BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100108

Contents lists available at ScienceDirect E?.“:”e“.fé’h“,zi','kl"‘s“éi%‘;?s:
KeAS BenchCouncil Transactions on Benchmarks, i
Re/M Standards and Evaluations

GLOBAL IMPACT
journal homepage: www.keaipublishing.com/en/journals/benchcouncil-transactions-on-

benchmarks-standards-and-evaluations/

Full length article

SNNBench: End-to-end Al-oriented spiking neural network benchmarking n

Fei Tang *, Wanling Gao updates

Research Center for Advanced Computer Systems, State Key Lab of Processors, Institute of Computing Technology, Chinese Academy of Sciences, China
University of Chinese Academy of Sciences, China

ARTICLE INFO ABSTRACT
Keywords: Spiking Neural Networks (SNNs) show great potential for solving Artificial Intelligence (AI) applications. At the
Spiking Neural Networks preliminary stage of SNNs, benchmarks are essential for evaluating and optimizing SNN algorithms, software,

Artificial Intelligence
Deep learning
Benchmarking

and hardware toward Al scenarios. However, a majority of SNN benchmarks focus on evaluating SNN for
brain science, which has distinct neural network architectures and targets. Even though there have several
benchmarks evaluating SNN for Al they only focus on a single stage of training and inference or a processing
fragment of a whole stage without accuracy information. Thus, the existing SNN benchmarks lack an end-to-end
perspective that not only covers both training and inference but also provides a whole training process to a
target accuracy level.

This paper presents SNNBench—the first end-to-end Al-oriented SNN benchmark covering the processing
stages of training and inference and containing the accuracy information. Focusing on two typical Al
applications: image classification and speech recognition, we provide nine workloads that consider the typical
characteristics of SNN, i.e., the dynamics of spiking neurons, and Al i.e., learning paradigms including super-
vised and unsupervised learning, learning rules like backpropagation, connection types like fully connected,
and accuracy. The evaluations of SNNBench on both CPU and GPU show its effectiveness. The specifications,
source code, and results will be publicly available from https://www.benchcouncil.org/SNNBench.

1. Introduction that models and simulates computational neuroscience to understand
the principles of the nervous system [6]. In contrast to the evaluation

Spiking neural networks (SNNs) have gained considerable attention of SNNs in Al, brain science evaluation focuses on more accurate
as a novel technology under development and are considered the simulations of neural models. This includes capturing voltage variations
third generation of ANNs [1]. Compared to the second-generation— over time and reproducing spike statistics with high precision, often
DNNs, SNNs are more closely aligned with biological neural networks employing the highly complex Hodgkin-Huxley neuron model [7]. In
and use Spll.(ll’lg neurons as comquatlonal units. T.hus, SNNs Sup- contrast, SNNs used for Al applications prioritize the ability to solve
port processing time-series information naturally, without requiring specific Al problems over accurately simulating the behavior of real
additional structures like Recurrent Neural Networks (RNNs), indi-

X neural models, including voltage variance and spike activity. As a
cating a huge potential for time-series tasks like speech and natural .

. . result, these SNNs often rely on simple neural models such as the leaky
language processing. Moreover, unlike the DNNs that perform layer-by- . . . s .
K . . integrate-and-fire (LIF) model [8] which, due to its simple structure, is
layer computations, SNNs are driven by sparse spiking events and can

. k K . easy to train while still retaining important spike features [9]. Hence,
achieve high parallelism through asynchronous computations. Overall, he benchmarks for brain sci it th uati . f
SNNs promise to achieve higher performance, lower power consump- the benc 'mar $ tor brain sc1en9e cannot suit .t'e evaluation of SNNs for

Al [10] since they do not consider the specific Al problems and have

tion, and stronger expression ability [2], making them a compelling -t ”
option for a wide range of Al applications. At the preliminary stages of ~ distinct neural network architectures and targets.

SNNs, benchmarks lay the foundation for exploring the design space of On the other hand, two benchmarks have been proposed to evaluate
corresponding algorithms, systems, and architectures. However, exist- the SNNs for AI [11,12]. One benchmark from Ostrau et al. [11] focuses
ing SNN benchmarks cannot fulfill the benchmarking requirements of ~ on the inference stage by converting a pre-trained DNN model to an
the Al scenarios considering the complexities of training and inference SNN model and providing accuracy information. However, it does not
and the tradeoff between high performance and high model accuracy. consider the training phase or other learning rules. Although another

On the one hand, most SNN benchmarks mainly focus on brain benchmark from Kulkarni et al. [12] includes both the training and
science evaluation [3-5], which is a mainstream research direction inference stages, it employs much simpler neural network architectures

* Corresponding author.
E-mail addresses: tangfei@ict.ac.cn (F. Tang), gaowanling@ict.ac.cn (W. Gao).

https://doi.org/10.1016/j.tbench.2023.100108

Received 2 March 2023; Received in revised form 25 April 2023; Accepted 8 May 2023

Available online 12 May 2023

2772-4859/© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.tbench.2023.100108
https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tbench.2023.100108&domain=pdf
https://www.benchcouncil.org/SNNBench
mailto:tangfei@ict.ac.cn
mailto:gaowanling@ict.ac.cn
https://doi.org/10.1016/j.tbench.2023.100108
http://creativecommons.org/licenses/by-nc-nd/4.0/

F. Tang and W. Gao

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100108

Table 1
Implications from SNNBench.
Method Learning Rule Support Unsupervised Learning Achieve State-of-the-Art Accuracy Accuracy Loss Easy to Use Stable Scalability Well Mapped to GPUs
Train from scratch STDP Yes No Not appl@cahle No . No No No
Surrogate Backprop No Yes Not applicable Medium Yes Yes Yes
Converted from pre-trained models ~ DNN-to-SNN Not applicable? Yes Low Yes MediumP Partial® Partial®

@Depends on original DNNs.
bDepends on conversion quality, influenced by factors like DNN architecture and conversion methods.

CDepends on original DNNs and conversion quality.

Table 2
SNNBench and other relevant SNN benchmarks.
Kulkarni et al. Ostrau et al. SNNBench

pomain G 7 T
Learning paradigm %%gﬁgelﬁ\e/idse d j
One-to-one v
Connection type - £0Y LoMmar / 7
Recurrent v
STDP v
Learning rule %Eli\lclléﬁlggla\]gl\?tion n v j
Reservoir v
Evolutionary e
Number of different spiking neurons 1 1 2
Inference v v v
Training to quality v
Open source X v v
Number of workloads 5 5 9

aThis benchmark mentioned the backpropagation-based learning rule while
only provided the inference stage (forward pass).
bpartial training process without accuracy information.

compared to realistic ones and simulates only a partial training process.
Consequently, it does not offer any accuracy information, which is
a crucial metric for Al. Moreover, even with a long enough training
process, these neural network architectures are not verified to achieve
convergent accuracy. In this condition, they fail to evaluate the training
and inference performance of SNN comprehensively, and further cannot
answer these questions: (1) how to design systems and architectures
for SNN that achieve both high performance and high accuracy? (2)
whether to train an SNN model or convert one from a pre-trained DNN
model? (3) how to choose different training strategies like supervised
or unsupervised, recurrent connection or fully connection?

In this paper, we propose an end-to-end Al-oriented benchmark-
ing methodology. Here end-to-end has two-fold meanings: end-to-end
evaluation for a real-world Al problem that covers both training and
inference stages; end-to-end training that considers diverse strategies
and achieves a target accuracy. Based on the methodology, we propose
SNNBench, the first end-to-end Al-oriented SNN benchmark. Focusing
on two typical Al applications: image classification and speech recogni-
tion, SNNBench provides nine workloads that cover the representative
characteristics of SNN and Al Specifically, from the perspective of
SNN, we consider the dynamics of spiking neurons. In terms of Al,
we consider diverse training strategies, including learning paradigms,
i.e., supervised and unsupervised learning, four typical connection
types, i.e., one-to-one, fully connected, convolutional, and recurrent,
and three widely-used learning rules, i.e., STDP, backpropagation, and
DNN-to-SNN. Table 2 provides a comparison of SNNBench with the
other two relevant benchmarks.

Our experiments show the effectiveness of SNNBench. Through the
evaluations on both CPU and GPU, we have several observations as
follows:

(1) The workload characterization on SNNBench shows its diversity
and representativeness. The workloads within SNNBench cover
ten groups of diverse operators and have different dominant
ones. Moreover, the experiments show the good reproducibility
of SNNBench.

(2) Different from the previous work [13], we find that using STDP
learning rule (88%) is hard to achieve the state-of-the-art con-
vergence accuracy (99.91%) compared to the backpropagation
(98%) and conversion-based learning rules (96.72%). Moreover,
the convergence accuracies using STDP have much larger fluc-
tuations than the other two rules, with a standard deviation
higher than 2.4%, while the value is below 0.3% for the other
two. In terms of the training cost, to train the same number of
images, using STDP occupies 73X longer time compared to using
backpropagation and 1559X compared to using conversion.

