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ARTICLE INFO ABSTRACT
Keywords: Combating the COVID-19 pandemic has emerged as one of the most promising issues in global healthcare.
COVID-19

Accurate and fast diagnosis of COVID-19 cases is required for the right medical treatment to control this
pandemic. Chest radiography imaging techniques are more effective than the reverse-transcription polymerase
chain reaction (RT-PCR) method in detecting coronavirus. Due to the limited availability of medical images,
transfer learning is better suited to classify patterns in medical images. This paper presents a combined
architecture of convolutional neural network (CNN) and recurrent neural network (RNN) to diagnose COVID-19
patients from chest X-rays. The deep transfer techniques used in this experiment are VGG19, DenseNet121,
InceptionV3, and Inception-ResNetV2, where CNN is used to extract complex features from samples and classify
them using RNN. In our experiments, the VGG19-RNN architecture outperformed all other networks in terms of
accuracy. Finally, decision-making regions of images were visualized using gradient-weighted class activation
mapping (Grad-CAM). The system achieved promising results compared to other existing systems and might be
validated in the future when more samples would be available. The experiment demonstrated a good alternative
method to diagnose COVID-19 for medical staff.

All the data used during the study are openly available from the Mendeley data repository at https:
//data.mendeley.com/datasets/mxc6vb7svm. For further research, we have made the source code publicly
available at https://github.com/Asraf047,/COVID19-CNN-RNN.

Deep transfer learning
Chest X-rays
Recurrent neural network

1. Introduction cases reported by the government of China [4]. However, it is a time-

consuming method with a high false negatives rate [5]. In many cases,

The COVID-19 outbreak has spread rapidly due to person-to-person
transmission and created a devastating impact on global health. So far,
COVID-19 has infected the world with over 665,336,000 infections and
close to 6,698,000 deaths [1]. Healthcare systems have been broken
down in all countries due to the limited number of intensive care units
(ICUs). Coronavirus-infected patients with serious conditions are admit-
ted into ICUs. To control this pandemic, many national governments
have presented ‘lockdown’ to ensure ‘social distancing’ and ‘isolation’
among the people to reduce person-to-person transmission [2]. The
coronavirus symptoms may vary from cold to fever, acute respiratory
illness, and shortage of breath [3]. The most crucial step is to diagnose
COVID-19 at an early stage and isolated the infected people from
others. RT-PCR is considered a key indicator to diagnose COVID-19
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the coronavirus affected may not be identified correctly for the low
sensitivity.

To combat this pandemic, a lot of interest has been found in the
role of medical imaging modalities [6]. Chest radiographs such as chest
X-ray and computed tomography (CT) are suitable for the detection
of COVID-19 due to the high sensitivity that is already explored as
a standard diagnosis system for pneumonia disease [7]. CT scan is
more accurate than a chest X-ray to diagnose pneumonia but still
chest X-ray is effective due to cheaper, quicker, and fewer radiation
systems [8]. Deep learning [9-11] is widely used in the medical field
for the analysis of complex medical images. Deep learning techniques
rely on automated extracted features instead of manual handcrafted
features.
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We proposed a combination of CNN and RNN frameworks to iden-
tify coronavirus cases from chest X-rays in this paper. The RNN network
is capable of handling long-term dependencies using internal memories.
In the case of fully connected networks, nodes between layers are
connectionless and process only one input but in RNN, nodes are
connected from a directed graph that processes an input with a specific
order [12-14]. We comparatively used four pre-trained CNN models
namely VGG19, DenseNet121, InceptionV3, and Inception-ResNetV2
with RNN to find out the best CNN-RNN architecture within the limita-
tions of the datasets. In this system, we first used the pre-trained CNN
to extract significant features from images. Then, we applied the RNN
classifier to identify COVID-19 cases using the extracted features. The
contributions of this paper are summarized in the following.

(i) We developed and trained a combined four CNN-RNN architec-
tures to classify coronavirus infection from others.

