
BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100092
Contents lists available at ScienceDirect

BenchCouncil Transactions on Benchmarks,
Standards and Evaluations

journal homepage: www.keaipublishing.com/en/journals/benchcouncil-transactions-on-
benchmarks-standards-and-evaluations/

Review article

Enabling hyperscale web services
Akshitha Sriraman
Carnegie Mellon University, United States of America

A R T I C L E I N F O

Keywords:
Hyperscale computing
Computer architecture
Software systems

A B S T R A C T

Modern web services such as social media, online messaging, and web search support billions of users, requiring
data centers that scale to hundreds of thousands of servers, i.e., hyperscale. The key challenge in enabling
hyperscale web services arise from (1) an unprecedented growth in data, users, and service functionality and
(2) a decline in hardware performance scaling. We highlight a dissertation’s contributions in bridging the
software and hardware worlds to realize more efficient hyperscale services despite these challenges.

Contents

1. Introduction ... 1
2. Research goals and limitations of the state-of-the-art ... 2
3. Key research contributions... 2
4. Future directions .. 5

Declaration of competing interest ... 5
References.. 5
1. Introduction

Modern web services such as social media, online messaging, web
search, video streaming, and online banking often support billions
of users, requiring data centers that scale to hundreds of thousands
of servers, i.e., hyperscale [2]. In fact, the world continues to expect
hyperscale computing to drive more futuristic, complex applications
such as virtual reality, self-driving cars, conversational AI, and the
Internet of Things. This survey paper highlights technologies detailed
in the author’s PhD dissertation [1] that will enable tomorrow’s web
services to meet the world’s expectations.

The key challenge in enabling hyperscale web services arises from
two important trends. First, over the past few years, there has been a
radical shift in hyperscale computing due to an unprecedented growth
in data [3], users [4], and service functionality [5]. Second, modern
hardware can no longer support this growth in hyperscale trends due
to a steady decline in hardware performance scaling [6]. To enable
this new hyperscale era, hardware architects must become more aware
of hyperscale software requirements and software researchers can no
longer expect unlimited hardware performance scaling. In short, sys-
tems researchers can no longer follow the traditional approach of
building each layer of the stack separately. Instead, they must rethink
the synergy between the software and hardware worlds. The disser-
tation [1] creates such a synergy to enable future hyperscale web
services.

E-mail address: akshitha@cmu.edu.
1 When using the ‘‘we’’ pronoun, we refer to the author’s dissertation’s contributions [1].

The dissertation [1] bridges the software and hardware worlds,
demonstrating the importance of that bridge in realizing efficient hy-
perscale web services via solutions that span the systems stack. The
specific goal is to (1) design software that is aware of new hardware
constraints and (2) architect hardware that efficiently supports new
software requirements. To this end, the dissertation [1] spans two
broad thrusts: (1) a software and (2) a hardware thrust to analyze the
complex software and hardware hyperscale design space to develop
efficient cross-stack solutions for hyperscale computation.

In the software thrust, the dissertation [1] contributes 𝜇Suite, the
first open-source benchmark suite of modern web services built with a
new hyperscale software paradigm [7]. Next, we1 use 𝜇Suite to study
software threading design implications in light of today’s hardware re-
ality and identify new insights in the age-old research area of software
threading [8]. Driven by these insights, we demonstrate how software
threading models must be redesigned at hyperscale by presenting an
automated approach and tool, 𝜇Tune, that makes intelligent threading
decisions during system runtime [8].

In the hardware thrust, the dissertation [1] architects both com-
modity and custom hardware to efficiently support hyperscale software
needs. First, we study the shortcomings in commodity hardware run-
ning hyperscale services, revealing insights that influenced commercial
CPUs [9]. Based on these insights, we present a design tool, SoftSKU,
that enables cheap commodity hardware to efficiently support new
https://doi.org/10.1016/j.tbench.2023.100092
Received 20 December 2022; Received in revised form 4 March 2023; Accepted 12
Available online 1 April 2023
2772-4859/© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
March 2023

KeAi Communications Co. Ltd. This is an open access article under the CC

https://doi.org/10.1016/j.tbench.2023.100092
https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tbench.2023.100092&domain=pdf
mailto:akshitha@cmu.edu
https://doi.org/10.1016/j.tbench.2023.100092
http://creativecommons.org/licenses/by-nc-nd/4.0/

A. Sriraman BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100092

a
p
s
r
W
(
a
m
s
2
v
s
c
o
t
l
i
s

t
s
h
a
t
t

b
e
𝜇
m
p
a
r
f
r
G

o
i
s
s
s
v

w
o
t
d

hyperscale software paradigms, improving the efficiency of real-world
services that serve billions of users, saving millions of dollars, and
meaningfully reducing the carbon footprint [9].

Next, the dissertation [1] studies how custom hardware must be
designed at hyperscale, resulting in industry-academia benchmarking
efforts, commercial hardware changes, and improved software devel-
opment [2]. Based on this study’s insights, the dissertation presents
Accelerometer , an analytical model that estimates realistic gains from
hardware customization [10].

