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A B S T R A C T

Simpoint technology (Sherwood et al., 2002) has been widely used by modern micro-architecture research
community to significantly speedup the simulation time. However, the typical Simpoint size remains to be tens
to hundreds of million instructions. At such sizes, the cycle-accurate simulators still need to run tens of hours
or even days to finish the simulation, depending on the architecture complexity and workload characteristics.
In this paper, we developed a new simulation framework by integrating LiveCache and Detail-warmups with
Dromajo (https://chipyard.readthedocs.io/en/latest/Tools/Dromajo.html) and Kabylkas et al. (2005), enabling
us to use much smaller Simpoint size (2 million instructions) without loss of accuracy. Our evaluation results
showed that the average simulation time can be accelerated by 9.56 times over 50M size and most of the
workload simulations can be finished in tens of minutes instead of hours.
1. Introduction

Modern computer architecture researches rely heavily on computer
simulation to study new architectural features or estimate the per-
formance, power, and area. A cycle-accurate simulator often takes
hundreds of simulation hours, prohibiting its use in practice. To ex-
pedite the simulation, prior arts have explored various techniques.
Sampling is one of the popular approaches, where a simulator runs
sampled executions instead of the entire benchmark. The sampling
could be based on either statistical sampling [1–3] or representative
sampling [4].

Simpoint [4,5] is one of the most widely used sampling techniques,
which could reduce the simulation time dramatically from months
to days to hours. Running only the representative checkpoints of a
program execution so-called ‘Simpoints’ generated by the Simpoint
toolset enables computer architecture simulation to finish earlier than
running the same program from the beginning to the end. However,
the typical Simpoint size remains to be tens to hundreds of million
instructions to maintain the accuracy. Depending on the architectural
complexity, it still takes tens of hours to finish, still not fast enough for
a quick turnaround.

In this paper, we developed a framework based on Dromajo [6,7]
to enable us to use Simpoints with only 2 million instructions (2M).
Compared with regular Simpoints with hundreds of million instructions
or over, the simulation time could be greatly reduced from hours
to minutes without loss of accuracy. Dromajo is a RISC-V RV64GC
emulator, which enables executing an application under fast software
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simulation, generating checkpoints after a given number of instruc-
tions, and resuming such checkpoints in another slow, cycle-accurate
simulator to generate micro-architecture simulation results.

In order to use smaller Simpoint size, one challenge needs to be
addressed is the simulator needs to start from the up to date architec-
tural status. Otherwise the simulation accuracy cannot be maintained.
Large simpoint sizes may obviate this need. To fulfill this purpose,
we integrate the LiveCache technique from [8,9] into Dromajo so that
Dromajo can record the memory operations in timing order up to
the Simpoint location in the checkpoint files. The number of memory
operations to be recorded is a configuration parameter set accordingly
with the cache size(s) of the simulated target micro-architecture. When
the cycle-accurate simulator starts, by reading the checkpoint files, it
can repeat these memory operations and bring the cache status up to
date quickly. To bring the status of other architectural components up
to date, such as a branch predictor, we resort to Detail-warmup, which
allows us to run a specified number of instructions right before the
Simpoint location, from which the simulator is dictated to start to mea-
sure the performance numbers. Correspondingly, the actual Simpoint
locations will also be adjusted based on the number of instructions
defined by Detail-warmup.

Putting all together, Simpoint execution is preceded by LiveCache-
warmup first, followed by the Detail-warmup, then starts to collect
the performance numbers thereafter. Compared with running only
Simpoint itself, LiveCache and Detail-warmup enable us to bring the
machine status up to date, preserving the simulation accuracy. As far
as we know, this is the first framework combining both LiveCache
and Detail-warmup together to generate 2 million Simpoints on RISC-V
platforms.
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In summary, we contribute the followings to the state of the art:

(1) Developed an open source framework that enables us to make
use of smaller (2M) Simpoint size without loss of accuracy.

(2) Evaluated the 2M Simpoint size with SPEC 2006 CPU benchmark
suite. Compared with 50M Simpoint size, the average simulation
time has been improved more than 9 times.

(3) Quantitatively study the performance effects of LiveCache and
Detail-warmup on simulation speed and accuracy.

Including the LiveCache technique, prior works such as [1–3,8,10–
1] have proposed and discussed various micro-architecture warm-up
echniques and effects, to which we plan to extend our work.

The rest of the paper is divided into the following sections. Section 2
escribes the implementation. Section 3 presents the evaluation results
ith analysis. Lastly, Section 4 concludes the paper with comments on

uture directions.