(3) GPU is not always the best for SNN. In our experiments, we
found that when the number of neurons in a layer of SNN is
small, like 400, the CPU performs better than the GPU. This
could be due to the small size of the SNN networks, which
leads to short GPU computation times that cannot offset the
synchronization overhead between the CPU and GPU, or the
software framework used for simulating SNNs may not be op-
timally designed for exploiting the full potential of GPUs. For
recurrent networks, the training time on GPU using LIF neurons
is 1.37 times that of on CPU. Using LSNN neurons, the gap is 1.22
times. In future work, we plan to explore larger SNN networks
and further optimization of both the software framework and the
mapping of SNN workloads to the GPU hardware.

(4) Even though SNNs have great potential for asynchronous paral-
lelism, the corresponding hardware, software systems, and SNN
network architectures fail to exploit this advantage and thus face
poor inter-operator and intra-operator scalability currently.

Based on experiments from SNNBench, we present some insights
from SNNBench in Table 1. Surrogate backpropagation and conversion-
based methods are recommended, as they can achieve comparable
accuracy to DNNs and require minimal modifications to existing DNNs.
However, using surrogate backpropagation necessitates choosing suit-
able smooth functions and loss functions, which may require some
professional expertise. There are existing conversion tools to convert
DNNs to SNNs, so one may not even need to modify the existing DNNs,
but the conversion quality can be affected by various factors. If only
unlabeled data is available, STDP is the only choice, as it supports
unsupervised learning, but it suffers from instability issues. We also
find that the surrogate backpropagation method can utilize GPUs, while
STDP is not well-mapped to GPUs.

We organize the rest of the paper as follows. Section 2 explains the
related work. Section 3 illustrates the design methodology and imple-
mentation of SNNBench. Section 4 shows the experiments. Finally, we
draw a conclusion in Section 5.

2. Related work

Several benchmarks have been proposed to study computational
neuroscience, which employs mathematical models and computer sim-
ulations to understand how electrical and chemical signals process
and represent information in the brain [6]. Brette et al. [3] simulated
a network containing 4000 neurons, 80% of which were excitatory
and 20% were inhibitory neurons, randomly connected with a prob-
ability of 2%. They proposed four benchmarks, each with the same
network architecture but different combinations of spiking neurons
and synaptic types, and provided simulation specifications that include

F. Tang and W. Gao

Hodgkin-Huxley (HH) and integrate-and-fire (IF) neuron models, as
well as current-based and conductance-based synaptic types. These
simulations were implemented using different simulators. Tikidji-
Hamburyan et al. [4] simulated two networks, called Classical Pyra-
midal InterNeuron Gamma (PING) [14] and PostinhIbitory Rebound-
InterNeuron Gamma (PIR-ING) [15]. These two networks are imple-
mented using LIF and HH neurons, respectively. Van Albada et al. [5]
modeled a network under one mm? of the surface of generic early
sensory cortex, organized into multiple layers, including 77,169 neu-
rons connected via approximately 3 x 10% synapses, which is a huge
network for simulation for that time. The network architectures in these
benchmarks are biologically realistic; they are not directly applicable
to SNNs for Al, as spiking neuron models used for ANNs are highly
abstract and only include basic features of spiking neurons, such as
spike trains, thresholds, and spike firing. Thus, these computational
neuroscience benchmarks are unsuitable for evaluating SNNs for Al

There are also some benchmarks for Al tasks. Kulkarni et al. [12]
selected five workloads to evaluate the performance of simulators and
claimed that the benchmark could represent computer science and
machine learning workloads instead of computational neuroscience.
However, whether the network architecture used in the workload can
achieve reasonable accuracy on real-world tasks has not been validated,
which fails to reflect the state-of-the-art or state-of-the-practice works.
Additionally, it only simulates the training or inference process, adopts
indirect metrics such as operations per second, and ignores accuracy.
Ostrau et al. [11] uses a converted SNN model from DNNs to measure
the performance of neuromorphic hardware. It completely neglects the
training process on neuromorphic hardware. And converting DNNs to
SNNs is only one method of using SNNs, lacking the representativeness
of different learning rules. These two benchmarks only cover a few
aspects of SNNs oriented toward Al This paper proposes a comprehen-
sive and representative SNN benchmarking methodology—SNNBench.
Table 2 lists these two benchmarks and SNNBench.

3. SNNBench design and implementation

In this section, we first introduce the requirements of SNN bench-
marks and then illustrate the SNNBench methodology. Finally, we
present the implementation of SNNBench in detail.

3.1. The requirements for SNN benchmarks

The existing SNN benchmarks either focus on brain science bench-
marking instead of the ability to solve AI problems or only cover
a partial evaluation of these abilities. Hence, we aim to benchmark
the SNNs for real-world applications like artificial intelligence. To
achieve this goal, the SNN benchmark needs to satisfy the following
requirements.

(1) Covering representative real-world applications. A benchmark
should have relevance to its target domain [16]. Thus, we should
choose representative tasks and datasets for evaluation.

(2) Covering the typical characteristics of SNN. The SNN benchmark
should consider the dynamics of spiking neurons, which contain
the change of the membrane potential and firing spikes. Mean-
while, considering the benchmark is Al-oriented, suitable spiking
neuron models should be selected.
Covering the typical characteristics of deep learning. On the
one hand, the benchmark should consider different learning ap-
proaches, like supervised, unsupervised, semi-supervised, and re-
inforcement learning. On the other hand, the benchmark should
contain both training and inference phases. Important factors
should be considered for different phases, like the diverse learn-
ing rules, spiking neurons, connection types, etc.

3

=

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100108

(4) Meeting the reproducibility and usability requirements of bench-
marking. Reproducibility is of great significance for both bench-
marking and deep learning communities. For benchmarking,
good reproducibility guarantees the fairness and consistency of
the evaluation results. For deep learning, considering its stochas-
tic intrinsic [17], good reproducibility assures the stability of
the performance and accuracy. Usability is another requirement
for benchmarking. The benchmarks should be simple and have
affordable evaluation costs [18].

3.2. SNNBench methodology

The methodology underpinning SNNBench is illustrated in Fig. 1.
SNNBench represents an end-to-end benchmarking methodology in two
distinct aspects. Firstly, it encompasses both training and inference,
providing a comprehensive solution for AI tasks. Secondly, it trains
the model to the target accuracy (to a convergent state) instead of
simply mimicking a limited number of training iterations, which would
be insufficient as accuracy can only be determined upon reaching the
convergent state.

SNNBench selects representative Al tasks and datasets from vision,
speech, and natural language processing (NLP) domains. Two represen-
tative tasks — image classification and speech recognition — and their
corresponding datasets are chosen. Image data serves as an exemplar
of static data, while speech data exemplifies temporal data.

In addition, SNNBench takes into account the characteristics of
both SNNs and deep learning, including training paradigms, connection
types, spiking neurons, and learning rules. Training paradigms encom-
pass supervised and unsupervised learning. While supervised learning
is widely employed in deep learning, unsupervised learning is less
common in recognition tasks. However, due to learning rules such as
STDP in SNNs, unsupervised learning can be applied to recognition
tasks. Consequently, it is crucial to consider training paradigms.

SNNs exhibit various neuron organization types, and we select rep-
resentative connection types from [13], as well as other commonly used
connection types in deep learning. We exclude connection types that
employ reservoir computing and evolutionary optimization learning
rules (c and d in Fig. 2 in [19]) because these rules are infrequently
used, and there is a promising trend toward combining deep learning
and SNNs [20-23].

Moreover, SNNBench should account for different spiking neu-
rons. Ultimately, SNNBench primarily includes learning rules such
as STDP learning, surrogate backpropagation, and DNN-to-SNN con-
version, while excluding reservoir computing and evolutionary opti-
mization for the same reasons stated earlier regarding the choice of
connection types.

SNNBench also addresses benchmarking requirements of usabil-
ity and reproducibility. Further details on the methodology will be
provided in this section.

3.2.1. Considering an end-to-end solution for Al tasks

The basic paradigm of Al is to train a model using the training
dataset first and then make inferences on the test dataset. It is well-
known that training and inference are different. The most significant
difference is that training involves weight updating and even the evo-
lution of network architectures, such as neural architecture search [24]
and evolutionary optimization [25]. On the other hand, weights and
architecture remain unchanged during inference. Hence, they have
different workload characteristics, as verified in Section 4.2. As a di-
rect result, hardware architectures designed for training and inference
differ, like various DNN accelerators. If one only considers one of
the phases, it may mislead the hardware design. Therefore, it is not
sufficient to only consider training or inference.

F. Tang and W. Gao

Training

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100108

Al Domains and Datasets

a. ! Vision Speech NLP

 Static Data Temporal Data

g o

i One-to-One
Cat Dog
o & — i

Fully Connected

o
o

S
N

DI
— 1

T After

0

T Before

Inference

STDP

Supervised Vision Tasks

fo &

Recurrent Convolutional

) v spike firing
Unsupervised Vision Tasks
threshold x1
Good Bad
H H

oA L Xz
IIIIIII' 'lll'l'llll Dynamics of Spiking Neurons
L Jd 4

Supervised Speech Tasks

Representative Tasks and Datasets Connection Types and Spiking Neurons

Shaded: SNN Features White: Deep Learning Features

Surrogate Backpropagation

High Accuracy Model

Mapping
—_—

DNN-to-SNN

Learning Rules

Fig. 1. SNNBench methodology. SNNBench is an end-to-end benchmarking methodology designed to cover both training and inference phases for SNNs while training the model
to the target accuracy. (a) SNNBench selects representative tasks and datasets from vision, speech, and NLP domains, as well as static (image) and temporal (speech) data (upper
part of (a)), while considering different training paradigms—supervised and unsupervised learning (bottom part of (a)). (b) A variety of network architectures can be built by
combining different connection types, including one-to-one, fully connected, recurrent, and convolutional (upper and middle parts of (b)), and spiking neurons (bottom part of (b),
where the potential dynamics of LIF neurons are used to represent spiking neurons). (c) SNNBench also takes into account different learning rules, such as STDP (upper part of

(c), where connections are strengthened if pre-synaptic spikes occur before post-synaptic spikes, and vice versa), surrogate backpropagation (middle part of (c)), and DNN-to-SNN
conversion (bottom part of (c)). (d) Once trained to the target accuracy (and converted to an SNN model if necessary), a high-accuracy SNN model is obtained. (e) The SNN model

can then be employed to perform inference tasks on test data.