2. Research goals and limitations of the state-of-the-art

Current software and hardware systems were conceived when we
had scarce compute resources, limited data and users, and easy
hardware performance scaling. These assumptions are not true today.
Today, the world is undergoing a technological revolution where web
services require hyperscale data centers to efficiently process requests
from billions of users. These hyperscale services are facing an un-
precedented growth in data [3], users [4], and functionality [5].
Unfortunately, hyperscale computing is emerging at a time when
hardware is facing a steady decline in performance scaling [11].

Today, to enable web services, systems researchers typically fol-
low the traditional approach of building each systems stack layer
separately. As examples, in the application layer, to support the un-
precedented growth in data, users, and functionality, there is shift
towards a granular, modular application architecture, with services
built with distributed application paradigms like microservices and
serverless [12–16]. In the software layers, there is a shift towards
light-weight abstractions (e.g., containers) [17–20] in place of heavy-
weight ones (e.g., virtualization) [21,22]. In the hardware layer, due to
the decline in hardware performance scaling, there is a shift towards
building specialized hardware for various ‘‘killer’’ services [23–26].

To design efficient computing systems in light of modern hyperscale
service trends and today’s hardware reality, systems researchers can
no longer afford to build each layer of the stack separately. In short,
computer architects must now be aware of software requirements,
and software developers can no longer expect continued hardware
performance scaling. For example, in addition to the state-of-the-art
trend of building custom hardware [23–25], architects must now build
hardware that is aware of new service paradigms (e.g., microservices)
and software trends (e.g., new threading models). Hence, the disserta-
tion’s [1] first research goal is to rethink the synergy between the software
and hardware worlds from the ground up.

The main challenge in establishing synergy between software and
hardware is a large and complex software and hardware design space
that makes it intractable to manually identify optimal designs. For
example, we discovered that the software threading design space has
complex implications induced by the decline of hardware performance
scaling, making it impractical for an expert software developer to
manually identify the best threading design [8].

Manually navigating this vast and complex design space to make
efficient design decisions is often intractable at hyperscale as (1) design
implications vary across service loads, (2) trial-and-error methods or
experience-based intuition do not systematically capture design space
implications, (3) service code evolves quickly, (4) synthetic exper-
iments do not capture production behavior, etc. Hence, to enable
futuristic web services, we must achieve the dissertation’s [1] second
research goal of automatically navigating, i.e., self-navigating, the complex
software and hardware hyperscale design space.

Given the widespread need for web services, to achieve both these
research goals, it is critical to devise mechanisms that can automatically
(1) bring new hardware insights when designing software stack layers
and (2) draw on fundamental software design principles to systemati-
cally architect the hardware layer. Hence, the dissertation [1] bridges the
software and hardware worlds, demonstrating the importance of that bridge
in enabling hyperscale web services via efficient self-navigating solutions that
2

span the systems stack. Our vision is to (1) redesign web service software
based on new overheads induced by the decline in hardware performance
scaling and (2) rearchitect data center commodity and custom hardware to
support new software requirements due to the unprecedented growth in data,
users, and services.

To achieve this research vision in a way that self-navigates the
complex software and hardware design space, the dissertation [1] spans
two thrusts: (1) a software and (2) a hardware thrust. In the software
thrust, we ask: how do we design hyperscale web service software based
on today’s hardware overheads? In the hardware thrust, we ask: how do
we architect data center commodity and custom hardware to support
the unprecedented growth in hyperscale software trends? It is critical to
systematically answer both questions to enable tomorrow’s hyperscale
web services.

3. Key research contributions

We detail the dissertation’s [1] key contributions below.
Enabling the study of modern web services. Modern web services

re increasingly built using microservice architectures, wherein a com-
lex web service is composed of numerous distributed microservices
uch as HTTP connection termination, key–value serving [27], query
ewriting [28], access-control management, and protocol routing [29].
hereas monoliths face greater than 100 ms Service Level Objectives

SLOs) (e.g., ∼300 ms for web search [30]), microservices must often
chieve sub-ms SLOs (e.g., ∼100 μs for protocol routing [31]), as many
icroservices must be invoked serially to serve a user’s query. Hence,

ub-ms–scale OS/network overheads (e.g., a context switch cost of 5–
0 μs [32]) are often insignificant for monoliths. However, the microser-
ice regime differs fundamentally: OS/network overheads (e.g., context
witches, network protocol delays, inefficient thread wakeups, and lock
ontention) that are often minor with monolithic request service times
f 100s of milliseconds, can dominate microservice latency distribu-
ions. For example, even a single 20 μs context switch implies a 20%
atency penalty for a request to a 100 μs-response latency protocol rout-
ng microservice [31]. Hence, it is critical to revisit prior conclusions on
ub-ms–scale OS/network overheads for the microservice regime [33].

Initially, there existed no representative, open-source benchmarks
o study microservices. Widely-used academic data center benchmark
uites [34,35], were unsuitable for characterizing sub-ms–scale over-
eads in microservices as they use monolithic rather than microservice
rchitectures and largely have request service times that are greater
han 100 ms. Hence, there was a real need for open-source benchmarks
hat enable the study of microservices.

