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A B S T R A C T

Learning-based malware detection systems (LB-MDS) play a crucial role in defending computer systems
from malicious attacks. Nevertheless, these systems can be vulnerable to various attacks, which can have
significant consequences. Software obfuscation techniques can be used to modify the features of malware,
thereby avoiding its classification as malicious by LB-MDS. However, existing portable executable (PE) malware
datasets primarily use a single obfuscation technique, which LB-MDS has already learned, leading to a loss of
their robustness evaluation ability. Therefore, creating a dataset with diverse features that were not observed
during LB-MDS training has become the main challenge in evaluating the robustness of LB-MDS.

We propose a obfuscation dataset ERMDS that solves the problem of evaluating the robustness of LB-
MDS by generating malwares with diverse features. When designing this dataset, we created three types of
obfuscation spaces, corresponding to binary obfuscation, source code obfuscation, and packing obfuscation.
Each obfuscation space has multiple obfuscation techniques, each with different parameters. The obfuscation
techniques in these three obfuscation spaces can be used in combination and can be reused. This enables us to
theoretically obtain an infinite number of obfuscation combinations, thereby creating malwares with a diverse
range of features that have not been captured by LB-MDS.

To assess the effectiveness of the ERMDS obfuscation dataset, we create an instance of the obfuscation
dataset called ERMDS-X. By utilizing this dataset, we conducted an evaluation of the robustness of two LB-
MDS models, namely MalConv and EMBER, as well as six commercial antivirus software products, which
are anonymized as AV1-AV6. The results of our experiments showed that ERMDS-X effectively reveals the
limitations in the robustness of existing LB-MDS models, leading to an average accuracy reduction of 20%
in LB-MDS and 32% in commercial antivirus software. We conducted a comprehensive analysis of the factors
that contributed to the observed accuracy decline in both LB-MDS and commercial antivirus software. We have
released the ERMDS-X dataset as an open-source resource, available on GitHub at https://github.com/lcjia94/
ERMDS.
1. Introduction

With the rapid progression of technology, machine learning is be-
coming increasingly sophisticated, prompting researchers to investigate
its potential in detecting malware [1–5]. In recent years, machine
learning techniques have been employed by researchers to devise more
effective approaches for malware detection. One of the key advantages
of utilizing machine learning for this purpose is its ability to attain high
accuracy rates. This is attributed to the capacity of machine learning
models to recognize patterns in malware code that may not be evident
to human experts. By training these models on extensive datasets
of known malware, researchers can formulate algorithms capable of
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identifying new malware variants that have not been encountered
previously.

However, as the number and complexity of malware threats esca-
late, conventional signature-based detection methods are losing effi-
cacy. To confront this challenge, commercial antivirus software
providers are increasingly embracing machine learning techniques for
malware detection [6,7]. By integrating machine learning algorithms
into their software, these vendors can elevate the accuracy of their
detection capabilities and keep pace with new and emerging threats.

Despite the promising outcomes of using machine learning for mal-
ware detection, it is crucial to acknowledge that these models are
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Fig. 1. Accuracy of a LB-MDS (EMBER) and two commercial antivirus softwares (AV1
and AV2) on ERMDS-X (Our dataset) and SOTA malware PE datasets (SOREL and
BODMAS).

not impervious to adversarial attacks. Adversarial attacks are methods
employed to deceive machine learning models by introducing subtle
modifications to input data, with the intention of causing the model to
misclassify the data.

Software obfuscation techniques can aid malwares in circumventing
detection by LB-MDS. By utilizing obfuscation methods such as encryp-
tion and code virtualization, software obfuscation can alter malware
features, including file size and API calls, thereby shielding it from
detection by LB-MDS.

The concept of robustness in the field of malware detection refers to
the ability of detection systems to identify various types of malware and
withstand different adversarial attacks. However, the existing PE mal-
ware datasets are not sufficient to evaluate the robustness of LB-MDS.
To address this, we conducted experiments using two state-of-the-art
(SOTA) PE malware datasets, SOREL-20M and BODMAS, on an LB-MDS
and two commercial antivirus software, AV1 and AV2. Commercial
antivirus software can be categorized as LB-MDS as well, but they do
not solely depend on machine learning to identify whether a program
is malicious. To differentiate them from the machine learning-based
malware detection systems, the term LB-MDS specifically refers to
systems that rely entirely on machine learning. Hence, commercial
antivirus software is still known as commercial antivirus software. The
results are shown in Fig. 1. As seen in Fig. 1, LB-MDS and the two
commercial antivirus softwares achieved an average accuracy of over
90% on both the SOREL and BODMAS datasets. Due to the fact that
the malware in these datasets employs only a singular obfuscation
technique, the features introduced by such obfuscation have already
been learned by LB-MDS [8,9]. Consequently, it is impossible for these
datasets to diminish the accuracy of LB-MDS. Therefore, they cannot
be used to evaluate the robustness of LB-MDS. Since the features in
these datasets have been fully assimilated by LB-MDS, rendering them
ineffective in reducing the accuracy of the model and thus unsuitable
for assessing its robustness.

Numerous researchers have proposed techniques for attacking LB-
MDS [10–19]. MAB [10] suggested a series of actions, such as adding
a new section to a PE file, and employed reinforcement learning
algorithms to select a set of actions that could be applied to mal-
ware to produce adversarial examples. Similarly, MalFox [11] intro-
duced a technique in which malware is encrypted and stored in a
benign program’s section, which is subsequently decrypted and exe-
cuted at runtime. These approaches reveal the susceptibility of LB-MDS
to adversarial attacks.

However, there are several issues associated with the use of these
techniques to assess the robustness of LB-MDS. Firstly, the sample size
employed in these methods is often insufficient to provide an equitable
evaluation of the system’s robustness. Typically, 100-1000 malware
samples are utilized as input to generate corresponding adversarial
examples, which may not accurately represent the extensive range of
malware variants that exist in the real world. Secondly, these methods
frequently rely on specific techniques, such as the use of encryption in

the case of MalFox, to assess the system’s robustness, which may not
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precisely reflect the system’s ability to detect other types of obfuscation
techniques, such as instruction substitution. Given that commercial
antivirus software plays a critical role in security, it is essential to es-
tablish a standardized dataset and evaluation methodology to appraise
the robustness of LB-MDS.

To address the robustness evaluation problem of LB-MDS, we pro-
pose the ERMDS dataset. Unlike prior methods, ERMDS aims to provide
a more realistic evaluation of model performance by including a wide
array of model-agnostic adversarial examples. These examples are de-
signed to capture various failure modes of modern models, instead
of exclusively focusing on worst-case scenarios. When designing this
dataset, we created three types of obfuscation spaces, corresponding
to binary-level obfuscation, source code-level obfuscation, and packing
obfuscation. Each obfuscation space has multiple obfuscation tech-
niques, each with different parameters. The obfuscation techniques in
these three obfuscation spaces can be used in combination and can be
reused. This enables us to theoretically obtain an infinite number of
obfuscation combinations, thereby creating malwares with a diverse
range of features that have not been captured by LB-MDS.

