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ARTICLE INFO ABSTRACT

Keywords: Deep neural networks are suffering from over parameterized high storage and high consumption problems.
Deep neural network Pruning can effectively reduce storage and computation costs of deep neural networks by eliminating their
Pruning

redundant parameters. In existing pruning methods, filter pruning achieves more efficient inference, while
element-wise pruning maintains better accuracy. To make a trade-off between the two endpoints, a variety
of pruning patterns has been proposed. This study analyzes the performance characteristics of sparse DNNs
pruned by different patterns, including element-wise, vector-wise, block-wise, and group-wise. Based on the
analysis, we propose an efficient implementation of group-wise sparse DNN inference, which can make better
use of GPUs. Experimental results on VGG, ResNet, BERT and ViT show that our optimized group-wise pruning
pattern achieves much lower inference latency on GPU than other sparse patterns and the existing group-wise

Matrix multiplication

pattern implementation.

1. Introduction

Deep neural networks (DNNs) have achieved remarkable perfor-
mance in the field of artificial intelligence and have attracted the
interest of many researchers. In recent years, deep neural networks
have been widely applied in numerous applications, including com-
puter vision [1], natural language processing [2], recommendation
systems [3], etc.

In order to achieve high accuracy, DNNs usually have the prop-
erty of over-parameterized. In other words, they contain redundant
parameters that cost large storage and are difficult to be deployed to
resource-constrained devices. The inference latency of DNNs is also af-
fected due to the large amount of computational operations. To address
this issue, researchers have proposed various methods to compress DNN
models. Pruning is a representative and effective model compression
method. It identifies and removes redundant parameters in a DNN
according to specific criteria. Ideally, after conducting pruning method,
the amount of both model parameters and computational operations is
reduced, and the inference time cost should also be reduced.

In practice, pruning does not ensure efficient inference. According
to the granularity of pruned parameters, existing pruning methods
falls along a spectrum between unstructured pruning and structured
pruning. When the unstructured element-wise pattern is used for prun-
ing, more parameters can be pruned. However, the pruned model is
unfriendly on commodity GPU architectures due to unaligned and non-
coalescing data access [4-6]. In this case, although the number of
model parameters and the number of computational operations are
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reduced, the inference time can be even higher than that of the dense
model due to the imperfect hardware support for the sparse computa-
tion [7]. When pruning uses the structured filter pruning, the parallel
computing ability of GPUs can be better utilized due to its regular
computation. However with this method, the number of pruned pa-
rameters is limited, while the model accuracy may drops significantly.
To make a trade-off between the two endpoints, a variety of pruning
patterns has been proposed, such as vector-wise [8,9] and block-wise
pruning [10,11]. Vector-wise pruning divides the parameters of each
row into vectors with equal size, and prune equal proportions of
the parameters in each vector. Block-wise pruning divides the weight
matrix into matrix blocks of specific shapes and removes the redundant
blocks according to importance criteria of each block. Compared with
filter pruning, these structured pruning patterns reserve more regular,
balanced, and partially dense non-zero elements. However, the result-
ing sparse models from these pruning patterns still require specific
runtime support.

In this study, we analyze the performance characteristics of dif-
ferent sparse DNNs, including element-wise, vector-wise, block-wise,
and group-wise patterns. We find that these pruning patterns with
off-the-shelf sparse computing libraries (e.g., cuSPARSE) are difficult
to make full use of GPU ability. We then propose an efficient imple-
mentation of structured sparse DNN inference based on group-wise
pattern. More specifically, for convolutional neural networks (CNNs),
group-wise pattern removes the parameters with the same indixes in
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Fig. 1. Convolutional neural network.

all channels. For recurrent neural networks (RNNs) and transformer-
based models, group-wise pattern removes rows of each weight matrix.
Based on this pruning pattern, we convert the dominant computation
kernels of pruned CNNs, RNNs, and Transformers to general matrix
multiplication (GEMM) operations. Current deep learning programming
frameworks (e.g., PyTorch, Tensorflow) and hardware platforms sup-
port well-developed GEMM operations. Therefore, our implementation
can make better use of GPUs. Besides, group-wise pruning pattern
only constrains the layout of non-zero elements. It is easy to com-
bine the pattern with existing sophisticated pruning schedules and
importance criteria, like Dynamic Sparse Training [12], Lottery Ticket
Hypothesis [4,13], Magnitude [14,15], Taylor [16], Hessian [17], etc.
The main contributions of this paper are summarized as follows:

* We conduct an empirical study on existing mainstream fine-
grained and structured pruning patterns. We compare their in-
ference performance under varying conditions and indicate their
inefficiency on GPU with off-the-shelf sparse computing library.
We propose an efficient implementation of group-wise pruning
pattern. The implementation converts group-wise sparse matrix-
matrix multiplication into GEMM operations and optimizes the
memory accesses according to GPU hardware characteristics. It
makes full use of existing runtime libraries and GPU hardware
support.