To study microservices, as part of the dissertation’s software contri-
utions, it introduces the first open-source benchmark suite of end-to-
nd modern web services composed of microservices, called 𝜇Suite [7].
Suite includes four end-to-end web services: a content-based high di-
ensional search for image similarity—HDSearch, a replication-based
rotocol router for scaling fault-tolerant key–value stores—Router,
service for performing set algebra on posting lists for document

etrieval—Set Algebra, and a user-based item recommender system
or predicting user ratings—Recommend. 𝜇Suite has been used by
esearchers in academia and industry (e.g., MIT, UIUC, UT Austin,
eorgia Tech, Cornell, ARM, and Intel).

The dissertation uses 𝜇Suite to study the OS/network performance
verheads incurred by microservices. This study reveals that threading
nteractions with the OS and network layers introduce microsecond-
cale overheads that significantly affect microservices, but are in-
ignificant to their monolithic counterparts. Hence, intelligent thread
cheduling and better threading models can greatly improve microser-
ice performance.

Redesigning software based on underlying data center hard-
are constraints. The dissertation’s study of OS/network performance

verheads using 𝜇Suite showed that microservices can benefit from bet-
er threading designs. These threading-induced overheads are due to to-
ay’s hardware reality, where network devices have sped up while CPU

A. Sriraman BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100092

b

p
a
o
d
d
c

h
s
c
c
t
s
s
h
t
p
a
t
w
n

t
f
e
d
a
p
m
w
p
o
C
i
m

p
f
t
a
m
s
a
𝜇
p
h

A
m
p
s

f
t
m
e

m
m
s
m
a
h
a
e
m

a
p
‘
S
t
p
s
w
c
(
p
a
c

a

Fig. 1. 𝜇Tune’s latency compared to existing techniques [37,38]: 𝜇Tune lowers latency
y 1.9×.

erformance scaling has nearly stopped [36]. Today, a CPU thread’s
ccesses to the underlying OS/network stacks cause threading-induced
verheads that arise from thread contention on locks, thread wakeup
elays, and context switching. Hence, analyzing software threading
esigns’ implications and rethinking threading models for modern mi-
roservices has become a deeply important problem.

To study threading-induced software overheads that arise due to
ardware constraints, there is a need to systematically analyze the
ub-ms–scale OS and network overheads that arise from threading and
oncurrency design decisions. As part of the dissertation’s software
ontributions [1], we use 𝜇Suite to systematically introduce and charac-
erize a taxonomy of threading models [8]. This taxonomy is composed of
oftware threading dimensions commonly used to build a microservice,
uch as synchronous or asynchronous RPCs, in-line or dispatched RPC
andlers, and interrupt- or poll-based network reception. We also vary
hread pool sizes dedicated to the various functionalities, i.e., network
olling, RPC handling, and response execution. These threading design
xes yield a rich space of microservice software threading architectures
hat interact with the underlying OS and hardware in starkly varied
ays. Hence, this threading taxonomy and analysis enables expert and
ovice developers alike to guide their service threading designs.

The dissertation [1] makes the important observation that no single
hreading model is best across all load conditions, paving the way
or an automatic load adaptation system that tunes threading mod-
ls to improve performance. Specifically, our threading model study
emonstrates that the relationship between optimal threading model
nd service load is complex—one could not expect a developer to
ick the best threading model a priori. For example, at low load,
odels that poll for network traffic perform best, as they avoid thread
akeup delays. Conversely, at high load, models that separate network
olling from RPC execution enable higher service capacity and blocking
utperforms polling for incoming network traffic as it avoids wasting
PU on fruitless poll loops. Hence, exploiting these inherent thread-

ng model trade-offs during system runtime can significantly improve
icroservice latency.

To exploit threading trade-offs at runtime, the dissertation [1]
resents and makes open source a system, 𝜇Tune [8], that features a
ramework that builds upon open-source RPC platforms [39] to abstract
hreading model design from service code. 𝜇Tune’s second feature is
n intelligent run-time system that determines load via event-based
onitoring and automatically adapts to time-varying service load by

elf-navigating the threading design space, i.e., tuning threading models
nd scaling thread pool sizes. As shown in Fig. 1, both features enable
Tune to dynamically reduce microservice latency by 1.9× over static
eak load-sustaining threading models (that an expert developer might
ave picked) and state-of-the-art adaptation techniques [37,38,40].

Architecting commodity hardware for new service paradigms.
t global user population scale, key web services composed of nu-
erous microservices can account for an enormous installed base of
hysical hardware. For example, across Facebook’s global server fleet,

even key microservices in four service domains run at hyperscale, n

3

Fig. 2. Variation in system-level & architectural traits across microservices: Production
microservices face diverse bottlenecks.

occupying a large portion of the fleet [9]. In light of this new mi-
croservice software paradigm, it is important to answer the question:
do commodity server platforms serve microservices well? Are there
common bottlenecks across microservices that we might address when
designing future server architectures?

To identify whether commodity hardware efficiently supports mi-
croservices, the dissertation [1] undertakes comprehensive system-level
and architectural analyses of Facebook’s key production microservices
serving live traffic. As shown in Fig. 2, we find that service functionality
distribution across microservices has resulted in enormous diversity
in system (e.g., request latency and CPU utilization) and architectural
requirements (e.g., Instructions Per Cycle and LLC code misses per
kilo instruction), with new CPU bottlenecks (e.g., high I/O processing
latency and I-cache misses). Our identified bottlenecks made hardware
vendors reconsider the benchmarks they used for decades to evaluate
new servers.