3.2.2. Training the model to the target accuracy

Many benchmarks use indirect metrics like operations per second
because they are easy to measure. However, these metrics may not
reflect whether a hardware system can solve real Al tasks. Different
design strategies like float point precision can lead to non-objective
assessments. For example, a hardware system that achieves high op-
erations per second may not be able to train to the target accuracy
if it adopts a low float point precision implementation. To address
this issue, SNNBench trains the model to the target accuracy and uses
accuracy as an important metric.

3.2.3. Covering representative real-world applications

SNNBench is designed for AI applications and focuses on image
classification and speech recognition as benchmarking tasks. These
two tasks are widely used in deep learning and serve as representa-
tive benchmarks. The benchmark suite includes state-of-the-art, state-
of-the-practice, classical spiking neural architectures that are widely
accepted and highly cited in SNN research. For the image classifica-
tion task, SNNBench uses the Modified National Institute of Standards
and Technology (MNIST) handwritten digits database [26]. For the
speech recognition task, SNNBench uses the Speech Commands v2
dataset [27], which contains 105,829 audio files of spoken words and
is widely used for simple speech recognition tasks.

3.2.4. Covering the typical characteristics of SNN

The SNNBench benchmark suite is designed to represent the typical
characteristics of SNNs. SNNs use spike timing as the input and encode
it as a series of O s and 1 s that indicate whether a post-synaptic neuron
has received a spike from the pre-synaptic neuron at a given time.
Upon receiving a spike, the membrane potential of the post-synaptic
neuron increases. If it reaches a threshold, the neuron fires a spike,
resetting the potential to the resting potential. The post-synaptic neuron
is unresponsive to incoming spikes during the subsequent refractory
period.

Many different neural models range from simple LIF models to
complex Hodgkin-Huxley models. While more complex models are
more accurate in simulating the neurons in the brain, they also have
more parameters, which can make them difficult to train in a neural

network. As a result, LIF-based models are widely used in the AI field
due to their simplicity. These models have been implemented in various
neuromorphic architectures, such as IBM’s TrueNorth [28] and Intel’s
Loihi [29]. Complex models like the Hodgkin-Huxley model contain
many components suitable for studying neural dynamics but are too
complex to implement in cognitive neuromorphic architectures.

Therefore, SNNBench focuses on LIF-based spiking neurons and
provides different LIF-based models for comparison in the speech recog-
nition task.

3.2.5. Covering the typical characteristics of deep learning

SNNBench is a benchmark suite designed specifically for AI appli-
cations and, therefore, must capture the essence of deep learning. It
covers multiple facets of Al including various phases of learning, learn-
ing types, learning rules, and connection types. Unlike previous works
that only consider the inference phase, SNNBench includes both the
training and inference phases. The four primary types of Al learning are
supervised, unsupervised, semi-supervised, and reinforcement learning.
SNNBench supports supervised and unsupervised learning and plans
to incorporate reinforcement learning in a future release. Supervised
learning is the dominant paradigm in artificial intelligence, but its
reliance on manual labeling of data presents a challenge in terms of
cost and scalability. On the other hand, unsupervised learning does not
require labeled data and more closely resembles how the brain learns.

Three main learning rules are used to train SNNs: spike-timing—
dependent plasticity (STDP), surrogate backpropagation, and DNN-to-
SNN conversion. The STDP learning rule is based on the biological
principle of spike-timing-dependent plasticity [13] and is most sim-
ilar to the way the brain learns. Backpropagation, which has been
widely used in traditional ANNs and has produced remarkable results
in fields such as computer vision, natural language processing, and
robotics, cannot be directly applied to SNNs due to the discrete and
non-differentiable nature of spikes. However, some variants of back-
propagation, such as surrogate backpropagation, have been proposed
and have achieved performance close to the state-of-the-art on some
datasets [19]. The DNN-to-SNN conversion method involves mapping
the weights of an DNN to spike firing probabilities. Common techniques
to mitigate accuracy loss include using the ReLU [30] activation func-
tion, fixing the bias to zero during training, weight normalization, and

F. Tang and W. Gao

Table 3

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100108

Workloads from SNNBench. Except for Image-Conversion, which only includes inference workloads, all other workloads consist of both training and inference workloads, resulting

in a total of 9 workloads.

Benchmark Task Dataset Network layout Learning Spiking Connection Learning rule Spike encod- Accuracy Note
paradigm neuron type ing
. One input layer, one X Fully connected, . STDP learning strategy is
Image-STDP Image classification ~ MNIST excitatory layer and Unsupervised LIF One-to-one STDP Rate encoding 95% more similar as the brain
one inhibitory layer works, and this task is
the representative of the
unsupervised task
Image-Backprop Image classification MNIST Two — convolutional Supervised LIF Convolutional Surrogate Rate encoding 95% US‘?‘g surrogate backpropa-
layers and one fully Backpropaga- gation is another common
connected layer tion way to use SNN
Image- Image MNIST Three fully Supervised LIF Convolutional Backpropagation Rate encod- 95% One commonly method to
Conversion classification connected layers ing use SNN
. Google Speech One input layer, one . Surrogate . " Recurrent SNN with
Speech-LIF Speech recognition Commands v2 recurrent layer and Supervised LIF Recurrent Backpropaga- Rate encoding 90% the LIF neuron
one readout layer tion
. Google Speech One input layer, one . Surrogate . o Recurrent SNN with
Speech-LSNN Speech recognition Commands v2 recurrent layer and Supervised LSNN Recurrent Backpropaga- Rate encoding 90% the LSNN neuron

one readout layer

tion

threshold tuning [31,32]. This conversion-based approach has achieved
competitive performance compared to traditional DNNs and is widely
used. SNNBench includes workloads with all three learning rules.

In the brain, neurons with similar functions are organized into
a neural population group. Similarly, in deep learning, neurons are
organized layer-by-layer into distinct connection types, such as fully
connected, convolutional, and recurrent layers. SNNBench provides
workloads with different connection types to take advantage of the
mature and efficient connection types developed in deep learning.

3.2.6. Meeting the reproducibility and usability requirements of benchmark-
ing

To ensure the reproducibility and usability of our benchmarks,
we have taken several steps to address the intrinsic stochastic nature
of AL Firstly, Al algorithms typically rely on randomness, such as
choosing a random initial state for training and shuffling the input
data, to enhance their robustness. However, these methods can also
make it challenging to reproduce benchmark results. Secondly, the
operations used in deep learning algorithms, such as convolution and
matrix multiplication, have various implementations, which can further
increase the volatility of benchmark results [33]. To mitigate this, we
have set the same random seed for all benchmarks, including PyTorch,
Python, and NumPy random libraries, ensuring that the initial states
and input order remain consistent with each run. We have also disabled
the cuDNN benchmarking feature that selects the most efficient convo-
lution implementation in time. Instead, we have made PyTorch choose
a deterministic algorithm for all operations, ensuring that the same
algorithms and implementations are used for each run. Additionally,
to improve usability, we have used Docker to set up a consistent
experiment environment for each run of the benchmark.

3.3. SNNBench implementation

Table 3 outlines the workloads from SNNBench, which includes
image classification and speech recognition tasks. The MNIST dataset is
utilized for the image classification task, while the Google Speech Com-
mands v2 dataset is used for the speech recognition task, both of which
are described in detail in Section 3.2.3. Except for Image-Conversion,
which only contains inference workload, all the benchmarks contain
both training and inference workloads. In this subsection, we delve into
the implementation of SNNBench.

3.3.1. Image-STDP

This benchmark involves an image classification task that trains an
SNN network using the STDP learning rule. We have selected the most
classic and widely cited STDP learning rule [13], which is represen-
tative of unsupervised learning tasks and has significantly impacted
subsequent research. Our implementation is based on the BindsNet
framework [34].

The network architecture consists of input, excitatory, and in-
hibitory layers, and the excitatory and inhibitory layer contain the
same number of neurons. The input layer contains 28 x 28 neurons,
corresponding to the MNIST dataset’s image size. The excitatory and in-
hibitory layers simulate excitatory and inhibitory neurons, respectively.

The connection between the input layer and the excitatory layer
is a fully connected one, while the connection between the excitatory
and inhibitory layers follows a one-to-one map-style pattern, with each
inhibitory neuron connecting to all excitatory neurons except the one
it is connected to. The input layer accepts 28 x28 spike trains generated
using a Poisson distribution, where the parameter « is proportional to
the corresponding pixel’s intensity.