2. Background and related work
2.1. DNN model pruning

Generally, neural networks have over-parameterized property and
contain redundant parameters. By analyzing and removing these re-
dundant parameters during or after training, a neural network can be
optimized to obtain a lower execution time and consume less memory
resources when it is deployed to a target device. This process is the
pruning of neural networks.

LeCun et al. in [18] pioneered the optimal brain damage (OBD)
method that treats the individual weights as a unit. Hassibi et al. [19,
20] proposed an optimal brain surgeon (OBS) method based on the
optimal brain damage method with the addition of an update step based
on the surgical recovery weights, based on the diagonal assumption,
the extreme value assumption and the quadratic assumption. Later, Han
et al. [21] proposed that learning only the important connections in the
network can reduce the number of model parameters and computation
without affecting the final accuracy of the network, and proposed
the classical pruning-retraining framework. Li et al. [15] proposed
a compression technique based on convolutional kernel pruning. Hu
et al. [22] proposed to use both the base model output and the pruned
classification loss function to supervise the channel selection at each

layer, especially introducing additional losses to encode the difference
between the features in the base model and the pruned model feature
maps. By considering reconstruction error, additional loss and classifi-
cation loss simultaneously, the accuracy of the pruned model is greatly
improved.

2.2. Hardware-aware acceleration for pruned DNN models

Dense model. A convolutional neural networks mainly contains two
layer types: convolutional layer and linear layer. The computation
of linear layer can be simply regarded as matrix multiplication. The
convolutional layer is shown in Fig. 1, which can be computed by
converting the convolutional algorithm to matrix multiplication using
im2col algorithm. For the BERT model and ViT model, its main compu-
tational part, encoders structure, can also be regarded as some column
matrix multiplication, as shown in Fig. 2. Therefore, the key point of
reducing the latency of a dense neural network model is to reduce
the latency of matrix multiplication. Generalized matrix multiplication
(GEMM) is used in deep learning to perform the above matrix opera-
tions. Since GEMM has been well-developed for a long time, most of
the existing programming frameworks and commercial hardware can
efficiently support dense model acceleration.

A model pruned by structured pruning, such as channel pruning or
filter pruning, is also dense model, so it can be calculated by GEMM.
Due to the strong constraint of the structured pruning pattern, the ac-
curacy is usually worse than fine-grained pruning. Related studies focus
on maintain higher accuracy. FlexPruner [23], a filter pruning method
with flexible rate. It is based on a greedy strategy to select the filters
to be pruned. Li et al. [24] extend the optimization space for pruning,
so their method is able to compress the model more effectively. The
MaskACC pruning method [25] dynamically reorganizes tensors and
mask information used in convolutions to avoid unnecessary compu-
tations, so that the computational efficiency of the pruning process is
improved.

Sparse model. GPUs are originally designed for dense linear algebra
computation and are not ideal for sparse computations. Therefore,
the design of pruning pattern is essential to the inference latency of
pruned models. Zhu et al. [26] used a vector-wise pruning pattern to
ensure a balanced workload for the pruned network. By adding a sparse
mode with extended instruction set and hardware support, it can run
on Tensor Core. Lin et al. [27] tiled the weights and divided them
according to a similar vector-wise pattern to remove redundant whole
vectors, which has a better trade-off between latency and performance
compared to weight pruning and filter pruning. Anwar et al. [28] first
explored kernel-level pruning, and proposed an intra-kernel strided
pruning method, which prunes a sub-vector in a fixed stride. Guo
et al. [29] proposed a Tile-wise mode, which first divides the matrix
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Fig. 2. Encoder structure in BERT model. Many of these operations use GEMM for
completion.

into several larger Tile blocks according to the parallelism property
during hardware computation, and prunes the ranks and columns
within the blocks. Lebedev et al. proposed a group-wise pruning pattern
in the convolutional layer in [30]. However, the pattern was combined
with the Brain Damage criterion to propose a whole set of pruning
method. We instead propose an efficient implementation of the group-
wise pattern that focuses more on the inference time. Moreover, this
work extends group-wise in the linear layer to achieve optimization of
the whole neural network in terms of inference time.

In addition to innovations and research on pruning patterns, re-
searchers also focus on efficient implementation and execution of
pruned models. For instance, SparTA [31] is an end-to-end model
sparsity framework that uses Tensor-with-Sparsity Attribute (TeSA) to
build sparse models. Providing speedup for unstructured pruning and
block-wise granularity pruning, it is compatible with a variety of sparse
models and optimization techniques, facilitating sparse algorithms to
explore better sparse models.