(ii) To detect coronavirus cases, a total of 6396 X-ray samples are
used as a dataset from several sources.

(iii) An exhaustive experimental analysis is ensured to measure the
performance of each architecture in terms of area under the
receiver operating characteristics (ROC) curve (AUC), accuracy,
precision, recall, F1-score, and confusion matrix and also applied
Grad-CAM to visualize the infected region of X-rays.

The paper is organized as follows. A brief review of related works
is presented in Section 2. The methods and materials including dataset
collection, the development of combined networks, and performance
evaluation metrics are described in Section 3. Extensive result anal-
ysis with relative discussions is illustrated in Section 4. Finally, the
conclusion of the paper is drawn in Section 5.

2. Related works

Because of the COVID-19 pandemic, many efforts have been ex-
plored to develop a system for the diagnosis of COVID-19 using arti-
ficial intelligence techniques such as machine learning [15], and deep
learning [16]. In this section, a detailed description is provided of the
recently developed systems to diagnose COVID-19 cases.

Luz et al. [17] introduced an extended EfficientNet model based on
convolutional network architecture to analyze lung conditions using X-
ray images. The model used 183 samples of COVID-19 and achieved
93.9% accuracy and 80% sensitivity for coronavirus classification.
Rahimzadeh and Attar [18] presented a concatenated Xception and
ResNet50V2 network to find out the infected region of COVID-19
patients from chest X-rays. The network trained in eight phases and
used 633 samples in each phase including 180 samples of COVID-19.
The network obtained 99.56% accuracy and 80.53% recall to detect
coronavirus infection. Minaee et al. [19] illustrated a deep transfer
learning architecture utilizing 71 COVID-19 samples to identify infected
parts from other lung diseases. The architecture obtained an overall
97.5% sensitivity and 90% specificity to differentiate coronavirus cases.
Punn and Agarwal [20] demonstrated a deep neural network to identify
coronavirus symptoms. The scheme used 108 COVID-19 cases and ob-
tained an average of 97% accuracy. Khan et al. [21] introduced a deep
CNN to diagnose coronavirus disease from 284 COVID-19 samples. The
proposed framework found an accuracy of 89.5%, and a precision of
97% to detect coronavirus. Wang and Wong [22] presented COVID-Net
to distinguish COVID-19 cases from others using chest X-ray samples.
The system achieved 92.4% accuracy by analyzing 76 samples of
COVID-19. Narin et al. [23] proposed deep transfer learning with three
CNN architectures and used a small dataset including 50 chest X-rays
for both COVID-19 and normal cases to detect coronavirus infection.
The ResNet50 showed high performance with 98.6% accuracy, 96%
recall, and 100% specificity among other networks.

Hemdan et al. [24] developed a COVIDX-Net framework including
seven pre-trained CNN to detect coronavirus infection from X-ray sam-
ples. The dataset consisted of 25 samples of COVID-19 cases and 25
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samples of normal cases. The framework obtained high performance
for VGG19 with a 0.89 F1 score. Apostolopoulos and Mpesiana [25]
presented a transfer learning scheme for the detection of coronavirus
infection. The VGG19 obtained high performance among others with an
accuracy of 93.48%, specificity of 92.85%, and sensitivity of 98.75%.
Horry et al. [26] illustrated a deep transfer learning-based system
and achieved the highest result for VGG19 with 83% recall and 83%
precision for the diagnosis of COVID-19. Loey et al. [27] proposed a
deep transfer learning approach with three pre-trained CNN networks
to diagnose coronavirus disease. The dataset includes 69 COVID-19
samples, 79 pneumonia bacterial samples, 79 pneumonia virus samples,
and 79 normal samples. The GoogleNet achieved an accuracy of 80.6%
in the four cases scenario. Kumar and Kumari [28] used a transfer
learning-based system using nine pre-trained CNNs combined with a
support vector machine (SVM) to classify coronavirus-infected patients.
The ResNet50-SVM showed the best performance among other models
with an accuracy of 95.38%. Bukhari et al. [29] proposed a transfer
learning technique for the detection of COVID-19 from X-ray samples.
The system used 89 samples of COVID-19 and obtained 98.18% accu-
racy with a 98.19% F1-score. Abbas et al. [30] introduced a DeTraC
architecture to detect coronavirus from 105 samples of COVID-19.
The architecture achieved 95.12% accuracy, 91% sensitivity, 91.87%
specificity, and 93.36% precision to diagnose coronavirus infection.
Islam et al. [31] applied a combined CNN and LSTM architecture to
classify coronavirus cases using X-ray images. The scheme applied 421
samples including 141 COVID-19 cases and achieved an accuracy of
97%, specificity of 91%, and sensitivity of 93%.

