BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100086

KeAi

BenchCouncil Transactions
on Benchmarks, Standards

Contents lists available at ScienceDirect
BenchCouncil Transactions on Benchmarks,
Standards and Evaluations

journal homepage: www.keaipublishing.com/en/journals/benchcouncil-transactions-on-
benchmarks-standards-and-evaluations/

and Evaluations

KeAi

CHINESE ROOTS
GLOBAL IMPACT

Research article

Edge AlBench 2.0: A scalable autonomous vehicle benchmark for]

IoT-Edge-Cloud systems T
Tianshu Hao ", Wanling Gao ?, Chuanxin Lan?, Fei Tang ®°, Zihan Jiang **, Jianfeng Zhan *"

2 Research Center for Advanced Computer Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
b University of Chinese Academy of Sciences, Beijing, China

ARTICLE INFO ABSTRACT

Keywords: Many emerging IoT-Edge-Cloud computing systems are not yet implemented or are too confidential to
IoT-Edge-Cloud share the code or even tricky to replicate its execution environment, and hence their benchmarking is very
Benchmark) challenging. This paper uses autonomous vehicles as a typical scenario to build the first benchmark for IoT-
;\utlm]l)‘;mous vehicles Edge—Cloud systems. We propose a set of distilling rules for replicating autonomous vehicle scenarios to extract
calable

critical tasks with intertwined interactions. The essential system-level and component-level characteristics are
captured while the system complexity is reduced significantly so that users can quickly evaluate and pinpoint
the system and component bottlenecks. Also, we implement a scalable architecture through which users can
assess the systems with different sizes of workloads.

We conduct several experiments to measure the performance. After testing two thousand autonomous
vehicle task requests, we identify the bottleneck modules in autonomous vehicle scenarios and analyze their
hotspot functions. The experiment results show that the lane-keeping task is the slowest execution module,
with a tail latency of 77.49 ms for the 99th percentile latency. We hope this scenario benchmark will be
helpful for Autonomous Vehicles and even IoT-edge-Cloud research. Now the open-source code is available

from the official website https://www.benchcouncil.org/scenariobench/edgeaibench.html.

1. Introduction

As a typical complex real-world application, IoT-Edge—Cloud sys-
tems consist of “a diversity of Al and non-Al modules with huge code
sizes and long and complicated execution paths” [1]. Moreover, many
emerging loT-Edge-Cloud computing systems are yet implemented or
are too confidential to reveal their technical details, not to mention
sharing the source code. For example, a typical loT-Edge-Cloud system
- autonomous vehicles — runs 100 million lines of code in just one
car [2]. Overall, they are too tricky or costly to replicate the code or
even their execution environments; hence, their benchmarking is very
challenging.

Even if we can replicate the application completely, directly using
the application as the benchmark have several pitfalls. Real-world
applications often have many instantiation biases. That is to say, real-
world applications or systems are trapped in limited design and im-
plementation points in a high-dimension space [3]. Previous work [4]
has discussed the root cause of the instantiation bias. A workload
is hierarchically implemented in a modern computer system: a prob-
lem definition, an algorithm, an intermediate representation, an ISA-
specific representation, and a micro-architectural representation. From

top to down, the design and implementation spaces increase explo-
sively. However, for maintaining user experience or saving the software
and hardware ecosystem investment, users adhere to existing products,
tools, platforms, and services, which the previous work called technol-
ogy inertia [3,5]. The technology inertia traps the real-world solution to
a problem into a specific exploration path — a subspace or even a point
at a high-dimension solution space. While profiling has been applied to
various aspects of benchmarking complex real-world applications [1],
the profiling technique helps little in overcoming this limitation.

Gao et al. [1] proposed a scenario benchmarking methodology to
attack the above challenge. They proposed several rules to distill a real-
world application scenario from a high-level requirement specification
into a combination of essential Al and non-Al tasks as a scenario
benchmark. Meanwhile, They identify primary modules in the critical
paths of a real-world scenario from the system implementation level
as they consume the most system resources and are the core focuses
for system design and optimization. However, they fail to consider the
complex IoT-Edge-Cloud scenarios. This paper extends the scenario
benchmarking methodology for IoT-Edge—Cloud systems. For the first
time, Hao et al. [6] propose an end-to-end view in benchmarking IoT-
Edge-Cloud systems, considering all three layers: client-side devices,

* Corresponding author at: Research Center for Advanced Computer Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China.
E-mail addresses: haotianshu@ict.ac.cn (T. Hao), gaowanling@ict.ac.cn (W. Gao), lanchuanxin@ict.ac.cn (C. Lan), tangfei@ict.ac.cn (F. Tang),

jiangzihan@ict.ac.cn (Z. Jiang), zhanjianfeng@ict.ac.cn (J. Zhan).

https://doi.org/10.1016/j.tbench.2023.100086

Received 20 November 2022; Received in revised form 13 February 2023; Accepted 13 February 2023

Available online 16 February 2023

2772-4859/© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.tbench.2023.100086
https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tbench.2023.100086&domain=pdf
https://www.benchcouncil.org/scenariobench/edgeaibench.html
mailto:haotianshu@ict.ac.cn
mailto:gaowanling@ict.ac.cn
mailto:lanchuanxin@ict.ac.cn
mailto:tangfei@ict.ac.cn
mailto:jiangzihan@ict.ac.cn
mailto:zhanjianfeng@ict.ac.cn
https://doi.org/10.1016/j.tbench.2023.100086
http://creativecommons.org/licenses/by-nc-nd/4.0/

T. Hao, W. Gao, C. Lan et al.

edge computing layer, and cloud servers. But their methodology has
flaws. For example, they fail to consider the problem definition and in-
stantiation bias. Moreover, they only implemented several component
benchmarks in isolation without realistic interactions, which cannot
constitute an end-to-end view. In addition, their workloads are not
scalable.