As examples, we find that caching microservices [41] require in-
tensive I/O and microsecond-scale response latency and frequent OS
context switches constitute 18% of CPU time. In contrast, a Feed [42]
microservice computes for seconds per request with minimal OS inter-
action. Facebook’s Web [43] microservice exhibits massive instruction
ootprints, leading to astonishing I-cache misses and branch mispredic-
ions, while other microservices exhibit smaller code footprints. Some
icroservices depend heavily on floating-point performance while oth-

rs have no floating-point instructions.
The great diversity in hardware bottlenecks across microservices

ight suggest a strategy to specialize CPU architectures to suit each
icroservice’s distinct needs. However, hyperscale enterprises have

trong economic incentives to limit hardware platforms’ diversity to (1)
aintain fungibility of hardware resources, (2) preserve procurement

dvantages that arise from economies of scale, and (3) limit the over-
ead of qualifying/testing myriad hardware platforms. As such, there is
n immediate need for strategies that extract greater performance from
xisting commodity server architectures to efficiently support diverse
icroservices on commodity hardware.

As part of the dissertation’s hardware contributions, it introduces
n automated approach and tool to improve hyperscale microservice
erformance on cheap commodity server architectures (often called

‘SKUs’’, short for ‘‘Stock Keeping Units’’) [9]. This approach called
oftSKU is a design-time strategy that tunes coarse-grain (e.g., boot
ime) OS and hardware configuration knobs available on commodity
rocessors to help a processor platform or SKU better support its as-
igned microservice. OS and CPUs provide several specialization knobs;
e focus on seven: (1) core frequency, (2) uncore frequency, (3) active

ore count, (4) code vs. data prioritization in the last-level cache ways,
5) hardware prefetcher configuration, (6) use of transparent huge
ages, and (7) use of statically-allocated huge pages. The dissertation
lso proposes new CPU knobs (e.g., Branch Target Buffer ways) that
an be made configurable to create finer-grained soft SKUs.

Manually identifying a microservice-specific SoftSKU is impractical
s the design space is large, code evolves quickly, synthetic load tests do

ot often capture production behavior, and the effects of tuning a single

A. Sriraman BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100092

S
c
e
c
(
e
e
o
o
s
f
o
h

a
a
a
a
t
i
i
t
a
i

h
t
h
r
o
o
f
s

t
b
e
r
c
e
t
A

a
p
o
(
w

t
t
l
b
d

•

I

knob are often small. Hence, we build an automated design tool—
𝜇SKU—that self-navigates the hardware configuration design space to
optimize a hardware SKU for each microservice. 𝜇SKU automatically
varies configurable server knobs, by searching within a predefined
design space via A/B testing, where it compares the performance of two
identical servers that differ only in their knob configuration. 𝜇SKU col-
lects copious fine-grain performance measurements while conducting
automated A/B tests on production systems serving live traffic to search
for statistically significant performance gains. We evaluate 𝜇SKU on hy-
perscale production microservices and show that the ensuing soft SKUs
outperform stock and production server configurations by up to 7.2%
and 4.5% respectively, with no additional hardware requirement [9].

SoftSKU demonstrates that before resorting to hardware customiza-
tion, there is still significant performance to be extracted from cheap
commodity CPUs by tuning their OS and hardware knobs. In this
manner, soft SKUs significantly improve the performance efficiency of
real-world Facebook microservices that serve billions of users, saving
millions of dollars and meaningfully reduce the global carbon foot-
print [44]. Since this work [9], several hyperscale enterprises have
dedicated teams of engineers to explore additional configurable hard-
ware/OS soft-SKU knobs (e.g., SIMD width).

Architecting custom hardware for new service paradigms. The
oftSKU work [9] revealed that microservices are so diverse that they
ould benefit from custom hardware. In fact, to improve hardware
fficiency, several architects today work on developing numerous spe-
ialized hardware accelerators for important microservice domains
e.g. Machine Learning tasks). Designing such custom hardware accel-
rators for each microservice operation might improve performance or
nergy. However, designing custom hardware for each microservice
peration is prohibitively expensive at hyperscale since data center
perators lose procurement advantages that arise from economies of
cale and must also develop and test on myriad custom hardware plat-
orms. Hence, an important question arises: which microservice software
perations consume the most CPU cycles and are worth accelerating in the
ardware?

To build specialized accelerators for these key microservice oper-
tions, it is important to first systematically identify which type of
ccelerator meets microservice requirements and is worth designing
nd deploying. Deploying specialized hardware is risky at hyperscale,
s the hardware might under-perform due to performance bounds from
he microservice’s software interaction with the hardware, resulting
n high monetary losses. To make well-informed hardware decisions,
t is crucial to systematically answer the following question early in
he design phase of a new accelerator to determine whether the new
ccelerator is worth designing: how much can the accelerator realistically
mprove its targeted microservice overhead?

