
BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100087

J

e
G
G
s
t
w
t
g
s
t

s

h
R
A
2
B

Contents lists available at ScienceDirect

BenchCouncil Transactions on Benchmarks,
Standards and Evaluations

journal homepage: www.keaipublishing.com/en/journals/benchcouncil-transactions-on-
benchmarks-standards-and-evaluations/

Research Article

Optimizing the sparse approximate inverse preconditioning algorithm on
GPU✩

Xinyue Chu, Yizhou Wang, Qi Chen, Jiaquan Gao ∗

iangsu Key Laboratory for NSLSCS, School of Computer and Electronic Information, Nanjing Normal University, Nanjing 210023, China

A R T I C L E I N F O

Keywords:
Sparse approximate inverse
Preconditioning
CUDA
GPU

A B S T R A C T

In this study, we present an optimization sparse approximate inverse (SPAI) preconditioning algorithm on GPU,
called GSPAI-Opt. In GSPAI-Opt, it fuses the advantages of two popular SPAI preconditioning algorithms, and
has the following novelties: (1) an optimization strategy is proposed to choose whether to use the constant
or non-constant thread group for any sparse pattern of the preprocessor, and (2) a parallel framework of
optimizing the SPAI preconditioner is proposed on GPU, and (3) for each component of the preconditioner,
a decision tree is established to choose the optimal kernel of computing it. Experimental results validate the
effectiveness of GSPAI-Opt.
1. Introduction

Given their many-core structures, graphic processing units (GPUs)
have become an important resource for scientific computing in re-
cent years. Following the introduction of the programming interfaces
such as the compute unified device architecture (CUDA) by NVIDIA
in 2007 [1], GPUs have been increasingly used as tools for high-
performance computation in many fields [2–8].

Sparse approximate inverse (SPAI) preconditioners based on the
Frobenius norm minimization have proven to be effective in improv-
ing the convergence of iterative methods based on Krylov subspaces,
e.g., the generalized minimal residual method (GMRES) [9] and the
biconjugate gradient stabilized method (BiCGSTAB) [10]. However,
due to the high cost of constructing the SPAI preconditioners, many
researchers have attempted to accelerate the SPAI preconditioner con-
struction on GPU. Gao et al. follow Chow’s work [11], and use a
sparse approximate inverse of 𝐴 as the preconditioner in [12]. Rupp
t al. [13] show several static and dynamic SPAI implementations on
PU. In [14], Dehnavi et al. propose a static SPAI preconditioner on
PU called GSAI. Recently, He and Gao et al. [15] propose a GPU-based

tatic SPAI preconditioning algorithm called SPAI-Adaptive, and verify
he effectiveness of SPAI-Adaptive for large-scale matrices. However,
hen the number of nonzero entries in each column of the precondi-

ioner has significant difference, the performance of SPAI-Adaptive is
reatly decreased. Furthermore, He and Gao et al. [16] present a sorted
tatic SPAI preconditioning algorithm, called GSPAI-Adaptive, in order
o avoid the drawback of SPAI-Adaptive.

SPAI-Adaptive and GSPAI-Adaptive both can be applied to large-
cale matrices, and have their own advantages. When the difference

✩ The research has been supported by the Natural Science Foundation of China under grant number 61872422.
∗ Corresponding author.
E-mail addresses: 2316607219@qq.com (X. Chu), 1966224230@qq.com (Y. Wang), 1337223917@qq.com (Q. Chen), springf12@163.com (J. Gao).

in the nonzero number of each column of the preconditioner is small,
the performance of SPAI-Adaptive is generally better than that of
GSPAI-Adaptive; when the nonzero number of each column of the
preconditioner has significant difference, SPAI-Adaptive has worse per-
formance than GSPAI-Adaptive. For example, assuming that 𝑛2𝑘 is the
nonzero number of the 𝑘th column of the preconditioner, 𝑛2𝑚𝑎𝑥 =
max𝑘{𝑛2𝑘}, and 𝑛2𝑎𝑣𝑔 =