To evaluate the ability of the ERMDS obfuscation dataset, we used
the obfuscation spaces to generate an instance of the obfuscation
dataset called ERMDS-X. This dataset comprises 86,685 malware sam-
ples and 30,455 benign samples, with each sample labeled as either
malicious or benign. We then used this dataset to evaluate two SOTA
LB-MDS models (malConv [2] and EMBER [1]) and six commercial
antivirus softwares (AV1-AV6). Through experimentation, we found
that ERMDS-X can reduce the accuracy of LB-MDS by an average of
20%, and reduce the accuracy of commercial antivirus software by
an average of 32%. By subjecting these detectors to a diverse set of
samples, we were able to evaluate their resilience to different types of
adversarial attacks and identify areas for improvement. The findings
and insights gained from this evaluation are summarized in Table 1,
which can inform the design of future LB-MDS.

Apart from presenting the ERMDS dataset, we have also discussed
ways to enhance the robustness of malware detectors. We believe
that the ERMDS dataset and the proposed methods to improve the
robustness of malware detectors will be valuable resources for future
research in developing more effective and resilient MDS. By enhancing
the robustness of these systems, we can better protect users and organi-
zations from the constantly evolving threat of malware and other cyber
attacks.

In summary, this paper has made the following contributions:

• We propose the ERMDS obfuscation dataset to address the prob-
lem that the existing PE malware dataset cannot be used to
evaluate the robustness of LB-MDS. We provide a reference im-
plementation of the dataset, ERMDS-X.

• The ERMDS dataset can be utilized for evaluating robustness, and
in this study, we utilized ERMDS-X to evaluate the robustness of
two LB-MDS models, namely MalConv and EMBER, as well as six
commercial antivirus software products, which are anonymized as
AV1-AV6. Our experimental results indicate that current LB-MDS
models are susceptible to adversarial examples, underscoring the
need to enhance their robustness. We have summarized the obser-
vations of the LB-MDS systems on the ERMDS dataset in Table 1
and analyzed the underlying reasons for the eight observations.

• We have discussed strategies for improving the robustness of
current LB-MDS. We have released the ERMDS-X dataset as an
open-source resource.

2. Background

Numerous datasets containing PE malware have been utilized in
malware detection research. The EMBER dataset [1], which was in-
troduced in 2018, was the first standardized dataset created specifi-

cally for this purpose. It includes 80,000 malware samples collected
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Table 1
A summary of major observations and insights grouped by section of the paper.

Observation Proof Insight/Explanation

The performance of LB-MDS and
commercial antivirus software on the
ERMDS-X dataset is much worse compared
to their performance on the Clean dataset.

Table 5 Software obfuscation techniques can affect the features of both
malicious and benign programs, leading to incorrect conclusions by
LB-MDS and commercial antivirus software.

Binary-level obfuscation can significantly
reduce the accuracy of LB-MDS by
60%–90%.

Fig. 2 Machine learning models are vulnerable to adversarial attacks, and
binary-level obfuscations can more easily create effective adversarial
examples.

Binary-level obfuscation only results in a
30% decrease in accuracy for commercial
antivirus software.

Fig. 3 Binary obfuscation techniques only have limited ability to modify
the code and data of the original program.

LB-MDS will mistake benign programs as
malwares.

Fig. 4 Training on more benign program features can reduce false
positives.

Source code-level obfuscation increases the
probability of misjudging benign programs
by LB-MDS.

Fig. 4 Source code-level obfuscation makes benign program code control
flow more complex, which leads to misjudgment by LB-MDS.

The misjudgment rate of commercial
antivirus software for benign programs is
low.

Fig. 4 When unsure, commercial antivirus software tends to classify a
program as benign.

Packing technology only decreases the
accuracy of EMBER by about 10%.

Fig. 5 Packed programs can be identified by LB-MDS as containing
unpacking code, which is considered a feature of malicious
programs. This leads to a higher false positive rate for benign
programs.

Packing technology can decrease the
accuracy of commercial antivirus software
by about 60%.

Fig. 6 Packing can completely conceal the features of malicious programs,
and benign programs also use packing technology to protect
privacy, making it difficult for commercial antivirus software to
determine whether a program is malicious based on the presence or
absence of unpacking code.
e
r

Fig. 2. The accuracy of LB-MDS on samples processed through binary obfuscation
space.

from 2017 to 2018, in addition to 750,00 benign files. Similarly, the
SOREL-20M [20] dataset, released in 2019, contains 9 million malware
samples collected from 2017 to 2019, as well as 9 million benign
files. Although both datasets classify their samples as either malicious
3

Algorithm 1: Dataset instance generation algorithm.
Input: Malware dataset 𝑚𝑎𝑙𝑆𝑒𝑡, 𝑁𝑢𝑚𝑏, 𝑁𝑢𝑚𝑠, 𝑁𝑢𝑚𝑝, 𝑙𝑏, 𝑟𝑏, 𝑙𝑠, 𝑟𝑠,

𝑙𝑝, 𝑟𝑝
Output: Obfuscation dataset 𝑜𝑏𝑆𝑒𝑡
𝑜𝑏𝑆𝑒𝑡 ← {}
for each malware sample 𝑚𝑎𝑙 ∈ 𝑚𝑎𝑙𝑆𝑒𝑡 do

for 𝑖 = 1 to 𝑁𝑏 do
𝑘 ← 𝑟𝑎𝑛𝑑𝐼𝑛𝑡(𝑙𝑏, 𝑟𝑏);
𝑚𝑎𝑙𝑏𝑖𝑛𝑎𝑟𝑦 ← Applying 𝑘 rounds of binary obfuscation
techniques from Table 2 to the malware;

𝑜𝑏𝑆𝑒𝑡.𝑎𝑝𝑝𝑒𝑛𝑑(𝑚𝑎𝑙𝑏)
end
for 𝑖 = 1 to 𝑁𝑠 do

𝑘 ← 𝑟𝑎𝑛𝑑𝐼𝑛𝑡(𝑙𝑠, 𝑟𝑠);
𝑚𝑎𝑙𝑠𝑜𝑢𝑟𝑐𝑒 ← Applying 𝑘 rounds of source code obfuscation
techniques from Table 2 to the malware;

𝑜𝑏𝑆𝑒𝑡.𝑎𝑝𝑝𝑒𝑛𝑑(𝑚𝑎𝑙𝑠)
end
for 𝑖 = 1 to 𝑁𝑝 do

𝑘 ← 𝑟𝑎𝑛𝑑𝐼𝑛𝑡(𝑙𝑝, 𝑟𝑝);
𝑚𝑎𝑙𝑝𝑎𝑐𝑘 ← Applying 𝑘 rounds of packing obfuscation
techniques from Table 2 to the malware;

𝑜𝑏𝑆𝑒𝑡.𝑎𝑝𝑝𝑒𝑛𝑑(𝑚𝑎𝑙𝑝𝑎𝑐𝑘)
end

nd
eturn 𝑜𝑏𝑆𝑒𝑡;

or benign, the malware samples in these datasets are sourced from
detection websites such as VirusTotal. The malicious samples in these
PE malware datasets are relatively outdated and may not represent the
latest features of malicious samples. Additionally, the sample features
in these datasets can be recognized by LB-MDS and therefore cannot be
used to evaluate the robustness of LB-MDS.
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Fig. 3. The accuracy of AVs on samples processed through binary obfuscation space.
Table 2
Obfuscation methods.

