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A B S T R A C T

As the Internet of Things (IoT) industry expands, the demand for microprocessors and microcontrollers used
in IoT systems has increased steadily. Benchmarks provide a valuable reference for processor evaluation.
Different IoT application scenarios face different data scales, dimensions, and types. However, the current
popular benchmarks only evaluate the processor’s performance under fixed data formats. These benchmarks
cannot adapt to the fragmented scenarios faced by processors. This paper proposes a new benchmark, namely
IoTBench. The IoTBench workloads cover three types of algorithms commonly used in IoT applications:
matrix processing, list operation, and convolution. Moreover, IoTBench divides the data space into different
evaluation subspaces according to the data scales, data types, and data dimensions. We analyze the impact
of different data types, data dimensions, and data scales on processor performance and compare ARM with
RISC-V and MinorCPU with O3CPU using IoTBench. We also explored the performance of processors with
different architecture configurations in different evaluation subspaces and found the optimal architecture of
different evaluation subspaces. The specifications, source code, and results are publicly available from https:
//www.benchcouncil.org/iotbench/.
1. Introduction

Internet of Things (IoT) applications are becoming more and more
common, such as smart wearable devices, smart cities, smart medi-
cal care, and smart homes. With the expansion of the IoT industry,
the demand for microcontrollers and microprocessors has increased
steadily. Unlike general-purpose processors, which are designed for
a wide range of applications, microcontrollers and microprocessors
used in IoT systems are application-specific. These processors need
to process different data when facing different application scenarios.
For example, applications for text sequence analysis mainly deal with
one-dimensional data, applications for image processing deal with two-
dimensional data, and applications for video processing deal with
three-dimensional data.

To realize the function and purpose of the application, it is impor-
tant to choose the proper microcontroller or microprocessor. Bench-
marks are useful for evaluating processors’ performance. However,
the current benchmarks do not pay much attention to the impact of
data scale, data dimension, and data type on processors’ performance,
so they cannot evaluate the processor’s different performances when
processing different kinds of data. For example, according to [1],
Dhrystone [2] consists of integer-only code, which makes it useful for
micro-controllers but far from real-world applications. On the other
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hand, although CoreMark [3]’s data scale can be adjusted, for standard
runs, the data scale (TOTAL_DATA_SIZE) must be set to 2000 bytes.

This paper proposes a new benchmark, namely IoTBench. The IoT-
Bench workloads cover three types of algorithms commonly used in IoT
applications: matrix processing, list operation, and convolution. The
concept of evaluation subspace is proposed. Considering the different
characteristics of the data used in different scenarios, the data space
is divided into multiple evaluation subspaces according to data type,
data dimension, and data scale. A set of data scales, dimensions, and
types defines an evaluation subspace, and the entire data space can
be divided into countless evaluation subspaces. In practice, users only
need to obtain certain evaluation subspace to run the bench according
to the actual scenario requirements. The three parameters of the evalu-
ation subspace can be modified in the definition. Meanwhile, different
evaluation indicators are selected to evaluate processors’ performance,
such as the ratio of iterations to running time (Iterations/Sec), Cycle
Per Instruction (CPI), and Cache Miss Rate. We regard IoTBench as a
data-centrical configurable benchmark because the main characteristic
of IoTBench is that it is built to face real IoT scenarios, and the data
scale, data type, and data dimension can be modified.

In the experiments, we first analyze the impact of different data
types, data dimensions, and data scales on processor performance. The
results show that data type, data dimension, and data scale affect the
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performance distinctly. That is to say; the data features are important
factors for IoT benchmarking. We then compare ARM with RISC-V and
MinorCPU with O3CPU using IoTBench. We find that the ARM ISA
is more efficient than RISC-V with the same micro-architecture con-
figuration. We explored the performance of processors with different
architecture configurations in different evaluation subspaces and found
the optimal architecture of different evaluation subspaces.

The contributions of this paper are as follows:

• We design and implement IoTBench, which covers three types of
algorithms commonly used in IoT applications: matrix processing,
list operation, and convolution. We propose the concept of evalua-
tion subspace, which is defined by a set of data scales, dimensions,
and types.

• We analyze the impact of different data types, data dimensions,
and data scales on processor performance. The results show that
data type, data dimension, and data scale affect the performance
distinctly. We also compare ARM with RISC-V and MinorCPU
with O3CPU using IoTBench. We find that the ARM ISA is more
efficient than RISC-V with the same micro-architecture configu-
ration.