. Implementation

Our implementation is based on Dromajo [6,7], an open source
ISC-V emulator. We extended Dromajo so that it is capable of gener-
ting Simpoints with user-configurable LiveCache and Detail-warmup.

.1. Base Simpoint creation and execution

First, we modified the Dromajo source code to enable it to profile
benchmark based on Simpoint requirements. The profiling should

ollow the basic-block characterization described in the Simpoint pa-
ers [4,5]. We used the Dromajo’s existing checkpointing option to
enerate two checkpoint files at each Simpoint location. The first file
ncludes RISC-V instructions to be executed to restore the target ma-
hine’s architectural state such as the contents of the physical register
ile and the control registers at the time of the corresponding Simpoint
reation. The second file contains the memory image including the
nstruction and data areas with others necessary memory contents to
un the benchmark. As far as we know, we have first used, designed and
mplemented Simpoint support on Dromajo since it was first discussed
n [7].

To run Simpoints, we modified our target cycle-accurate simulator
o copy the memory image into the target simulator’s memory space
nd let the execution start from the first instruction in the first Simpoint
checkpoint) file. The RISC-V ‘dret’ instruction inserted by the Dromajo
heckpointing option at the end should have execution jump to the
esired Simpoint location. We also modified the target simulator to
eset and start to (re)collect simulation statistics such as the number
f cache misses and branch mispredictions, etc. right after the dret
nstruction execution.

.2. LiveCache

For LiveCache, we implement similar mechanism described in [9],
hich adopts the MTR (Memory Timestamp Record) technique from

8], on top of the base Simpoint framework as described above to
ave Dromajo record memory operations up to the current Simpoint
ocation and translate them into RISC-V ‘load’ instructions for clean
ache lines or ‘load’ and ‘store’ instruction pairs for dirty cache lines
sing the memory addresses recorded. These load and store instructions
re stored in the first Simpoint file and will be executed later by
imulator to bring the cache status up to date. The total simulation
ime should increase accordingly because of the execution time of these
dditional load and store instructions.

To limit the number of the LiveCache load and store instructions,
ur framework takes ‘Bootrom’ size as an input parameter. For example,
f the Bootrom size were 8 KB, then there are 1024 64-bit addresses
ecorded that corresponds to a maximum of 1024 loads or load and
2

store pairs. The actual Bootrom size should be set based on the cache
size(s) of the simulated target micro-architecture.

For the verification, we tested the following C language code snippet
on our target cycle-accurate simulator. We made two checkpoints at
the third loop iteration with LiveCache on and off. The results showed
that with LiveCache on, the IPC was improved about eleven percent,
confirming the effectiveness of the mechanism.

//an array o f 32k 32− b i t words
// occupy ing 2048 cache l i n e s

10 int vec [0x8000 ] ;
20 reg is ter int sum = 0;
30 for ( int i = 0; i < 5; ++i ) {
40 for ( int j = 0; j < 0x8000 ; j += 16) {

//do one load a c t i o n
// each c a c h e l i n e or 64 b y t e s

50 sum += vec [ j ] ;
60 }
70 }

2.3. Detail-warmup

Detail-warmup aims at warming up micro-architecture components
such as branch predictor and instruction and data caches by executing
some instructions right before a Simpoint while LiveCache specifically
aims at data caches. The goal is to restore the machine state of a target
simulator as close as possible as if the target simulator has kept running
up to the Simpoint location.

The implementation goal is to make a checkpoint at a location prior
to a Simpoint by the number of instructions specified by the Detail-
warmup size parameter. The base Simpoint creation does not consider
these additional instructions, and we had to add an additional step
to adjust the Simpoint location accordingly. We intervened the base
Simpoint creation process right before the final step with our scripts
to adjust the actual Simpoint location earlier by the Detail-warmup
size. For a rare case where a base Simpoint needs to be created at the
very beginning of execution, the whole Simpoint window needs to be
adjusted to make room for Detail-warmup because a Simpoint location
cannot be specified prior to the very beginning.

From the description, we can find that Detail-warmup is more
powerful than LiveCache to update the architectural states. However,
Detail-warmup is much more expensive. LiveCache can help to re-
duce the Detail-warmup size. It is the combination of LiveCache and
Detail-warmup that enables smaller Simpoint size fast and accurate.

In summary, we applied the LiveCache and Detail-warmup mod-
ifications to related places in the Dromajo source code, where the
original code adds the LiveCache memory instructions and captures the
corresponding architectural snapshot in a checkpoint file respectively.
We expect that one can port the modifications in a different tool set
other than Dromajo.

3. Evaluation

3.1. Simulation setup

For the benchmark setup, we use the SPEC CPU 2006 benchmark
suite [22]. We use Buildroot [23] to include a Linux kernel in Simpoint
for the system call support.