Category Name Abbr Description

Binary Level Obfuscation

Overlay Append OA Add additional sections at the end of a binary.

Section Append SP Add randomly generated data to the unused space at the end of a
section.

Section Add SA Inserting new sections within the header of a binary.

Section Rename SR Change the name of a section.

Remove Certificate RC Remove the signed certificate.

Remove Debug RD Remove the debug information.

Break Checksum BC Zero out the checksum value.

Code Randomization CR Replace instructions with semantically equivalent instructions.

Source Code Level Obfuscation

Instruction Substitution IS This technique involves replacing standard instructions with
equivalent but less recognizable ones.

Code Reordering CR This technique involves reordering the instructions in the code to
make it harder for attackers to understand the logic of the code.

Code Flattening CF This technique involves converting multi-level if-else statements into
a single-level structure.

Data encryption DE This technique involves encrypting sensitive data in the code, such
as passwords, keys, and configuration files.

Code obfuscation through comments COTC This technique involves adding comments to the code that are
misleading or irrelevant, or that contain obfuscated information.

Code Metamorphism CM This technique involves dynamically modifying the code at runtime,
such as by generating code on-the-fly or by modifying the code in
memory.

Control Flow Flattening CFF This technique involves modifying the control flow of a program by
introducing multiple conditional branches that can be executed in a
random order.

Variable Merging VM Combining multiple variables into a single variable to make the
code harder to understand.

Variable Splitting VS Splitting a variable into multiple variables to make the code harder
to understand.

Symbol Renaming SR Renaming variables, functions, and classes to random or
meaningless names to make it harder for a human to understand
their purpose and relationships.

Junk Code Insertion JOI Inserting useless or redundant code into the application, making it
harder to understand the function of the code.

(continued on next page)
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Table 2 (continued).

Packing

Code Encryption CE This technique involves encrypting the executable code of a
program in order to prevent it from being understood or
modified by an unauthorized user.

Code Virtualization CV This technique involves translating code into specific
intermediate representations instead of native instructions and
interpreting these representations during runtime.

Binary Packing BP This technique will pack the program. During runtime, the
packed program will be unpacked with a custom loader.

Binary Packing to Benign BPB This technique will pack the program and store the packed
program in a section of the benign program. During runtime,
the packed program will be unpacked with a custom loader.

API Obfuscation AO Hiding the function names and features used by an application
programming interface (API), making it harder to understand
how the code works.

Code Compression CC Removing unnecessary characters such as whitespace, comments,
and newlines to reduce the size of the code and increase
analysis difficulty.

Dynamic Loading DL Dividing the code into multiple modules and dynamically
loading them when needed to increase code complexity and
analysis difficulty.

Anti-debugging AD Adding anti-debugging techniques to the code, such as detecting
debuggers or changing the program’s execution flow to prevent
attackers from debugging and analyzing.

Anti-decompilation AP Adding anti-decompilation techniques to the code, such as
adding fake code and control flow to make the results of
decompilation unusable.

Anti-tampering AT These are techniques used to detect and prevent modifications
to the code. Examples include checking the checksum or hash of
the code.

Anti-disassembly techniques AS These are techniques used to prevent an attacker from
disassembling the code.

Anti-emulation AE These are techniques used to prevent an attacker from running
the code in an emulator.

Self-modifying code SMC This technique involves modifying the code at runtime, making
it more difficult to analyze or modify the code.

Anti-memory Dumping AMD These are techniques used to prevent an attacker from dumping
the contents of memory to analyze the code. Examples include
encrypting memory.
Fig. 4. The accuracy of LB-MDS on samples processed through source code obfuscation space.
In contrast, the BODMAS dataset [21], released in 2020, contains
0,000 malware samples collected from 2019 to 2020 and 50,000
enign files. Unlike the previous two datasets, the malware samples
n BODMAS are labeled with the specific type of malware they belong
o, such as ransomware, trojan, or backdoor. This dataset is primarily
ntended to facilitate LB-MDS in identifying the malware type to which

sample belongs. Hence, it is also not appropriate for evaluating the
obustness of LB-MDS.

.1. Software obfuscation methods

Software obfuscation techniques are utilized to safeguard software
ode against reverse engineering and analysis, thereby increasing the
5

difficulty for adversaries to comprehend the software’s functionality
and internal mechanisms. These techniques alter malware while main-
taining its functionality, causing LB-MDS to perceive the malicious
software as benign programs. Software obfuscation techniques can be
categorized into data obfuscation, dynamic code rewriting, and static
code rewriting, as surveyed in [22].

2.1.1. Data obfuscation
Data obfuscation techniques [23] involve splitting or merging pro-

gram data to hinder attackers from analyzing data in the program.
For instance, variable splitting splits variables in the program, such
as arrays, into multiple sub-arrays. Before accessing the array, the
sub-arrays are combined to reform the original array.
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Fig. 5. The accuracy of LB-MDS on samples processed through packing obfuscation
space.

2.1.2. Dynamic code rewriting

Dynamic code rewriting techniques [9,24] involve modifying the
code at runtime, enabling the dynamic alteration of program behavior.
Examples of such techniques include the usage of packers like Ultimate
Packer for Executables (UPX) [25] and Themida [26], which apply
code obfuscation by encrypting and unpacking the binary program
during runtime. Another example is SubVirt [27], which employs code
virtualization. This technique transforms the program’s code into a
specific intermediate representation and interprets this representation

at runtime to achieve the same functionality as the original program.
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2.1.3. Static code rewriting
Static code rewriting techniques involve transforming the program’s

code during compilation, eliminating the need for additional modi-
fications during runtime. One such technique is instruction substitu-
tion [23,28], which replaces instructions or instruction sequences with
semantically equivalent alternatives. For instance, on the Intel x86
platform, the instruction ADD EAX, 0x1 can be substituted with SUB
EAX, -0x1.

Dead code insertion [23,28,29] involves constructing code sections
that are never executed and injecting code into those sections. This
technique aims to confuse or mislead reverse engineers by introducing
code that serves no functional purpose.

Control flow obfuscation [28] techniques modify the program’s con-
trol flow. Control flow flattening, for example, rearranges the program’s
basic blocks using a switch-case statement. This makes the control flow
less transparent and harder to comprehend.

3. The ERMDS dataset

3.1. Methodology

When designing ERMDS, we focused primarily on three questions:

• (q1) How to generate a dataset with diverse features that were
not observed during LB-MDS training?

• (q2) How to ensure that each malicious sample has multiple
adversarial samples with different features?

• (q3) How to ensure that the functionality of adversarial samples
is consistent with that of the original samples?

The first question was raised because if all the features in the dataset
have already been learned by LB-MDS, then all the samples in the
dataset will be correctly classified by LB-MDS, making it impossible to
evaluate the robustness of LB-MDS and to determine which LB-MDS is
more suitable for security-related applications.

The second question was raised to ensure that every sample in
the dataset has multiple adversarial examples with diverse features, as
ERMDS aims to provide a more realistic evaluation of model perfor-
mance by including a wide array of model-agnostic adversarial exam-
ples. These examples are designed to capture various failure modes of
modern models, instead of exclusively focusing on worst-case scenarios.