• We explored the performance of processors with different archi-
tecture configurations in different evaluation subspaces and found
the optimal architecture of different evaluation subspaces.

The rest of this paper is organized as follows. Section 2 presents the
related works. Section 3 describes the IoTBench design and implemen-
tation. Section 4 shows the experiment settings. Section 5 provides the
analysis of the experimental results. Section 6 draws the conclusions
and introduces future works.

2. Related work

Benchmark is an evaluation method that has been used in the
computer field for a long time. Some of the widely used benchmarks
are SPEC CPU2017[4], BigDataBench [5], an industry-standardized
compute-intensive benchmark, and TPC-C [6,7], a test benchmark
for comparing database platforms running medium-complexity online
transaction processing (OLTP) workloads. OLxPBench [8] is a com-
posite HTAP benchmark suite. Supermarq [9] is a scalable quantum
benchmark suite. TSB-UAD [10] introduces an end-to-end benchmark
suite for univariate time-series anomaly detection. Galli et al. [11]
provides a benchmark framework in order to analyze and discuss the
most widely used and promising machine/deep learning techniques
for fake news detection AIoTBench [12,13] focuses on evaluating the
AI inference ability of mobile and embedded devices. MLPerf infer-
ence [14] proposes a set of rules and practices to ensure comparability
across systems with wildly differing architectures. MLPerf mobile [15]
is derivative of MLPerf inference which aims to Benchmark for On-
Device AI. ETH Zurich AI Benchmark [16,17] aims to evaluate the AI
ability of Android smartphones. These benchmarks are application-level
and focus on artificial intelligence. GeekBench [18], and Moby [19]
focus on benchmarking mobile phones.

Zhan [20] summarized five types of benchmark tests: measurement
standard, standardized data set with defined properties, representative
workload, representative data sets, and best practices, which are widely
available in multiple disciplines. The benchmark proposed in this thesis
is related to representative workloads and measurement standards.

There are three main benchmarks for evaluating the performance
of microcontrollers and microprocessors used in IoT systems: MIPS,
Dhrystone [2], and CoreMark [3]. MIPS, which is the execution of
millions of instructions per second, is the most direct indicator of the
processor’s computational speed. However, the number and instruc-
tion types differ for different instruction set architectures. The time
consumed by the execution of different instructions is also different.

The value is not representative and comparable even for processors

2

of similar architectures. Because if the instruction sequences are ar-
tificially selected, for example, selecting instruction sequences with
fewer branches, the measurement results obtained will be different
from the actual working and cannot accurately reflect the processor
performance. Consequently, this indicator has been gradually replaced
by comprehensive benchmarks such as Dhrystone.

Dhrystone is a general-purpose performance benchmark originally
developed by Reinhold Weicker in 1984 with the aim of creating a
short benchmarking program to measure the performance of computer
system programs. Its code is composed mainly of integer operations,
string operations, logical decisions, and memory accesses. Dhrystone
measures processor performance by testing how many times the pro-
cessor runs the Dhrystone program per second, using the VAX 11/780
as the reference machine, and reporting the results as a ratio of the
number of runs on the machine to be tested to the reference machine in
‘‘DMIPS/MHz’’. Although Dhrystone is more meaningful than MIPS in
reflecting processor performance, it is still controversial. In fact, Dhry-
stone’s results are not only influenced by the processor’s performance
but also affected by factors such as the efficiency of the compiler. This
characteristic allows processor manufacturers to obtain a better score
by using methods such as optimizing compilers. However, this does not
mean that the results of Dhrystone are meaningless. York [21] points
out that when the results of Dhrystone are used for comparison, it is
necessary to clearly indicate the conditions under which the benchmark
is run, such as the version of Dhrystone used, the C libraries used, and
so on.

CoreMark was developed by Shay Gal-On of EEMBC in 2009 to
replace Dhrystone as the industry standard. CoreMark has become
popular, and its features provide a strong competitive advantage. First,
its code is small, easy to understand, and has good portability to ensure
it runs on all platforms. Second, CoreMark introduces data that cannot
be pre-computed at compile time to avoid code elimination due to
compilation optimization, making all computations driven by values
provided at runtime. Third, CoreMark provides rules on how to run
the code and a uniform reporting format to facilitate inter-processor
performance comparisons.