The autonomous vehicles case is selected by most state-of-the-art
benchmarks as a representative scenario and has the typical features of
IoT-Edge-Clod systems [7-11]. Moreover, autonomous vehicles may
be the most safety-critical scenario because it is crucial to human life.
Therefore, building a unified, reasonable, and general benchmark set
for autonomous vehicles is essential. There are several benchmarks
for autonomous driving, such as KITTI [12], CAVBench [11], and
Chauffeur [13]. However, they lack the scenario view to construct the
benchmark, which will lead to a lack of the performance of the whole
system. Therefore, in this paper, we choose autonomous vehicles as the
case study to create a scalable scenario benchmark for IoT-Edge-Cloud
systems, benefiting users to evaluate and improve their systems and
applications.

The autonomous vehicles scenario is highly complex. Various Al
vision workloads and critical decision tasks are presented in an au-
tonomous car. These numerous tasks generate substantial input data,
and these premises bring uncertainty to system function [14]. The So-
ciety of Automotive Engineers (SAE) classifies the quality of automation
of a system into six levels of autonomous driving systems; the higher
the level, the higher the system’s performance, with L5 representing
full automation [15]. While today’s most advanced autonomous driving
systems rarely reach L4 and L5, industrial companies are more focused
on developing L2 and L3 level technologies, and there are still specific
bottlenecks in the current level [16]. In summary, it is crucial to estab-
lish a unified, reasonable, and general benchmark set for autonomous
driving, which will benefit the research and development of systems
and applications in the field of autonomous vehicles.

In this paper, based on the state-of-the-art benchmarking method-
ology [1,3,4], we select autonomous vehicles as a research case to
establish a scalable scenario-1 benchmark for [oT-Edge-Cloud systems,
which reduces the complexity of the system while maintaining the
typical characteristics and critical execution path. This benchmark
facilitates users in evaluating the system’s performance and improving
the algorithm. Finally, we conduct experiments using this [oT-Edge-
Cloud scenario benchmark to analyze the critical task workloads in
autonomous driving.

We sum up our main contributions as follows:

1. In order to ensure that the system’s features are preserved as
much as possible during the distilling process, we propose six
distilling rules to simplify the scenario based on the characteris-
tics of autonomous vehicles.

2. We propose the first scenario benchmark for the IoT-Edge—Cloud
systems and provide the reference implementation. In addition,
we also implement a scalable framework to support different
sizes of workloads.

3. In the experiment section, we test two thousand autonomous
vehicle tasks the end devices sent and measure the tail latency
of each module. The results show the slowest execution module
is the lane-keeping task and the convolution operations are the
hotspot functions. Therefore, a scenario-based benchmark will
help users find the bottleneck module of a system.

We organize the rest of this paper as follows. Section 2 summa-
rizes the complexity of the autonomous vehicle scenario, the problem
definition and instantiating in benchmark construction, and related
work. Section 3 introduces the construction of scenario-level bench-
marks. Section 4 introduces our scalable edge computing architecture.
Section 5 performs evaluation. Section 6 concludes.

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100086

2. Problem definition and solution instantiation

Zhan [3] points out that a benchmark needs three processes: prob-
lem definition, solution instantiation, and measurement. We follow
this guide to build our benchmark. Due to the different IoT, Edge,
Cloud systems, workloads, and performance requirements, defining and
instantiating the problems and their solutions is challenging.

2.1. Problem definition

Initially, this paper focuses on the problem of how to help users
to get better performance from an IoT-Edge-Cloud system. Thus we
extract a few critical workloads and provide a scalable benchmark to
evaluate the systems to meet the performance requirements.

Secondly, we take autonomous vehicles, the most representative
IoT-Edge-Cloud scenario, as the case study in this paper. Like most
IoT-Edge-Cloud scenarios, autonomous vehicles have many complexity
and entanglement among different components of the architecture and
workloads. A comprehensive autonomous vehicle system may include
many processing tasks. The driving automation is taken into six levels
according to the international standard SAE J3016 with reference to
the performance of the dynamic driving task (DDT) on a sustained
basis [15]. Therefore, we take the DDT applications as the primary
concern to instantiate the problem.

Thirdly, we extract the representative workloads and formalize
them with a directed acyclic graph-based (DAG) model. Then we distill
their critical path to build a scenario benchmark by the scenario bench-
marking methodology [1]. We design and provide a workload reference
implementation that reflects the characteristics of real scenarios.

To meet different users’ requirements of the scales, we design and
implement a scalable benchmark based on the scenario benchmark
framework—scalable architecture helps the system allocate resources
and workloads.

2.2. Complexity of autonomous vehicles scenario

Like most IoT-Edge-Cloud scenarios, an autonomous vehicle system
has numerous application-level components. These components carry
out a lot of communication across three layers of IoT-Edge-Cloud
system architectures, making the system more complicated. The dis-
tributed three-layer architecture needs computing resources scaling and
workload allocation of multiple layers. Accordingly, the scalability of
the benchmark is also important to adapt to different sizes of workloads
and meet the performance requirements of different users. However,
unlike other scenarios, an autonomous vehicle system has its own
characteristics. We summarize them below.

1. The system sophistication . The entire autonomous vehicle
system involves a wide range of communications and data in-
teraction. Meanwhile, it is also filled with numerous perception,
planning, decision-making, and other autonomous driving tasks.
The entire system processes massive volumes of data while
running those intricate AI and non-Al algorithms in real time.
Different design strategies provide difficulties for both hardware
and software systems.

2. Varied environmental factors. During the driving process, the
car will encounter various natural weather conditions (e.g., fog
and snow) and complex terrain factors (e.g., mountains and
hills), which will impact sensor data collection and the accuracy
of Al tasks like objection recognition. Additionally, the existing
autonomous driving system may not have an accurate judgment
in extreme weather [17]. Hence, a reliable autonomous vehicle
system must take into account a variety of weather conditions.