Compared with the existing works, the work proposed in this paper
make better use of off-the-shelf dense computing libraries provided by
vendors, e.g., cuBLAS. It has simpler implementation and higher porta-
bility. It avoids to use low-level APIs and hyper-parameters (e.g., tile
width, block size) that are related to hardware architectures, so it can
run on all NVIDIA GPUs, and achieve acceleration without specific
tuning.

3. Performance characterization
3.1. Preliminary

The most intensive computation in a deep neural network mainly
occurs in two layers: convolutional layer and linear layer. The com-

putation of a convolutional layer transforms an input map U with C;,
channels of size W’ x H' into an output map V with C,,, channels of
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size W' x H". The relationship between the specific W', H', W' and
H" is related to the padding and stride settings in the convolutional
layer. The above transformation can be represented by the following
formula:

CIH
Viepx.0) =2 X Kleycpis))
,=1 i=l..h
=l i M
. h+1 o ow+1
-U(ci,x+t—T,y+1—T)

where K is a four-dimensional kernel tensor of size C,,,xC;,xhxw. The
C,,; corresponds to the output maps, the C;, corresponds to the input
maps, and the ~ and w correspond to the convolutional kernel size.
To calculate (1), the kernel tensor K is reshaped into a two-
dimensional weight matrix F with height I’ = C,,xhxw and width C,,,.
The input data U is reshaped into a two-dimensional input expansion
matrix X with height W” x H” and width I’ = C;, X h x w. Each row
consists of a square expansion that is computed with the corresponding
convolutional kernel. Now we just need the following calculation [32]:

1/
VX', y) = ZX(x’,i) * F(i,y) 2
i=1
The size of the matrix V is W x H"” in height and C,,, in width and
it contains all the output data of the convolutional layer. The correct
output V is obtained by reshaping V.
A linear layer transforms a tensor with F;, dimensions to a tensor
with F,, dimensions. The transformation can be expressed using the
following equation:

Fin

Y(f) = 2 X(f) * Wi f,) (3)
fi=1

Where W is a tensor with height F;, and width F,,,.

Since the computation of both convolutional layer and linear layer
can be converted to matrix multiplication, the operation of pruning a
layer is just reducing the parameters in the two-dimensional weight
expansion matrix F of a convolutional layer or the W matrix of a linear
layer.

3.2. Pruning patterns

A pruning method mainly consists of three components: pruning
pattern, pruning schedule, and pruning criterion. Pruning pattern de-
fines the layout of reserved non-zero elements. Pruning schedule de-
termines the occurrence time of pruning, such as pruning after train-
ing [33,34], during training [12,35], and before training [36,37].
Pruning criterion measures the importance of a set of parameters,
determining whether these parameters are pruned [4,12-17]. The Al
research community usually concerns more about the schedule and the
criterion, which have critical impact on the model compression ratio
and inference accuracy. In this study, we focus on pruning pattern,
which is essential to the execution latency and hardware utilization of
pruned DNNs on GPUs.

Fig. 3 shows examples of element-wise, vector-wise, block-wise, and
group-wise patterns, respectively.

The element-wise pattern [4-6] is also known as unstructured
weight pruning. After the kernel tensor has been reshaped into a
two-dimensional weight expansion matrix, unimportant individual pa-
rameters are removed according to specific pruning criterion. It can
remove a large portion of parameters, resulting in a significant reduc-
tion of the model size. However, the layout of parameters obtained
by such a pruning pattern is irregular and does not substantially help
improve the execution performance of sparse DNN inference.

The vector-wise pattern [8,9] retains more local structure compared
to element-wise. Vector-wise pattern divides the weight expansion
matrix into vectors of equal size. For example, if the weight expansion
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Fig. 3. Comparison of different pruning patterns. M and N represent the number
of rows and columns of the expanded matrix F of the weight matrix after im2col
algorithm. In the example, M is 8 and N is 8.

matrix is 12 x 16 and the vector size is artificially specified as 4, the
weight expansion matrix will be divided into 12 x 4 vectors. Within
each vector an equal proportion of the redundant weights are deter-
mined to be pruned, i.e., each vector contains the same number of zero
elements. The redundant weights are not restricted in position within
the vectors. This pruning pattern retains a more even distribution of
weights because the number of pruned weights is the same within each
vector.

The block-wise pattern [10,11] divides the weight expansion matrix
into matrix blocks of size m x n. For example, if the weight expansion
matrix is 12 x 16 and the block size is artificially specified as 2 x 2,
the weight expansion matrix will be divided into 6 x 8 blocks. The
importance score of each block is calculated according to specific
pruning criterion over the entire block.