At present, the evaluation of IoT processors’ performance is gener-
ally based on two scores, Dhrystone and CoreMark. However, the above
benchmarks’ standard scores only reflect the computing speed of the
processor under fixed data format and have not considered processors’
characteristics of data processed in different IoT applications, so they
cannot meet the needs of diverse IoT scenarios. Our IoTBench considers
the different data characteristics used in different scenarios; the data
space is divided into multiple evaluation subspaces according to data
type, dimension, and scale. Table 1 shows the comparison of IoTBench,
CoreMark, and Dhrystone.

3. IoTBench

3.1. Workloads and evaluation subspace

IoTbench is comprised of list processing, matrix processing, and con-
volution. List processing is a kind of basic operator which is widely used
in IoT scenarios. When the sensor receives the data, data cleaning and
preprocessing are often performed first, and then some simple statistical
analysis is carried out. In this process, search and sorting based on
lists are widely used. Typical IoT scenarios, e.g., smart cities, smart
homes, smartphones, and smart medical care, involve tasks such as
voice control, image processing, text processing, and face recognition.
Those tasks heavily depend on machine learning and deep learning. As
a result, we selected the most basic operators of machine learning and
deep learning, namely convolution and matrix processing.

Besides the workload itself, we argue that the data should be con-
sidered in IoT benchmarking. Different IoT scenarios face different data
dimensions. For example, in scenarios that require text processing, such
as natural language processing, the word vector is one-dimensional
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Table 1
Comparison of IoTBench, CoreMark, and Dhrystone.

Characteristic CoreMark Dhrystone IoTBench

Written in C language, portable ✓ ✓ ✓

Provide a single easily reportable score, concise and intuitive ✓ ✓ ✓

Results are independent from libraries and compilers ✓ ✗ ✓

Cover convolution algorithm ✗ ✗ ✓

Various data types can be evaluated ✗ ✗ ✓

Various data dimensions can be evaluated ✗ ✗ ✓

‘‘✓’’ represents that the benchmark has this characteristic, and ‘‘✗’’ represents that the benchmark does not have.
Table 2
Workloads and data space.

Category Workload Data type Data scale Data dimension

List processing List search INT/FLOAT Any 1/2/3
List processing List sort INT/FLOAT Any 1/2/3
Matrix processing Matrix add constant INT/FLOAT Any 1/2/3
Matrix processing Matrix multiply constant INT/FLOAT Any 1/2/3
Matrix processing Matrix multiply matrix INT/FLOAT Any 1/2/3
Convolution Convolution INT/FLOAT Any 1/2/3
(
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data. The processed image is two-dimensional data in computer vi-
sion and image processing scenarios. The processed data is three-
dimensional in medical imaging, video processing, and other scenarios.
Different IoT scenarios also deal with different data types. For example,
in order to save computing and storage resources, AI inference on end
devices often compromises between machine precision and prediction
accuracy; that is, low precision, such as INT, could be used instead of
high precision, such as FLOAT, for calculation. Similarly, the scale of
data generated in different scenarios is different. For example, wearable
devices need to monitor human body data in real time, which will
generate large-scale data.

Based on the above reasons, the entire data space is divided into
different evaluation subspaces according to the data scale, data dimen-
sion, and data type. A set of data scales, dimensions, and types defines
an evaluation subspace, and the entire data space can be divided into
countless evaluation subspaces. In practice, users only need to obtain
certain evaluation subspace to run the bench according to the actual
scenario requirements. The three parameters of the evaluation subspace
can be modified in the macro definition. Table 2 shows the workloads
and data space details.

3.2. Implementation

The data space for list processing is divided into 2 parts, list items
and data items are separately stored in the 2 parts. Data structures
used in list processing are shown in Fig. 1(a) and are also similar
to CoreMark’s. The data to be calculated together with the index is
stored in structure list_data. And the structure list_data is indexed by
the structure list_node, which makes up the list.

List processing consists of searching and sorting.

• List searching contains two algorithms; one is searching based on
value, and the other is based on an index. IoTBench traverses the
list and returns all eligible items.

• List sort is realized by merge sort and can sort the list based on
value or index. Merge sort is implemented in a non-recursive way.
First, every two elements in the list are divided into a group for
sorting. After the group is in order, every four elements in the list
are divided into a group for sorting. Expand the range of sorting
to twice the present size after sorting each time until it reaches
the size of the whole list.

The data structure used in convolution is shown in Fig. 1(b). Pointer
‘in’ points to input data, pointer ‘out’ points to output data, ‘inWidth’
refers to the width of input data, ’filter_size’ refers to the kernel dimen-
sion. If the data is two-dimensional or three-dimensional, ‘inHeight’
3

is used to indicate the height of input data. If the data is three-
dimensional, ‘inDepth’ is used to indicate the depth of input data.