To answer the first question posed above, we undertake a compre-
ensive study of how microservices spend their CPU cycles (as part of
he dissertation’s hardware contributions). In Fig. 3, we study seven key
yperscale Facebook microservices in four diverse service domains that
un across hundreds of thousands of servers, occupying a large portion
f the global server fleet. Our study reveals that microservices spend
nly a small fraction of CPU cycles executing their main application
unctionality (e.g., a Machine Learning task); the remaining cycles are
pent in common orchestration overheads, i.e., operations that are not

critical to the main microservice functionality (e.g., I/O notification,
logging, and compression). Accelerating such common building blocks
can greatly improve performance. Already, a few hardware vendors
have used this study’s insights to influence hardware customization for
orchestration overheads [2] (e.g., this study’s insights brought about
the Intel’s Infrastructure Processing Unit [45]).

Our characterization drove a hardware vendor to consider more rep-
resentative benchmarks (in place of traditional ones used for decades)
when evaluating hardware designs [2]. This study resulted in an
industry-academia joint collaborative effort to design and open-source
representative data center benchmarks. Additionally, our characteriza-

tion tool has been integrated into Facebook’s fleet-wide performance i

4

Fig. 3. Breakdown of cycles spent in Facebook production service operations:
Orchestration overheads are significant and common.

monitoring infrastructure; it curates statistics from hundreds of thou-
sands of servers to help developers visualize the performance impact of
their code changes at hyperscale [2].

To answer the second question posed above, we develop Accelerom-
eter ,2 an analytical model for hardware acceleration [10]. Accelerometer
estimates realistic gains from hardware acceleration by self-navigating
the various performance bounds that arise from a microservice’s soft-
ware interactions with the hardware. Accelerometer identifies perfor-
mance bounds and design bottlenecks early in the hardware design
cycle, and provides insight into which hardware acceleration strategies
may alleviate these bottlenecks.

Accelerometer models both synchronous and asynchronous microser-
vice software interactions for three hardware acceleration strategies—
on-chip, off-chip, and remote. It assumes an abstract system with (1)
a host : a general-purpose CPU, (2) an accelerator : custom hardware
o accelerate a kernel, and (3) an interface: the communication layer
etween the host and the accelerator (e.g., a PCIe link). It mod-
ls the microservice throughput speedup and the per-request latency
eduction. We validate Accelerometer ’s utility via three retrospective
ase studies conducted on production systems, by comparing model-
stimated speedup with real service speedup—Accelerometer estimates
he real microservice speedup with an error that is ≤3.7%. We also use
ccelerometer to project speedup with new accelerators.

As services evolve, Accelerometer’s generality makes it more suit-
ble in determining new hardware requirements early in the design
hase. Since we validated Accelerometer in production and made it
pen-source, it has been adopted by many hyperscale enterprises
e.g., with developing encryption/compression accelerators) to make
ell-informed hardware decisions [2].

Overall, the dissertation’s primary, unique contribution is bridging
he software and hardware worlds and demonstrating the importance of
hat bridge in realizing efficient hyperscale services via cross-stack so-
utions. Specifically, through the software and hardware contributions
elow, we realize efficient services from analytical models on paper to
eployment at hyperscale.

Software contributions.

– The dissertation is the first to present an open-source benchmark
suite of microservices that facilitates future academic and industry
research [7].

2 Accelerometer was recognized for its long-term impact potential with an
EEE Micro Top Picks distinction (one of top 12 computer architecture papers
n 2020) [2].

A. Sriraman BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100092
– The dissertation identifies new insights in the age-old research area
of software threading models that led to redesigning threading
models for hyperscale web services [8].

• Hardware contributions.

– The dissertation analyzes shortcomings in commodity hardware
running hyperscale services that influenced the design of commer-
cial CPUs [9].

– The dissertation demonstrates how commodity hardware can be
used efficiently to enable hyperscale services that led to real-
world data centers prioritizing this approach over today’s hardware
customization trend [9].

– The dissertation presents a systematic understanding of hardware
customization opportunities at hyperscale that enabled industry-
academia joint benchmarking efforts, influenced commercial hard-
ware design, and improved software development [2,10].

– The dissertation presents a rigorous, analytical alternative to ad hoc
hardware customization approaches that enabled real-world hyper-
scale data centers to make well-informed hardware investments [2,
10].

4. Future directions

There are many exciting avenues of future work that follow from the
research presented in the dissertation; some of these are summarized
below.

Enabling cross-stack designs for emerging service paradigms.
Apart from the microservice paradigm studied in the dissertation [1],
modern web systems are being built with newer service paradigms
such as serverless. Each new paradigm introduces unique overheads
that affect hyperscale efficiency. For example, unlike microservices,
serverless systems introduce new inefficiencies from container launch
and warm-up delays, increased communication, and greater scalability
issues. Techniques developed in the dissertation can help future systems
support emerging service paradigms.

Rethinking hardware–software co-design for hyperscale over-
heads. The dissertation’s study of real-world microservices revealed
several system overheads that particularly arise at hyperscale. The
dissertation’s work reduced a few predominant overheads such as I-
cache misses and I/O event notification. Going forward, there is a need
to optimize other overheads identified in the dissertation. For example,
apart from improving I/O event notification, we must optimize the
end-to-end I/O processing path to efficiently (1) receive/send a large
number of I/O, (2) operate the CPU when awaiting IO and (3) process
large I/O just as well as small I/O transfers.