The group-wise pattern divides the weights of different channels at
the same position into a group. When the kernel tensor is expanded into
a weight expansion matrix, each group forms exactly one row. At this
point the unimportant rows are removed by calculating the importance
score of each row according to the pruning criterion.

After removing the corresponding combination of weights from
the dense model according to different pruning patterns and pruning
criteria, the remaining weights form the pruned sparse neural network
model.

3.3. Comparison of pruning patterns

We conduct an empirical comparison on element-wise [5], vector-
wise [9], block-wise [11] and group-wise [30] pruning patterns, with
different sparse ratios and tasks. The element-wise pattern uses the
implementation method in [5]. The pruning criterion defines the uth
index of the weight tensor W is defined as

W [u))?

score(u; W) = W (4)
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As the index value increases, the score becomes smaller and smaller.
After sorting each layer, the scores of all tensors are calculated and
the global pruning is performed. According to the algorithm, it can
be seen that this method pruning operation after the model training.
The vector-wise pattern uses the implementation method in [9]. This
method prunes the weights with smaller absolute values in each weight
vector. The pruning schedule for this pruning method is during training.
The block-wise pattern uses the method proposed in [11]. The method
assigns to each block a trainable parameter m with an initial value
of 1 and a range between 0 and 1. m is trained with the model and
the corresponding block is pruned when this parameter is less than or
equal to 0. The pruning schedule of this pruning method is also during
training. The group-wise pattern uses the pattern proposed in [30].
There is no working code implementation, so the pruning criterion in
DST [12] method is used to combine with the pattern. The method
binds a trainable threshold at each layer and prunes groups with mean
values less than the threshold. The pruning schedule for this pruning
method is also during training.

Note that due to the inherent settings of pruning methods, the
sparse ratios cannot be controlled to keep exactly the same. The evalu-
ated models are VGG-16 [38], ResNet-18 [39] and Vision Transformer
(ViT) [40] models. VGG-16 consists of 13 convolutional layers and
3 linear layers. ResNet-18 consists of one convolutional layer, eight
residual blocks and one linear layer. Each residual block contains two
convolutional layers. The ViT consists of a patch embedding layer
and 12 Transformer encoders. The patch embedding layer contains
a convolutional layer and each encoder contains two linear layers.
We mainly perform experiments on the CIFAR-10 dataset and Tiny-
Imagenet dataset, and conduct some additional experiments on the
ImageNet dataset. CIFAR-10 dataset has 10 categories of images, and
the corresponding task is an image classification task to predict image
categories given a single image in the test set. The corresponding tasks
in Tiny-ImageNet dataset and Imagenet dataset are similar to CIFAR-10.
However, the number of categories in the Tiny-imagenet dataset is 200,
and the number of categories in the Imagenet dataset is 1000. We also
choose BERT-base model [41] as a representative in the NLP domain.
It is based on the Transformer [42] implementation with 12 encoder
modules. The dataset for evaluating BERT model is QQP dataset [43],
which is a collection of question pairs from the community question
and answer site Quora. It is a similarity and interpretation task to
determine whether a pair of questions is semantically equivalent. The
hardware platform we use is an Nvidia GeForce RTX 2080 Ti GPU. All
pruned models are computed using cuSPARSE library.

Table 1 shows the inference time and accuracy variation (compared
with non-pruned models) results of VGG-16 and ResNet-18 models with
different reserved parameter ratios on the CIFAR-10 dataset. Table 2
shows the results on the Tiny-ImageNet dataset. Table 4 shows the
inference time and accuracy variation of the BERT-base model on the
QQP dataset.

According to the results, vector-wise and block-wise perform better
than element-wise on convolutional and Transformer-based networks.
However, all the pruned models have much worse performance than
the corresponding dense models. Sparse computation can outperform
dense computation only when the sparsity is extremely high, which will
lead to significant accuracy drop and is impractical for applications.
Therefore, we need a pruning pattern that can leverage an off-the-
shelf dense computation library and does not need impractically high
sparsity.

4. Efficient group-wise pruning

Sparse computation introduces irregular data access and is conse-
quently time-consuming on GPUs. Through the introduce and analysis
in Section 3, we can find that group-wise pruning pattern has more
potential to make better use of GPU architecture. In this study, we
proposes an efficient implementation of group-wise pruning pattern
that enables dense computation for pruned models.
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Table 1
Inference time of pruned models and dense models on CIFAR-10 dataset.