One-dimensional convolution, two-dimensional convolution, and
three-dimensional convolution are completed in the convolution algo-
rithm.

• One-dimensional convolution means that the kernel slides on the
vector according to the stride, and the output value is the sum of
the products of the corresponding elements plus the bias.

• Two-dimensional convolution means that the kernel slides in the
two-dimensional input space according to stride, and the output
value is the sum of the products of the corresponding elements in
the window plus the bias.

• Three-dimensional convolution means that the kernel slides in
the three-dimensional input space according to stride. 3D matrix
multiplication is performed in each window, and the output value
is the result obtained above, plus the bias.

The data structure used in matrix processing is shown in Fig. 1(c).
‘N’ refers to the dimension of the matrix A/B/C. Input data is stored
in matrices A and B. Output data is stored in matrix C. Matrix adds
constant, matrix multiplies constant, and matrix multiplication is com-
pleted in matrix processing.

• The ‘‘matrix adds constant’’ function adds a constant to matrix A,
and the result is stored in matrix A.

• The ‘‘matrix multiplies constant’’ function multiplies each item of
matrix A by a constant, and the result is restored in matrix C.

• The ‘‘matrix multiplication’’ function multiplies matrix A and
matrix B and stores the result in matrix C.

The algorithm’s time complexity is shown in Table 3. 𝑂𝑢𝑡𝑊 𝑖𝑑𝑡ℎ =
𝐼𝑛𝑊 𝑖𝑑𝑡ℎ−𝑓𝑖𝑙𝑡𝑒𝑟_𝑠𝑖𝑧𝑒)∕𝑠𝑡𝑟𝑖𝑑𝑒+1. 𝑂𝑢𝑡𝐻𝑒𝑖𝑔ℎ𝑡 = (𝐼𝑛𝐻𝑒𝑖𝑔ℎ𝑡−𝑓𝑖𝑙𝑡𝑒𝑟_𝑠𝑖𝑧𝑒)∕
𝑡𝑟𝑖𝑑𝑒 + 1.

. Experiment

.1. Gem5 simulator

Gem5 simulator [22] is a modular simulation platform for computer
ystem architecture research, including system-level architecture and
rocessor micro-architecture, which has been widely used in academia,
ndustry, and teaching. Gem5 was originally formed by the merger of
5[23] and GEM [24], where M5 mainly studies CPU simulation, while
em mainly studies memory systems. Gem5 aims to create a commu-
ity tool focused on architecture modeling, with flexible modeling and
ide availability.
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Fig. 1. Data Structure.
Table 3
Time complexity.

Algorithm Time complexity

List search 𝑂(𝑛)
List sort 𝑂(𝑛 log2 𝑛)
One-dimensional convolution 𝑂(𝐼𝑛𝐶ℎ𝑎𝑛𝑛𝑒𝑙 ⋅ 𝑂𝑢𝑡𝐶ℎ𝑎𝑛𝑛𝑒𝑙 ⋅ 𝑓𝑖𝑙𝑡𝑒𝑟_𝑠𝑖𝑧𝑒 ⋅ 𝑂𝑢𝑡𝑊 𝑖𝑑𝑡ℎ)
Two-dimensional convolution 𝑂(𝐼𝑛𝐶ℎ𝑎𝑛𝑛𝑒𝑙 ⋅𝑂𝑢𝑡𝐶ℎ𝑎𝑛𝑛𝑒𝑙 ⋅ 𝑓𝑖𝑙𝑡𝑒𝑟_𝑠𝑖𝑧𝑒2 ⋅𝑂𝑢𝑡𝑊 𝑖𝑑𝑡ℎ ⋅𝑂𝑢𝑡𝐻𝑒𝑖𝑔ℎ𝑡)
Three-dimensional convolution 𝑂(𝐼𝑛𝐶ℎ𝑎𝑛𝑛𝑒𝑙 ⋅𝑂𝑢𝑡𝐶ℎ𝑎𝑛𝑛𝑒𝑙 ⋅ 𝑓𝑖𝑙𝑡𝑒𝑟_𝑠𝑖𝑧𝑒2 ⋅𝑂𝑢𝑡𝑊 𝑖𝑑𝑡ℎ ⋅𝑂𝑢𝑡𝐻𝑒𝑖𝑔ℎ𝑡)
One-dimensional matrix adds/multiplies constant 𝑂(𝑛)
Two-dimensional matrix adds/multiplies constant 𝑂(𝑛2)
Three-dimensional matrix adds/multiplies constant 𝑂(𝑛3)
One-dimensional matrix multiplication 𝑂(𝑛)
Two-dimensional matrix multiplication 𝑂(𝑛3)
Three-dimensional matrix multiplication 𝑂(𝑛4)
Gem5 provides a variety of CPU models, system models, storage
odels, and instruction set architectures. Gem5 provides four CPU
odels, AtomicSimpleCPU, TimingSimpleCPU, MinorCPU (In Order),