Mitigating the killer microsecond problem in modern services.
As the dissertation [1] shows, modern servers have mechanisms to ef-
fectively hide nanosecond-scale stalls (e.g., OoO cores) and millisecond-
scale stalls (e.g., context switching), but lack efficient support to
hide microsecond-scale stalls that critically affect modern services. To
mitigate microsecond-scale stalls (often called the ‘‘killer microsec-
ond’’ [46]), we must study various microsecond-scale accesses’ (e.g.,
modern networking, non-volatile memories, and accelerator accesses’)
impact on efficiency, to develop cross-stack solutions. For example, we
must build ‘‘microsecond-aware’’ stacks with reduced lock contention,
fast interrupts, efficient spin-polling, and better scheduling.

Using machine learning to self-navigate the hyperscale design
space. As the hyperscale software/hardware design space continues
to become more complex, we foresee empirical systems leveraging
recent improvements in ML models to manage design complexity, to
use ML techniques to self-navigate complex software/hardware design
spaces such as resource allocation, request scheduling, and bottleneck

identification.

5

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

[1] Enabling Hyperscale Web Services (Ph.D. thesis).
[2] A. Sriraman, A. Dhanotia, Understanding acceleration opportunities at

hyperscale, IEEE Micro (2021).
[3] What’s causing the exponential growth of data? https://insights.nikkoam.com/

articles/2019/12/whats_causing_the_exponential.
[4] Digital 2020: 3.8 billion people use social media. https://wearesocial.com/blog/

2020/01/digital-2020-3-8-billion-people-use-social-media.
[5] The Top 12 future web development trends in 2021. https://dev.to/

adhyaswarnali/the-top-12-future-web-development-trends-in-2021-25k5.
[6] G.E. Moore, Cramming More Components onto Integrated Circuits, McGraw-Hill,

New York, 1965.
[7] A. Sriraman, T.F. Wenisch, 𝜇Suite: A benchmark suite for microservices, in: IEEE

International Symposium on Workload Characterization, 2018.
[8] A. Sriraman, T.F. Wenisch, 𝜇Tune: Auto-tuned threading for OLDI microservices,

in: USENIX Conference on Operating Systems Design and Implementation, 2018.
[9] A. Sriraman, A. Dhanotia, T.F. Wenisch, SoftSKU: Optimizing server architectures

for microservice diversity @scale, in: The International Symposium on Computer
Architecture, 2019.

[10] A. Sriraman, A. Dhanotia, Accelerometer: Understanding acceleration opportu-
nities for data center overheads at hyperscale, in: International Conference on
Architectural Support for Programming Languages and Operating Systems, 2020.

[11] M.M. Waldrop, The chips are down for Moore’s law, Nat. News 530 (7589)
(2016) 144.

[12] A brief history of microservices. https://www.dataversity.net/a-brief-history-of-
microservices/.

[13] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno, J.
Hu, B. Ritchken, B. Jackson, K. Hu, M. Pancholi, Y. He, B. Clancy, C. Colen,
F. Wen, C. Leung, S. Wang, L. Zaruvinsky, M. Espinosa, R. Lin, Z. Liu, J.
Padilla, C. Delimitrou, An open-source benchmark suite for microservices and
their hardware-software implications for cloud & edge systems, in: International
Conference on Architectural Support for Programming Languages and Operating
Systems, 2019.

[14] S. Kanev, K. Hazelwood, G.-Y. Wei, D. Brooks, Tradeoffs between power man-
agement and tail latency in warehouse-scale applications, in: IEEE International
Symposium on Workload Characterization, 2014.

[15] N. Dmitry, S.-S. Manfred, On micro-services architecture, Int. J. Open Inf.
Technol. (2014).

[16] I. Nadareishvili, R. Mitra, M. McLarty, M. Amundsen, Microservice architecture:
Aligning principles, practices, and culture, 2016.

[17] About DPDK. https://www.dpdk.org/about/.
[18] A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis, E. Bugnion, IX: A

protected dataplane operating system for high throughput and low latency, in:
USENIX Conference on Operating Systems Design and Implementation, 2014.

[19] M. Marty, M. de Kruijf, J. Adriaens, C. Alfeld, S. Bauer, C. Contavalli, M. Dalton,
N. Dukkipati, W.C. Evans, S. Gribble, N. Kidd, R. Kononov, G. Kumar, C. Mauer,
E. Musick, L. Olson, E. Rubow, M. Ryan, K. Springborn, P. Turner, V. Valancius,
X. Wang, A. Vahdat, Snap: A microkernel approach to host networking, in: ACM
Symposium on Operating Systems Principles, 2019.

[20] Key components of a software defined data center. https://www.evolvingsol.
com/2018/04/17/components-software-defined-data-center/.

[21] Dawn of the data center operating system. https://www.infoworld.com/article/
2906362/dawn-of-the-data-center-operating-system.html.