T. Hao, W. Gao, C. Lan et al.

3. Massive amount of input data. Autonomous cars are equipped
with many sensors, GPS positioning modules, and cameras for
data collection, which will generate a large amount of heteroge-
neous input data [18] constantly. Moreover, multiple onboard
cameras will keep collecting information about the surrounding
environment. The system needs to consider how and where this
data is processed, stored, and trained.

4. The high demand for accuracy. Automated driving tasks re-
quire absolutely correct decisions from the autonomous driving
system. However, many tasks in the present Al models cannot
achieve accuracy above 90% [19]. Additionally, there will be
more uncertainties in the autonomous driving environment, such
as sudden braking of the vehicle in front, pedestrians entering
the road, and other unexpected situations. Consequently, safety
can also be achieved during stable driving.

5. Stable network performance. As a typical IoT-Edge—Cloud
system, an autonomous vehicle system requires real-time data
interaction with cloud data centers and edge servers throughout
the entire vehicle network. To support this, a high-bandwidth
and high-performance network environment is required.

6. Limited computing resources. Real-time task processing has
high requirements for computer resources due to the enormous
amount of data. However, the processing capability of in-vehicle
chips is constrained. Therefore, it needs to develop a lightweight
model for these AI tasks to match the in-vehicle computing sys-
tem is a significant issue. Numerous improved Al model pruning
techniques [20,21] are now being presented to overcome the
obstacle and meet the real-time requirement.

7. High energy consumption. Autonomous vehicles are equipped
with numerous sensors and powerful processing chips, which
have high energy consumption. According to studies, the overall
power consumption of cars will rise by 2.8 to 4 percentage points
to enable self-driving capabilities [22]. With the development of
5G technology, the energy demands of network communication
will increase.

As summarized above, real autonomous driving systems are pretty
complicated, making it difficult to fully and accurately model these
characteristics in creating a representative benchmark.

2.3. Related work

In recent years, the field of autonomous vehicles with AI technolo-
gies has started to acquire traction. There is some relevant benchmark-
ing research work for autonomous driving.

KITTI [12] is a vision benchmark suite for autonomous driving.
It proposes stereo and optical vision data collected from the camera
and the laser scanner. However, its purpose is to evaluate the vision
algorithms’ performance, not the whole autonomous driving system.

CAVBench [11] is the first benchmark suite for edge computing
systems. It summarizes four scenarios and implements six Al workloads
for autonomous vehicles. It takes an end-to-end view considering edge
computing architecture. Nevertheless, it lacks a whole scenario-level
view.

Chauffeur [13] is an open-source benchmark for autonomous driv-
ing. It implements end-to-end pipelines considering sensing, planning,
and actuation processes. But it also did not consider the whole pic-
ture of the autonomous vehicle based on end-edge-cloud three-layer
architecture.

In conclusion, the state-of-the-art autonomous vehicle benchmarks
lack the scenario-level view to consider the whole scenario picture.
They concentrate on specific algorithms, AI workloads, or hardware
performance. However, an autonomous vehicle scenario is typical in
IoT-Edge-Cloud systems, which must consider the components and
the whole system’s performance. Therefore, we need to distill the key
module of the system and create a new scenario benchmark to simulate
the real-world system’s performance.

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100086

Perception Object
Detection
Decision Control
Making Execution
- Route
Localization |]
Planning

Fig. 1. Task flow chart of autonomous vehicles.

3. Creating the scenario benchmark

Based on the above challenges and motivations, we present the
methodology and construction process for building an autonomous
vehicle scenario-level benchmark for an intelligent edge computing
system.

3.1. Specifying the autonomous vehicle scenario

An autonomous driving system mainly consists of a three-layer
processing structure of perception, decision planning, and control ex-
ecution module. The perception and control layers can be secured
by configuring multi-layer redundant hardware systems. Thus, in the
current research on autonomous driving systems, we focus mainly
on the core algorithms for decision planning. The main emphasis in
creating scenario benchmarks is likewise on decision planning-related
artificial intelligence task modules.

According to the grading table of the international standard SAE
J3016, it classifies driving automation into six levels with reference
to the automation of dynamic driving tasks (DDT), DDT fallback, and
object and event detection and response (OEDR) tasks on continuous
driving systems. OEDR is a subtask of the DDT, which includes real-time
object identification, classification, and other Al tasks. When a dynamic
driving task fails, the system must perform the DDT fallback [15]. As a
result, we instantiate our benchmark problem with the dynamic driving
task as the primary concern. As dynamic driving is the fundamental task
of autonomous driving, according to which we classify typical dynamic
driving tasks and summarize the scenarios of autonomous vehicles in
IoT-Edge-Cloud systems.

As shown in Fig. 1, the workflows of a complete set of dynamic tasks
for autonomous driving include perception, location, path planning,
object detection, and final decision-making. The perception module
collects data through sensors and cameras, the localization module
combines GPS module and map information to locate the vehicle’s
position, and the route planning module carries out a path planning
task to determine an appropriate driving route according to the user’s
destination. The recognition task contains the recognition of vehicles,
roads, pedestrians, obstacles, and traffic sign lights [23]. Finally, based
on these parallel tasks, the vehicle-centric processor makes judgments
regarding the current situation and decides to control the vehicle
physically.

An autonomous vehicle currently has an intelligent edge chip with
deep learning model processing capability, which can handle common
lightweight Al autonomous driving tasks in real-time. However, it
still needs to collaborate with cloud data centers and edge servers to
execute tasks during the vehicle driving process better. In summary, au-
tonomous vehicles use three layers of [oT-Edge-Cloud system resources
to carry out diverse tasks.