nd O3CPU (Out of Order). AtomicSimpleCPU is a single IPC (that
s, one clock cycle completes one instruction) CPU model that uses
tomic operation to access memory. TimingSimpleCPU is similar to
tomicSimpleCPU but uses a sequential memory access model. Minor
PU is a fixed pipeline, but data structure and execution behavior can
e changed. The configured in-order CPU. O3 CPU is an out-of-order
PU that is not strictly based on Alpha 21264, and unlike most sim-
lators, Gem5 uses a model that actually executes instructions during
he execution phase with high time accuracy. Gem5 also provides two
ystem modes, system call mode (SE) and full system emulation mode
FS). The system call mode can simulate most system calls without
imulating the operating system. The full system emulation mode can
imulate the complete system, including the operating system, network
onnection, peripherals, etc. The user needs to provide the compiled
inux kernel and disk image, and the system call mode requires a longer
imulation time than required. In addition, Gem5 provides two storage
ystems, classic mode, and ruby mode. The classic mode inherited from
5 provides a fast and easy-to-configure storage system, while the ruby
ode inherited from GEM can accurately simulate storage systems that

upport different cache coherence protocols. At the same time, Gem5
lso supports a variety of instruction set architectures, including ARM,
IPS, Power, SPARC, x86, RISC-V, etc. [22,25].

.2. Experiment settings

We evaluate IoTBench based on Gem5 Simulator. We compare two
ommon instruction set architectures (ISA) in IoT systems, ARM and
ISC-V. In the AArch64 execution state, the A64 instruction set is

sed, which is a fixed-length 32-bit instruction set. We use RV64GC,

4

Table 4
Configuration of simulator.

Parameter Value

ISA ARM RISC-V
CPU MODEL Minor CPU O3 CPU
L1 ICache size 64 kB 32 kB 16 kB 8 kB 4 kB 2 kB
L1 DCache size 64 kB 32 kB 16 kB 8 kB 4 kB 2 kB
L2 Cache size 1024 kB 512 kB 0 kB

an instruction set that includes compressed instructions and general-
purpose instructions. We also compare in-order (Minor CPU) processors
and out-of-order (O3 CPU) processors according to the way the pro-
cessor executes instructions. Moreover, we evaluate various L1 and
L2 Cache settings using IoTBench. The configuration of the evaluated
architectures is shown in Table 4.

We chose ARM and RISC-V because they are mainstream ISAs used
in IoT. Also, in-order and out-of-order are two typical architectures
of processors. In addition, we set the cache size according to some
commercial processor manufacturers like SiFive. These settings are im-
plemented through the command line according to the documentation
of Gem5.

We use the data types INT and FLOAT in the C language; the data
dimension is divided into 1 to 3 dimensions; considering that the data
scale processed by the microprocessor is generally small, the data is set
to two scales, namely 6144 and 12288. By modifying the DATA_SIZE,
DATA_TYPE, and DATA_DIM in the macro definition, 12 evaluation
subspaces are obtained. Table 5 shows the setting of the evaluation
subspace in the experiment.

The cross-compilers used are aarch64-linux-gnu-gcc and riscv64-
linux-gnu-gcc. ARM instruction set is Arm64, RISC-V instruction set is
RV64GC; Gem5 version is 21.2.1.0. In the Gem5 directory, use SE mode
to run the experiments.
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Fig. 2. Results obtained with different data scales.
Table 5
The data format of each evaluation subspace.