[22] Containers. https://a16z.com/2015/01/22/containers/.
[23] A. Putnam, A.M. Caulfield, E.S. Chung, D. Chiou, K. Constantinides, J. Demme,

H. Esmaeilzadeh, J. Fowers, G.P. Gopal, J. Gray, M. Haselman, S. Hauck, S.
Heil, A. Hormati, J.-Y. Kim, S. Lanka, J. Larus, E. Peterson, S. Pope, A. Smith, J.
Thong, P.Y. Xiao, D. Burger, A reconfigurable fabric for accelerating large-scale
datacenter services, in: International Symposium on Computer Architecuture,
2014.

[24] N.P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin, C. Chao, C. Clark, J.
Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T.V. Ghaemmaghami, R. Gottipati,
W. Gulland, R. Hagmann, C.R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J.
Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N.
Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G.
MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami,
R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross,
A. Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg,
A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R.
Walter, W. Wang, E. Wilcox, D.H. Yoon, In-datacenter performance analysis of a
tensor processing unit, in: International Symposium on Computer Architecture,
2017.

http://refhub.elsevier.com/S2772-4859(23)00009-1/sb1
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb2
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb2
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb2
https://insights.nikkoam.com/articles/2019/12/whats_causing_the_exponential
https://insights.nikkoam.com/articles/2019/12/whats_causing_the_exponential
https://insights.nikkoam.com/articles/2019/12/whats_causing_the_exponential
https://wearesocial.com/blog/2020/01/digital-2020-3-8-billion-people-use-social-media
https://wearesocial.com/blog/2020/01/digital-2020-3-8-billion-people-use-social-media
https://wearesocial.com/blog/2020/01/digital-2020-3-8-billion-people-use-social-media
https://dev.to/adhyaswarnali/the-top-12-future-web-development-trends-in-2021-25k5
https://dev.to/adhyaswarnali/the-top-12-future-web-development-trends-in-2021-25k5
https://dev.to/adhyaswarnali/the-top-12-future-web-development-trends-in-2021-25k5
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb6
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb6
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb6
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb7
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb7
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb7
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb8
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb8
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb8
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb9
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb9
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb9
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb9
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb9
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb10
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb10
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb10
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb10
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb10
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb11
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb11
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb11
https://www.dataversity.net/a-brief-history-of-microservices/
https://www.dataversity.net/a-brief-history-of-microservices/
https://www.dataversity.net/a-brief-history-of-microservices/
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb13
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb13
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb13
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb13
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb13
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb13
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb13
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb13
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb13
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb13
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb13
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb13
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb13
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb14
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb14
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb14
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb14
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb14
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb15
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb15
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb15
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb16
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb16
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb16
https://www.dpdk.org/about/
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb18
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb18
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb18
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb18
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb18
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb19
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb19
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb19
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb19
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb19
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb19
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb19
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb19
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb19
https://www.evolvingsol.com/2018/04/17/components-software-defined-data-center/
https://www.evolvingsol.com/2018/04/17/components-software-defined-data-center/
https://www.evolvingsol.com/2018/04/17/components-software-defined-data-center/
https://www.infoworld.com/article/2906362/dawn-of-the-data-center-operating-system.html
https://www.infoworld.com/article/2906362/dawn-of-the-data-center-operating-system.html
https://www.infoworld.com/article/2906362/dawn-of-the-data-center-operating-system.html
https://a16z.com/2015/01/22/containers/
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb23
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb23
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb23
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb23
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb23
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb23
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb23
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb23
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb23
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb23
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb23
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb24
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb24
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb24
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb24
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb24
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb24
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb24
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb24
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb24
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb24
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb24
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb24
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb24
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb24
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb24
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb24
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb24
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb24
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb24
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb24
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb24
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb24
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb24
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb24
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb24

A. Sriraman BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100092
[25] E. Chung, J. Fowers, K. Ovtcharov, M. Papamichael, A. Caulfield, T. Massengill,
M. Liu, D. Lo, S. Alkalay, M. Haselman, M. Abeydeera, L. Adams, H. Angepat,
C. Boehn, D. Chiou, O. Firestein, A. Forin, K.S. Gatlin, M. Ghandi, S. Heil, K.
Holohan, A. El Husseini, T. Juhasz, K. Kagi, R.K. Kovvuri, S. Lanka, F. van
Megen, D. Mukhortov, P. Patel, B. Perez, A. Rapsang, S. Reinhardt, B. Rouhani,
A. Sapek, R. Seera, S. Shekar, B. Sridharan, G. Weisz, L. Woods, P. Yi Xiao, D.
Zhang, R. Zhao, D. Burger, Serving DNNs in real time at datacenter scale with
project brainwave, IEEE Micro 38 (2) (2018) 8–20.

[26] B. Abali, B. Blaner, J. Reilly, M. Klein, A. Mishra, C.B. Agricola, B. Sendir, A.
Buyuktosunoglu, C. Jacobi, W.J. Starke, H. Myneni, C. Wang, Data compression
accelerator on IBM POWER9 and Z15 processors, in: International Symposium
on Computer Architecture, 2020.