The third question was raised because we need to ensure that the
samples in the ERMDS dataset are normal executable programs with
intact functionality, so that the decrease in LB-MDS accuracy is not due
to damaged sample functionality.
Fig. 6. The accuracy of AVs on samples processed through binary obfuscation space.
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Table 3
Affected features by Obfuscation methods.

Hash-Based features Rule-based features Data distribution

File
hash

Section
hash

Section
count

Section
name

Section
padding

Debug
info

Checksum API
calls

Code
sequence

Data
distribution

Binary Level
Obfuscation

OA ✓ ✓

SP ✓ ✓ ✓

SA ✓ ✓ ✓ ✓ ✓

SR ✓ ✓

RC ✓

RD ✓ ✓ ✓ ✓

BC ✓ ✓

CR ✓ ✓ ✓

Source Code Level
Obfuscation

IS ✓ ✓ ✓

CR ✓ ✓ ✓

CF ✓ ✓ ✓ ✓

DE ✓ ✓ ✓

COTC ✓ ✓ ✓

CM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CFF ✓ ✓ ✓ ✓ ✓ ✓ ✓

VM ✓ ✓ ✓ ✓ ✓

VS ✓ ✓ ✓ ✓ ✓

SR ✓ ✓

JOI ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Packing
Obfuscation

CE ✓ ✓ ✓ ✓ ✓ ✓ ✓

CV ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

BP ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

BPB ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

AO ✓ ✓ ✓ ✓ ✓

CC ✓ ✓ ✓ ✓ ✓ ✓ ✓

DL ✓ ✓ ✓ ✓ ✓ ✓

AD ✓ ✓ ✓ ✓ ✓

AP ✓ ✓ ✓ ✓ ✓

AT ✓ ✓ ✓ ✓ ✓

AS ✓ ✓ ✓ ✓ ✓

AE ✓ ✓ ✓ ✓ ✓

SMC ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

AMD ✓ ✓ ✓ ✓ ✓ ✓
3.2. The obfuscation space of ERMDS

Solution for q1. To address the first question, we designed three
layers of obfuscation, which correspond to binary-level obfuscation,
source code-level obfuscation, and packing obfuscation. Binary-level
obfuscation modifies section names and removes debug tables from
the malware to eliminate sensitive information. This makes it difficult
for the MDS to identify the malware as harmful by matching specific
strings or symbol information. Source code-level obfuscation rewrites
the control or data flow of the malware to avoid detection based on
its code or data features. This method is more advanced than binary-
level obfuscation because it rewrites the code and data. Packing is the
most advanced method that encrypts the entire malware, incorporates
it into a benign program, and decrypts and executes it during runtime.
Compared to the other two methods, packing is the most sophisticated
technique since the MDS cannot obtain any features of the malware
through static detection since it is encrypted.

As shown in Table 2, each layer of obfuscation includes at least eight
different obfuscation methods, each with specific parameter settings.
These obfuscation methods are orthogonal and can be applied repeat-
edly, allowing for theoretically infinite combinations of obfuscation
methods. This enables us to generate a dataset with diverse features
that were not observed during LB-MDS training.

In order to ensure that each obfuscation method in our obfuscation
spaces can cover all features of the malware, we first divided the fea-
tures of the program into Hash-based features, Rule-based features, and
Data Distribution according to [10]. We also annotated which features
each method would affect. If an obfuscation method 𝑜𝑚 modifies the
feature set 𝑆 = {𝑠1, 𝑠2,… , 𝑠𝑘} of a malware sample, the impact of
various obfuscation methods on the affected features can be observed

in Table 3 for our dataset. For example, consider the CR obfuscation
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method, which replaces instruction sequences with semantically equiv-
alent ones. Referring to Table 3, we can see that this method affects
the File Hash, Section Hash, and Code Sequence features. File Hash
and Section Hash are affected by any modifications made to the file
and section content, while Code Sequence is only affected if the CR
obfuscation method modifies the instruction sequences in the code.
As shown in Table 3, each obfuscation method in our obfuscation
spaces can cover all features of the program, ensuring that ERMDS can
generate malware with diverse features.

Solution for q2. For problem two, since the obfuscation combina-
tions we generate are theoretically infinite, each combination applied
to a malware produces a variant of the original malware. Therefore, ER-
MDS can theoretically produce an infinite number of variants for each
malicious sample, ensuring that each sample has multiple adversarial
samples with different features.

Solution for q3. Regarding problem three, the obfuscation methods
selected in our obfuscation space are functionality-preserving. In the-
ory, applying these methods to a program should not change its original
functionality because these methods, as shown in Table 2, are all de-
signed to preserve the program’s functionality [10,11]. However, due to
implementation issues, a small number of programs may become non-
functional. To quantify the impact of implementation errors on program
functionality, we conducted additional experiments to evaluate the
effect of obfuscation methods in the ERMDS dataset on program func-
tionality. Through this experiment, we discovered that the obfuscation
methods in the ERMDS dataset can indeed affect the original function-
ality of functions. For details, please refer to the Functional Integrity
Testing section in the appendix. Furthermore, other researchers can
expand the ERMDS by incorporating additional obfuscation techniques,
resulting in a more comprehensive and diverse dataset of malware
samples.
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Table 4
Overview of ERMDS-X dataset and quality thresholds on four datasets.

Level malware
nums

benign nums Quality threshold of
LB-MDS accuracy %

Quality threshold of
commercial antivirus
softwares accuracy %

Binary obfuscation 49714 16815 18.25 64.32
Source Code obfuscation 0 3841 84.3 98.7
Packing 36971 9799 79.81 32.93
ERMDS-X 86685 30455 62.35 62.51
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3.3. Workflow of ERMDS

Algorithm 1 outlines the workflow of the ERMDS, which generates
a obfuscation dataset 𝑜𝑏𝑆𝑒𝑡. For each malware sample 𝑚𝑎𝑙 in the
𝑚𝑎𝑙𝑆𝑒𝑡, three types of obfuscation techniques, namely binary obfus-
cation, source code obfuscation, and packer, are applied to 𝑚𝑎𝑙 to
produce a set of obfuscated malware samples, which are then added to
𝑜𝑏𝑆𝑒𝑡. 𝑁𝑢𝑚𝑏, 𝑁𝑢𝑚𝑠, and 𝑁𝑢𝑚𝑝 denote the number of binary obfuscation
samples, source code obfuscation samples, and packer samples that
need to be generated for each 𝑚𝑎𝑙, respectively. When generating
the obfuscation samples, we randomly choose which obfuscation tech-
niques to apply. To ensure the diversity of the generated samples, we
perform 𝑘 rounds of selection for each obfuscation technique, resulting
in a sequence of obfuscation methods 𝑂 = {𝑂1, 𝑂2, . . . , 𝑂𝑘}, where
each element represents a specific obfuscation method. The value of 𝑘
is a random number, and 𝑙𝑏 and 𝑟𝑏 are the upper and lower bounds
for binary obfuscation techniques, 𝑙𝑠 and 𝑟𝑠 are the upper and lower
bounds for source code obfuscation techniques, and 𝑙𝑝 and 𝑟𝑝 are the
upper and lower bounds for packer techniques.