∑𝑛
𝑘=1 𝑛2𝑘∕𝑛, where 𝑛 is the row number of

the preconditioner, we take two integers 𝛼 and 𝛽, which satisfy 2𝛼−1 <
𝑛2𝑚𝑎𝑥 ⩽ 2𝛼 and 2𝛽−1 < 𝑛2𝑚𝑎𝑥 ⩽ 2𝛽 , respectively. If 𝛼 = 𝛽, we
say that the difference in the nonzero number of each column of the
preconditioner is small; if 𝛼−𝛽 ⩾ 3, we say that the nonzero number of
each column of the preconditioner has significant difference. However,
when the difference is large but not significant, which one of SPAI-
Adaptive and GSPAI-Adaptive has better performance? For example,
1 ⩽ 𝛼 − 𝛽 < 3. There are no conclusions in [15,16].

Inspired by these observations, we further investigate how to highly
optimize the static SPAI on GPU in this paper. Utilizing the advantages
of SPAI-Adaptive and GSPAI-Adaptive, we propose an optimized SPAI
preconditioning algorithm on GPU, called GSPAI-Opt. Compared to
SPAI-Adaptive and GSPAI-Adaptive, the proposed algorithm has the
following distinct characteristics:

• First, an optimization strategy is presented. Using this strategy,
for a given sparsity pattern of the preconditioner, we can obtain
the optimization scheme of choosing whether to use the constant
or nonconstant thread-group size to calculate the preconditioner.

• Second, when the constant thread-group size is applied, for each
one of main components of the preconditioner such as finding in-
dices 𝐼 and 𝐽 , constructing the local submatrix, decomposing the
ttps://doi.org/10.1016/j.tbench.2023.100087
eceived 11 October 2022; Received in revised form 26 February 2023; Accepted 2
vailable online 3 March 2023
772-4859/© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of
Y-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
6 February 2023

KeAi Communications Co. Ltd. This is an open access article under the CC

https://doi.org/10.1016/j.tbench.2023.100087
https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tbench.2023.100087&domain=pdf
mailto:2316607219@qq.com
mailto:1966224230@qq.com
mailto:1337223917@qq.com
mailto:springf12@163.com
https://doi.org/10.1016/j.tbench.2023.100087
http://creativecommons.org/licenses/by-nc-nd/4.0/

X. Chu, Y. Wang, Q. Chen et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100087

T
c
o
l

2

t
f

2

c

m

g
t
S
s
a
p
w

g

Fig. 1. Parallel framework of GSPAI-Opt.

local submatrix into 𝑄𝑅, and solving the upper triangular linear
system, a decision tree is established to choose the optimization
kernel of calculating it.

• Third, when using the nonconstant thread-group size, for each
one of some components of the preconditioner such as decom-
posing the local submatrix into 𝑄𝑅 and solving the upper trian-
gular linear system, a decision tree is constructed to choose the
optimization kernel to calculate it.

• Finally, GSPAI-Opt can apply to any sparsity pattern of the pre-
conditioner, not just the same sparsity pattern as 𝐴.

he experimental results show that GSPAI-Opt is effective, and effi-
iently fuses the advantages of SPAI-Adaptive and GSPAI-Adaptive, and
utperforms the static SPAI preconditioning algorithm in the ViennaCL
ibrary [13], the recent SPAI-Adaptive [15] and GSPAI-Adaptive [16].

. Optimizing SPAI on GPU

We present an optimization sparse approximate inverse precondi-
ioning algorithm on GPU, called GSPAI-Opt. Fig. 1 lists the parallel
ramework of GSPAI-Opt, which is composed of the following stages.

• Pre-GSPAI stage: Compute the dimensions, choose whether to
allocate the constant thread-group size or nonconstant thread-
group size for each column of the preconditioner according to the
proposed optimization strategy, and allocate the global memory
of GPU;

• Compute-GSPAI stage: Find indices 𝐽𝑘 and 𝐼𝑘, construct local
submatrix 𝐴𝑘, decompose 𝐴𝑘 into 𝑄𝑘𝑅𝑘, and solve 𝑅𝑘𝑚̂𝑘 = 𝑄𝑇

𝑘 𝑒𝑘;
• Post-GSPAI stage: Assemble the preconditioner 𝑀 in the com-

pressed sparse column (CSC) storage format.