For the target simulator setup, we use our in-house cycle-accurate
simulator, which runs unmodified RISC-V instructions. The target sim-
ulator also implements hardware support to handle interrupts and
exceptions based on the RISC-V specification to run the benchmark
applications as intended. Table 1 shows the target simulator configura-

tion.
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Fig. 1. The relative IPC errors for 2M Simpoints (with LiveCache and 4M Detail-warmup instructions) and 50M Simpoints (with 50M Detail-warmup). Using 2M Simpoints can
reduce the IPC errors from average 5.46% to 3.89%.
Table 1
Simulator configuration.

Core Single-Core, 96 Inst. Q entries
dispatch width - 8 Int, 4 Fp instructions
3-ALU, DIV, MUL, FP
48-bit VA, 40-bit MAX PA

Instruction 64 KB, 4-way, 64B-line
fetch Fully pipelined

48-entry TLB, 32-entry RAS
BTB, TAGE predictor

L1 data 64 KB, 4-way, 64B-line
LRU, 4-cycle latency

L2 1 MB, 8-way, 64B-line
LRU, 9-cycle latency

L3 4 MB, 16-way, 64B-line
LRU, 13-cycle latency

Memory 167-cycle latency

Table 2
Simpoint configuration.

Setting Description

Execution window size 10B instructions
Simpoint size 2M instructions
Bootrom size 256 KB
LiveCache-warmup On or Off
Detail-warmup 0, 2, or 4M instructions

For the Simpoint setup, we choose a 10 billion execution window
ize to avoid very long simulation time, which still allow us to conduct
fair evaluation. We also have Dromajo move this 10 billion instruction
indow by 100 million instructions to allow Detail-warmup for the case
here a Simpoint is created at the very beginning of the execution.

Table 2 shows the Simpoint configuration used for evaluation.

.2. Simulation results

This section focuses on the evaluation of accuracy and speed of
ur Simpoint approach. We compare our 2M Simpoint results with the
opular 50M Simpoint ones using SPEC CPU2006 benchmark suite as
ur driving applications, which includes 28 integer and floating-point
pplications. Sphinx3 is not included currently due to that our RISC-V
imulator could not handle its input data set correctly.

.2.1. IPC accuracy
To compare the accuracy, we compute the IPC (instructions per

ycle) errors relative to the 10 billion instruction reference mentioned
3

Fig. 2. The relative IPC errors for cases of LiveCache on/off and 0M/2M/4M for
Detail-warmup. The best result is obtained with 4M Detail-warmup and LiveCache
together while the worst result is from case running 2M Simpoints without LiveCache
nor Detail-warmup (LiveCache off/0M Detail-warmup).

before. Fig. 1 shows the relative errors of our 2M Simpoints (with
LiveCache on and 4M Detail-warmup) and the 50M Simpoints (with
50M Detail-warmup, a similar approach to [24,25]) with both bar
chart (left side, for individual results) and whisker box (right side, for
overall results) for all 28 individual applications. The whisker boxes
illustrate that the 2M Simpoints incur lower mean error (3.89%) than
the popular 50M Simpoints (5.80%). Also, the 2M Simpoints have lower
maximum error value and tighter bound ranges. The minimum error
values are similar, all close to zero. Clearly, 2M Simpoints exhibit a
more concentrated error distribution with higher IPC accuracy.

There is one outlier in the whisker box, GemsFDTD which solves
the Maxwell equations in 3D in the time domain using the finite-
difference time-domain method. Neither 2M size nor 50M size works
well with this application. Both sizes produce much higher IPC results
than the reference. The full IPC trace has a high IPC with short low IPC
spikes that Simpoint does not capture correctly. We believe this should
be related with the statistical approach used by Simpoint technology.
Further study is out of the scope of this short paper.

3.2.2. Detail-warmup and LiveCache effects
The 2M Simpoint results shown in Fig. 1 is obtained with LiveCache

and 4M Detail-warmup. To understand their individual effects on the
IPC accuracy, we displayed the corresponding results using whisker plot
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Fig. 3. The differences of L2 misses per thousand instructions (MPKI) with the base reference for both 50M simpoints (with 50M detail warmup) and 2M simpoints (with Livecache
and 4M Detail-warmup).
Fig. 4. The worst simulation time speedups of using 2M Simpoint size over 50M
impoint. The speedup is about 10 times when running 2M Simpoints with LiveCache
nd 4M Detail-warmup.

n Fig. 2 for six cases: LiveCache on/off, and 0M/2M/4M for Detail-
armup. The leftmost box is for running 2M simpoints without Live-
ache nor Detail-warmups (LiveCache off/0M Detail). Clearly, it gen-
rates the highest errors. Enabling either LiveCache or Detail-warmups
s essential to improve the accuracy.