4. Implementation

4.1. Initial dataset description

As the majority of current datasets for malware analysis only con-
tain samples from the period between 2017 and 2020, including the
most recently released BODMS, there is a risk that these datasets
may not accurately reflect recent malware behaviors. To address this
issue, we intend to release a new malware dataset that covers samples
from January to December 2022. Our initial dataset contains 10,000
malware samples, 5000 benign samples, and 300 benign samples with
source codes, totaling 15,300 samples. We collected the malware sam-
ples from VirusShare [30], ensuring that they were collected between
January 1, 2022, and December 30, 2022. The benign samples were
collected from Github and Source Forge.

4.2. Generate ERMDS-X dataset instance

We used Algorithm 1 to generate an instance of our dataset, named
ERMDS-X, with the following parameters: 𝑁𝑢𝑚𝑏 = 30, 𝑁𝑢𝑚𝑠 = 30,
𝑁𝑢𝑚𝑝 = 30, 𝑙𝑏 = 2, 𝑟50, 𝑙𝑠 = 2, 𝑟𝑠 = 50, 𝑙𝑝 = 2, and 𝑟𝑝 = 50. The malware
ataset 𝑚𝑎𝑙𝑆𝑒𝑡 consisted of 4000 malware and 1500 benign samples,
hich were random sampled from the initial dataset. The parameters
sed in our ERMDS-X dataset instance, including 𝑁𝑢𝑚𝑏 = 30, 𝑁𝑢𝑚𝑠 =
0, 𝑁𝑢𝑚𝑝 = 30, 𝑙𝑏 = 2, 𝑟50, 𝑙𝑠 = 2, 𝑟𝑠 = 50, 𝑙𝑝 = 2, and 𝑟𝑝 = 50,
ere not chosen to minimize the accuracy drop of LB-MDS. Instead,

he ERMDS dataset was designed to provide a more realistic evaluation
f model performance by incorporating a diverse set of model-agnostic
dversarial examples. These examples aim to capture various failure
odes of modern models, rather than focusing solely on worst-case

cenarios. In the Parameters section of the Appendix, we provide a set
f optimal parameters that can minimize the accuracy drop of LB-MDS.

After filtering out some malware that could not be processed, we
btained a total of 86,685 malicious and 30,455 benign samples for
he ERMDS-X dataset. We extracted the features from PE files using
he LIEF [31] project and followed the same format as Ember [1],
8

OREL-20M [20], and BODMAS [21] to ensure compatibility with
xisting datasets. Each sample in the ERMDS-X dataset is labeled ei-
her ‘‘malware’’ or ‘‘benign’’, providing a ground-truth label for re-
earchers. The techniques used are listed in Table 2, and were imple-
ented using the following tools: Binary Ninja [32], Radare2 [33], IDA
ro [34], LLVM [35], Pin [36], Angr [37], and MAB [10] for binary
bfuscation; OLLVM (Obfuscator-LLVM) [28], PreEmptive Protection
Dotfuscator [38], and ConfuserEx [39] for source code obfusca-

ion; and Themida [26], UPX [25], ASProtect [40], Enigma [41],
irbox Protector [42], VMProtect [43], and MalFox [11] for packing
bfuscation.

.3. Description on ERMDS-X dataset instance

The ERMDS-X dataset serves as a valuable tool for evaluating the
obustness of LB-MDS and facilitating the identification of potential
ulnerabilities within the LB-MDS system. Moreover, LB-MDS can be
rained again on the ERMDS-X dataset to enhance its robustness. An
verview of the ERMDS-X dataset is provided in Table 4, which com-
rises three sub-datasets: the Binary obfuscation dataset, the Packing
ataset, and the Source Code obfuscation dataset. Each of these sub-
atasets includes samples that have undergone binary-level obfusca-
ion, packing, and source code obfuscation, respectively. The ERMDS-X
ataset is the combination of these three sub-datasets.

As a result of the absence of source code in malware, we limited
he application of source-level obfuscation to benign programs that
ave source code. It is possible to achieve better accuracy reduction
hrough source-level obfuscation if there is enough source code avail-
ble for malware. Although this presents a drawback of ERMDS-X,
ur experiments have demonstrated that ERMDS-X is sufficient for
valuating the robustness of MDS. Other researchers can readily expand
he source-level obfuscation dataset by providing malware with source
ode.

Additionally, we present the quality threshold of LB-MDS on these
our datasets, including the quality threshold of LB-MDS and commer-
ial antivirus software. The quality threshold of LB-MDS is determined
y averaging the accuracy of two LB-MDS models, namely MalConv
nd Ember, selected during our experiments. The quality threshold of
ommercial antivirus software is determined by averaging the accu-
acy of six commercial antivirus software programs chosen during our
xperiments.

. Evaluation

Our evaluation aims to address the following research questions:

• RQ1: How do LB-MDS and commercial antivirus software perform
on the ERMDS-X dataset and the SOTA PE malware datasets?

• RQ2: What is the impact of the three categories of software obfus-
cation techniques, namely binary-level obfuscation, source code-
level obfuscation, and packing, on the effectiveness of LB-MDS
and commercial antivirus software?

• RQ3: Which malware features have the greatest impact on the

classification results of LB-MDS?
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Table 5
Accuracy of learning-based malware detection systems
on ERMDS-X and Clean datasets.

Model 𝐸𝑁𝑒𝑡𝑤𝑜𝑟𝑘
𝐶𝑙𝑒𝑎𝑛 (%) 𝐸𝑁𝑒𝑡𝑤𝑜𝑟𝑘

𝐸𝑅𝑀𝐷𝑆 (%)

malConv 78.57 56.17
EMBER 85.37 68.53
AV1 94.62 65.18
AV2 96.87 66.29
AV3 95.45 58.01
AV4 95.88 56.45
AV5 93.33 72.83
AV6 96.41 56.31

Table 6
Accuracy of learning-based malware detection systems on SOREL-20M
and BODMAS datasets.

Model 𝐸𝑁𝑒𝑡𝑤𝑜𝑟𝑘
𝑆𝑂𝑅𝐸𝐿 (%) 𝐸𝑁𝑒𝑡𝑤𝑜𝑟𝑘

𝐵𝑂𝐷𝑀𝐴𝑆 (%)

malConv 87.9 82.2
EMBER 91.7 87.1
AV1 93.7 96.3
AV2 92.5 96.8
AV3 97.9 94.5
AV4 96.1 93.8
AV5 97.3 94.7
AV6 96.0 94.4

5.1. Evaluation metrics

In order to comprehensively evaluate the robustness of a MDS,
we begin by selecting an MDS and then calculating its accuracy on
a clean dataset, which serves as the initial dataset. This calculation
is performed using Eq. (1) according to [44], where 𝐸𝑀𝐷𝑆

𝐶𝑙𝑒𝑎𝑛 denotes
he MDS’s accuracy on Clean dataset. Specifically, 𝑁𝐶

𝐶𝑙𝑒𝑎𝑛 represents
he number of samples that are correctly predicted by the MDS, while
𝐴𝑙𝑙
𝐶𝑙𝑒𝑎𝑛 represents the total number of samples in the initial dataset.