Faisal et al. [32] developed two- and three-classifier diagnosis
frameworks for classifying COVID-19 patients using transfer-learning
approaches that obtained an accuracy of 99.5% and 98.3% for binary
and multi-class classification. Dey et al. [33] used an ML-based system
with a sequence of tasks ranging from image pre-processing for the clas-
sification of COVID-19 with higher than 90% accuracy. Wang et al. [34]
introduced He presented a 5G-enabled auxiliary diagnosis architecture
based on federated learning for many organizations and centralized
cloud cooperation to facilitate the sharing of high-generalization di-
agnosis tools. Singh et al. [35] illustrated a pipeline using a Hybrid
Social Group Optimization algorithm to classify COVID-19 patients
from chest X-rays with 99.65% accuracy. Gumaei et al. [36] developed
a regression method for COVID-19 confirmed cases prediction to make
future forecasting of the ongoing pandemic.

3. Methods and materials

Though some of the existing systems showed promising results, the
COVID-19 dataset was quite small [19,24,27], and also the variable
quality of these datasets was not addressed. It also noticed that the
used dataset in those experiments was quite unbalanced which could
lead to the over-classification of the majority class at the expense of
the under-classification of the minority class [21,22]. On the contrary,
COVID-19 images were highly inconsistent as they were retrieved from
different regions of the world whereas pneumonia and normal images
were uniform as well as highly curated in previous studies. Here, the
COVID-19 dataset contained most adult patients, and the pneumonia
dataset used mostly young patients. These discrepancies were mostly
ignored in the existing systems [29]. Therefore, our proposed system
used a balanced dataset with adult and young patients’ images to learn
the actual features of the disease. The proposed system contains several
steps to diagnose COVID-19 infection as shown in Fig. 1. Firstly, in the
preprocessing pipeline, chest X-ray samples were resized, shuffled, and
normalized to figure out the actual features and reduce the unwanted
noise from the images. Afterward, the dataset was partitioned into
training and testing sets. Using the training dataset, we applied four
pre-trained CNN architectures combined with the RNN classifier. The
accuracy and loss of training datasets were obtained after each epoch
and using a five-fold cross-validation technique, the validation loss
and accuracy were found. The performance of the overall system was
measured with a confusion matrix, accuracy, precision, recall, AUC, and
F1-score metrics.
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Fig. 1. The overall system architecture of the COVID-19 diagnosis framework.
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Table 1
The dataset of our proposed CNN-RNN model.

Images COVID-19 Pneumonia Normal Total

Training 1850 1851 1850 5551

Testing 463 462 463 1388

Total 2313 2312 2313 6939

3.1. Experimental dataset

In this paper, X-ray samples of COVID-19 were retrieved from seven
different sources of the unavailability of a large specific dataset. Firstly,
a total of 1401 samples of COVID-19 were collected using the GitHub
repository [37,38], the Radiopaedia [39], Italian Society of Radiology
(SIRM) [40], Figshare data repository websites [41,42]. Then, 912
augmented images were also collected from Mendeley instead of using
data augmentation techniques explicitly [43]. Finally, 2313 samples of
normal and pneumonia cases were obtained from Kaggle [44,45]. A
total of 6939 samples were used in the experiment, where 2313 samples
were used for each case. The total dataset was divided into 80%-—
20% for training and testing sets where 1850 samples of COVID-19,
1851 samples of pneumonia, and 1850 samples of normal cases were
used for training including all augmented images shown in Table 1.
The remaining 463 samples of COVID-19, 462 samples of pneumonia,
and 463 samples of normal cases were used for the testing including
only original images; no augmented images were used here. Pixel
normalization was applied to images in data preprocessing step.