Based on the sparsity pattern of the preconditioner, when the thread
allocation strategy with the constant thread-group size is more suit-
able for computing the preconditioner, the thread-adaptive allocation
strategy (First strategy) proposed in [15] is adopted; otherwise, the
thread-adaptive allocation strategy with the nonconstant thread-group
size (Second strategy) proposed in [16] is utilized. Given a matrix,
should we use the first strategy or the second strategy? Here we present
a selection method, whose main procedure is shown in Fig. 2.

Let us illustrate the selection method in Fig. 2 by apache2. For
apache2, we have n2max = 8 and n2avg = 6.74. Obviously, n2max,
n2avg ∈ (22, 23], and 𝛼 = 𝛽 = 3. Based on the selection method in

Fig. 2, the first strategy is chosen.

2

Fig. 2. Main procedure of selecting the First/Second strategy.

.1. Pre-GSPAI stage

First, we compute the dimensions of all local submatrices. When
omputing 𝑚𝑘 (one column of 𝑀), 𝑘 = 1, 2,… , 𝑛, the dimensions of

the local submatrices (𝑛1𝑘, 𝑛2𝑘) constructed for each column of the
preconditioner are usually different. To simplify the accesses of data in
the memory and enhance the coalescence, the dimensions of all local
submatrices are uniformly defined as (𝑛1𝑚𝑎𝑥, 𝑛2𝑚𝑎𝑥). Here 𝑛1𝑚𝑎𝑥 =
ax𝑘{𝑛1𝑘} and 𝑛2𝑚𝑎𝑥 = max𝑘{𝑛2𝑘}.

Next, we choose whether to use the constant or nonconstant thread-
roup size for each column of the preconditioner. GSPAI-Opt fuses
he advantages of SPAI-Adaptive [15] and GSPAI-Adaptive [16]. For
PAI-Adaptive, a thread-adaptive allocation strategy with the con-
tant thread-group size is presented, and for GSPAI-Adaptive, a thread-
daptive allocation strategy with the nonconstant thread-group size is
resented. For the convenience of readers, in the following contents,
e introduce them respectively.
Thread-adaptive allocation strategy with the constant thread-

roup size: The optimized number of threads 𝑞 is obtained by the
following formula:

𝑞 = min(2𝑠, 𝑛𝑡), (1)
𝑠.𝑡.

2𝑠−1 < 𝑛2𝑚𝑎𝑥 ⩽ 2𝑠. (2)

Here 𝑛𝑡 is the number of threads per block, and 𝑞 threads are grouped
into a thread group.

Thread-adaptive allocation strategy with the nonconstant thread-
group size: First, for each 𝑛2𝑘, 𝑘 = 1, 2,… , 𝑛, the number of threads 𝑞𝑘
assigned to the 𝑘th column of the preconditioner is computed by the
following formula:

𝑞𝑘 = min(2𝑠, 𝑛𝑡), (3)
𝑠.𝑡.

2𝑠−1 < 𝑛2𝑘 ⩽ 2𝑠. (4)

Second, all 𝑞𝑘 values are sorted in descending order. Finally, the
thread-group size of each block is assigned by the procedure shown
in Fig. 3.

X. Chu, Y. Wang, Q. Chen et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100087

B
s

2

F
o
s
o
p
𝐼
p
a
n
×
𝑠
m
e
t
i
s
r
i
i
i
s
a

t
u
t
p
p
t
t
t

r

s

a
G
s
c
k
k
o
t
f
e
b
i
e

g
s
c
t

d
t

t
s
p
s
t
d
4

Fig. 3. Main procedure of assigning the thread-group size.