𝑀𝐷𝑆
𝐶𝑙𝑒𝑎𝑛 = 𝑁𝐶

𝐶𝑙𝑒𝑎𝑛∕𝑁
𝐴𝑙𝑙
𝐶𝑙𝑒𝑎𝑛 (1)

Subsequently, the selected MDS is tested on the ERMDS-X dataset
denoted as ‘‘ERMDS’’), and the accuracy, denoted as 𝐸𝑀𝐷𝑆

𝐸𝑅𝑀𝐷𝑆 , is
alculated using Eq. (2) according to [44]. Here, 𝑁𝐶

𝐸𝑅𝑀𝐷𝑆 represents
he number of samples that are correctly predicted, while 𝑁𝐴𝑙𝑙

𝐸𝑅𝑀𝐷𝑆
epresents the total number of samples in the ERMDS-X dataset.

𝑀𝐷𝑆
𝐸𝑅𝑀𝐷𝑆 = 𝑁𝐶

𝐸𝑅𝑀𝐷𝑆∕𝑁
𝐴𝑙𝑙
𝐸𝑅𝑀𝐷𝑆 (2)

.2. Attack targets

For our target models, we have chosen the following:

• EMBER [1] is an open-source LB-MDS. It utilizes LIEF [31] to ex-
tract features from both malicious software and benign programs.
These features are then used by a LightGBM model to determine
whether a program is malicious or not. We utilized the model
provided by MLSEC 2019 as our target for the attack [45].

• MalConv [2], in contrast to EMBER, directly uses the binary
byte stream of malicious software as training data. Based on this
byte stream, it determines whether a program is malicious. We
employed the model provided by MLSEC 2019 as our target for
the attack [45].

• Commercial Antivirus Software. We selected six top commercial
antivirus software as our evaluation targets, based on [46].
v

9

.3. Evaluation on ERMDS-X dataset

This experiment demonstrates that ERMDS-X effectively exposes
he robustness limitations of existing LB-MDS models. In Table 5, a
omprehensive comparison of two LB-MDS models and six commercial
ntivirus software is presented based on their detection performance
n both the ERMDS-X and Clean datasets. The Clean dataset is a
ollection of original data containing both malwares and benign pro-
rams. Notably, MalConv exhibits a significantly lower accuracy of
nly 78.57% on the Clean dataset in comparison to EMBER and the
ix commercial antivirus software, which all have an accuracy of over
5%. Our analysis suggests that this decrease in accuracy is due to the
utdated dataset used by the MalConv model during training, which
ailed to capture the latest features of malwares. In addition, research
onducted in [21] demonstrates that virus features change over time,
nd previously trained models may have decreased accuracy on new
alwares.

The performance of the LB-MDS models and commercial antivirus
oftware on the ERMDS-X dataset demonstrates an accuracy range of
6.17% to 78.83%, with an average accuracy of 62.47%. This lower
ccuracy is attributed to the different types of adversarial examples
resent in the ERMDS-X dataset, which aims to provide a more real-
stic evaluation of model performance by including a broad range of
odel-agnostic adversarial examples. These adversarial examples are
esigned to capture various failure modes of modern models, rather
han focusing solely on worst-case scenarios. Thus, the performance of
he LB-MDS models on the ERMDS-X dataset did not decrease to the
owest level, but an accuracy of 62.47% is still a relatively low value,
emonstrating the ability of ERMDS-X to evaluate the robustness of
xisting LB-MDS models.

It is essential to note that LB-MDS systems predict whether a given
oftware is malicious or benign. Even with random guessing, there is a
0% probability of correctly guessing. The accuracy of these systems
n the ERMDS-X dataset is 62.47%, which is only 12.47% higher
han random guessing. Thus, ERMDS-X can be used to evaluate the
obustness of existing LB-MDS models effectively.

.4. Evaluation on SOTA malware datasets

This experiment aims to demonstrate that the SOTA malware
atasets are not suitable for evaluating the robustness of LB-MDS. We
valuated the accuracy of two SOTA PE malware datasets, SOREL-
0M and BODMAS, using two LB-MDS models and six commercial
ntivirus software. To ensure a fair comparison, we randomly selected
0,000 samples from each dataset and employed them to attack the
wo LB-MDS models and six commercial antivirus software, with each
xperiment repeated five times to obtain average results.

Table 6 illustrates the accuracy of the two LB-MDS models and
ix commercial antivirus software on the SOREL-20M and BODMAS
atasets. It is observed that all the commercial antivirus software
xhibit an accuracy of over 90% for detecting samples from both
OREL and BODMAS datasets. In contrast to Section 5.3, the accuracy
f commercial antivirus software for ERMDS-X ranges from 56.31%
o 72.83%. Although the LB-MDS models attain an accuracy of over
0% for detecting samples from both SOREL and BODMAS datasets,
heir accuracy for ERMDS-X is only 56.17% and 68.53%, respectively.
his implies that ERMDS-X can assess the robustness of MDS, whereas
ther datasets like SOREL and BODMAS cannot significantly impact the
ccuracy of MDS.

Moreover, as evident from Table 6, malConv and EMBER display
ower accuracy on the BODMAS dataset than on the SOREL dataset.
dditionally, Section 5.3 indicates that malConv and EMBER exhibit

ower accuracy on the clean dataset. This is due to the fact that
he clean dataset was gathered in 2022, which is subsequent to the
ata collection period of SOREL and BODMAS datasets (2017–2020).
MBER and malConv were trained on a relatively outdated dataset
efore 2018 and were unable to accurately capture the features of new

iruses, resulting in their lower accuracy.
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5.5. Evaluation on three obfuscation spaces

In order to evaluate the effectiveness of LB-MDS on three types
of obfuscation spaces, namely binary obfuscation space (BOS), source
code obfuscation space (SOS), and packing obfuscation space (POS), we
generated adversarial examples using each of these three techniques
and evaluated the accuracy of LB-MDS. Furthermore, we conducted
an analysis on the samples that caused a decrease in the accuracy
of LB-MDS in each obfuscation space, counted the frequency of each
obfuscation method used in each obfuscation space, and included a set
of parameters in the appendix that can induce the maximum decrease in
LB-MDS accuracy, which can serve as a reference for other researchers.

5.5.1. Effect on binary obfuscation space
To evaluate the quality of adversarial examples generated by the

BOS, we randomly selected 10000 malicious samples from the initial
dataset and named it dataset-V. For each malicious sample in dataset-V,
we applied obfuscation techniques from the binary obfuscation space
iteratively until an effective adversarial example was produced. We
used the obfuscation methods from the BOS to attack MalConv, EMBER,
and six commercial antivirus software, and evaluated the number
of obfuscation iterations needed to generate an effective adversarial
example, as illustrated in Fig. 2. To ensure experimental accuracy, each
experiment was repeated five times to obtain the average results.

Attacking LB-MDS. Fig. 2 illustrates the efficacy of BOS attacks
on EMBER and MalConv. As depicted in Fig. 2(a), MalConv’s original
accuracy on malware is 91.40%. However, when detecting malware
processed by BOS, the accuracy plummets to 2.70%, resulting in an
88.7% decline in the accuracy. In Fig. 2(b), we observe that EMBER’s
original accuracy on malware is 98.90%. However, after being pro-
cessed by BOS, the accuracy drops to 33.8%, resulting in a 65.1%
reduction in the accuracy. These results highlight that BOS attacks can
easily deceive LB-MDS.