Models

Parameter (%) Pruning pattern Latency (ms) Change of acc (%)

74.97 element-wise 6.82 +0.04
75.00 vector-wise 6.97 +0.09
78.74 block-wise 5.97 +0.12
73.84 group-wise 8.63 -0.25
49.97 element-wise 5.41 -0.23
VGG-16 50.00 vector-wise 4.77 -0.32
55.19 block-wise 5.21 -0.15
49.90 group-wise 7.03 +0.05
24.97 element-wise 3.27 +0.03
25.00 vector-wise 2.55 -0.19
25.26 block-wise 3.19 —-0.38
25.57 group-wise 2.30 -0.86
100 dense 0.11 0.0
75.99 element-wise 11.62 +0.59
75.00 vector-wise 5.84 +0.04
73.67 block-wise 11.93 +0.22
77.27 group-wise 7.51 -0.35
49.98 element-wise 10.17 +0.49
50.00 vector-wise 3.99 —-0.46
ResNet-18 47,41 block-wise 8.67 -0.37
46.76 group-wise 5.86 -0.38
24.97 element-wise 8.36 —-0.06
25.00 vector-wise 291 —-0.53
23.60 block-wise 5.53 —-0.56
39.35 group-wise 2.64 -1.38
100 dense 0.70 0.0

4.1. Group-wise pattern

As introduced in Section 3.2, in the group-wise pattern the same
position weights for different output channels will be clipped.

After group-wise pruning, the convolutional layer weights are ex-
panded using the method described in Section 3.2. As shown in Fig. 4.
The values of M and N are equal to C;, x h X w and C,,,, respectively.
The masked parts of the figure indicate the redundant weights. It can
be observed that the expanded weights to be pruned are complete rows
in the matrix. By slicing and concatenating, the pruned matrix can
be converted to a dense matrix. If the row vectors are removed from
the weight matrix, then the corresponding column vectors in the input
expansion matrix also need to be removed. Similarly, the input matrix
can be converted into a dense matrix for calculation.

The above is the definition of group-wise pattern in convolutional
layers of convolutional neural networks. It can also be applied to
NLP models. The most heavy computation in NLP models, like RNNs
and Transformer-based models, is direct multiplication of two weight
matrices. We can simply follow the same idea of group-wise pruning
pattern for CNNs. Each row of the weight matrix is removed or reserved
simultaneously. Then the reserved rows are concatenated into a dense
matrix. By this way group-wise is extended to linear layers.

4.2. Inference with group-wise pattern

Mask. When inferring with a group-wise sparse model, the model
needs to know which weights have been pruned and then skips cor-
responding computation. Note that the pruned weights are determined
by the pruning criteria. Our implementation of inference with group-
wise pattern is not bound with any specific pruning criteria, so it does
not suppose the exact locations of the redundant weights when we get
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Fig. 4. Group-wise pattern. M and N represent the number of rows and columns of the
expanded matrix of the weight matrix after im2col algorithm. M represent the number
of rows of the expanded matrix of the input data matrix after im2col algorithm.

Algorithm 1 Inference of group-wise 2D convolutional layer

Input: input data X, layer parameters W
Output: output of this layer output

: Wi = im2col(W)
: Weroups = Wi splitted in groups

¢ X, = im2col(X)
if use mask then

1:
2

3

4:

5: Index ., = [i if mask[i] is 0]

6: w= Wgroups

7: else

8: Index ,0q = li if sum(W,,,,,[i]) is 0]

9: w = index _select(Wy,,,,,[i1) if i not in Index .,
10: end if
11: //remove data that is not involved in the calculation
12: x = index_select(X ;[ j]) if j not in Index ., eq
13: output = x X w

—
ey

. return output

Algorithm 2 Inference of group-wise linear layer

Input: Input data X, layer parameters W
Output: Output of this layer output

Weroups = W splitted in groups
if use mask then
Index,,,,., = [i if mask[i] is O]
w= Wgroup:
else
Index,, eq = [i if sum(W};;[i1) is 0]
w = index_select(Wg [iD if i not in Index
: end if
: //remove data that is not involved in the calculation
. x = index_select(X[: j]) if j not in Index
©ooutput = x X w
. return output

roups pruned

pruned

_ =
HQWYONDR Wb

=
N
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Table 2
Inference time of pruned models and dense models on Tiny-ImageNet dataset.
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Table 4
Inference time of pruned BERT-base model on QQP dataset.