Table 1
Arrays used in GSPAI-Opt.
Array Size Type Array Size Type

AData nonzeros double 𝑚̂ ns × 𝑛2𝑚𝑎𝑥 double
AIndex nonzeros integer 𝐴 ns × 𝑛1𝑚𝑎𝑥 × 𝑛2𝑚𝑎𝑥 double
APtr 𝑛 integer 𝑅 ns × 𝑛2𝑚𝑎𝑥 × 𝑛2𝑚𝑎𝑥 double
RCol 𝑛 integer 𝐼 ns × 𝑛1𝑚𝑎𝑥 integer
atomic 𝑛 integer iPTR ns integer
WSize 𝑏𝑙𝑜𝑐𝑘𝑠 integer 𝐽 ns × 𝑛2𝑚𝑎𝑥 integer
BCol 𝑏𝑙𝑜𝑐𝑘𝑠 integer jPTR ns integer

Finally, we allocate global memory for arrays in Table 1, and RCol,
Col, and WSize values are transferred to the GPU global memory if the
econd strategy is applied.

.2. Compute-GSPAI stage

Finding indices: This part is to find indices 𝐽 and 𝐼 by the con-
stant/nonconstant thread-group size.

(1) Finding 𝐽 and 𝐼 by the constant thread-group size: In this case,
the thread-group size that is used to find 𝐽 and 𝐼 is same in all blocks.
or the kernel that finds 𝐽 , the threads inside each thread group read
ne column of the sparsity pattern 𝑀 in parallel and store them to one
ubset of 𝐽 . And then on this basis of 𝐽 , we implement the construction
f 𝐼 . We establish a decision tree to find 𝐼 based on the GPU feature
arameters. Utilizing the decision tree, an optimized kernel for finding
is obtained for any given 𝑛2𝑚𝑎𝑥 and 𝑛1𝑚𝑎𝑥. Assume that the threads

er block are 256 and NIVIDA GTX1070 GPU is used, Fig. 4 shows
segment of the decision tree for finding 𝐼 . Here 𝑠ℎ𝑎𝑟𝑒𝑑𝑆𝑖𝑧𝑒 =

umber of columns of the preconditioner computed in a thread block
upper boundary closest to 𝑛1𝑚𝑎𝑥. For example, when 𝑛1𝑚𝑎𝑥 ⩽ 8,

ℎ𝑎𝑟𝑒𝑑𝑆𝑖𝑧𝑒 = 32 × 8 and cuFindIBySharedMemory kernel with shared
emory of 256 size is used. In the cuFindIBySharedMemory kernel,

ach thread group finds one subset of 𝐼 , e.g., 𝐼𝑘, which mainly includes
he following steps. First, the threads in the thread group load the row
ndices of the first column referenced in one subset of 𝐽 , e.g., 𝐽𝑘, to
hared memory 𝑠𝐼 . Second, the index vectors of successive columns
eferenced by 𝐽𝑘 are compared in parallel with values in 𝑠𝐼 and new
ndices are appended to 𝑠𝐼 by utilizing the atomic operations. Third,
nside the thread group, the indices of 𝑠𝐼 are sorted in ascending order
n parallel. Finally, the indices of 𝑠𝐼 are copied to 𝐼𝑘. cuFindI kernel is
imilar to cuFindIBySharedMemory kernel except that the operations
re executed on global memory instead of shared memory.
(2) Finding 𝐽 and 𝐼 by the nonconstant thread-group size: The

hread-group size of finding 𝐽 and 𝐼 is same in a block while it is
sually different for different blocks. For the kernel that finds 𝐽 , the
hreads inside each thread group read one column of the sparsity
attern 𝑀 in parallel and store them to one subset of 𝐽 . The main
rocedure of the kernel that finds 𝐼 is as same as that in [16]. Each
hread group is assigned to find one subset of 𝐼 , e.g., 𝐼𝑘, which includes
he following three stages. In the first stage, the thread group obtains
he thread-group size 𝑤𝑎𝑟𝑝𝑆𝑖𝑧𝑒. In the second stage, the row indices
3

Fig. 4. A segment of the decision tree of using constant threads to find 𝐼 .

of the first column referenced in 𝐽𝑘 are first loaded into 𝐼𝑘, and the
ow index vectors of successive columns that are referenced by 𝐽𝑘

are calculated in parallel with values in 𝐼𝑘, and the new indices are
appended to 𝐼𝑘 by utilizing the atomic operations. In the third stage,
the indices in 𝐼𝑘 are sorted in ascending order in parallel.