[27] B. Fitzpatrick, Distributed caching with memcached, Linux J. (2004).
[28] M. Barhamgi, D. Benslimane, B. Medjahed, A query rewriting approach for web

service composition, IEEE Trans. Serv. Comput. (2010).
[29] Mcrouter. https://github.com/facebook/mcrouter.
[30] B. Vamanan, J. Hasan, T. Vijaykumar, Deadline-aware datacenter TCP (D2TCP),

in: ACM SIGCOMM Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication, 2012.

[31] Y. Zhang, D. Meisner, J. Mars, L. Tang, Treadmill: Attributing the source of tail
latency through precise load testing and statistical inference, in: International
Symposium on Computer Architecture, 2016.

[32] D. Tsafrir, The context-switch overhead inflicted by hardware interrupts (and the
enigma of do-nothing loops), in: Workshop on Experimental Computer Science,
2007.

[33] L. Barroso, M. Marty, D. Patterson, P. Ranganathan, Attack of the killer
microseconds, Commun. ACM (2017).

[34] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic, C.
Kaynak, A.D. Popescu, A. Ailamaki, B. Falsafi, Clearing the clouds: A study of
emerging scale-out Workloads on modern hardware, in: International Conference
on Architectural Support for Programming Languages and Operating Systems,
2012.
6

[35] PerfKit benchmarker. https://github.com/GoogleCloudPlatform/PerfKitBenchmar
ker.

[36] A. Danowitz, K. Kelley, J. Mao, J.P. Stevenson, M. Horowitz, CPU DB: Recording
microprocessor history, Commun. ACM (2012).

[37] M.E. Haque, Y.h. Eom, Y. He, S. Elnikety, R. Bianchini, K.S. McKinley, Few-to-
many: Incremental parallelism for reducing tail latency in interactive services, in:
International Conference on Architectural Support for Programming Languages
and Operating Systems, 2015.

[38] T.F. Abdelzaher, N. Bhatti, Web server QoS management by adaptive content
delivery, in: International Workshop on Quality of Service, 1999.

[39] gRPC. https://github.com/heathermiller/dist-prog-book/blob/master/chapter/1/
gRPC.md.

[40] K. Langendoen, J. Romein, R. Bhoedjang, H. Bal, Integrating polling, interrupts,
and thread management, in: Symposium on the Frontiers of Massively Parallel
Computing, 1996.

[41] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov, H. Ding, J. Ferris, A.
Giardullo, S. Kulkarni, H.C. Li, et al., TAO: Facebook’s distributed data store for
the social graph, in: USENIX Annual Technical Conference, 2013.

[42] M. Zuckerberg, R. Sanghvi, A. Bosworth, C. Cox, A. Sittig, C. Hughes, K.
Geminder, D. Corson, Dynamically providing a news feed about a user of a
social network. https://patents.google.com/patent/US7669123B2/en.

[43] G. Ottoni, HHVM JIT: A profile-guided, region-based compiler for PHP and hack,
in: Conference on Programming Language Design and Implementation, 2018.

[44] Accelerometer & SoftSKU: Improving HW performance for diverse microservices.
https://engineering.fb.com/data-center-engineering/accelerometer-and-softsku/.

[45] P. Kummrow, The IPU: A new, strategic resource for cloud service
providers, 2021, https://itpeernetwork.intel.com/ipu-cloud/. [Online; accessed
22-August-2021].

[46] A. Mirhosseini, A. Sriraman, T.F. Wenisch, Enhancing server efficiency in the
face of killer microseconds, in: International Symposium on High Performance
Computer Architecture, 2019.

http://refhub.elsevier.com/S2772-4859(23)00009-1/sb25
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb25
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb25
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb25
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb25
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb25
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb25
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb25
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb25
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb25
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb25
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb25
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb25
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb25
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb25
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb26
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb26
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb26
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb26
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb26
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb26
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb26
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb27
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb28
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb28
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb28
https://github.com/facebook/mcrouter
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb30
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb30
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb30
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb30
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb30
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb31
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb31
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb31
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb31
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb31
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb32
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb32
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb32
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb32
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb32
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb33
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb33
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb33
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb34
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb34
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb34
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb34
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb34
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb34
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb34
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb34
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb34
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb36
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb36
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb36
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb37
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb37
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb37
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb37
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb37
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb37
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb37
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb38
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb38
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb38
https://github.com/heathermiller/dist-prog-book/blob/master/chapter/1/gRPC.md
https://github.com/heathermiller/dist-prog-book/blob/master/chapter/1/gRPC.md
https://github.com/heathermiller/dist-prog-book/blob/master/chapter/1/gRPC.md
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb40
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb40
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb40
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb40
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb40
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb41
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb41
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb41
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb41
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb41
https://patents.google.com/patent/US7669123B2/en
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb43
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb43
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb43
https://engineering.fb.com/data-center-engineering/accelerometer-and-softsku/
https://itpeernetwork.intel.com/ipu-cloud/
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb46
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb46
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb46
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb46
http://refhub.elsevier.com/S2772-4859(23)00009-1/sb46

	Enabling hyperscale web services
	Introduction
	Research goals and limitations of the state-of-the-art
	Key research contributions
	Future directions
	Declaration of Competing Interest
	References