As shown in Fig. 2, we used a set of directed acyclic graph (DAG)
models to formalize the overall autonomous vehicle’s tasks.

Large computing tasks or tasks with low real-time requirements are
usually offloaded to the cloud data center for execution. At the same
time, the cloud data centers also execute the task of offline training and
ongoing retraining of the model. In the Internet of Vehicles, the cloud
data center must communicate with all vehicles and make the whole
vehicle network scheduling decisions.

T. Hao, W. Gao, C. Lan et al.

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100086

glaor:JtZr { Offline Trainer ’ ‘ Cloud Control ’ [Map Engine J ‘ Scheduling Platform
Edge 9 ¥ > Road Conditions Real-time Processing
Computing y ’ Live Traffic ‘ ‘ Vehicle Scheduling
Layer Environment Conditions | |
— Traffic Accident Al Offloading Tasks
| Weather Conditions | image classification
: lane detection
| illumination | ’ Vehicle Status ‘
45 Sl
Preprocessing Object Classification Localization h
End 9 N \ Objective Detection | 9 | Localization |
Device 4 | Set Destination |
—- Image Category
=~ Classification | Route Guidance |)
v v v v]
/ ; : / _ . ; g ™\
Environment Perception Navigation Decision Making Controller
Detect Environment Features Analyze Condition | Situation Assesment | Sx:;ig?
road features road condition
. X | Short-term Planner |
static obstacles vehicle's gap
\vehicle features driver's mode -
| Long-term Planner |
[Motion Planning } | Path Planning | | Risk Awareness | Light
N2 | - \ J

Fig. 2. The DAG model of autonomous vehicles in an IoT-Edge-Cloud system.

Autonomous vehicles connect to edge servers nearby when they
move. These edge servers gather roadside environmental data, road
information, and near-end vehicle data in real time, data that the
vehicle’s sensors often cannot collect because of blind spots and other
issues. And the edge server will deliver it to nearby vehicles in a local
area network. At the same time, with the guarantee of communication,
autonomous driving vehicles will send tasks that cannot be processed
in real-time by the onboard chip to the edge servers with sufficient
computing power for processing. An excellent way to deal with issues
like heterogeneous computing and energy consumption in autonomous
vehicles is to offload jobs to the edge computing layer.

The smart chip on the vehicle side handles the primary autonomous
driving workflow. The route planning and navigation tasks are executed
by the vehicle in accordance with the user’s instructions and GPS
location data. In this procedure, the vehicle’s sensors and cameras will
gather data in real-time and pre-process them at the vehicle’s end so
that it can constantly recognize the environment, conduct perception
tasks, and detect objects. The vehicle will simultaneously receive data
from the edge server and cloud data center for integration. Finally,
the vehicle’s decision-making module will make decisions based on
the information feedback from different modules and finally send the
control commands.

3.2. Distilling rules for autonomous vehicles scenario

From Fig. 2, it is clear that formalizing the whole IoT-Edge-Cloud
scenario is very complex. If the scenario benchmark is implemented
accordingly, it will generate hundreds of millions of lines of code [24]
and a vast amount of data, which is not conducive to users evaluating
the system. Therefore, this section simplifies the autonomous vehicle

scenario to extract several interdependent execution modules. Our
work is inspired by the previous work [1] on the distilling rules for
complex scenarios. And hence, the distilled modules can perform the
critical tasks of an autonomous driving system while retaining the
complexity and challenge of the system.

First, we propose a set of distilling rules for autonomous driving
tasks based on real-world experience with autonomous driving, with
reference to the industry’s autonomous driving benchmark [11,12].

1. Retain only representative tasks among those that make use of
similar models and serve similar purposes.
In the process of autonomous driving, there are various types of
object recognition and detection tasks, which include obstacle
recognition, pedestrian recognition, traffic signal recognition,
route recognition, etc. Most activities also share similar process-
ing logic and critical path and are typically completed in two
steps: detection and classification, with the exception of road
route recognition in lane keeping. First, the object’s location
needs to be detected and localized in the video image, and then
classification is performed to complete the recognition of the ob-
ject. Therefore, we extract the critical traffic signal recognition
from these tasks to ensure driving safety and the lane detection
task to ensure vehicles obey traffic rules.

2. Prune the tasks executed on the cloud and edge servers and those
in parallel with the user-end tasks.
In IoT-Edge—Cloud systems, the user-end devices, edge servers,
and servers in the cloud data center execute tasks in parallel and
do not affect each other. Therefore, the training and scheduling
tasks on the cloud do not affect the vehicle driving process.
As a result, we prune this part of the tasks. At the same time,

T. Hao, W. Gao, C. Lan et al.

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100086

Cloud .
Canter [Pretrained Model J
Autonomous Driving Field Detection
Edge Traffic Light Classification]
Computing Object Detection
Layer)
Road Sign Classification J
@ @ llI
End Collect Data
Device Lane Keeping

Fig. 3. The DAG model of the scenario of the autonomous vehicle in IoT-Edge-Cloud systems after simplifying.

the vehicle analysis and environment perception modules at the
edge are also pruned.

. Prune the modules whose running time is less than 1% of the

total running time.
After the analysis of the real system, the text data transmission
latency and the specific processing time of the data collected by
sensors, radar, and other devices occupy a very short period of
time. The final task decision and control modules, which do not
involve Al models, can also be completed in a very short time.
Therefore, we will trim these modules.

. Combine similar tasks that are executed concurrently if possible.
In the traffic signal classification and road sign classification
tasks, both have object detection for object localization. Thus,
we merge the object detection process in these two modules. The
results are sent to the subsequent tasks—traffic signal classifica-
tion and road sign classification.

. Remove the route planning module.