Constructing the local submatrix: Using 𝐽 and 𝐼 obtained above,
the local submatrix set, 𝐴, is computed by the constant/nonconstant
thread-group size.

(1) Constructing the local submatrix by the constant thread-group
ize: Each thread group is assigned to compute one subset of 𝐴, e.g., 𝐴𝑘,

and all thread groups are the same size. Based on the GPU feature
parameters, we establish a decision tree for constructing 𝐴. For any
given 𝑛2𝑚𝑎𝑥 and 𝑛1𝑚𝑎𝑥, an optimized kernel for constructing 𝐴 is
chieved by using the decision tree. For example, on NIVIDA GTX1070
PU, assume that the threads per block are 256, Fig. 5 shows a

egment of the decision tree for constructing 𝐴. When 4 < 𝑛2𝑚𝑎𝑥 ⩽ 8,
orresponding to different 𝑛1𝑚𝑎𝑥, cuComputeTildeABySharedMemory
ernel with shared memory of 𝑠ℎ𝑎𝑟𝑒𝑑𝑆𝑖𝑧𝑒 size and cuComputeTildeA
ernel with non shared memory are selected. The main procedure
f cuComputeTildeABySharedMemory kernel is listed as follows. For
he thread group that calculates 𝐴𝑘, all threads in the thread group
irst read values in 𝐼𝑘 into shared memory 𝑠𝐼 in parallel, and 𝐴𝑘 is
stablished on the global memory by loading columns that are indexed
y 𝐽𝑘 and matching them to 𝑠𝐼 in parallel. cuComputeTildeA kernel
s similar to cuComputeTildeABySharedMemory kernel except that 𝐼 is
xecuted on global memory instead of shared memory.
(2) Constructing the local submatrix by the nonconstant thread-

roup size: In this case, each thread group is assigned to calculate one
ubset of 𝐴, e.g., 𝐴𝑘, and the thread-group size is same in a block but it
an be different for different block. The main procedure of the kernel
hat constructs 𝐴 is as same as that in [16].
Decomposing the local submatrix into 𝑄𝑅: This part is used to

ecompose the local submatrix into 𝑄𝑅 by the constant/nonconstant
hread-group size.
(1) Decomposing the local submatrix into 𝑄𝑅 by the constant

hread-group size: The thread-group size of decomposing the local
ubmatrix into 𝑄𝑅 is same in all blocks. Based on the GPU feature
arameters, we establish a decision tree for decomposing the local
ubmatrix into 𝑄𝑅. For example, on NIVIDA GTX1070 GPU, assume
hat the threads per block are 256, Fig. 6 shows a segment of the
ecision tree for decomposing the local submatrix into 𝑄𝑅. When
< 𝑛2𝑚𝑎𝑥 ⩽ 8, two shared memories 𝑠ℎ𝑎𝑟𝑒𝑑𝑅 and 𝑠ℎ𝑎𝑟𝑒𝑑𝑄 are

X. Chu, Y. Wang, Q. Chen et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100087

r
p
a
a
o
c
k

t
s
f
l
d

s
i
2
i
c
g
k
p
t
o
p

t
s
g
b
l

Fig. 5. A segment of the decision tree of using constant threads to construct 𝐴.