Workload #1: Image-STDP Training workload uses the STDP
learning rule to update the synaptic weights, where stronger connec-
tions are formed if pre-synaptic neurons consistently lead to post-
synaptic neurons firing, and weaker connections are formed if the
opposite is true. This reflects the impulsiveness of the brain, where
some neurons enhance the reaction while others prevent it. The ex-
citatory and inhibitory neurons both have LIF behavior but opposite
weight-updating strategies. We check the accuracy of every iteration
and train the model to the convergent state, and check if it reaches the
target accuracy.

Workload #2: Image-STDP Inference workload uses the trained
model to infer on the test dataset. After training, the label of the image
that elicits the most firing in a neuron is assigned to that neuron. During
inference, the label of the image is assigned based on the most fired
neurons. Counting the spiking distributions can get the inference result.

We study the STDP learning rule in different scales by implementing
SNNs with 100, 400, 1600, and 6400 neurons in the excitatory and
inhibitory layers.

3.3.2. Image-Backprop

This benchmark is also an image classification task but uses surro-
gate backpropagation. Backpropagation is the basis of the success of
deep learning, and large models and big-volume data can be trained
using this learning rule. However, backpropagation cannot be directly
applied to SNNs because of the non-differentiable spikes. Even though
the STDP learning rule can be used to train SNNs, the training has
many problems that need to be solved; for example, the neurons close
to the output layer rarely fire in deep SNNs so that SNNs’ networks
cannot be constructed as deep as current deep neural networks. Since
the lack of efficient learning rules, many researchers have focused on
training SNNs through backpropagation using a workaround approach.
Surrogate gradient descent is one of the popular methods. It replaces
the non-differentiable part with a differentiable function, for example,
using an approximate function to replace the derivative of the spike to
the membrane potential. SuperSpkie [35] is one of the representatives
of this method. It uses the fast sigmoid function to approximate the
Dirichlet function of firing spikes so that the gradient can be calculated
in the backward pass. And it does not modify the forward pass, so the

F. Tang and W. Gao

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100108

Image-STDP (Train) | 6 6 0 |14| 0 [13

Image-Backprop (Train) [6 | 3 |2 |2 |0 |[0|2]|0|6|0|0|O0]|O

Image-Conversion (Train) | 1 4 0 3 0 2 2 0|10 5 4 0 0

Speech-LIF (Train)

ofi1(0|j0f(fO0O)O}f212|JO0Of(O0O)JO|O|O]O(O]|11

Speech-LSNN (Train) |14 8 | 2 13| 0 | 0 | O 1 (11| 4 (4|0 O

ofi1(0j0f(fO0O)O}f12|JO0Of(0O|)2|O0|0O]O0(O0]|11

Image-STDP (Infer) | 9 | 4 0 8 2 2 6 0

3|4|10(0|6(O0Of(O0O|O0O|JO|O|OfOfOfO]|O

Image-Backprop (Infer) | 7 3 0 2 0 0 6 0 7 0 0 0 0

B [=

Image-Conversion (Infer) | 5 6 0|9 0 0|10(0|10]| 1 5

w
N
o
o
o
=]
=]
o
o
o
o
o
o
o
o

Speech-LIF (Infer) [11 10| 5 |11 | 1 2|3 3 ojo0Of|O0OfO0]2 0 1 ojo|fojojJojo|lO]jOfO]|O .
Speech-LSNN (Infer) |13 |11 | 4 (10 | 1 0 2 2 5 3 0 0 0 0 2 0 1 0 0 0 0 4 0 0 1 0 |14
e > I = c c o > c =) o = =l =2l o = =) =) o | B o kel [K= c 5 5
258 5|5 2|8 g Elgs 2§ 28 EwrE ZIEIE|IR|IT S L E|S 5 B
v B 5] = 910 ® F N g £ S |a|o 3 £ £ = 5 £ 4 &g
g 2 o 85 & ¢ 3 & < F o = B S|¥ | o 2 = 3 |3
—= s|3 & 2 g ©-w g w0 2o 5 s | E[&[S|2 2 % ° fox}
3 3 3 g © G £ =z s I elv 9 o z 2
2 = 3 o @ - s ©
o s] a
A B C D E F G H]

Fig. 2. Operator heatmap of SNNBench. All operators are divided into ten groups: Pointwise (A), BLAS (B), Math (C), Tensor-Related (including Creation, Indexing, Slicing, Joining,
and Mutating) (D), Sampling (E), Pooling (F), Backward (G), Activation (H), Layer-Computing (I), and Data-Loading (J), as depicted in the bottom part of the figure. The left part
displays individual workloads, with “(Train)” indicating a training workload and “(Infer)” indicating an inference workload. The time cost of each operator is counted, and the
numbers in the grid represent the percentage of time consumed by each operator for each workload. To enhance visibility, a deeper color is used to indicate a larger percentage.

network architecture is similar to DNN, except it has different com-
puting units. We adopt an implementation that is a simple convolution
network containing two convolution and max pooling layers and a fully
connected layer as the output layer. All the computing units are LIF
neurons.

Workload #3: Image-Backprop Training workload uses the fast
sigmoid to smooth the spiking train and trains the neural work using
backpropagation.

Workload #4: Image-Backprop Inference workload does not
involve the smoothing progress used in the training workload, and it
directly computes the result through the forward pass.

3.3.3. Image-Conversion

This benchmark is an image classification task that uses the DNN-to-
SNN conversion method, which is one of the strategies to overcome the
challenge of training SNNs. The conversion-based method trains a DNN
model first and then maps the trained model to an SNN model. The
common approach to mapping deep neural networks (DNNs) to spiking
neural networks (SNNs) is to replace real values in the DNNs with
spiking frequencies and to replace activation functions with spiking
neurons. In the training phase, Diehl et al. [32] use ReLUs as acti-
vation functions for all network units and eliminate biases. The ReLU
function ensures that the values are non-negative, which SNNs cannot
represent, while the biases are fixed at zero. To further improve the
performance of the SNN, Diehl et al. use two weight normalization
methods: model-based normalization and data-based normalization.
Model-based normalization normalizes weights based on the trained
model’s weights, while data-based normalization normalizes weights
based on the training data. In this workload, a multi-layer perception
network with three layers is used, and each layer is followed by a
ReLU activation function except for the output layer. The DNN model is
trained to convergence, then converted to an SNN model and normal-
ized using data-based normalization. The converted SNN model is then
used for inference on the test dataset. This conversion-based method is
a popular approach to overcoming the challenges of training SNNs and
has attracted much attention from researchers.

Workload #5: Image-Conversion Inference workload is per-
formed after converting the trained DNN model to the SNN model. We
also check the accuracy drop after converting.

3.3.4. Speech-LIF and Speech-LSNN

We present two benchmarks that use the same network architecture
and learning rule but with different spiking neurons to assess the impact
on performance. Both workloads utilize the surrogate backpropagation

method and LIF-based neurons. One workload uses traditional LIF
neurons, while the other uses the LSNN neuron, a LIF variant with
adaptive thresholds that are dynamic during training but fixed during
inference. Additionally, we evaluate a workload that uses standard
activation functions as computing units, serving as the baseline for deep
neural network (DNN) performance.

Workload #6: Speech-LIF Training workload uses the recurrent
neural network, is built with LIF neurons, and uses the surrogate
backpropagation learning rule.

Workload #7: Speech-LIF Inference workload uses the same
neural architecture as the training workload and infers on the test
dataset.

Workload #8: Speech-LSNN Training workload is the same as
Speech-LIF Training workload, but is built with LSNN neurons.

Workload #9: Speech-LSNN Inference workload is the same as
Speech-LIF Inference workload, but is built with LSNN neurons.

4. Experiment

In this section, we conduct a series of experiments to show the
effectiveness of SNNBench. First, we perform workload characterization
on SNNBench in Section 4.2 and show the reproducibility of SNNBench
in Section 4.3. Then, we compare the impact of learning rules and
computing units on the SNN training and inference performance in
Section 4.4 and Section 4.5, respectively. Finally, we evaluate the
scalability of SNNBench in Section 4.6.

4.1. Experiment setup

We deploy SNNBench on a server node equipped with two Intel
Xeon E5-2620 v3 @ 2.40 GHz CPUs and four Nvidia GeForce RTX
2080-Ti GPU cards. Each CPU contains six physical cores and enables
hyper-threading. The software versions are CUDA toolkit 10.2, Python
3.10 and Pytorch 1.12. We have mainly investigated three Al-oriented
SNN frameworks: BindsNet, snnTorch, and Norse. Due to the distinct
APIs and functions provided by these frameworks, we have adopted
the following strategy for simplicity and convenience: We utilized
BindsNet 0.3.1 for both STDP and DNN-to-SNN methods in the image
classification task, employed snnTorch 0.5.3 for surrogate backprop-
agation in the image classification task, and used Norse 0.0.7 for all
speech recognition workloads. To make the experimental environment
consistent for each run and avoid the performance drop due to default
security settings, we use Docker to build the environment and disable
Docker’s seccomp security option.

F. Tang and W. Gao

Table 4

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100108

Variations in loss and accuracy after each epoch during the training process for speech recognition tasks. This table focuses exclusively on speech recognition tasks, as these metrics

remain consistent across each run for image classification tasks. The differences among three runs after each epoch are highlighted in bold, illustrating that the discrepancies are

minimal.