Route planning is one of the most critical tasks in autonomous
driving. But in creating this scenario benchmark, we remove it
because the route planning task does not require real-time image
data, and the panning result data transmission time is very short.
This task is usually performed on a cloud server in existing real-
world environments. The algorithms have been developed very
maturely for the route planning task itself, and many advanced
online navigation maps are available to users. Baidu’s proposed
Apollo autonomous driving level navigation [25] is now in use,
reducing the speed of passing vehicles at intersections by 36.8%.
As a result, this module can be trimmed.

. Remove precedent and subsequent tasks of the pruning module.
After simplifying the overall scenario according to the first five
distilling rules, we will re-examine the DAG model and remove
any prior or following tasks to the pruning module.

Based on the proposed six distilling rules, we prune Fig. 2 into a
simplified DAG model 3. First, we merge similar modules with the
same purpose. Next, we prune the parallel tasks executed on the IoT—
Edge—Cloud systems at the same time. Then, we prune the modules that
consume a short time, such as preprocessing and decision-making. Next,
we combine similar tasks executed concurrently, such as the object
classification module. At last, we removed the navigation module and
related tasks.

With this simplified scenario of autonomous driving, we have scaled
down the amount of code and dataset, reducing the complexity of the

scenario while retaining the characteristics. Therefore, users can still
evaluate systems and components in which they are interested.

4. The reference implementation of the autonomic vehicle sce-
nario benchmark

4.1. Reference implementation

We investigated advanced algorithms and real-world datasets from
academia and industry for the simplified autonomous driving sce-
nario model proposed in the previous section. Then we implement the
scenario-level benchmark for autonomous vehicles according to Fig. 3.
This section briefly describes the deep learning algorithm models and
datasets used in our reference implementation.

The lane keeping task used a CNN model [26] based on a self-
attention distillation mechanism and selected CuLane [27] as a real-
world dataset, which contains 3268 well-labeled training data and 358
validation data.

The object detection task uses YOLOv5 [28] as the deep learning
network model and selected BDD100OK [29] as the dataset, which
contains 100,000 labeled HD datasets.

The traffic Light classification task uses a CNN model [30] as
the deep learning network model. It uses the Nexar dataset [31] as
the real-world dataset, which contains 18,659 labeled training datasets
containing traffic signal images and 500,000 test data images.

The road sign classification task uses a CNN deep learning model
[32] based on the LeNet framework [33] and the German Traffic
Sign Recognition Benchmark (GTRB) [34] as the dataset, and the task
classifies 43 classes of traffic signs.

4.2. A scalable IoT-Edge—Cloud benchmarking framework

In order to meet the real-world edge computing scenario, the bench-
mark architecture needs to consider resource allocation to deal with
different sizes of Al workloads. For our simplified autonomic vehicle
scenario, we propose a scalable architecture that can evaluate different
sizes of systems and allocate resources (see Fig. 4).

This scalable architecture is based on Google Kubernetes [35],
which allocates the offloading workloads to the edge server. On the
edge server, we use TensorFlow Serving [36] to load the pre-trained
models sent down from the cloud datacenter, waiting for the response
to end-user tasks.

T. Hao, W. Gao, C. Lan et al.

Edge Node 1
Edge Node 2

Edge Node N

Edge Layer

Docker

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100086

Master Node

Resource Profiling
1 Control

TensorFlow
— Serving

‘ Job Scheduler |

f
i

Device Layer
Workload Size Estimator

Offloading Decision

f
[
Task Request 1 ‘ ‘ Task Request 2 l ‘ Task Request 3 ‘ | Task Request 4
Fig. 4. A scalable IoT-Edge-Cloud benchmarking framework.
1.0 10 10 ik - =
90”‘ goth goth

0.8 0.8 0.8

0.6 0.6 0.6
w w w
a a a
O O O

0.4 0.4 0.4

0.2 0.2 0.2

- Traffic Ligth Classification
—— Lane Keeping —— Road Sign Classification
——— Over Latency ——— Autonomous Driving Field Detection ~——— Object Detection
00 7x10* 8x10 9x10! 0'9)(10’ 3x10' 6x10% 102 00 101 102
ms ms ms
(a) Overall latency (b) Components latency (c) Applications latency
Fig. 5. Overall scenario and components latency breakdown of multi-tasks.
Table 1

Configurable parameters of the scalable framework.

Parameters Description

The number the number of edge

of nodes computing layer nodes
Al module where the Al task placed:
location edge computing layer or end

device

the number of tasks that the
device will send

The number
of tasks

Task size the data input size of the task

(MB)

In order to achieve system scalability, a master node is present at the
edge layer to manage the computing resources and allocate workloads
supplied by end devices. This architecture can scale numerous edge
nodes to distribute tasks from end devices to various edge servers and
computing resources. The parameters users can set are listed in Table 1.

5. Experiments and measurements

We conduct a scenario benchmark evaluation experiment based on a
four-node server cluster, including one cloud server, two edge servers,
and one client device. One experiment device is a CPU cloud server
with two Xeon E5645 processors and 32 GB of RAM, and the other three
nodes are each equipped with an Nvidia Titan XP GPU. Each node is

connected to the other with a 1 GB Ethernet connection. We perform
the offline training for the four AI tasks on the cloud servers and send
the pre-trained model to the edge servers and end devices.

5.1. Tail latency of the whole scenario

Autonomous driving scenarios are very demanding in terms of
latency, so we choose latency as a quality of service metric for this
scenario benchmark. We break down the whole scenario latency to each
task module to discover which modules are the primary contributors to
latency in the whole scenario.

We tested 2000 autonomous vehicle task requests sent by the client
device. Fig. 5 shows the latency of the whole scenario compared to the
breakdown latency of each module. Since several vehicles send requests
simultaneously in the real-world scenario, the tail latency metric is
an important metric we need to concern about. We also pay attention
to the latency data for the 90% and 99% percent of vehicle-side user
queries.