Furthermore, we evaluated the relationship between the number
of obfuscation methods and the accuracy of LB-MDS. As depicted in
Fig. 2, for MalConv, after undergoing ten binary obfuscation methods,
the accuracy of malware decreased to its lowest point, dropping from
91.4% to 2.7%. Even when continuing to apply binary obfuscation
techniques to the malware, MalConv’s accuracy did not further decrease
after ten obfuscation methods. For EMBER, after undergoing thirteen
binary obfuscation methods, the accuracy of malware decreased to its
lowest point, dropping from 98.9% to 33.8%. Even when continuing
to apply binary obfuscation techniques to the malware, EMBER’s accu-
racy did not further decrease after thirteen obfuscation methods. This
experiment highlights the limitations of binary obfuscation techniques
in combating LB-MDS, as they typically only add new content and have
limited ability to modify the code and data of the original program.
Therefore, binary obfuscation techniques cannot fully defeat LB-MDS.

Attacking Commercial Antivirus. We conducted a comprehensive
valuation of our framework using six commercially available antivirus
ngines. Fig. 3 displays the original accuracy of malware for AV1-AV6,
hich ranged from 93.40% to 97.10%, with AV4 achieving the highest

ate at 97.10% and AV3 the lowest rate at 93.40%. After applying
OS processing to the malware and subjecting it to detection by AV1-
V6, we observed a significant reduction in accuracy for the processed
alware. For instance, the accuracy for AV1 dropped from an original
5.70% to 65% after BOS processing, leading to 29.3% of the malware
vading detection.

Our findings indicate that while binary obfuscation techniques ex-
ibits a certain level of effectiveness against commercial antivirus
oftware, it is not entirely successful in defeating it. This is mainly
ecause commercial antivirus software uses multiple features to deter-
ine whether a program is malicious or benign. Binary obfuscation

echniques have limited ability to modify the code and data of a
rogram, such as being unable to modify the API calls feature of a
rogram, leading to suboptimal performance in terms of adversarial

ffectiveness against commercial antivirus software. o

10
Additionally, we analyzed the impact of the number of binary ob-
uscation techniques on the accuracy of commercial antivirus software.
ig. 3 shows that the number of binary obfuscation techniques had
arying degrees of influence on the accuracy of the different antivirus
ngines. For example, malware detection probability for AV1 decreased
o its lowest value of 65% after the 8th binary obfuscation, while for
V4, it decreased to its lowest value of 63.1% after the 27th binary
bfuscation. This indicates that different commercial antivirus software
xhibits varying degrees of sensitivity to binary obfuscation.

.5.2. Effect on source code obfuscation space
To evaluate the quality of adversarial examples generated by the

OS, we were unable to use malware samples due to their lack of
ource code. Therefore, we only provided benign programs to SOS
or obfuscation and tested whether the obfuscated benign programs
ere misclassified as malware by LB-MDS. We randomly selected 300
enign samples from the initial dataset and named it dataset-B. For each
enign sample in dataset-B, we applied obfuscation techniques from
he binary obfuscation space iteratively until an effective adversarial
xample was produced. We used the obfuscation methods from the SOS
o attack MalConv, EMBER, and six commercial antivirus software, and
valuated the number of obfuscation iterations required to generate
n effective adversarial example, as depicted in Fig. 4. To ensure
xperimental accuracy, each experiment was repeated five times to
btain the average results.

Fig. 5 illustrates the accuracy of EMBER, MalConv, and six commer-
ial antivirus engines in detecting benign programs processed by SOS.
alConv and EMBER exhibit a certain false positive rate for benign

rograms, with accuracies of 95% and 97.7%, respectively, indicating
hat MalConv misclassifies 5% of benign programs as malicious and
MBER misclassifies 2.3%, as shown in (a) and (b). After SOS process-
ng, 15 rounds of source code obfuscation cause MalConv’s accuracy
o decrease to its lowest value of 77%, and 6 rounds of source code
bfuscation cause EMBER’s accuracy to decrease to its lowest value
f 91.6%. This may be due to the fact that source code obfuscation
ompletely disrupts program control flow, making them appear unlike
ormal programs, leading LB-LDS to misclassify them as malicious.

For commercial antivirus software, the accuracy for benign pro-
rams is 100%, and it can also achieve an accuracy of 98.7% for
enign programs processed by SOS. This, in conjunction with Table 5,
ndicates that although LB-LDS has high accuracy for malware, it
lso has a certain false negative rate for benign programs processed
y obfuscation techniques. Furthermore, Fig. 2 shows that LB-LDS is
ulnerable to adversarial examples. Therefore, commercial antivirus
oftware outperforms LB-LDS in detecting obfuscations at both the
inary and source code levels.

.5.3. Effect on packing obfuscation space
To ensure fairness, we evaluated the quality of adversarial examples

enerated by the POS using the same dataset (dataset-V) as in the BOS
valuation. For each malicious sample in dataset-V, we applied obfus-
ation techniques from the POS iteratively until an effective adversarial
xample was produced. We used the obfuscation methods from the POS
o attack MalConv, EMBER, and six commercial antivirus software. To
nsure experimental accuracy, each experiment was repeated five times
o obtain the average results.
Attacking LB-MDS. Fig. 5 illustrates the attack effects of the POS

n MalConv and EMBER. As shown in the figure, the malicious samples
rocessed by the POS can significantly reduce the accuracy of MalConv
rom 91.4% to 59.4%. However, the impact on the accuracy of EMBER
s relatively small, only reducing its accuracy from 98.9% to 80.25%.
he poor performance of the POS on LB-MDS is mainly due to the
act that the POS will pack the malicious software, which requires
dding corresponding unpacking code to ensure the correct execution

f the malicious software. LB-MDS can capture the features of the
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Fig. 7. The frequency of obfuscation methods used in generating samples that cause a decrease in the accuracy of LB-MDS.
npacking code, which makes the performance of the POS not ideal
hen attacking LB-MDS.
Attacking Commercial Antivirus. Fig. 6 illustrates the effective-

ess of POS in generating adversarial examples against six commercial
ntivirus software, namely AV1-Av6. In comparison to LB-MDS, POS
emonstrates considerably superior performance in attacking commer-
ial antivirus software. The accuracy of all six commercial antivirus
oftware in detecting original malware samples ranges from 93.4% to
8.9%. However, when presented with malware obfuscated by POS,
heir accuracy drops dramatically to between 30.1% and 33.7%. This
ignificant decrease in accuracy can be attributed to the fact that many
acking obfuscation methods, such as BPB, encrypt the entire malware,
esulting in modifications to all features of the malware. Moreover, the
ncrypted malware is stored in the section of benign programs, causing
ommercial antivirus software to misclassify it as benign software.