Evaluation subspace DATA_SIZE/Bytes DATA_DIM DATA_TYPE

A 6144 1 INT_TYPE
B 6144 2 INT_TYPE
C 6144 2 FP32_TYPE
D 6144 1 FP32_TYPE
E 12288 1 INT_TYPE
F 12288 2 INT_TYPE
G 12288 2 FP32_TYPE
H 12288 1 FP32_TYPE
I 12288 3 FP32_TYPE
J 12288 3 INT_TYPE
K 6144 3 INT_TYPE
L 6144 3 FP32_TYPE

5. Results

In this section, we first analyze the impact of different data types,
data dimensions, and data scales on processor performance. The re-
sults show that data type, data dimension, and data scale affect the
performance distinctly. That is to say, the data features are important
factors for IoT benchmarking. We then compare ARM and RISC-V with
MinorCPU and O3CPU using IoTBench. We find that the ARM ISA
is more efficient with the same micro-architecture configuration than
RISC-V. We explore the variation of evaluation subspaces with different
architecture configurations and find the different optimal architectures
of different evaluation subspaces.

5.1. The impact of data feature

This subsection compares the Iterations/Sec (Iterations/Sec repre-
sents how many IoTBench iterations the processor can run per second),
CPI (Cycles Per Instructions), number of instructions, and number of
cycles for processors when processing data with different scale, type,
and dimension, and analyzes the possible causes.

5.1.1. Data scale
As shown in Fig. 2(a), with fixed data dimensions and data types,

Iterations/Sec is approximately inversely proportional to the data scale.
As shown in Fig. 2(c), the number of instructions is roughly propor-
tional to the data scale. From Fig. 2(b), CPI changes insignificantly with
the data scale. It is slightly larger when the data scale is smaller.
5

5.1.2. Data type
As is known, with the same data size, floating-point operations

are slower than integer operations. According to Fig. 3, the value of
Iterations/Sec is slightly higher when the data type is int than float32.
By analyzing the log of Gem5, the number of floating-point instructions
accounts for less than 2% of the total instructions when the data type
is float32, while integer instruction account for more than 40% and
memory read/write types account for more than 50%.

5.1.3. Data dimension
As shown in Fig. 4(a), the performance is significantly better when

the data dimension is one-dimensional than when the data is two-
dimensional and three-dimensional. The main reason for this result is
that the number of instructions is significantly lower when the data
dimension is one-dimensional than when the data dimension is two-
dimensional and three-dimensional (Fig. 4(c)). Through Analyzing the
log of Gem5, we found that when the data is two-dimensional or three-
dimensional, the integer type operations and memory read operations
are about three times that of one-dimensional, and the integer mul-
tiplication operations are about six times. By analyzing the code, we
found that when the data is two-dimensional or three-dimensional, it
takes a lot of integer addition and multiplication operations to calculate
the array index, resulting in an increase in the number of instructions.
As a result, when data is one-dimensional, although the CPI is higher
(Fig. 4(b)), the Iterations/Sec is still larger.

5.2. Comparison of ISAs and processor models

From Fig. 5(a), we can see that the performance of the ARM
architecture is better than that of the RISC-V architecture overall with
the same processor frequency; the performance of the out-of-order
processor is significantly better than that of the in-order processor.
From Fig. 5(c), the number of instructions of ARM architecture is less
than that of RISC-V architecture. The main reason is that the ARM
instruction set uses many complex instructions, such as SIMD (Single
Instruction Multiple Data). The SIMD computing mode improves the
computing performance but also makes the instruction set complex.
And RISC-V instruction function is more simple and more basic, so the
number of instructions under the RISC-V architecture will be more.
Because the RISC-V architecture has more instructions, even though
the CPI of the RISC-V architecture is lower than that of the ARM
architecture, as shown in Fig. 5(d), the program execution cycle of the
processor of the ARM architecture is still less than that of the RISC-V

architecture.
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Fig. 3. Results obtained with different data types.
Fig. 4. Results obtained with different data dimensions.
5.3. Analysis and optimization in different evaluation subspace

This subsection analyzes the variation of processor performance
with cache sizes under different CPU models and ISAs and finds the
optimal cache size configuration for different subspaces.

5.3.1. Subspace A
Taking subspace A as an example, we analyze the impact of cache

size on processor performance. The optimal configuration is selected
based on Iterations/Sec and cache size under four configurations: ARM
instruction set architecture with an out-of-order processor (ARM+O3),
ARM instruction set architecture with an in-order processor (ARM+
Minor), RISC-V instruction set architecture with an out-of-order pro-
cessor (RISC-V+O3), and RISC-V instruction set architecture with an
in-order processor (RISC-V+Minor).