Epoch Speech-LIF

Speech-LSNN

CPU

GPU

CPU

GPU

3.5458 (4%)
1.3690 (63%)
1.3185 (63%)
1.2794 (63%)
1.2500 (63%)
1.2298 (63%)

DA WN O

3.5477 (3%)
1.3698 (63%)
1.3076 (63%)
1.2728 (63%)
1.2466 (63%)
1.2204 (63%)

3.5945 (4%)
1.3693 (63%)
1.3036 (63%)
1.2709 (63%)
1.2486 (63%)
1.2198 (63%)

3.5963 (2%)
1.3663 (63%)
1.3072 (63%)
1.2679 (63%)
1.2460 (63%)
1.2182 (64%)

3.5207 (3%)
1.3587 (63%)
1.3003 (63%)
1.2682 (63%)
1.2459 (63%)
1.2228 (63%)

3.5659 (4%)
1.3614 (63%)
1.3061 (63%)
1.2711 (63%)
1.2466 (63%)
1.2238 (63%)

2.7021 (4%)
1.9193 (62%)
1.8503 (62%)
1.8077 (62%)
1.7831 (63%)
1.7625 (63%)

2.7195 (3%)
1.9206 (62%)
1.8540 (62%)
1.8100 (62%)
1.7898 (62%)
1.7696 (62%)

2.7290 (4%)
1.9176 (62%)
1.8523 (62%)
1.8095 (62%)
1.7911 (63%)
1.7708 (63%)

2.7219 (4%)
1.9189 (62%)
1.8504 (62%)
1.8063 (63%)
1.7847 (63%)
1.7637 (63%)

2.7114 (3%)
1.9182 (62%)
1.8504 (62%)
1.8081 (63%)
1.7890 (63%)
1.7713 (63%)

2.7210 (4%)
1.9168 (62%)
1.8497 (62%)
1.8118 (62%)
1.7931 (63%)
1.7715 (63%)

We use PyTorch Profiler [36] to collect the runtime information for
all the experiments, including the involved operators, the input size of
each operator, and the time consumption. We report the profile data
on the CPU for simplicity and veracity since a mass of operations like
memory synchronization on GPUs would interfere with the analysis.
We run each benchmark ten times and report the average values, each
containing a two-batch warm-up stage (see Fig. 2).

4.2. Workload characterization

In this experiment, we conduct a top-down analysis for each work-
load. Considering that training and inference are the two most consum-
ing parts, we only profile these two phases and exclude other phases
like model initialization.

Fig. 2 shows the operator heat map of SNNBench workloads. We
classify these operators into ten groups, and they are Pointwise (A),
BLAS (B), Math (C), Tensor-Related (Creation, Indexing, Slicing, Join-
ing, and Mutating) (D), Sampling (E), Pooling (F), Backward (G),
Activation (H), Layer-Computing (I), and Data-Loading (J). From the
result, we find that for most workloads, the Pointwise, BLAS, Tensor-
Related (especially copy, creation, and indexing), and Data Loading
operators consume a lot of time. The framework uses tensor as the
basic data structure and implements many operators based on BLAS
libraries so that Pointwise and BLAS operations consume most reason-
ably. However, Image-Backprop (Train), Image-Backprop (Infer), and
Image-Conversion (Train) consume little time on BLAS operations. This
is because the Image-Backprop use convolution connections, so the
convolution operator occupies a lot of time while the BLAS operation
takes up very little. As for Image-Conversion (Train), it uses only three
fully-connected layers, and the input sizes are small, thus, the com-
puting process is fast, and the general matrix multiplication (GeMM)
operator occupies relatively much less compared to data loading and
copy operators. When the data loading time ratio decreases, the GeMM
time ratio correspondingly increases a lot (from 2% to 9% in Image-
Conversion (Infer)). From the perspective of each operator category, for
Pointwise operators, add, sub, mul, and div operators consume the most
time. And as for BLAS operators, GeMM takes up almost all the time
while matmul barely does. For Tensor Related operators, tensor copy,
creation, and indexing occupy the most time. From the perspective of
workloads, Image-STDP does not spend much time in data loading and
uses sampling operators to construct the inputs; these characteristics
are different from other workloads. Image-Backprop is more like a
traditional convolution neural network, except that it uses the LIF
neuron as the computing unit, so it spends much time in convolution
and pooling operators. Image-Conversion trains an DNN model and
converts the well-trained DNN model to an SNN model, and uses the
SNN model to infer, so its training process is exactly the same as the
traditional fully connected networks. In the inference phase, it spends
much more time in the nonzero operator than other directly trained
SNN models. The cause is that the converted SNN model has high spike
firing rate than other directly trained SNN models. Thus the converted
model has more non-zero values in a tensor; in other words, data
have higher density. And the more dense the data, the more time the
nonzero counting operator spends. So the nonzero operator occupies
high. We did a small validation experiment for a size of (10000, 64)
tensor using random initialization and zeros initialization, performing

the nonzero operator on these two tensors costs 603.57 us and 56.32
us, respectively. The performance gap is one order of magnitude.
This also implies that the impact of different input characteristics on
performance is enormous. The workload characteristics are almost the
same for the two speech recognition tasks because they use similar
learning rules and are only different in computing units. They differ
from image classification tasks in that they need to process speech data
so that they contain the spectral operator (FFT transformation in this
case). The backward operator also occupies a high total time that image
classification tasks do not.

In this experiment, we perform a top-down analysis for each work-
load. Our findings reveal that the majority of workloads allocate con-
siderable time to Pointwise, BLAS, Tensor-Related, and Data Loading
operators. Image-Backprop and Image-Conversion workloads display
distinct characteristics compared to others, such as reduced BLAS oper-
ation time and elevated spike firing rate in the converted SNN model,
impacting performance. The workload characteristics remain consistent
between the two speech recognition tasks, as they employ similar
learning rules and vary only in computing units. Additionally, they in-
corporate the spectral operator, which is absent in image classification
tasks.

4.3. Reproducibility

SNNBench applies several strategies to eliminate the randomness
mentioned in Section 3.2.6. In this subsection, we evaluate the repro-
ducibility of SNNBench by running each benchmark multiple times on
the same hardware and software systems.

Our experiments show that the image classification task obtains
exactly the same results for different runs. The deviations for the speech
recognition task are very slight. Table 4 shows the changes in loss
and accuracy after each epoch during the training process for the
speech recognition task. Note that we do not list the results of the
three image classification workloads because their changes in loss and
accuracy are exactly the same. The results show that the stochasticity
of SNNBench is small enough to meet the benchmarking requirement
for reproducibility.

4.4. Comparison of different learning rules

In this subsection, we use the three image classification workloads
as an example to compare different learning rules.

4.4.1. Accuracy comparison

Fig. 3(a) demonstrates the training progress of the three image
classification workloads with different learning rules and the upper
part of Table 5 lists the convergent accuracy and time to achieve that
accuracy. We trained MNIST for 10 epochs on each workload to ensure
that all of them reached a convergent state and achieved the respective
accuracy range for each learning rule, thereby ensuring convergence for
all workloads. For Image-Backprop and Image-Conversion workloads,
the accuracy reached approximately 98%, with no further improve-
ment. For the Image-STDP workloads, we checked the accuracy and
updated the weights every 250 samples during 10 epochs, resulting in
a total of 2400 accuracy checks and weight updates (only 50 of which
are presented in Fig. 3(a) for clarity). This training process took almost

F. Tang and W. Gao

Table 5

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100108

Accuracy, epochs to convergent accuracy, and time to achieve accuracy on testsets.

Accuracy on testset

Epochs to accuracy

Time to accuracy on CPU (s) Time to accuracy on GPU (s)

Image-STDP (100) 75% 1 25858.14 34812.06
Image-STDP (400) 83% 1 32379.48 31739.34
Image-STDP (1600) 88% 4 363866.4 137905.2
Image-STDP (6400) 84% 6 12248568 355468.32
Image-Backprop 98.59% 3 1060.43 221.36
Image-Conversion 97.4% 5 82.91 58.23
Speech-LIF 67% 40 22773.35 31191.47
Speech-LSNN 63% 1 679.20 828.51
Speech-LSTM 90% 43 19908.03 8201.03

10F

—— STDP(100)
I — STDP(400)
STDP(1600)
—— STDP(6400)
—— Backprop

Execution Time (s)

—— Conversion

0.0 L L L L L
0 2 4 6 8 10

(a) Training Progress

STDP(100) STDP(#00) STDP(1600) STDP(6400) Backprop Conversion

(b) Processing Time

Fig. 3. Changes of accuracy and execution time using three different learning rules on
the image classification task. For the Image-STDP workload, the accuracy is presented
five times per epoch, and for other workloads, once per epoch. The numbers inside
the brackets after STDP indicate the STDP workloads for different network sizes, which
correspond to the number of spiking neurons in the excitatory and inhibitory layers.
The time in the figure is to process the train (10000 images) and test (10000 images)
dataset and has been processed using logarithms.

a week to complete on a 2080 Ti GPU for the network of 6400 neurons
(6.86 days). In conclusion, the accuracy of all workloads remained
stable, with no significant improvement observed over time, indicating
that they reached a convergent state.

