𝑒𝑎𝑚𝐴𝑔𝑔 are the
operators utilized for the large-range scan and aggregate queries, re-
spectively. The send rate of the Q5 remains constant while the sending
rate of the aggregate inquiries steadily increases from 100 tps to 400
tps in the first set of experiments, as shown in Fig. 7. The send rate
of the Q2 remains constant in the second set of experiments, as shown
in Fig. 8, while the sending rate of the scan queries steadily increases
from 100 tps to 400 tps. As the sending rate of interference inquiries
rises, the latency of scan and aggregate queries remains relatively
constant within the error bounds. Even when placed on the same
server, there is not much performance interference between 𝑇 𝑖𝐾𝑉
and 𝑇 𝑖𝐹 𝑙𝑎𝑠ℎ instances when there is no resource competition between
mixed workloads.

8.6.2. Real-time analytic evaluation
We deploy the 𝑇 𝑖𝐾𝑉 and 𝑇 𝑖𝐹 𝑙𝑎𝑠ℎ instances in the same server to

guarantee the analytical query analyzes the fresh transactional data
as soon as possible. To minimize interference, the 𝑇 𝑖𝐾𝑉 and 𝑇 𝑖𝐹 𝑙𝑎𝑠ℎ
instances are deployed on the different solid-state drives. We keep the
analytical requests per second constant, increasing the proportion of
updated data to guarantee an increasing proportion of fresh data that
analytical requests can access. As shown in Fig. 13, the number of
update requests per second rises from 100 to 400 tps. The send rate of
the analytical queries remains constant, and we collect the analytical
queries’ latency results. A low number of concurrent requests avoids
performance interference between update and aggregate queries, which
is demonstrated in Section 8.6.1. Both the average and 99.9th per-
centile latency rise by more than a factor of one due to the propagation
of data updates. The average latency of analytical queries is 52.26 ms,
and the 99.9 percentile delay is 320.04 ms when the send rate of
update queries is 400 tps. The aforementioned performance results
indicate that TiDB can complete real-time analytics in 500 ms without
transferring data updates across nodes.

9. Conclusion

This paper involves a thorough introduction of HTAP database
strategies for enhancing performance isolation and real-time analytics.
In addition, we compare state-of-the-art and best-practice HTAP bench-
marks in terms of schema model, workloads, and evaluation metrics.
The CBTR, OLxPBench, HATtrick, ADAPT, and HAP benchmarks all
use the semantically consistent schema. OLxPBench is innovative and
provides a hybrid transaction that executes the analytical statement be-
tween the online transaction. And HATtrick contributes the throughput
frontier and freshness metrics.

Currently, HTAP databases are severely lacking in micro-bench-
marks to precisely manage read and write ranges. Consequently, we
implement a micro-benchmark in Section 7 to measure the performance
isolation and real-time analytics capabilities of HTAP databases. When
the number of concurrent requests is modest, the performance of trans-
actional and analytical instances on the same server does not interfere
with one another. The propagation of data updates on the same node
promotes the preservation of analytical data’s freshness. Moreover,
rigorous resource partitioning between transactional and analytical
instances may facilitate dual-format HTAP databases to support both
performance isolation and real-time analytics.
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