3.2. Development of combined network

3.2.1. Deep transfer learning with CNN

Transfer Learning [46] is an approach where information extracted
by one domain is transferred to another related domain. It is ap-
plied when the dataset is not sufficient to train the parameters of
any network. In this part, four pre-trained CNNs are described to
accomplish the proposed CNN-RNN architecture as follows. In addition,
the characteristics of four pre-trained CNN architectures are shown in
Table 2.

(i) VGG19: VGG19 [47] is a version of the visual geometry group
network (VGG) developed by Karen Simonyan and Andrew

Table 2

Characteristics of four pre-trained CNN architectures.
Network Depth Parameters (10°)
VGG19 26 143.67
DenseNet121 121 8.06
InceptionV3 159 23.85
Inception-ResNetV2 572 55.87

Zisserman based on deep network architecture. It has 19 layers
in total including 16 convolutional layers with three fully-
connected layers to perform on the ImageNet dataset [48].
VGG19 used a 3 x 3 convolutional filter and a stride of 1 that was
followed by multiple non-linear layers. Max-pooling is applied
in VGG19 to reduce the volume size of the image and achieved
high accuracy in image classification.

(ii) DenseNet121: Dense Convolutional Network (DenseNet) [49]
uses dense connections instead of direct connections among the
hidden layers developed by Huang et al. In DenseNet architec-
ture, each layer is connected to the next layer to transfer the
information among the network. The feature maps are trans-
mitted directly to all subsequent layers and use only a few
parameters for training. The overfitting of a model is reduced
by dense connections for small datasets. DenseNet121 has 121
layers, loaded with weights from the ImageNet dataset.

(iii) InceptionV3: InceptionV3 [50] is used to improve computing
resources by increasing the depth and width of the network.
It has 48 layers with skipped connections to use a building
block and is trained on million images including 1000 categories.
The inception module is repeated with max-pooling to reduce
dimensionality.

(iv) Inception-ResNetV2: Inception-ResnetV2 [51] network is a
combination of inception structure with residual connections
including 164 deep layers. It has multiple-sized convolution
filters trained on millions of images and avoids the degradation
problem.

3.2.2. Recurrent neural network

A recurrent neural network [52] is an extended feedforward neural
network with one or more feedback loops designed for processing se-
quential data. Given, an input sequence (xj, ..., x,), an RNN generates
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Fig. 2. The structure of recurrent neural networks.

an output sequence of (yj, ..., y,) by using the following formulas, and
the RNN structure is shown in Fig. 2.

h, = sigm(W"™ X, + W'hp,_)) @

yi=W"h, )

RNN is used whenever the input-output relationship is found based
on time and capacity to handle long-term dependencies [53]. The
strategy of modeling sequence is to feed the input sequence to a fixed-
sized vector using an RNN, and then to map the vector to a softmax
layer. Unfortunately, a problem occurs in RNN when the gradient
vector is increasing and decreasing exponentially for long sequences.
This vanishing gradient and exploding problem [54] create difficulties
to learn long-range relationships from the sequences of the RNN ar-
chitecture. However, Long Short-Term Memory (LSTM) [55] is capable
to solve such a long-distance dependencies problem successfully. The
main difference from RNN is that LSTM added a separate memory cell
state to store long-term states and updates or exposes them whenever
necessary. The LSTM consists of three gates: input gate, forget gate,
and output gate where i, denotes input gate, f, denotes forget gate,
0, denotes output gate, C cell input activation vector, c, refers to the
memory cell state, and &, refers to the hidden state at each time step t.