Fig. 6. A segment of the decision tree of using constant threads to decompose the
local submatrix into 𝑄𝑅.

used in the optimized kernel. Here the size of 𝑠ℎ𝑎𝑟𝑒𝑑𝑄 is related to
𝑛1𝑚𝑎𝑥. In the cuQRByQRSharedMemory kernel, each thread group is
responsible for one 𝑄𝑅 decomposition. In a thread group, the local
submatrix, e.g., 𝐴𝑘, is decomposed into 𝑄𝑅 by the following four steps
at each iteration 𝑖. In the first step, the threads read the 𝑖th column
of 𝑄𝑘 into shared memory 𝑠𝑄 in parallel. In the second step, the 𝑖th
ow of the upper triangle matrix 𝑅𝑘 are computed in parallel and are
ut into shared memory 𝑠𝑅. In the third step, the column 𝑖 of 𝑄𝑘
nd 𝑠𝑄 are concurrently normalized, and the projection factors 𝑅𝑘
nd 𝑠𝑅 are calculated. In the fourth step, the values of all columns
f 𝑄𝑘 are updated by using shared memory 𝑠𝑄 and 𝑠𝑅 in parallel.
uQRByRSharedMemory kernel is similar to cuQRByQRSharedMemory
ernel except the shared memory 𝑠𝑄 is not utilized.
(2) Decomposing the local submatrix into 𝑄𝑅 by the nonconstant

hread-group size: The thread-group size of decomposing the local
ubmatrix into 𝑄𝑅 is same in a block while it is usually different
or different blocks. We establish a decision tree for decomposing the
ocal submatrix into 𝑄𝑅. For example, on NIVIDA GTX1070 GPU, the
ecision tree for decomposing the local submatrix into 𝑄𝑅 is shown
 t

4

Fig. 7. Decision tree of using nonconstant threads to decompose the local submatrix
into 𝑄𝑅.

Fig. 8. Decision tree of using constant threads to solve the upper triangular linear
system.

in Fig. 7 when the threads per block are 256. Obviously, utilizing
the decision tree, an optimized kernel cuSortedQRByRSharedMemory
corresponding to shared memory of 𝑠ℎ𝑎𝑟𝑒𝑑𝑅 size or cuSortedQR kernel
is chosen for a given 𝑛2𝑚𝑎𝑥 value. The main procedure of cuSort-
edQRByRSharedMemory kernel is as same as that in [16]. cuSortedQR
kernel is similar to cuSortedQRByRSharedMemory kernel except that
the shared memory 𝑠𝑅 is not utilized.

Solving the upper triangular linear system: The values of 𝑚̂𝑘 =
𝑅−1
𝑘 𝑄𝑇

𝑘 𝑒𝑘 are computed by the constant/nonconstant thread-group size.
(1) Solving the upper triangular linear system by the constant

thread-group size: Each thread group computes one subset of 𝑚̂ by
olving an upper triangular linear system, and the thread-group size
s same in all blocks. In this case, assume that the threads per block are
56, the decision tree for solving the upper triangular linear system
s shown in Fig. 8. For any given 𝑛2𝑚𝑎𝑥 value, an optimized kernel,
uSolverBySharedMemory with shared memory of 256 size and thread-
roup size of 𝑤𝑎𝑟𝑝𝑆𝑖𝑧𝑒, is chosen. In the cuSolverBySharedMemory
ernel, each thread group calculates a subset of 𝑚̂, e.g., 𝑚̂𝑘, and its
rocedure includes two steps. First, Calculate 𝑄𝑇

𝑘 𝑒𝑘 in parallel and save
he result to the shared memory 𝑥𝐸. Second, the values of 𝑚̂𝑘 are
btained by solving the upper triangular linear system 𝑅𝑘𝑚̂𝑘 = 𝑥𝐸, in
arallel.
(2) Solving the upper triangular linear system by the nonconstant

hread-group size: Each thread group is responsible for obtaining a
ubset of 𝑚̂ by solving an upper triangular linear system, and the thread-
roup size is same inside a block but it can be different for different
locks. A decision tree is established to solve the upper triangular
inear system. For example, Fig. 9 lists the decision tree for solving

he upper triangular linear system on NIVIDA GTX1070 GPU. For any

X. Chu, Y. Wang, Q. Chen et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100087

s

b
o
o
c
k

𝑀
F

𝐽

3

s
m
M
t
c
r

T
c
i
(
t
s
t

m
t
t
S
o
m
t
f
s
a

3

t
p
a
a
r
V
c

Fig. 9. Decision tree of using nonconstant threads to solve the upper triangular linear
ystem.