For the Image-STDP workload, the origin paper [13] achieved
82.9%, 87.0%, 91.9%, 95.0% accuracy when the number of excita-
tory and inhibitory neurons are set to 100, 400, 1600, and 6400,
respectively. We achieve 75%, 83%, 88%, and 84% accuracy after
convergence and get 84.8%, 93.2%, 96.0%, and 94.8% best accu-
racy during the training using 100, 400, 1600, and 6400 neurons,
respectively. The number in the bracket is the number of spiking
neurons in the excitatory and inhibitory layers. We can see that the
higher the number of spiking neurons, the more epochs required to the
convergent state, and the higher accuracy relatively, which is intuitive.
When the number of neurons used is below 400, the accuracy reaches
a relatively stable state after only one epoch. When the number of
neurons is more than 400, there are more epochs needed to train to
the convergence state. When the number is 6400, there even need 6
epochs to the convergence state. However, the training process is far
less stable than other learning rules. After training to the convergence
state, the standard deviation of accuracy is bigger than 2.4%, while
other learning rules are less than 0.3%.

For the Image-Backprop workload, after training one epoch, the
accuracy of the model reaches 97.73%, which can be compared with
similar architecture DNNs. And the training and inference time are only
1/73 and 1/84 of the STDP learning rule. We think this is because
the surrogate backpropagation can train the data batch by batch, but
the STDP learning rule can only train the data in one sample once.
The surrogate backpropagation can fully use the underlying parallel
computing hardware.

For the Image-Conversion workload, after training the network to
the convergent state, we get 97.76% accuracy. We export the trained
model, transform the model to the SNN model, and apply the data-
based weight normalization, we test that the accuracy of the con-
verted SNN model is 96.72%, which is a 1.03% accuracy drop. This
is acceptable for applications that are not sensitive to accuracy.

4.4.2. Performance comparison

Fig. 3(b) shows the processing time for training and inferring 10000
images on CPU and GPU, respectively. For training, when the number
of neurons is 100, processing images on the CPU is faster than on GPU,
but when the number of neurons exceeds 100, training on GPU is faster.
And When the number of neurons changes from 400 to 1600 to 6400,
the time cost on the CPU increases significantly. However, the time cost
on the GPU is always at the same level for 100, 400, 1600, and 6400
neurons. For inference, when the number of neurons is 1600, processing
on the CPU costs more time than on the GPU. This phenomenon is
related to how GPUs work. When the number of neurons is small,
the GPU’s large number of parallel computing units may not be fully
utilized, leading to less efficient performance compared to the CPU.
Additionally, the lower clock frequency of the GPU could contribute to
the observed performance difference. While memory synchronization
latency may also play a role, it is likely not the primary reason for
the performance discrepancy in this case. As a result, the approach of
using GPU acceleration may not be applicable or beneficial for all cases,
particularly when working with smaller neural networks.

4.4.3. Overall comparison

Table 1 shows the comparison of different learning rules. We cannot
achieve the same level of accuracy as the state-of-the-art work using the
STDP learning rule as described in [13], and the accuracy the STDP
learning rule (88%) achieved is below the surrogate backpropagation
(98%) and conversion (96.72%). Meanwhile, the training progress
of the STDP learning rule fluctuates greatly even after reaching the
convergence state. The standard deviation of accuracy is high as 2.4%,
while other learning rules do not exceed 0.3%. This shows that the
STDP learning rule is hard to train. STDP is unsupervised, making
it considerably more complex to achieve good results compared to
supervised backpropagation. This complexity might be the reason for
the observed instability. On the other hand, surrogate backpropagation
and conversion-based learning rules are easy to train, and there is
a huge advantage that they have less modification to existing work
than the STDP learning. Thus, they can fully use the current deep
learning work, including mature architectures like ResNet [37], Effi-
cientNet [38], and Transformer [39] and high-performance hardware
and software systems, like GPUs, TensorFlow, and PyTorch. Despite
the disadvantages compared to those two learning rules, the most
significant advantage of the STDP learning rule is that unsupervised
learning can be used and can avoid the tedious manual labeling of
the training dataset. And it has the potential to construct more robust
networks that can also perform well for unseen data.

Based on the experimental results presented above, we can summa-
rize the following recommendations for using SNNs:

» Employing Surrogate-Backpropagation and DNN-to-SNN methods
is highly recommended, as these two approaches can achieve
accuracy comparable to that of DNNs.

» When using the Surrogate-Backpropagation method, it is crucial
to find an appropriate activation function that smooths spike
peaks well. In the case of DNN-to-SNN, an effective conversion

F. Tang and W. Gao

1.0

I
ES

B Inference on GPU

o
>

o
z

Accuracy
Execution Time (s)

i

L
0 10 20 30 40 50 LIF LSNN LST™

(a) Training Progress (b) Processing Time

Fig. 4. Changes of accuracy and execution time using different spiking neurons
compared to the LSTM unit on the speech recognition task. The time in the figure
is to process the train (10000 spoken voices) and test (10000 spoken voices) dataset.

method is required. Otherwise, a significant decrease in accuracy
may occur. However, both methods can fully exploit existing DNN
works, including algorithms, hardware, and software. The specific
choice between these two can be determined based on the actual
situation.

The STDP training rule is relatively challenging to use. Firstly,
it is difficult to train and may not necessarily achieve accuracy
comparable to the previous two methods. Secondly, the training
speed is too slow, and current SNN frameworks cannot efficiently
map the STDP algorithm to GPUs. However, if unsupervised
learning is desired, the STDP learning rule is the only option.

4.5. Comparison of different spiking neurons

In addition to the two SNN workloads, we add a DNN workload with
the same architectures but use the LSTM unit for comparison. We train
the three different neural networks on the Google Speech Commands v2
dataset to the convergence state, and Fig. 4 shows the result. And the
bottom part of Fig. 5 lists the convergent accuracy and the time taken
to achieve that accuracy. The accuracy reaches 62%~63% after the
first epoch for all these three neural networks. After that, the accuracy
of neural networks using LIF and LSNN remains at the same level as
the first epoch, but the accuracy of the neural network with the LSTM
unit reaches 90% after reaching the convergence state. Using the same
network architecture, two SNN networks achieve lower accuracy than
DNN networks, this may be because the parameters of the SNN network
have not been sufficiently tuned, such as the threshold value of firing
spikes. [40] indicated that LSNN has better performance than LIF,
but the accuracy of LIF and LSNN are similar, which may prove that
the parameters of the SNN networks are not tuned well. However, this
paper primarily focuses on benchmarking rather then the algorithm, we
did not spend much time on parameter optimization, as it is beyond
the scope of this work. Even though we can fine-tune the parameters
the final accuracy gap is large (67% vs. 90%). Hence we can conclude
that for the same architecture, SNN can hardly achieve the accuracy
that DNN achieved. In terms of ease of use, SNNs are currently not
comparable to DNNs because even though the user does not carefully
adjust the LSTM parameters, good results can be achieved.

In terms of processing speed, the LSTM neural network is the fastest
in both training and inference. For training one epoch, the time spent
on the LIF, LSNN, and LSTM is 779.787 s, 828.515 s, and 190.721 s.
The time of the LIF is 4.09 times that of the LSTM. For inferring the
test dataset, the time spent on the LIF, LSNN, and LSTM is 39.5661 s,
49.4007 s, and 12.4881 s. The time of the LIF is 3.17 times that of the
LSTM. For the same network architecture, using spiking neurons speeds
more times than that using non-spiking neurons. This may be due to the
framework’s inability to effectively map the SNN operators to GPUs.

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100108
4.6. Scalability

There are many parallelism methods for accelerating deep learn-
ing, such as data parallelism and model parallelism. We can general-
ize all parallelism patterns into inter-operator parallelism and intra-
operator parallelism. Inter-operator parallelism means that operators
are mapped to different computing units to execute, and intra-operator
parallelism means that one operator is sliced to multiple parts mapped
to different computing units. Thus data parallelism and model paral-
lelism can be regarded as one type of inter-operator parallelism. The
basic computing unit is a hardware thread within a node or within a
distributed system. Reasonably splitting operators and slicing operators
according to workloads’ characteristics and mapping them to different
threads are the key to fully utilizing the system. In this subsection, we
investigate the potential of these workloads.

To improve inter-operator parallelism, a common method is to
schedule non-dependent operators to execute in parallel. However,
this is dependent on the degree of parallelizability of the network
architecture, and the execution plan of operators needs to be carefully
orchestrated to ensure that dependencies are respected and synchro-
nization points are properly managed. To improve intra-operator par-
allelism, it is important to consider the differences between stateful
networks like SNNs and RNNs, and stateless networks like CNNs and
fully connected networks. In stateful networks, SNNs and RNNs are
computed sequentially, with states stored for the next computation,
making it more challenging to improve intra-operator parallelism. In
contrast, CNNs and fully connected networks are stateless, allowing
input samples to be split into multiple parts and computed indepen-
dently, which makes it easier to improve intra-operator parallelism.
However, for operators like matrix multiplication and element-wise
operations, parallel execution can be achieved on different hardware
threads using mature BLAS libraries. This allows for full hardware
performance without the need for an elaborate execution plan.