The transition representations of LSTM are as follows.

i, = o(W;ix, + Uh,_; + Vic,_)) 3)
f, = o(Wgx, + Ugh,_; + Vic,_p) (©)]
O, = (Wyx, + Ush,_; + Ve, ) ()
C = tanh(W,x, + Uch,_) (6)
¢=fi0c+i,0C ()
h; = O, ® tanh(c,) 8)

where x, refers to current input, ¢ refers to the sigmoid function and ©
refers to element-wise multiplication.

3.2.3. Development of CNN-RNN hybrid network

A combined method using CNN and RNN was developed for the
diagnosis of COVID-19 using three types of X-ray samples in this paper.
The complex features were extracted from 224 x 224 x 3 sized samples
using VGG19, DeneNet121, InceptionV3, and Inception-ResNetV3. The
extracted features were fed to the single-layered RNN classifier i.e. the
output is produced by passing it through a single hidden state to differ-
entiate COVID-19, pneumonia, and normal cases. The dimensionality
of feature maps of pre-trained CNN and how CNN is connected to RNN
were shown in Table 3.

The CNN-RNN network for COVID-19 classification is shown in
Fig. 3 which contains the following steps.

Step 1: Use different pre-trained CNN models to extract essential fea-
tures from X-ray images.

Step 2: Reshape the feature map into the sequence.

Step 3: Set the feature map as the input of a single-layered RNN.

Step 4: Apply a softmax classifier to classify COVID-19 X-ray images.

Input Layer

|

Deep Convolutional
Network

Eeshape Feature Map to
Sequences

|

Single Layer Recurrent
5 Network )
Softmax Classifier
Cutput

Fig. 3. The workflow of the CNN-RNN architecture for COVID-19 diagnosis.

In transfer learning, the activations of convolutional layers are the
same as in original architectures. Finally, the fully connected layers
were activated using Rectified Linear Unit (ReLU) [56] and the Dropout
layer [57] was used in RNN layers to prevent overfitting [58] of the
models. All the layers of pre-trained CNN were frozen during training
except RNN and fully connected layers. Finally, the CNN-RNN archi-
tectures were trained with RMSprop [59] and a batch size of 32, a
learning rate of 0.00001, and a total of 100 epochs were conducted
for training. The samples were shuffled in batches between epochs. We
used single-layer RNN combined with pre-trained CNN shown in Fig. 3.
In a single-layer RNN, the output is produced by passing it through a
single hidden state to capture the structure of a sequence.

Algorithm 1: CNN-RNN Algorithm
Input: Training data Diaining, Testing data Dieging, learning rate n, epoch T, pre-
trained models C, Recurrent Neural Network R number of pre-trained models P,
Output: Best CNN-RNN model
1. Preprocess Diaining
fort=1,2,..,P,do
Train the model:
Obtain feature maps O: using C[t], n, and T
Reshape feature maps O into sequence H
Classify the data using R based on H
Test the model:
Evaluate performance using Diesiing and store the results and model
Compare results among the models to identify the best model
return the best CNN-RNN model
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Fig. 4. The structure of the combined CNN-RNN architecture for COVID-19 diagnosis.

Table 3 We have used RNN as a sequence-to-sequence layer and taken the
The summary of the used architectures. (a) VGGIO-RNN (b) output sequence as input for fully-connected layers downstream in
DenseNet121-RNN (c) Inception-ResNetV2-RNN (d) InceptionV3-RNN. . . N o .

the developed system. In this architecture, Gradient clipping is used

@ to handle the long sequence problem. In our proposed system, the

Layer (type) Input size Output size order of elements of a sequence is horizontal. Basically, to develop

pretrained (VGG19) 224, 224, 3 7,7, 512 the sequence by collecting the pixels from the images in three orders

fsetsr:a?:s;ﬁ)shape) 471)97’55,212 iz’ iiz such as horizontal, vertical and spiral are used. The structure of the

flatten (Flatten) 49: 512 25088 combined CNN-RNN is shown in Fig. 4. Algorithm 1 presented the

fc_1 (Dense) 25088 4096 proposed CNN-RNN technique to detect COVID-19 cases.