Table 2
Overview of GPUs.

Hardware GTX1070 A40

Cores 1920 10 752
Clock speed (GHz) 1.506 1.305
Memory type GDDR5 GDDR6
Memory size (GB) 8 48
Max-bandwidth (GB/s) 256 696
Compute capability 6.1 8.6

given 𝑛2𝑚𝑎𝑥 value, we always choose an optimized kernel, which may
e a cuSortedSolverBySharedMemory kernel that uses shared memory
f 𝑠ℎ𝑎𝑟𝑒𝑑𝑆𝑖𝑧𝑒 size, or a cuSortedSolver kernel. The main procedure
f cuSortedSolverBySharedMemory kernel is as same as that in [16].
uSortedSolver kernel is similar to cuSortedSolverBySharedMemory
ernel except that the shared memory 𝑥𝐸 is not used.

2.3. Post-GSPAI stage

In the Post-GSPAI stage, the preconditioner 𝑀 is assembled in the
CSC storage format which contains three arrays of 𝑀𝑃𝑡𝑟, 𝑀𝐼𝑛𝑑𝑒𝑥 and

𝐷𝑎𝑡𝑎. Fig. 10 illustrates the procedure of assembling these arrays.
irst,MPtr is assembled utilizing jPTR. Second, 𝑀𝐷𝑎𝑡𝑎 and 𝑀𝐼𝑛𝑑𝑒𝑥 are

assembled using 𝑚̂ and 𝐽 . In order to reduce the cost of array transfer,
we assemble all arrays mentioned above on the GPU memory, and each
thread group is responsible for generating one 𝑚̂𝑘 to 𝑀𝐷𝑎𝑡𝑎 and one
𝑘 to 𝑀𝐼𝑛𝑑𝑒𝑥.

. Experimental results

In this section, we take two NVIDIA GPUs (GTX1070 and A40)
hown in Table 2 to evaluate the performance of GSPAI-Opt. The test
atrices are listed in Table 3, which are chosen from the SuiteSparse
atrix Collection [17], and have been widely used in some publica-

ions [14–16]. Table 3 summarizes the information of the sparse matri-
es, including the name, kind, number of rows, total number of nonze-

os, average number of nonzeros, maximum number of nonzero entries o

5

Fig. 10. Assemble 𝑀 .

of columns, and minimum number of nonzero entries of columns. The
matrices in Table 3 are chosen due to the following reasons. The matri-
ces such as cbuckle, ASIC_320ks, power9, and Fault_639 are chosen to
test whether the second strategy is chosen when the nonzero number of
each column of the preconditioner has significant difference (𝛼−𝛽 ⩾ 3).

he matrices such as 2cubes_sphere, offshore, apache2, G3_circuit are
hosen to test whether the first strategy is chosen when the difference
n the nonzero number of each column of the preconditioner is small
𝛼 = 𝛽). The matrices such as msdoor and thermal2 are chosen to
est whether the predicted strategy is well matched with the measured
trategy when the difference in the nonzero number of each column of
he preconditioner is large but not significant (1 ⩽ 𝛼−𝛽 < 3). The source

codes are compiled and executed using the CUDA toolkit 11.1 [18].

3.1. Accuracy of selection method

We take GTX1070 to test the accuracy of the proposed selection
method of using the first strategy (denoted by S1) or the second
strategy (denoted by S2). The sparse pattern of the preconditioner is
a priori, so we test the accuracy in two popular patterns [14–16],
(𝐸 + |𝐴|)𝑘, 𝑘 = 1, 2. The matrices in Table 3 are used as the test

atrices. For all test matrices, both the optimal strategy predicted by
he proposed selection method and the strategy obtained from actual
ests are shown in Table 4. Note that if |𝑡1 − 𝑡2|∕max(𝑡1, 𝑡2) ⩽ 0.05, both
1 and S2 can be considered as the measured optimization strategy;
therwise, the strategy corresponding to min(𝑡1, 𝑡2) is chosen as the
easured optimization one. Here 𝑡1 and 𝑡2 are the time of constructing

he preconditioner using S1 and S2, respectively. We can observe that
or the two sparsity patterns, the estimated and measured optimal
trategies are matched very well for the test cases. This verifies good
ccuracy of our proposed selection method.