To assess the inter-operator and intra-operator parallelism, we con-
trol the thread number of PyTorch’s inter-operator and intra-operator
thread pool for scheduling inter-operator and intra-operators sepa-
rately. Although we choose the PyTorch framework as our experi-
mental environment, other frameworks are also applicable, such as
TensorFlow, which also has the same thread pool for scheduling inter-
operators and intra-operators. For measuring the inter-operator and
intra-operator parallelism, we fix the number of inter- and intra-
operator threads to 1, respectively, and adjust the number of intra-
and inter-operator threads from 1 to 12, respectively, to measure
the training time for 10 iterations. Fig. 5 illustrates the inter- and
intra-operator parallelism for the SNNBench workloads. As we analyze
above, improving the inter-operator parallelism is hard, so we can find
that increasing the thread number of inter-operators hardly changes the
training time in all the workloads. However, we can find that increasing
the thread number of intra-operators only improves the performance
of Image-Backprop. For other workloads, more intra-operator threads
have little impact and even downgrade the performance, which is
counter-intuitive. To explain this phenomenon, we need to analyze the
intra-operator execution at a finer granularity.

We count the time of every operator and compare the time exe-
cuted in a different number of intra-operator threads. We select the
most consumed operators in each workload and show the results in
Fig. 6. We can find that the most consumed operators in the Image-
Backprop workload have good scalability as the number of threads
increases so that it can get better performance with more threads. As
for other workloads, most workloads have worse performance overall,
including Image-Conversion, Speech-LIF, Speech-LSNN, and Speech-
LSTM workloads. Different operators have opposite reactions when
increasing the number of threads; thus, the overall effect on perfor-
mance is unpredictable. For the Image-STDP workload, the most three
cost operators can be accelerated by increasing the number of threads,
but the performance can no longer be improved when the number of

F. Tang and W. Gao

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100108

1ok I Inter-Operator 12 o Inter-Operator 1.2 - EEE Inter-Operator
I Intra-Operator I Intra-Operator I Intra-Operator
=) 3 10 3 10f
S 1or S S
=] 3)
g £ 08 Eo08f
S 0.8 S s}
2 Z Z
Eoof 206 2 o6t
= B =
= = =
£ oal £ 04 2 04f
151 3] 3]
2 2 2
= 02 = 0.2 A 02+
0.0 0.0 0.0
1—=12 1—=12 1—=12 1—=12 1—=12 1—=12
Image-STDP Image-BackProp Image-Conversion
1.4 | B Inter-Operator 1.50 | HEEE Inter-Operator I Inter-Operator
_ I Intra-Operator _ I Intra-Operator _ L2 - @ Intra-Operator
B 12 T 125} 3
N N N 10k
=] 10 =] s
£l E 1o} S sl
Z Z z "
g 8 g2 075 g
= 0P T Z 06
= = =
g 0 £ E
= = 0.50 - E=} L
g 04 3 2 04
0.2 025 02F
0.0 0.00 0.0

1—=12 1—=12

1—=12

Speech-LIF

Speech-LSNN

1—-12

1—-12

1—12
Speech-LSTM

Fig. 5. Operator parallelisms of SNNBench workloads. All workloads are training workloads, without any inference workload. Image-Conversion and Speech-LSTM are included

here for comparison to highlight the differences in operator parallelism between mature

DNN training workloads and SNN training workloads.

1000 - I bmm (22.67%) I convolution (31.64%) 200 F I Dataloader (48.23%)
I fill (15.69%) 2500 I max_pool2d (21.68%) I to_copy (3.34%)
800 - I sum (7.70%) [max_pool2d #2 (15.54%) [unsqueeze (3.27%)
z E (0 copy (3.00%) g 2000 B convolution #2 (10.66%) | £ 150 | B any (2.90%)
é 600 B empty_strided (2.46%) g BN DataLoader (2.67%) E B div (2.38%)
=] £ 1500 &
E E 5 10
g 400 g 1000 g
45 45 45
200 500 50
0 0 0
1=12 1=12 112 1=12 1—=12 1=12 1=12 112 1=12 1—=12 1=12 112 1=12 1=12 1—=12
Image-STDP Image-Bakprop Image-Conversion
120
I Dataloader (8.20%) I Dataloader (7.64%) I Dataloader (9.34%)
100 B add (5.06%) 100 F B add (5.04%) wl B mm (7.56%)
[copy (4.18%) T copy (3.97%) [add (5.91%)
gz 80r B mm (3.45%) £ 80 B SpikeBackward (3.32%) g B addmm (5.83%)
2 I io.load (3.35%) E BN io_load (3.17%) g 60 B copy (4.85%)
£ 60 E 60 B
5 g 5
e E £ 40
g 40 g 40 2
4 @ 4
20 2 20

1—=12

1=-12 1—12

Speech-LIF

I=-12 1—=12

=12

=12

Speech-LSNN

I=-12 1=12 1—=12

1—=12

1-12 1-12
Speech-LSTM

I=-12 1—=12

Fig. 6. Intra-operator executing on different threads. All workloads are training workloads, without any inference workload. Image-Conversion and Speech-LSTM are included
here for comparison to highlight the differences in operator scalability between mature DNN training workloads and SNN training workloads. We select the most time-consuming
operators, and the percentage numbers in brackets represent the proportion of time consumed by each operator.

threads exceeds three. This may be related to the input size of the
three operators since the Image-STDP workload does not support batch
training, so the data input size is small, and performance is best with
three threads. If the data input size becomes larger, it will benefit from
more hardware computing units, as we discussed in Section 4.4. From
the result, the number of intra-operator threads that gains the best
performance is also the thread number that the most cost operators get
the best performance. These optimal numbers of threads are 3, 8, 6,
1, 1, and 2, respectively. Therefore, it cannot be simply said that the
more hardware threads, the better. Different operators and different
data input sizes correspond to different optimal thread numbers. In

practice, we can perform an ahead small-size training for searching the
optimal thread number before the long training job.

In this section, we analyze the scalability and parallelism potential
of SNN workloads. We experiment with varying thread numbers for
inter- and intra-operator parallelism and evaluate their impact on
training time across different workloads. Our findings indicate that
increasing inter-operator threads has negligible effects on training time.
However, adjusting the number of intra-operator threads enhances the
performance of the Image-Backprop workload but has little or negative
impact on others. We observe that different operators and input sizes
require different optimal thread numbers, and more hardware threads
do not always guarantee better performance. To improve performance,

10

F. Tang and W. Gao

we suggest employing a strategy that uses varying intra-operator par-
allel thread numbers for different operators. By optimizing thread
count based on the specific operator and input size, each operator’s
performance can be enhanced, consequently boosting overall neural
network training efficiency. In practice, a small-size training run can
help determine the optimal thread number before starting a longer
training job.

5. Conclusion

SNN, as a promising technology for Al, needs in-depth explorations
and further developments to achieve both high performance and high
model accuracy—two requisites for Al scenarios. Benchmarks play
foundational roles in locating the bottlenecks and making improve-
ments. Existing benchmarks either focus on brain science benchmark-
ing, which has totally different targets and solutions, or cover par-
tial aspects of AI without accuracy information and thus fail to ful-
fill the above two requisites. This paper proposes an end-to-end Al-
oriented benchmarking methodology and presents SNNBench, the first
end-to-end SNN benchmark suite. The end-to-end represents two-fold
meanings: (1) SNNBench focuses on typical Al applications and cov-
ers both training and inference stages for end-to-end evaluation; (2)
SNNBench provides an end-to-end training process, covering diverse
training strategies and achieving a target accuracy. In total, SNNBench
provides nine workloads and covers two learning paradigms, including
supervised and unsupervised learning, four connection types, including
one-to-one, fully connected, convolutional, and recurrent, and three
learning rules, including STDP, backpropagation, and DNN-to-SNN. Our
experiments on CPU and GPU show the effectiveness of SNNBench.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The authors would like to express profound gratitude to Mr. Zhengxin
Yang. His insightful discussions and valuable suggestions greatly con-

tributed to the improvement of Fig. 1 in this paper.
References

[1] W. Maass, Networks of spiking neurons: the third generation of neural network
models, Neural Netw. 10 (1997) 1659-1671.
K. Roy, A. Jaiswal, P. Panda, Towards spike-based machine intelligence with
neuromorphic computing, Nature 575 (2019) 607-617.
R. Brette, M. Rudolph, T. Carnevale, M. Hines, D. Beeman, J.M. Bower, M.
Diesmann, A. Morrison, P.H. Goodman, F.C. Harris, et al., Simulation of networks
of spiking neurons: a review of tools and strategies, J. Comput. Neurosci. 23
(2007) 349-398.
R.A. Tikidji-Hamburyan, V. Narayana, Z. Bozkus, T.A. El-Ghazawi, Software for
brain network simulations: a comparative study, Front. Neuroinform. 11 (2017)
46.
S.J. Van Albada, A.G. Rowley, J. Senk, M. Hopkins, M. Schmidt, A.B. Stokes,
D.R. Lester, M. Diesmann, S.B. Furber, Performance comparison of the digital
neuromorphic hardware spinnaker and the neural network simulation software
nest for a full-scale cortical microcircuit model, Front. Neurosci. 12 (2018) 291.
T.J. Sejnowski, C. Koch, P.S. Churchland, Computational neuroscience, Science
241 (1988) 1299-1306.
A.L. Hodgkin, A.F. Huxley, A quantitative description of membrane current and
its application to conduction and excitation in nerve, J. Physiol. 117 (1952) 500.
C. Koch, I. Segev, Methods in Neuronal Modeling: From Ions To Networks, MIT
Press, 1998.
N. Brunel, M.C. Van Rossum, Lapicque’s 1907 paper:
integrate-and-fire, Biol. Cybernet. 97 (2007) 337-339.