fc_2 (Dense) 4096 4096

output (Dense) 4096 3 3.3. Evaluation criteria

® The performance of the developed system is measured in terms of

Layer (type) Input size Output size AUC, accuracy, precision, recall, and F1 score. The evaluation metric

pretrained (DenseNet121) 224, 224, 3 7,7, 1024 parameters are represented mathematically in the following. Here,

;:;:a?fs,(rﬁ)s hape) ‘7‘:3’7’1 3254 izz 12;‘ correctly class.if.ied COVID—1? cases are denoted by True Positive (TP),

flatten (Flatten) 49, 1024 50176 correctly classified pneumonia or normal cases are represented by True

fc 1 (Dense) 50176 4096 Negative (TN), wrongly classified as COVID-19 cases are denoted by

fc 2 (Dense) 4096 4096 False Positive (FP), and wrongly classified as pneumonia or normal

output (Dense) 4096 3 cases are depicted by False Negative (FN).

(©) Accuracy = (TP + TN)/(TN + FP + TP + FN) 9

Layer (type) Input size Output size Precision = TP/(TP + FP) (10)

pretrained (Inception-ResNetV2) 224, 224, 3 5, 5, 1536

reshape (Reshape 5, 5, 1536 25, 1536

Istm FLS"(FM) P 25, 1536 25, 512 Recall = TP/(TP + FN) an

flatten (Flatten) 25, 512 12800

fc_1 (Dense) 12800 4096 F1 — score = (2 * Precision * Recall)/(Precision + Recall) (12)

fc_2 (Dense) 4096 4096

output (Dense) 4096 3 4. Results analysis

ic;)yer e~ P——— Outpat sine All the experiments were performed on a Google Colaboratory
Linux server with Ubuntu 16.04 operating system using a Tesla K80

pretrained (InceptionV3) 224, 224, 3 5 5, 2048 GPU graphics card and the TensorFlow/Keras framework of python

reshape (Reshape) 5, 5, 2048 25, 2048

Istm (LSTM) 25, 2048 25, 512 language.

flatten (Flatten) 25, 512 12800

fc1 (Dense) 12800 4096 4.1. Results analysis

fc_2 (Dense) 4096 4096

output (Dense) 4096 3

The accuracy and loss curves in the training and validation phases
are shown in Fig. 5. For VGG19-RNN architecture, the highest training
and validation accuracy is observed at 99.01% and 97.74% and loss is
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Fig. 5. Accuracy and loss curve of four CNN-RNN architectures. (a) VGG19 (b) DenseNet121(c) InceptionV3 (d) Inception-ResNetV2.

0.02 and 0.09 at epoch 100. On the contrary, the lowest training and
validation accuracy is obtained 98.03% and 94.91% and loss is 0.05
and 0.26 at epoch 100 for the InceptionV3-RNN network. Analyzing
the loss curve, it is seen that the loss values of VGG19-RNN decrease
faster and tends to zero than other networks.

Fig. 6 demonstrates the confusion matrix of the developed ar-
chitectures. Among 1388 samples, 2 samples were misclassified by

the VGG19-RNN network including only one sample for COVID-19
cases, 3 samples were misclassified by the DenseNet121-RNN network
including two COVID-19 samples, 20 samples were misclassified by
InceptionV3-RNN architecture consisting of three COVID-19 samples
and 7 samples were misclassified by the Inception-ResNetV2-RNN net-
work comprising of seven COVID-19 samples. Hence, it was found that
VGG19-RNN architecture is superior to other networks and selected as
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Fig. 6. Confusion matrix of the CNN-RNN architecture for COVID-19 diagnosis. (a) VGG19 (b) DenseNet121 (c) InceptionV3 (d) Inception-ResNetV2.

a main deep learning architecture with high performance. Moreover,
Table 4 illustrates a comparison between the CNN-RNN network used
in these experiments in terms of computational times. It is observed that
VGG19-RNN achieved the highest performance and took 16722.41s
for training and 129.69s for testing. In addition, it is also noticed
that InceptionV3-RNN needed 16376.09s for training and 170.14s for
testing.