Fig. 5(a) shows the end-to-end latency data for the entire scenario,
with a tail latency of 76.45 ms for the 90th and 77.49 ms for the
99th percentile latency. In Fig. 5(b)(c), we have decomposed the tasks
according to whether it belongs to the edge layer or the vehicle end. We
can see that the overall latency of the lane-keeping task is slower than
detection and classification tasks. And further decomposition of the
object classification task shows that the slowest module is the road sign
classification, with a tail latency of 58.92 ms for the 90th percentile
latency and 67.70 ms for the 99th percentile latency. The fastest task

T. Hao, W. Gao, C. Lan et al.

100%

T

A/

90%

80%

70%

60%

50%

40%

30%

20%

10%

0% -

Lane Keeping

Hrelu @add B convolution B pool

Object Detection

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100086

)

Traffic Light Classification Road Sign Classification

Bnorm BEmemory B multiply

Fig. 6. Hotspots functions runtime breakdown.

is the object detection task, with a tail latency of 8.67 ms for the 90%
task and 9.40 ms for the 99% task. Moreover, for the traffic signal
classification, the 90th percentile latency is 23.55 ms, and the 99%
percentile latency is 28.13 ms.

In our scenario benchmarking framework, the lane-keeping task
is placed on the vehicle side. However, the large AI model of this
task causes a slow processing speed. Therefore, it reduces the system’s
overall execution speed. According to the network environment’s per-
formance, users can try to place lane-keeping tasks on the edge side.
An appropriate task position strategy will achieve better performance.

5.2. Hotspot function analysis

Because the majority of the tasks in autonomous driving scenarios
employ deep learning models, which require the high performance of
the onboard chips, as a result, we decomposed the execution time of
GPUs using the profiling tool nvprof [37] offered by Nvidia. Then we
analyze those hotspot functions.

We analyze each module’s runtime using the nvprof tool to identify
the hot functions that consume the most runtime. Then we divide these
functions into seven categories based on their intrinsic computational
logic: ReLU activation functions, add operations, convolution opera-
tions, pool operations, normalization, memory operations, and matrix
multiplication operations.

As can be seen in Fig. 6, the convolution operations account for
the most time in the lane-keeping task, which is why it is the slowest
execution module. Additionally, the convolution operations take up a
large percentage of all other tasks.

In object detection and road sign classification, the function with
the most execution time is the ReLu activation function.

Analyzing the hotspot function is beneficial to further optimizing
the CUDA library of the smart chip in autonomous vehicles. Also, for
the special scenario of autonomous driving, software and hardware co-
design is needed to optimize the execution speed of different modules
and thus optimize the overall scenario performance.

6. Conclusion

This paper proposes the first [oT-Edge-Cloud benchmark: a scenario
benchmark for autonomous vehicles. First, we analyze the challenges
of creating an autonomous driving scenario benchmark. Then We re-
produce the whole autonomous driving scenario picture under the
IoT-Edge-Cloud system based on these user-concerned challenges and
industrial-grade autonomous driving scenarios. Because of the speci-
ficity of the autonomous driving scenario, many complex factors must
be considered. Therefore, the amount of code to reproduce the entire
system based entirely on this scenario graph is enormous.

To resolve this issue, we propose to take a scenario benchmark
view. We propose six distilling rules for simplifying the scenario of the
autonomous vehicle. These rules ensure that the system’s characteristics
are retained while streamlining the whole system as much as possible
and covering critical end-to-end IoT-Edge—Cloud paths. We obtained
a simplified DAG diagram of the essential tasks from the autonomous
vehicle scenario according to the distilling rules and implemented
them with state-of-the-art techniques. To meet the system-level evalu-
ation at different scales, we also implement a scalable Iot-Edge—Cloud
benchmarking framework for the autonomic vehicle scenario.

Finally, we conduct several experimental evaluations of this sce-
nario benchmark and measure the tail latency of each module. The ex-
perimental results show that lane-keeping is the most time-consuming
task in the whole system. In addition, we make further analysis of the
hotspot function. The result indicates that the convolution operation is
the most time-consuming function. The experiment results reveal the
optimization points for the software stack of autonomous vehicles.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

T. Hao, W. Gao, C. Lan et al.

Acknowledgments

This research was supported by the Strategic Priority Research
Program of the Chinese Academy of Sciences, Grant No. XDA0320000
and XDA0320300.

References

[1]

[2]
[3]

[4]

[5]

[6]

[7]

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

W. Gao, F. Tang, J. Zhan, X. Wen, L. Wang, Z. Cao, C. Lan, C. Luo, X. Liu,
Z. Jiang, Aibench scenario: Scenario-distilling AI benchmarking, in: 2021 30th
International Conference on Parallel Architectures and Compilation Techniques,
PACT, IEEE, 2021, pp. 142-158.

J. Somers, The coming software apocalypse, Atl. 26 (2017) 1.

J. Zhan, A BenchCouncil view on benchmarking emerging and future computing,
BenchCouncil Trans. Benchmarks, Stand. Eval. (2022) 100064.

J. Zhan, Call for establishing benchmark science and engineering, Bench-
Council Trans. Benchmarks, Stand. Eval. 1 (1) (2021) 100012, http://
dx.doi.org/10.1016/j.tbench.2021.100012, URL; https://www.sciencedirect.com/
science/article/pii/S2772485921000120.

J. Zhan, Three laws of technology rise or fall, BenchCouncil Trans.
Benchmarks, Stand. Eval. 2 (1) (2022) 100034, http://dx.doi.org/10.1016/
j-tbench.2022.100034, URL; https://www.sciencedirect.com/science/article/pii/
$2772485922000217.