[2]

[3]

[4]

[5]

[6]
[71
[8]
to

[91

from frogs

11

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 3 (2023) 100108

[10] M. Davies, Benchmarks for progress in neuromorphic computing, Nat. Mach.
Intell. 1 (2019) 386-388.

C. Ostrau, J. Homburg, C. Klarhorst, M. Thies, U. Riickert, Benchmarking deep
spiking neural networks on neuromorphic hardware, in: International Conference
on Artificial Neural Networks, Springer, 2020, pp. 610-621.

S.R. Kulkarni, M. Parsa, J.P. Mitchell, C.D. Schuman, Benchmarking the perfor-
mance of neuromorphic and spiking neural network simulators, Neurocomputing
447 (2021) 145-160.

P.U. Diehl, M. Cook, Unsupervised learning of digit recognition
spike-timing-dependent plasticity, Front. Comput. Neurosci. 9 (2015) 99.
N. Brunel, X.J. Wang, What determines the frequency of fast network oscillations
with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition
balance, J. Neurophysiol. 90 (2003) 415-430.

R.A. Tikidji-Hamburyan, J.A. Martinez, C.C. Canavier, Resonant interneurons can
increase robustness of gamma oscillations, J. Neurosci. 35 (2015) 15682-15695.
J. Gray, Benchmark Handbook: For Database and Transaction Processing Systems,
Morgan Kaufmann Publishers Inc, 1992.

J. Zhan, L. Wang, W. Gao, R. Ren, Benchcouncil’s view on benchmarking ai and
other emerging workloads, 2019, arXiv preprint arXiv:1912.00572.

Z. Jiang, W. Gao, F. Tang, L. Wang, X. Xiong, C. Luo, C. Lan, H. Li, J. Zhan,
Hpc ai500 v2, 0: The methodology, tools, and metrics for benchmarking hpc ai
systems, in: 2021 IEEE International Conference on Cluster Computing, CLUSTER,
IEEE, 2021, pp. 458-477.

C.D. Schuman, S.R. Kulkarni, M. Parsa, J.P. Mitchell, B. Kay, et al., Opportunities
for neuromorphic computing algorithms and applications, Nat. Comput. Sci. 2
(2022) 10-19.

J.H. Lee, T. Delbruck, M. Pfeiffer, Training deep spiking neural networks using
backpropagation, Front. Neurosci. 10 (2016) 508.

A. Tavanaei, M. Ghodrati, S.R. Kheradpisheh, T. Masquelier, A. Maida, Deep
learning in spiking neural networks, Neural Netw. 111 (2019) 47-63.

Y. Jin, W. Zhang, P. Li, Hybrid macro/micro level backpropagation for training
deep spiking neural networks, Adv. Neural Inf. Process. Syst. 31 (2018).

W. Zhang, P. Li, Temporal spike sequence learning via backpropagation for deep
spiking neural networks, Adv. Neural Inf. Process. Syst. 33 (2020) 12022-12033.
T. Elsken, J.H. Metzen, F. Hutter, Neural architecture search: A survey, J. Mach.
Learn. Res. 20 (2019) 1997-2017.

D. Simon, Evolutionary Optimization Algorithms, John Wiley & Sons, 2013.

L. Deng, The mnist database of handwritten digit images for machine learning
research [best of the web], IEEE Signal Process. Mag. 29 (2012) 141-142.

P. Warden, Speech commands: A dataset for limited-vocabulary speech
recognition, 2018, arXiv preprint arXiv:1804.03209.

F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N.
Imam, Y. Nakamura, P. Datta, G.J. Nam, et al., Truenorth: Design and tool flow
of a 65 mw 1 million neuron programmable neurosynaptic chip, IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 34 (2015) 1537-1557.

M. Davies, N. Srinivasa, T.H. Lin, G. Chinya, Y. Cao, S.H. Choday, G. Dimou, P.
Joshi, N. Imam, S. Jain, et al., Loihi: A neuromorphic manycore processor with
on-chip learning, IEEE Micro 38 (2018) 82-99.

A.F. Agarap, Deep learning using rectified linear units (relu), 2018, arXiv preprint
arXiv:1803.08375.

Y. Cao, Y. Chen, D. Khosla, Spiking deep convolutional neural networks for
energy-efficient object recognition, Int. J. Comput. Vis. 113 (2015) 54-66.

P.U. Diehl, D. Neil, J. Binas, M. Cook, S.C. Liu, M. Pfeiffer, Fast-classifying,
high-accuracy spiking deep networks through weight and threshold balancing,
in: 2015 International Joint Conference on Neural Networks, IJCNN, IEEE, 2015,
pp. 1-8.

PyTorch Documentation, b. Reproducibility. URL: https://pytorch.org/docs/
stable/notes/randomness.html.

H. Hazan, D.J. Saunders, H. Khan, D. Patel, D.T. Sanghavi, H.T. Siegelmann, R.
Kozma, Bindsnet: A machine learning-oriented spiking neural networks library
in python, Front. Neuroinform. 89 (2018).

F. Zenke, S. Ganguli, Superspike: Supervised learning in multilayer spiking neural
networks, Neural Comput. 30 (2018) 1514-1541.

PyTorch Documentation, a. Profiler. URL: https://pytorch.org/docs/stable/
profiler.html.

K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 770-778.

M. Tan, Q. Le, Efficientnet: Rethinking model scaling for convolutional neural
networks, in: International Conference on Machine Learning, PMLR, 2019,
pp. 6105-6114.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, %. Kaiser,
1. Polosukhin, Attention is all you need, Adv. Neural Inf. Process. Syst. 30 (2017).
G. Bellec, D. Salaj, A. Subramoney, R. Legenstein, W. Maass, Long short-term
memory and learning-to-learn in networks of spiking neurons, Adv. Neural Inf.
Process. Syst. (2018) 787-797.

[11]

[12]

[13] using

[14]

[15]
[16]
[17]

[18]

[19]

[20]
[21]
[22]
[23]
[24]

[25]
[26]

[27]

[28]

[29]

[30]
[31]

[32]

[33]

[34]

[35]
[36]

[37]

[38]

[39]

[40]

http://refhub.elsevier.com/S2772-4859(23)00025-X/sb1
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb1
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb1
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb2
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb2
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb2
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb3
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb3
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb3
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb3
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb3
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb3
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb3
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb4
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb4
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb4
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb4
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb4
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb5
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb5
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb5
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb5
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb5
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb5
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb5
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb6
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb6
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb6
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb7
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb7
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb7
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb8
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb8
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb8
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb9
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb9
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb9
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb10
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb10
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb10
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb11
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb11
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb11
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb11
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb11
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb12
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb12
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb12
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb12
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb12
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb13
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb13
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb13
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb14
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb14
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb14
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb14
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb14
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb15
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb15
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb15
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb16
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb16
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb16
http://arxiv.org/abs/1912.00572
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb18
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb18
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb18
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb18
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb18
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb18
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb18
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb19
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb19
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb19
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb19
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb19
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb20
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb20
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb20
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb21
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb21
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb21
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb22
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb22
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb22
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb23
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb23
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb23
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb24
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb24
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb24
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb25
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb26
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb26
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb26
http://arxiv.org/abs/1804.03209
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb28
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb28
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb28
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb28
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb28
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb28
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb28
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb29
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb29
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb29
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb29
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb29
http://arxiv.org/abs/1803.08375
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb31
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb31
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb31
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb32
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb32
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb32
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb32
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb32
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb32
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb32
https://pytorch.org/docs/stable/notes/randomness.html
https://pytorch.org/docs/stable/notes/randomness.html
https://pytorch.org/docs/stable/notes/randomness.html
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb34
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb34
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb34
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb34
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb34
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb35
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb35
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb35
https://pytorch.org/docs/stable/profiler.html
https://pytorch.org/docs/stable/profiler.html
https://pytorch.org/docs/stable/profiler.html
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb37
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb37
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb37
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb37
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb37
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb38
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb38
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb38
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb38
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb38
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb39
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb39
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb39
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb40
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb40
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb40
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb40
http://refhub.elsevier.com/S2772-4859(23)00025-X/sb40

	SNNBench: End-to-end AI-oriented spiking neural network benchmarking
	Introduction
	Related Work
	SNNBench Design and Implementation
	The Requirements for SNN Benchmarks
	SNNBench Methodology
	Considering an end-to-end solution for AI tasks
	Training the model to the target accuracy
	Covering representative real-world applications
	Covering the typical characteristics of SNN
	Covering the typical characteristics of deep learning
	Meeting the reproducibility and usability requirements of benchmarking

	SNNBench Implementation
	Image-STDP
	Image-Backprop
	Image-Conversion
	Speech-LIF and Speech-LSNN

	Experiment
	Experiment Setup
	Workload Characterization
	Reproducibility
	Comparison of Different Learning Rules
	Accuracy Comparison
	 Performance Comparison
	 Overall Comparison

	Comparison of Different Spiking Neurons
	Scalability

	Conclusion
	Declaration of competing interest
	Acknowledgments
	References