Though InceptionV3-RNN model required less training time and
more testing time than the VGG19-RNN model. It is concluded that the
researcher has the choice to select the deep learning model between
accuracy and computational time to use, but in the medical field,
accuracy is always the main criterion. Hence, the experimental result
revealed that the VGG19-RNN model outperforms other CNN-RNN
architectures.

In this paper, the performance of four CNN-RNN architectures is
summarized in Table 5. The best performance was found by the VGG19-
RNN network with 99.86% accuracy, 99.99% AUC, 99.78% preci-
sion, 99.78% recall, and 99.78% F1-score for COVID-19 cases. On
the contrary, the comparatively low performance was obtained by
InceptionV3-RNN architecture with 98.56% accuracy, 99.95% AUC,
99.35% precision, 96.44% recall, and 97.87% F1-score. Besides, ROC
curves were also added between TP and FP rates for all networks shown
in Fig. 7. The networks can differentiate COVID-19 cases from others

Table 4

Comparative computational time CNN-RNN models.

Model Training time (s) Testing time (s)
VGG19 16722.41 129.69
DenseNet121 18145.67 196.02
InceptionV3 16376.09 170.14
Inception-ResnetV2 17727.26 310.63

with an AUC in the range of 99.95% to 99.99%. For better visualization
and to show the differences between the classifiers Precision—Recall
(PR) curve is also added shown in Fig. 8.

Finally, Grad-CAM is applied which refers to a heat map to highlight
class-specific regions of chest X-rays. Fig. 9 shows the heatmaps and
superimposed images of COVID-19, pneumonia, and normal cases for
the VGG19-RNN network.

4.2. Discussions

In this paper, the combination of four CNNs and RNNs was used
to diagnose the COVID-19 infection. The results demonstrated that
VGG19-RNN is more effective to differentiate COVID-19 cases from
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Table 5
Performance of the combined CNN-RNN architecture.
Classifier Patient status AUC (%) Accuracy Precision Recall Fl-score
(%) (%) (%) (%)
VGG19-RNN COVID-19 99.99 99.86 99.78 99.78 99.78
Pneumonia 99.86 99.78 99.78 99.78
Normal 99.86 100.0 100.0 100.0
DenseNet121-RNN COVID-19 99.99 99.78 99.57 100.0 99.78
Pneumonia 99.78 100.0 99.57 99.78
Normal 99.78 99.78 99.78 99.78
InceptionV3-RNN COVID-19 99.95 98.56 99.35 96.44 97.87
Pneumonia 98.56 96.32 99.55 97.91
Normal 98.56 100.0 99.78 99.89
Inception-ResNetV2- RNN COVID-19 99.99 99.50 98.49 100.0 99.24
Pneumonia 99.50 100.0 99.72 99.86
Normal 99.50 100.0 99.78 99.89
Table 6
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Fig. 8. PR curve of four combined CNN-RNN networks.

pneumonia and normal cases and is considered as a main deep learn-
ing architecture. A comparison between simple CNN-based pre-trained
networks with our study is demonstrated in Table 6. It is clearly shown
that the VGG19-RNN network has obtained higher performance than
pre-trained CNN networks. Finally, another comparison between recent
works with our study is demonstrated in Table 7. It is observed that
existing systems can distinguish coronavirus infection with accuracy
in the range of 80.6% to 99.6%. On the contrary, the VGG19-RNN
network obtained 99.9% accuracy which is higher than other existing

Comparison between pre-trained CNN with CNN-RNN architecture based on COVID-19
patients.