Models Parameters(%) Pruning patterns Latency(ms) Change of acc(%) Pruning pattern Parameter (%) Latency (ms) Change of acc (%)
72.93 element-wise 22.15 -11.52 73.46 19.66 -0.24
75.00 Vector-wise 9.24 ~12.34 element-wise 43.90 2046 —0.68
31.66 25.32 -1.21
75.82 block-wise 17.75 -4.13
- 75.00 20.96 -0.19
71.74 group-wise 38.02 -4.19 vector-wise 50.00 16.53 -0.8
48.64 element-wise 18.54 -9.35 25.00 20.08 -2.42
50 vector-wise 8.55 -11.57 75.18 14.09 -0.65
block-wise 51.70 11.09 -1.64
VGG-16 Wi —
49.2 block-wise 14.34 4.76 26.74 0.53 _2.56
49.16 group-wise 27.86 -4.76 81.71 15.81 Z0.28
24.8 element-wise 14.27 -11.71 group-wise 58.26 11.70 -1.85
25 vector-wise 3.49 -11.3 29.02 6.82 -6.32
26.93 block-wise 9.89 -14.1 dense 100 2.48 0.0
30.81 group-wise 16.13 -11.68
100 dense 0.5 0.0 Matrix Sorted in memory
74.57 element-wise 47.01 —-6.05 01 2
75 vector-wise 9.59 -8.92
345 ——> 0122345678
75.66 block-wise 28.47 +1.2
74.74 group-wise 30.60 +0.11 6 78
49.27 element-wise 41.18 -4.77 @
50 vector-wise 6.17 -9.87
ResNet-18 50,42 block-wise 18.81 282 Methord 1 Threads: [0]o0]o[1][1][1]2]2]2]
49.23 group-wise 25.55 -0.56
24.24 element-wise 33.87 —-4.63 Data: 0 1 2 3 4 5 6 7 8
25 vector-wise 3.86 -8.36 e T
o8 vodowie 1806 a5 Methord 2 Threads: |0 [1]2[0[1[2]o[1]2]
29.55 group-wise 12.98 -6.23 i
Fig. 5. Two methods of accessing data.
100 dense 1.02 0.0
Existing pruning methods usually adopt two ways to keep the
Table 3

Inference time of ViT models and dense models on CIFAR-10 and Tiny-Imagenet datasets.

Datasets Parameters(%) Pruning patterns Latency(ms) Change of acc(%)
element-wise 85.83 —-0.56
75 vector-wise 85.36 -1.08
block-wise 28.42 +0.96
group-wise 81.00 -1.22
element-wise 57.62 -2.10
CIFAR-10 50 vector-wise 58.71 -0.72
block-wise 28.79 +0.20
group-wise 55.55 -1.36
element-wise 28.32 —-0.58
25 vector-wise 27.96 -0.48
block-wise 18.19 +0.44
group-wise 28.77 -1.95
100 dense 3.10 0.0
element-wise 85.98 -1.67
75 vector-wise 85.54 -1.79
block-wise 28.18 +0.37
group-wise 81.34 0.0
element-wise 57.97 -3.77
Tiny-Imagenet 50 vector-wise 58.77 -2.25
block-wise 28.99 +0.12
group-wise 55.99 -1.01
element-wise 28.18 -3.95
25 vector-wise 28.06 -2.73
block-wise 18.05 -1.33
group-wise 29.06 -1.12
100 dense 3.12 0.0

a trained and pruned model. Consequently, the location information

should be given when the inference starts.

location of pruned weights: using masks [5], or directly setting the
pruned weights to zeros [9]. If using masks, binary mask matrices are
used to indicate whether the weights at corresponding locations are
pruned. Our implementation covers both two ways. Algorithm 1 and
Algorithm 2 show the implementations of inference with Group-wise
sparse convolutional layers and linear layers, respectively. In Algorithm
1, we first split the weight W and the input data X of the current layer
into W,;;, and X,;, using the im2col algorithm, and divide the tiling
weight into W,,,,,, according to the group-wise pattern. If the model
is marked with a mask, the indexes of the pruning part is extracted
according to the mask. If the model is marked with changing the
pruning weights to zero, the indexes of the pruning part is extracted
according to the zeroing group, and the weight to be pruned is re-
moved. According to the pruning indexes, the input data of this layer
are extracted from the X,;, correspondingly, concatenated into a dense
matrix, and then GEMM is calculated to output the calculation results
of this layer. Algorithm 2 directly changes the weight of the linear layer
into W,,,,,, according to the group-wise pattern, and then extracts the
input data with the same calculation steps as convolution to obtain the
output of the linear layer. In these two algorithms, i refers to the group
index of data not involved in the operation (the weight to be pruned
and the input data not involved in the operation), and j refers to the
group index of data to be retained.

Memory accesses coalesce. Memory accesses coalesce is the use of con-
secutive threads to access data at consecutive addresses. As shown in
Fig. 5, a matrix of size 3 x 3 is accessed using 3 threads and the matrix
is stored in memory in a linear fashion. There are two ways to access
the matrix. The first one, thread 0 accesses the Oth, 1st, and 2nd data,
and thread 1 accesses the 3rd, 4th, and 5th data, and the contiguous
threads do not access contiguous memory; The second way, thread 0
accesses the Oth, 3rd, and 6th data, and thread 1 accesses the 1st, 4th,
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Fig. 6. Implementation of memory accesses coalesce in group-wise pattern.

and 7th data, and the contiguous threads access contiguous memory.
Either way, each thread makes 3 accesses, but the second way is a
coalesce memory access that requires fewer memory transactions and
is therefore more efficient than the first.