.5.4. Most frequently used obfuscation methods analysis
In this experiment, we analyzed the samples that caused a decrease

n the precision of LB-MDS in the three aforementioned experiments,
nd calculated the frequency of obfuscation methods used in these
amples. Understanding the reasons for the decrease in accuracy of LB-
DS can help improve the robustness of a classifier against adversarial

ttacks. We have summarized the most frequently used obfuscation
ethods in Fig. 7 Based on this figure, we can infer the root cause of

ach evasion. Our findings indicate that:

• When attacking LB-MDS, OA in the binary obfuscation space,
CM, CFF in the source code obfuscation space, and BPB in the
packing obfuscation space are the most frequently used methods.
Other obfuscation methods are rarely used. OA, CM, CFF, and
BPB all affect the data distribution of the software, indicating
that changes to the data distribution are the main reason for the
decrease in LB-MDS accuracy.

• When attacking commercial antivirus software, OA, SP, SA, and
SR in the binary obfuscation space are frequently used and mainly
affect the program’s data distribution, section padding, section
name, and section hash features. This indicates that single obfus-
cation methods are no longer effective in reducing the accuracy
of commercial antivirus software, and multiple obfuscation tech-
niques are needed to modify multiple features of the program
to decrease the accuracy of commercial antivirus software. Ad-
ditionally, CM, CFF, JOI, and DE in the source code obfuscation
space, and BPB, CV, BP, DL, SMC, CE, CC, and AO in the packing
obfuscation space are frequently used, which supports the above

conclusion that single obfuscation methods are insufficient.
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6. Discussion

In this section, we will discuss methods to enhance the robustness
of LB-MDS and analyze the current state of software obfuscation and
malware detection. As previously demonstrated, commercial antivirus
software exhibits poor performance in detecting packed malware due
to encryption, which eliminates the feature and renders feature-based
methods ineffective. However, packing can be utilized to protect in-
tellectual property or important data, and simply labeling programs
containing unpacking code as malware is not a practical solution.
Packed malware necessitates decryption before regular execution, and
the decrypted code and data of the malicious program are in plaintext
in memory, enabling commercial antivirus software to detect malicious
features using feature-based methods. Therefore, we suggest that an-
tivirus software should primarily employ dynamic detection methods
when determining whether a program is malicious or benign, as static
detection cannot acquire the features of packed programs.

7. Conclusion

This paper presents a obfuscation dataset ERMDS that solves the
problem of evaluating the robustness of LB-MDS. To evaluate the ability
of the ERMDS obfuscation dataset, we used the obfuscation spaces
to generate an instance of the obfuscation dataset called ERMDS-X.
We then used this dataset to evaluate two LB-MDS models and six
commercial antivirus softwares. Through experimentation, we found
that ERMDS-X can reduce the accuracy of LB-MDS by an average of
20%, and reduce the accuracy of commercial antivirus software by
an average of 32%. Finally, we analyzed the reasons for the decrease
in accuracy for each LB-MDS and commercial antivirus software, and
provided suggestions for improving robustness.
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Appendix

Parameters. The following parameters constitute a set that max-
imally reduces the accuracy of LB-MDS: 𝑁𝑢𝑚𝑏 = 30, 𝑁𝑢𝑚𝑠 = 30,
𝑁𝑢𝑚𝑝 = 30, 𝑙𝑏 = 30, 𝑟𝑏 = 30, 𝑙𝑠 = 10, 𝑟𝑠 = 10, 𝑙𝑝 = 25, and 𝑟𝑝 = 25. We
recommend that 𝑁𝑢𝑚𝑏, 𝑁𝑢𝑚𝑠, and 𝑁𝑢𝑚𝑝 be set to at least 30 to ensure

that each sample has multiple adversarial examples. 𝑙𝑏 = 30 because
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Table A.7
Functional testing of obfuscated malicious software.

Malware 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙𝑅𝑎𝑡𝑒 (%)

malware1 91
malware2 95
malware3 93

over 30 rounds of binary obfuscation can minimize the accuracy of LB-
MDS and commercial antivirus software AV1-AV6, as shown in Figs. 2
and 3. 𝑟𝑏 = 30 because even if the number of binary obfuscation rounds
is further increased, the accuracy of LB-MDS and commercial antivirus
software will not decrease further after reaching 30 rounds. 𝑙𝑠 = 10
because over 10 rounds of source code obfuscation can minimize the
accuracy of LB-MDS and commercial antivirus software AV1-AV6, as
shown in Fig. 4. 𝑟𝑠 = 10 because even if the number of source code
obfuscation rounds is further increased, the accuracy of LB-MDS and
commercial antivirus software will not decrease further after reaching
10 rounds. 𝑙𝑝 = 25 because over 25 rounds of packing obfuscation can
minimize the accuracy of LB-MDS and commercial antivirus software
AV1-AV6, as shown in Fig. 4. 𝑟𝑏 = 25 because even if the number of
packing obfuscation rounds is further increased, the accuracy of LB-
MDS and commercial antivirus software will not decrease further after
reaching 25 rounds.

Future Work. Comprehensively evaluating the robustness of MDS
is a challenging task. In this paper, we primarily employ three types
of obfuscation space to assess the performance of existing MDS under
adversarial attacks. The study confirms that obfuscation techniques can
be used to evaluate the robustness of MDS. However, the generation
of adversarial samples is not limited to obfuscation techniques alone.
For instance, in DeepMal [19], adversarial instructions were inserted
into malware, allowing the generated adversarial samples to evade
detection by CNN-based MDS. Such techniques can effectively capture
the vulnerability of LB-MDS since small modifications to malware can
deceive LB-MDS. Therefore, in future work, we will incorporate such
adversarial attack techniques as an essential approach to generate more
diverse samples in the EMBDR dataset and continuously enhance its
richness.

Functional Integrity Testing This experiment aims to evaluate
whether the combination of obfuscation techniques will compromise
the functionality of malicious software. We randomly selected three
malicious software programs with clear functionalities: Malware 1 en-
crypts files on the computer and extorts money, Malware 2 is a Trojan
horse program client, and Malware 3 is a malicious advertisement
plugin. Since we do not have access to the source code of these
malicious software programs, we used obfuscation techniques from BOS
and POS that were combined in various ways, with the number of com-
binations times between 3–15, to process these three malicious software
programs. These obfuscation techniques were applied to each malicious
software program to generate 100 different obfuscated versions. We
then manually executed each obfuscated malicious software program
to determine whether their functionalities had been altered. For ex-
ample, we tested whether the obfuscated extortion software was still
capable of encrypting files and extorting money. If the functionalities
of these malicious software programs were not altered, it indicated
that the combination of obfuscation techniques did not compromise the
functionality of the programs.

From Table A.7, we can observe that even after undergoing various
obfuscation techniques, most of the malicious software programs were
still able to execute their original functionalities. Only 7% of the ob-
fuscated malicious software programs lost their original functionalities
after being processed. Analysis of the obfuscated malicious software
programs that did not execute correctly led to the following conclu-
sions: 1) To prevent tampering, Malware 1 calculated a checksum of
certain parts of their code and checked whether the checksum was
correct before execution. If our obfuscation method modified this part
12
of the code, the malicious software would not execute because the
checksum would have changed. 2) Malware 2 and 3 had a more
complex PE format compared to Malware 1, with a large .rsrc resource
section. Existing obfuscation tools such as Malfox could not correctly
parse this section when processing Malware 2 and 3, causing it to not
execute correctly.
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