T. Hao, Y. Huang, X. Wen, W. Gao, F. Zhang, C. Zheng, L. Wang, H. Ye,
K. Hwang, Z. Ren, et al.,, Edge AlBench: towards comprehensive end-to-end
edge computing benchmarking, in: Benchmarking, Measuring, and Optimizing:
First BenchCouncil International Symposium, Bench 2018, Seattle, WA, USA,
December 10-13, 2018, Revised Selected Papers 1, Springer, 2019, pp. 23-30.
T. Hao, K. Hwang, J. Zhan, Y. Li, Y. Cao, Scenario-based AI benchmark
evaluation of distributed cloud/edge computing systems, IEEE Trans. Comput.
(2022).

H. Blum, P.-E. Sarlin, J. Nieto, R. Siegwart, C. Cadena, Fishyscapes: A benchmark
for safe semantic segmentation in autonomous driving, in: Proceedings of the
IEEE/CVF International Conference on Computer Vision Workshops, 2019.

X. Song, P. Wang, D. Zhou, R. Zhu, C. Guan, Y. Dai, H. Su, H. Li, R. Yang,
Apollocar3d: A large 3d car instance understanding benchmark for autonomous
driving, in: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 5452-5462.

J. Xue, J. Fang, T. Li, B. Zhang, P. Zhang, Z. Ye, J. Dou, BLVD: Building a large-
scale 5d semantics benchmark for autonomous driving, in: 2019 International
Conference on Robotics and Automation, ICRA, IEEE, 2019, pp. 6685-6691.

Y. Wang, S. Liu, X. Wu, W. Shi, CAVBench: A benchmark suite for connected
and autonomous vehicles, in: 2018 IEEE/ACM Symposium on Edge Computing,
SEC, IEEE, 2018, pp. 30-42.

A. Geiger, P. Lenz, R. Urtasun, Are we ready for autonomous driving? the
kitti vision benchmark suite, in: 2012 IEEE Conference on Computer Vision and
Pattern Recognition, IEEE, 2012, pp. 3354-3361.

B. Maity, S. Yi, D. Seo, L. Cheng, S.-S. Lim, J.-C. Kim, B. Donyanavard, N. Dutt,
Chauffeur: Benchmark suite for design and end-to-end analysis of self-driving
vehicles on embedded systems, ACM Trans. Embed. Comput. Syst. (TECS) 20
(5s) (2021) 1-22.

Y. Ma, Z. Wang, H. Yang, L. Yang, Artificial intelligence applications in the
development of autonomous vehicles: a survey, IEEE/CAA J. Autom. Sin. 7 (2)
(2020) 315-329.

SAE, SAE J3016-taxonomy and definitions for terms related to driving
automation systems for on-road motor vehicles, 2021.

H. Martin, K. Tschabuschnig, O. Bridal, D. Watzenig, Functional safety of
automated driving systems: Does ISO 26262 meet the challenges? in: Automated
Driving, Springer, 2017, pp. 387-416.

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100086

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

N.A. Rawashdeh, J.P. Bos, N.J. Abu-Alrub, Drivable path detection using CNN
sensor fusion for autonomous driving in the snow, in: Autonomous Systems:
Sensors, Processing, and Security for Vehicles and Infrastructure 2021, Vol.
11748, SPIE, 2021, pp. 36-45.

H. Daembkes, Automated driving safer and more efficient future driving fore-
word, in: Automated Driving: Safer and more Efficient Future Driving, Universitat
Ulm, 2017, pp. V-VL

L. Liu, S. Lu, R. Zhong, B. Wu, Y. Yao, Q. Zhang, W. Shi, Computing systems
for autonomous driving: State of the art and challenges, IEEE Internet Things J.
8 (8) (2020) 6469-6486.

H. Rebecq, T. Horstschifer, G. Gallego, D. Scaramuzza, EVO: A geometric
approach to event-based 6-DOF parallel tracking and mapping in real time, IEEE
Robot. Autom. Lett. 2 (2) (2016) 593-600.

Y. Cai, T. Luan, H. Gao, H. Wang, L. Chen, Y. Li, M.A. Sotelo, Z. Li, YOLOv4-5D:
An effective and efficient object detector for autonomous driving, IEEE Trans.
Instrum. Meas. 70 (2021) 1-13.

J.H. Gawron, G.A. Keoleian, R.D. De Kleine, T.J. Wallington, H.C. Kim, Life
cycle assessment of connected and automated vehicles: sensing and computing
subsystem and vehicle level effects, Environ. Sci. Technol. 52 (5) (2018)
3249-3256.

M. Simon, K. Amende, A. Kraus, J. Honer, T. Samann, H. Kaulbersch, S. Milz, H.
Michael Gross, Complexer-yolo: Real-time 3d object detection and tracking on
semantic point clouds, in: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, 2019.

P. Sagal, Bosch seeks edge with combined software, electronics unit. URL;
https://europe.autonews.com/suppliers/bosch-seeks-edge-combined-software-
electronics-unit/.

Baidu, Apollo, 2020, URL; https://developer.apollo.auto/.

Y. Hou, Z. Ma, C. Liu, C.C. Loy, Learning lightweight lane detection cnns by self
attention distillation, in: Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2019, pp. 1013-1021.

X. Pan, J. Shi, P. Luo, X. Wang, X. Tang, Spatial as deep: Spatial cnn for traffic
scene understanding, 2017, arXiv preprint arXiv:1712.06080.

H. Wang, Y. Xu, Y. He, Y. Cai, L. Chen, Y. Li, M.A. Sotelo, Z. Li, YOLOvV5-
Fog: A multiobjective visual detection algorithm for fog driving scenes based on
improved YOLOv5, IEEE Trans. Instrum. Meas. 71 (2022) 1-12.