First, we examine the performance impact of LiveCache. By com-
aring the cases with LiveCache on and off (left three whisker boxes
s. corresponding right three whisker boxes), we find that, the errors
btained with LiveCache on concentrated on narrower box ranges
nd all maximum, mean, and median error values are smaller. Such
ifference is more phenomenal when there is no Detail-warmup (0M in-
truction case). With the increase of the Detail-warmup size, LiveCache-
armup effect becomes less and less important. However, increasing
etail-warmup size will surely increases the simulation time. Using
iveCache allows us to shorten the Detail-warmup time so that we can
void the problem of spending a large amount of simulation time on
etail-warmups [1].

Similarly, the IPC accuracy can be significantly improved when
ncrease the Detail-warmup instructions from 0 to 2M. From 2M to 4M,
he results can be still be improved. However, using 8M or larger sizes,
he accuracy can no longer be further improved. Our best results are
btained when 4M Detail-warmup size are used.

.2.3. L2 misses
In addition to the IPC accuracy, we also compare the number of
2 misses, one import metric to measure the memory performance,

4

to observe the direct effects on the cache, although those should be
reflected in the IPC results. Fig. 3 shows the MPKI (misses per thousand
instructions) differences with the 10 billion base reference for both
the 50M simpoints with 50M Detail-warmups and 2M simpoints with
LiveCache and 4M Detail-warmups. The left bar chart displays the
results for individual benchmark (Lower value indicates the MPKI
difference with the base reference is smaller) while the right whisker
box illustrates the overall results.

Different from Fig. 1, the use of absolute differences instead of
relative ratios in Fig. 3 is due to the fact that for some applications, the
L2 MPKI is quite small. Using ratios may exaggerate the differences and
lead to incorrect conclusions. For example, the L2 MPKI for tonto is only
0.03 for its base reference. For 50M simpoints and 2M simpoints, they
are 0.01 and 0.03, respectively. Both are very close to the base case. If
we use relative errors, the differences between 50M simpoints and 2M
simpoints will be 67% ((0.03–0.01)/0.03) and 0% ((0.03–0.03)/0.03),
respectively, which does not accurately reflect reality.

In summary, Fig. 3 shows that, similar to the IPC accuracy, using 2M
simpoints not only significantly reduces the maximum error but also
delivers much higher average accuracy. Also, the 2M simpoint results
are obtained with both LiveCache and 4M Detail-warmups. Running
only 2M simpoints itself will generate much higher errors and must
be accompanied with LiveCache and Detail-warmup to maintain the
accuracy.

3.2.4. Simulation speed
Using 2M Simpoint size instead of 50M, we expect the simulation

time can be greatly accelerated, ideally 50 times ((50M + 50M)/2M).
However, considering the LiveCache and Detail-warmup overhead, es-
pecially the Detail-warmup overhead, the actual speedups will be much
lower. We compare the running times of 2M and 50M Simpoint sizes
using the worst Simpoint simulation time. All the Simpoints of an appli-
cation are launched at the same time in parallel until all Simpoints are
finished. The benchmark running time is determined by the Simpoint
with longest simulation time.

Fig. 4 shows the speedups of using 2M Simpoint size over 50M size
in terms of worst running times. With LiveCache only without Detail-
warmup, the maximum speedup is about 45 times, close to the ideal
expectation of 50 times speedup. The average speedup is about 23.
Turning the LiveCache on introduces a constant overhead of reading
the data file and loading the data into caches. It takes about 2 min with
our simulator. However, comparing with Detail-warmup, its effect on
the simulation time is relatively small. With the increase of the Detail-
warmup size, the average speedups decreases, falling to around 9 for
4M warmup size. The actual average running time for 50M size is about
450 min while for the 2M size, the average real running times are 22,

34, and 49 min for 0M, 2M, and 4M Detail-warmups, respectively.
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4. Conclusion

In this paper, we propose a framework to create reduced size
Simpoints for simulation sampling, further reducing simulation time
of standard Simpoint simulation with slightly improved accuracy. We
achieve the goal by incorporating well established LiveCache and
Detail-warmup techniques into our base Simpoint framework. The
framework shall benefit whoever relies on computer architecture sim-
ulation by significantly reducing simulation time with decent sampling
error.

Future works include, but not limited to, studying the performance
effects of LiveCache and Detail-warmups in detail, extending our frame-
work to support multi-core multi-threaded benchmark applications;
exploring and incorporating various other warmup techniques; and
enhancing the checkpoint capability to an arbitrary location of interest.
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