In the group-wise pruning pattern, some rows of a weight matrix
are pruned, so the columns of the matrix corresponding to the input
data tiled at that layer then do not participate in the computation and
need to be removed. When the columns of the input matrix are skipped,
uncoalesced memory accesses are introduced frequently, which is inef-
ficient on the GPU. Then the contiguous accesses to the initial input
matrix become uncoalesced, which may lead to severe performance
degradation. Uncoalesced memory accesses require multiple memory
transactions. To alleviate this issue, the matrix can be transposed to
improve its memory access efficiency, as shown in Fig. 6. In this
case, column skipping becomes row skipping, eliminating uncoalesced
accesses and improving access efficiency.

5. Evaluation
5.1. Setup

Benchmark. The evaluated models are VGG-16, ResNet-18, ViT and
BERT-base, which cover the fields of computer vision and NLP. VGG-16
and ResNet-18 are classical CNN models. We perform inference latency
evaluation on the CIFAR-10 dataset. For a convolutional layer, it is tiled
after pruning. And for a linear layer, we prune it directly according to
the same pattern after tiling by convolutional computation.

For the most popular family of Transformer models, we use the ViT
and BERT-base models with 12-layer encoder. The ViT model is also
applicable to CIFAR-10 and Tiny-Imagenet datasets for experiments.
The BERT-base model downstream task being evaluated is a sentence
classification task on the widely used QQP dataset.

In our experiments, the sparse CNN models and the ViT model are
trained from scratch, and these models are pruned with element-wise,
vector-wise, block-wise and group-wise sparse model with 100 epochs
at different target sparsity levels, depending on the dataset size. The
NLP models are evaluated with pre-trained models and fine-tuned by 10
epochs at each target sparsity level. They are also pruned by applying
the patterns of element-wise, vector-wise, block-wise and group-wise,
respectively.

Baseline. The models obtained by element-wise, vector-wise and block-
wise pruning patterns are sparse models, so they are computed using
the cuSPARSE library. Group-wise can be computed using the cuBLAS
library through a series of processes. All experiments are performed on
an NVIDIA GeForce RTX 2080 Ti GPU using FP32. The convolutional
operations in the CNN models are converted to GEMM by the im2col
method.

Table 5
Inference latency of group-wise pattern on CIFAR-10 dataset.
Models Parameter (%) Latency (ms) Change of acc (%)
73.84 0.31 -0.25
VGG-16 49.9 0.20 +0.05
25.57 0.11 -0.86
77.27 0.78 -0.35
ResNet-18 46.76 0.75 -0.38
39.35 0.64 -1.38
75 2.80 -1.22
ViT 50 2.37 -1.36
25 1.96 -1.95
Table 6

Inference latency of group-wise pattern on Tiny-ImageNet dataset.

Models Parameters(%) Latency(ms) Change of acc(%)
71.74 0.49 -4.19
VGG-16 47.27 0.34 -4.76
30.98 0.25 -11.68
75.4 1.07 +0.11
ResNet-18 49.23 0.82 —-0.56
29.55 0.57 -6.23
75.0 2.71 -0.0
ViT 50.0 2.37 -1.01
25.0 1.92 -1.12
Table 7
Inference latency of group-wise pattern on QQP dataset.
Models Parameter (%) Latency (ms) Change of acc (%)
81.71 2.43 -0.28
BERT-base 58.26 2.01 -1.85
31.21 1.47 —-8.72

5.2. Result and analysis

We compare the latency of group-wise, element-wise, vector-wise
and block-wise patterns on multiple models. The results of the group-
wise pattern are listed in Tables 5 to 7. Figs. 7 to 10 show a comparison
in inference time between the efficient group-wise introduced in this
paper and the three pruning patterns element-wise, vector-wise, and
block-wise in Section 3.2. The data of efficient group-wise come from
Tables 5 to 7, and the data of other patterns come from Tables 1 to 4.
The number of parameters on the horizontal axis is only an approximate
range, rather than the exact value. For example, 25% means that with a
model residual parameter of approximately 25%, it may be 27% or 23%
of the true figure. The data represented in the figures are a visualization
of the tables in Section 3.3 and Tables 5 to 7 in this section. It can be
seen that the inference delay with group-wise pattern is significantly
reduced. Supplementary experiments on Imagenet dataset are shown
in Table 8.
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This figure shows the inference latency of VGG-16 model using different pruning patterns on CIFAR-10 and Tiny-ImageNet datasets.
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Fig. 8. This figure shows the inference latency of ResNet-18 model using different pruning patterns on CIFAR-10 and Tiny-ImageNet datasets.
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Fig. 9. This figure shows the inference latency of ViT model using different pruning patterns on CIFAR-10 and Tiny-ImageNet datasets.