F. Yu, W. Xian, Y. Chen, F. Liu, M. Liao, V. Madhavan, T. Darrell, Bdd100k: A
Diverse Driving Video Database with Scalable Annotation Tooling, Vol. 2, No.
5, 2018, p. 6, arXiv preprint arXiv:1805.04687.

Z. Ouyang, J. Niu, Y. Liu, M. Guizani, Deep CNN-based real-time traffic light
detector for self-driving vehicles, IEEE Trans. Mob. Comput. 19 (2) (2019)
300-313.

V. Madhavan, T. Darrell, The Bdd-Nexar Collective: a Large-Scale, Crowsourced,
Dataset of Driving Scenes, Ph. D. Thesis, Master’s Thesis, EECS Department,
University of California, 2017.

C. Zhang, X. Yue, R. Wang, N. Li, Y. Ding, Study on traffic sign recognition
by optimized Lenet-5 algorithm, Int. J. Pattern Recognit. Artif. Intell. 34 (01)
(2020) 2055003.

Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to
document recognition, Proc. IEEE 86 (11) (1998) 2278-2324.

J. Stallkamp, M. Schlipsing, J. Salmen, C. Igel, The German traffic sign
recognition benchmark: a multi-class classification competition, in: The 2011
International Joint Conference on Neural Networks, IEEE, 2011, pp. 1453-1460.
B. Burns, J. Beda, K. Hightower, L. Evenson, Kubernetes: Up and Running,
O’Reilly Media, Inc, 2022.

C. Olston, N. Fiedel, K. Gorovoy, J. Harmsen, L. Lao, F. Li, V. Rajashekhar, S.
Ramesh, J. Soyke, Tensorflow-serving: Flexible, high-performance ML serving,
2017, arXiv preprint arXiv:1712.06139.

Nvidia, Nvidia profiling toolkit, 2022, URL; https://docs.nvidia.com/cuda/
profiler-usersguide/index.html.

http://refhub.elsevier.com/S2772-4859(23)00003-0/sb1
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb1
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb1
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb1
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb1
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb1
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb1
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb2
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb3
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb3
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb3
http://dx.doi.org/10.1016/j.tbench.2021.100012
http://dx.doi.org/10.1016/j.tbench.2021.100012
http://dx.doi.org/10.1016/j.tbench.2021.100012
https://www.sciencedirect.com/science/article/pii/S2772485921000120
https://www.sciencedirect.com/science/article/pii/S2772485921000120
https://www.sciencedirect.com/science/article/pii/S2772485921000120
http://dx.doi.org/10.1016/j.tbench.2022.100034
http://dx.doi.org/10.1016/j.tbench.2022.100034
http://dx.doi.org/10.1016/j.tbench.2022.100034
https://www.sciencedirect.com/science/article/pii/S2772485922000217
https://www.sciencedirect.com/science/article/pii/S2772485922000217
https://www.sciencedirect.com/science/article/pii/S2772485922000217
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb6
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb6
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb6
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb6
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb6
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb6
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb6
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb6
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb6
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb7
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb7
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb7
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb7
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb7
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb8
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb8
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb8
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb8
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb8
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb9
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb9
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb9
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb9
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb9
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb9
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb9
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb10
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb10
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb10
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb10
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb10
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb11
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb11
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb11
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb11
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb11
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb12
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb12
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb12
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb12
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb12
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb13
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb13
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb13
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb13
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb13
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb13
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb13
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb14
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb14
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb14
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb14
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb14
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb15
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb15
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb15
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb16
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb16
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb16
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb16
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb16
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb17
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb17
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb17
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb17
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb17
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb17
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb17
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb18
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb18
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb18
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb18
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb18
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb19
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb19
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb19
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb19
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb19
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb20
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb20
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb20
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb20
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb20
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb21
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb21
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb21
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb21
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb21
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb22
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb22
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb22
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb22
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb22
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb22
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb22
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb23
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb23
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb23
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb23
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb23
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb23
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb23
https://europe.autonews.com/suppliers/bosch-seeks-edge-combined-software-electronics-unit/
https://europe.autonews.com/suppliers/bosch-seeks-edge-combined-software-electronics-unit/
https://europe.autonews.com/suppliers/bosch-seeks-edge-combined-software-electronics-unit/
https://developer.apollo.auto/
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb26
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb26
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb26
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb26
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb26
http://arxiv.org/abs/1712.06080
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb28
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb28
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb28
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb28
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb28
http://arxiv.org/abs/1805.04687
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb30
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb30
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb30
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb30
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb30
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb31
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb31
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb31
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb31
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb31
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb32
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb32
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb32
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb32
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb32
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb33
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb33
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb33
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb34
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb34
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb34
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb34
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb34
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb35
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb35
http://refhub.elsevier.com/S2772-4859(23)00003-0/sb35
http://arxiv.org/abs/1712.06139
https://docs.nvidia.com/cuda/profiler-usersguide/index.html
https://docs.nvidia.com/cuda/profiler-usersguide/index.html
https://docs.nvidia.com/cuda/profiler-usersguide/index.html

	Edge AIBench 2.0: A scalable autonomous vehicle benchmark for IoT–Edge–Cloud systems
	Introduction
	Problem Definition and solution instantiation
	Problem Definition
	Complexity of Autonomous Vehicles Scenario
	Related Work

	Creating the Scenario Benchmark
	Specifying the Autonomous Vehicle Scenario
	Distilling Rules for Autonomous Vehicles Scenario

	The Reference Implementation of the Autonomic Vehicle Scenario Benchmark
	Reference Implementation
	A scalable IoT–Edge–Cloud benchmarking framework

	Experiments and Measurements
	Tail Latency of the Whole Scenario
	Hotspot Function Analysis

	Conclusion
	Declaration of competing interest
	Acknowledgments
	References