When the L1 DCache is set to 16 kB, and the L1 ICache is set to 8
kB, the processor shows the same performance as both caches are set
to 64 kB. L2 Cache is not set in the optimal configuration. Because the
L2 Cache size is larger than the data size and the test time is short, if
6

L2 Cache is used, the cold start will take up part of the time, making
the performance drop.

Table 6 shows the configuration corresponding to the horizontal
coordinate numbers in the figures below. As shown in Figs. 6(a) and
6(b), Iterations/Sec and CPI show roughly opposite trends with cache
size. The increase in CPI can be attributed to the increase in miss rate
due to the decrease in L1 Cache size, which causes more processor
stalls. With a stable instruction count, a higher CPI implies an increase
in instruction execution time, which leads to a decrease in the Iter-
ations/Sec value. The Iterations/Sec value at numbers 5–7 increases
slightly and then decreases, opposite to the L2 Cache miss rate trend.
After the L1 ICache is reduced to 16 kB, the L1 ICache miss rate
increases, and the number of L2 Cache access increases, resulting in
a decrease in the percentage of L2 Cache cold misses and a decrease in
the average miss rate. Similarly, when the L1 Cache is increased to 64
kB, the number of accesses to the L2 Cache decreases, and the average
miss rate increases, causing a performance loss. Performance improves
at configuration number 14 because the L2 Cache setting is eliminated
here, and there is no time consumption caused by L2 Cache miss, so
the performance improves. The performance drops from number 19 to
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Fig. 5. Results obtained with different ISAs and CPU models.
Fig. 6. Result of ARM+O3 in subspace A.
number 20 because the L1 ICache drops at this point. Combined with
Fig. 6(d), we can see that the L1 ICache miss rate rises significantly
here, and the same is true for numbers 23 to 25. The performance drops
significantly from number 27 to number 29, when both the L1 DCache
and L1 ICache drop from 8 kB to 2 kB, and both the L1 ICache miss
rate and L1 DCache miss rate increase significantly.

According to Fig. 6(c), when the L1 DCache is set to 8 kB and
above, its size change does not greatly affect the L1 DCache miss rate.
However, below 8 kB, the miss rate varies significantly with the size
of the L1 DCache because the tested data size is 6144 bytes. As shown
in Fig. 6(d), when the L1 ICache is set to 16 kB and above, its size
variation does not have much effect on the miss rate. However, below
16 kB, the miss rate varies significantly with size. Analyzing the first 13
sets of data with L2 Cache to get Fig. 6(e), the L2 miss rate decreases
significantly at numbers 4/6/11/13, which are all configurations with
L1 ICache of 16 kB. Combined with Fig. 6(d), it can be seen that the L1
ICache miss rate increases, and the number of accesses to the L2 Cache
increases from the time the L1 ICache drops to 16 kB.

The performance is optimal when L1 DCache is set to 16 kB, and L1
ICache is set to 8 kB. According to Figs. 6 and 7, the results for each
7

configuration under ARM+Minor are roughly in line with the trend of
the results under ARM+O3 with cache size. However, the average value
of Iterations/Sec is lower than when using the out-of-order processor,
the CPI is higher, the L1 DCache miss rate and L1 ICache miss rate is
significantly lower, and the L2 Cache miss rate does not change much.

When the L1 DCache is set to 16 kB and the L1 ICache is set to
8 kB, the processor achieves the best performance, the same as when
both caches are set to 64 kB. According to Figs. 8 and 6, the trend
of each test result with cache size under RISC-V+O3 is similar to that
under ARM+O3. The average value of Iterations/Sec is lower than that
of ARM architecture, CPI is higher, and the cache miss rate does not
change significantly. Comparing Figs. 8(a) and 6(a) with Figs. 8(b) and
6(b), we can find that when the L1 Cache size decreases from 8 kB to 4
kB and from 4 kB to 2 kB, the performance degradation of the RISC-V
group slows down, but the performance degradation of the ARM group
intensifies. According to Fig. 8(c) and 6(c), the rate of increase of L1
DCache miss rate in the above interval is significantly smaller for RISC-
V architecture than for ARM architecture, which may be the reason for
the above phenomenon.
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Fig. 7. Result of ARM+Minor in subspace A.
Fig. 8. Result of RISC-V+O3 in subspace A.
The performance is optimal when both caches are set to 16 kB.
omparing Figs. 9 and 8, we can see that the Iterations/Sec value de-
reases significantly, the CPI increases, the miss rate of both L1 DCache
nd L1 ICache decreases significantly, and the L2 Cache miss rate does
ot change significantly. Comparing Fig. 9 with Fig. 7, Iterations/Sec
s relatively lower in RISC-V architecture, and CPI is also lower than
he ARM architecture. The variation of performance with cache size is
maller in RISC-V architecture than in ARM architecture.