The experimental results show that the group-wise pattern has
shorter latency than all the other sparse patterns at the same sparsity.
Group-wise effectively takes advantage of the dense GEMM accelera-
tion, which makes fast inference possible even after pruning to obtain
a sparse model. When compared with the dense model, effective latency
reduction will be achieved on ResNet-18, BERT-base and ViT models.
Poor performance is achieved on VGG-16 when using small datasets,
but effective latency reduction is achieved on larger datasets. Because
small datasets have less data to be calculated, the reduced calculation
time after pruning is insufficient to counteract the overhead introduced
by extra steps for pruning. Even so, when the remaining parameter ratio

is 25%, the inference latency of the sparse model can be equivalent
to or less than that of the dense model. And further compression can
bring more acceleration. In most cases, pruned models achieve similar
latency to the dense model at about 75% remaining parameter ratio,
and the inference latency of the group-wise pattern will be lower than
the dense model as the number of parameters continues to decrease.
Fig. 11 shows the comparison of the inference time between the
group-wise implementation in this paper and Lebedev’s implementation
in [30]. Since [30] only focuses on convolutional layers, we take a
convolutional layer from VGG-16 model as an example for comparison.
The configuration of the convolutional layer set as 512 input channels,
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Fig. 10. This figure shows the inference latency of BERT-base model using different
pruning patterns on QQP datasets.

80 A —O— ours

—+— Lebedev's
70 A
60 -

90% 80% 70% 60% 50% 40% 30% 20% 10%
Parameters

Fig. 11. Latency of different sparsity of convolutional layer using different implemen-

tations. ‘Lebedev’s’ is the implementation in [30], and ‘ours’ is the implementation in
this paper.
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Fig. 12. Latency of group-wise pattern in linear layer. In the figure, s1, s2 correspond
to the matrix concatenating and multiplication steps, respectively. The measured batch
size is 64.
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Table 8
When the VGG-16 model retains 50% of the parameters, use the experimental data of
different patterns on full Imagenet dataset.

Parameters(%) Pruning patterns Latency(ms) Change of acc(%)
element-wise 360.43 -5.29
50 vector-wise 315.82 -8.97
block-wise 44.25 -4.13
group-wise 5.99 -5.26
100 dense 15.67 0.0
Convolutional layer
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Fig. 13. Latency of group-wise pattern model in convolutional operation. In this figure,
s1, s2, s3 and s4 denote im2col, matrix concatenating, multiplication, and reshaping
results to feature map size steps, respectively. The measured batch size is 64.

512 output channels, 3 x 3 convolutional kernel size, 28 x 28 input
data size, and 64 batch size. It can be seen that our implementation can
further effectively reduce the inference latency of group-wise pruning
pattern.

We also measured the latency of internal steps of convolutional
layers and linear layers, as shown in Figs. 12 to 14, respectively.
According to Figs. 12 to 14, the latency showed in Fig. 14 is shorter
than others. The convolutional and linear layers are split into multiple
kernel functions when measuring the internal steps, therefore some
overhead is introduced. When measuring the time for the entire layer,
it is only necessary to wait for the finish of the layer. So there is some
difference in the overall time between the two sets of data.

The parameter settings for the convolutional layer are the same as
the experimental settings in Fig. 11. The configuration of the linear
layer: the input channel is set to 4096, the output channel is 4096, the
input data size is 4096, and the batch size is 64. The above parameter
settings are also from one of the layers in the VGG-16 model. Fig. 14
shows that, when the sparsity is around 20% and 10% for convolutional
layer and linear layer, respectively, the inference latency is equivalent
to that of dense matrix calculation. With the increase of sparsity, the
latency advantage from pruning becomes more significant.

6. Conclusion

In this paper, we conduct an empirical comparison on existing main-
stream pruning patterns, including element-wise, vector-wise, block-
wise and group-wise pattern. After analyzing their inefficiency, we
propose a more efficient implementation of the group-wise pattern
on GPU using off-the-shelf GEMM library. Experimental results show
that its inference latency on GPU is much lower than that of other
sparse patterns. The proposed optimization implementation can further
improve the inference speed of DNN models compared to existing
group-wise approach. In addition, when the reserved parameters of the
model are less than 75%, our group-wise inference performance can
exceed that of dense models.
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Fig. 14. Latency of different sparsity of convolutional layer and linear layer in group-wise pruned and dense model. The measured batch size is 64.
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