Classifier Accuracy (%)  Precision (%) Recall (%) Fl-score (%)
VGG19 99.63 99.51 99.65 99.58
DenseNet121 99.26 99.45 99.38 99.41
InceptionV3 99.13 98.71 98.92 98.81
Inception-ResNetV2  99.28 99.38 98.06 98.72
VGG19-RNN 99.86 99.78 99.78 99.78

systems. In addition, a comparison in terms of computational time
showed that [24] took 2641.0s for training 40 images and 4.0s for test-
ing 10 images, [60] consumed 2277.6s for training 8997 images, [61]
required 79184.3s and 262.0s for training and testing 4449 and 1638
images respectively. In our experiment, VGG19-RNN architecture took
16722.4s and 129.7s for training and testing 5551 and 1388 images
respectively which is comparatively faster than other existing models.
Hence, finally, it is evident that the VGG19-RNN network showed good
performance compared to other studies.

5. Conclusion

During the COVID-19 pandemic, the use of deep learning techniques
for the diagnosis of COVID-19 has become a crucial issue to overcome
the limitation of medical resources. In this work, we used CNN with
deep transfer learning and RNN to classify the X-ray samples into three
categories: pneumonia, COVID-19, and normal. The four popular CNN
networks were used to extract features, which were then applied by
the RNN network to identify different classes. The VGG19-RNN is
considered the best network with 99.9% accuracy, 99.9% AUC, 99.8%
recall, and 99.8% F1l-score to detect COVID-19 cases. Hopefully, it
would reduce the workload for the doctor to test COVID-19 cases.

There are some limitations to our proposed system. First, the COVID-
19 samples are small that need to be updated with more samples
to validate our proposed system. Second, this experiment only works
with a posterior-anterior view of chest X-ray, hence it is not able to
effectively classify other views such as apical, lordotic, etc. Third, the
performance of our experiment is not compared with radiologists which
would be our future work.
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superimposed

Fig. 9. First, second and third rows represent the samples of COVID-19, pneumonia, and normal correspondingly. Besides, the first, second, and third columns refer to the original,

heatmap and superimposed images for VGG19-RNN.

Table 7

Comparative study of the proposed CNN-RNN architecture with existing works concerning accuracy.

Author Architecture Accuracy (%) COVID-19 accuracy (%) Training (s) Testing (s)
Luz et al. [17] EfficientNet 93.9 - - -
Rahimzadeh and Attar [18] Xception - ResNet50V2 91.4 99.6 - -
Punn and Agarwal [20] NASNetLarge 97.0 - - -
Khan et al. [21] CoroNet (Xception) 89.5 96.6 - -
Wang and Wong [22] Tailored CNN 92.3 80.0 - -
Narin et al. [23] ResNet50 98.6 - - -
Hemdan et al. [24] VGG19 90.0 - 2641.0 4.0
Apostolopoulos and Mpesiana [25] VGG19 93.5 - - -
Loey et al. [27] GoogleNet 80.6 100.0 - -
Kumar and Kumari [28] ResNet50-SVM 95.4 - - -
Bukhari et al. [29] ResNet50 98.2 - - -
Abbas et al. [30] DeTrac 95.1 - - -
Islam et al. [31] CNN-LSTM 97.0 - - -
Faisal et al. [32] VGG-19 99.5 100.0 - -
Dey et al. [33] Kapur’s Entropy 90.0 - - -
Singh et al. [35] SVM 99.6 - - -
Ucar and Korkmaz [60] COVIDiagnosis-Net 98.3 100.0 2277.6 -
Asnaoui et al. [61] Inception-ResNetV2 92.2 - 79184.3 262.0
Li et al. [62] DenseNet 88.9 79.2 - -
Chowdhury et al. [63] Sgdm-SqueezeNet 98.3 96.7 - -
Yang et al. [64] VGG16 99.0 - - -
Suppakitjanusant et al. [65] VGG19 85.0 - - -
Zhao et al. [66] Bit-M 99.2 - - -
Sharmila et al. [67] DCGANSs 98.6 - - -
Reis et al. [68] COVID-DSNet 97.6 - - -
Das et al. [69] Ensemble method 91.62 - - -
Proposed system VGG19-RNN 99.9 99.9 16722.4 129.7
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