.3.2. Other subspaces
Tables 7 summarize the optimal configurations for the 12 evaluation

ubspaces respectively.
The trend of processor performance with cache size varies in dif-

erent evaluation subspaces, and the configuration with the best per-
ormance also varies in each evaluation subspace. Existing benchmarks
uch as CoreMark are tested under a fixed data size, data type, and data
imension and give a single performance score. However, IoTBench can
ive the final performance score under different data sizes, types, and
imensions. Users can modify the above parameters to test under what
ata characteristics the processor will get better performance. Users can
8

optimize the processor for a given data space, taking into account the
needs of a particular application area. It is also possible to obtain the
impact of the optimization of a certain configuration on the process-
ing of certain characteristic data. This is useful for manufacturers to
produce processors for specific application areas and for users to select
processors that are better suited to their data processing needs.

6. Conclusion

This paper constructs a benchmark (IoTBench) for evaluating the
performance of processors in IoT scenarios. The benchmark divides the
data space into multiple evaluation subspaces according to data scale,
type and dimension, which aligns with IoT applications’ fragmented
nature. We use the Gem5 simulator to simulate processors with vari-
ous configurations and use IoTBench to test the performance of each
processor in different evaluation subspaces. We analyze the impact of
different data types, data dimensions, and data scales on processor
performance. The results show that data type, data dimension, and data
scale affect the performance distinctly. The comparison shows that the
ARM ISA is generally more efficient than RISC-V. The 12 evaluation
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Fig. 9. Result of RISC-V+Minor in subspace A.
Table 6
The configuration corresponding to the number.

Number L2 Cache/kB L1 DCache/kB L1 ICache/kB

0 1024 64 64
1 1024 64 32
2 1024 32 64
3 1024 32 32
4 1024 32 16
5 1024 16 32
6 1024 16 16
7 512 64 64
8 512 64 32
9 512 32 64
10 512 32 32
11 512 32 16
12 512 16 32
13 512 16 16
14 0 64 64
15 0 64 32
16 0 32 64
17 0 32 32
18 0 32 16
19 0 32 8
20 0 32 4
21 0 32 2
22 0 16 32
23 0 16 16
24 0 16 8
25 0 16 4
26 0 8 32
27 0 8 8
28 0 4 4
29 0 2 2

subspaces obtained through IoTBench show that the same processor
configuration performs differently in different evaluation subspaces,
and the processor configurations corresponding to the optimal perfor-
mance in different evaluation subspaces are also different. Users can
set the data dimension, type, and scale of IoTBench to test different
processors according to their needs to obtain processor optimization
that better meets their requirements.

There are several improvements that would be made in future
works. First, the experiments in this paper are conducted in the system
call mode of gem5, and more experiments could be conducted in
the full-system simulation mode. Second, more modules can be added
to the processor configuration to test the impact of different config-
urations on the processors’ performance. Third, More representative
9

Table 7
Optimal configuration for subspace A-L.

Subspace ISA CPU Model L1 DCache/kB L1 ICache/kB Iterations/s

A ARM O3 16 8 28328.61
B ARM O3 16 16 11695.91
C ARM O3 16 8 12121.21
D ARM O3 16 16 28571.43
E ARM O3 32 32 13386.88
F ARM O3 32 8 5173.31
G ARM O3 32 16 5181.35
H ARM O3 32 8 13458.95
I ARM O3 32 32 5837.71
J ARM O3 32 8 5621.14
K ARM O3 16 32 10548.52
L ARM O3 16 16 10964.91

A RISC-V O3 16 8 19801.98
B RISC-V O3 32 16 10718.11
C RISC-V O3 16 8 11013.22
D RISC-V O3 16 16 27247.96
E RISC-V O3 32 8 10070.49
F RISC-V O3 32 8 3915.43
G RISC-V O3 32 64 4738.13
H RISC-V O3 32 32 13192.61
I RISC-V O3 32 8 5208.33
J RISC-V O3 32 32 5130.84
K RISC-V O3 16 8 10152.28
L RISC-V O3 32 16 10214.50

workloads in IoT scenarios can be selected. Fourth, the relationship
between different configurations and indicators in different evaluation
subspaces can be further explored.
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