.2. Performance comparison

In order to test the effectiveness of our proposed GSPAI-Opt, we
ake the sparsity pattern (𝐸 + |𝐴|) to compare it with a static SPAI
reconditioning algorithm in ViennaCL (denoted by SSPAI-VCL) [13],
nd two recent SPAI preconditioning algorithms SPAI-Adaptive [15]
nd GSPAI-Adaptive [16] on GTX1070 and A40, and their comparison
esults are listed in Tables 5 and 6, respectively. Moreover, since SSPAI-
CL cannot be suitable for the sparsity pattern (𝐸 + |𝐴|)2, only the
omparison results of SPAI-Adaptive, GSPAI-Adaptive and GSPAI-Opt

n two GPUs are shown in Table 7. In each table, for any matrix and
Table 3
Descriptions of test matrices.

Name Kind Rows Nonzeros Avg Max Min

cbuckle Structural 13,681 676,515 49.45 600 26
2cubes_sphere Electromagnetics 101,492 1,647,264 16.23 31 5
offshore Electromagnetics 259,789 4,242,673 16.33 31 5
ASIC_320ks Circuit simulation 321,671 1,316,085 4.09 210 1
apache2 Structural 715,176 4,817,870 6.74 8 4
G3_circuit Circuit simulation 1,585,478 7,660,826 4.83 6 2
power9 Semiconductor device 155,376 1,887,730 12.15 627 1
msdoor Structural 415,863 19,173,163 46.10 77 1
thermal2 Thermal 1,228,045 8,580,313 6.99 11 1
Fault_639 Structural 638,802 27,245,944 42.65 267 1

X. Chu, Y. Wang, Q. Chen et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100087

v
B
F
o
t
i
S
s
B
a
F
a
t
G
i
G
a

Table 4
Predicted and measured sparsity pattern.

Matrix (𝐸 + |𝐴|) (𝐸 + |𝐴|)2

Predicted Measured Predicted Measured

cbuckle S2 S2 S2 S2
2cubes_sphere S1 S1 S1 S1/S2
offshore S1 S1 S1 S1/S2
ASIC_320ks S2 S2 S2 S2
apache2 S1 S1 S1 S1
G3_circuit S1 S1 S1 S1
power9 S2 S2 S2 S2
msdoor S1 S1/S2 S1 S1/S2
thermal2 S1 S1 S1 S1
Fault_639 S2 S2 S2 S2

Table 5
Comparison of four algorithms with (𝐸 + |𝐴|) on GTX1070.

Matrix SSPAI-V SPAI-A GSPAI-A GSPAI-Opt

cbuckle

N/A 7.976 2.046 1.815
N/A 0.362 0.356 0.348
N/A 96 96 96
N/A 8.338 2.402 2.163

2cubes_sphere

7.278 0.833 0.697 0.539
0.025 0.300 0.296 0.294
5 4 4 4
7.303 1.133 0.993 0.833

offshore

20.468 2.177 2.052 1.380
0.053 0.323 0.324 0.327
12 5 5 5
20.521 2.500 2.376 1.707

ASIC_320ks

N/A 5.000 1.398 0.846
N/A 0.347 0.342 0.339
N/A 10 10 10
N/A 5.347 1.740 1.185

apache2

5.722 0.238 0.328 0.222
7.963 3.583 3.574 3.585
2503 1090 1090 1090
13.685 3.821 3.902 3.807

G3_circuit

/ 0.148 0.170 0.148
/ 2.887 2.881 2.885
>10 000 468 468 468
/ 3.035 3.051 3.033

power9

N/A 4.504 10.620 2.848
N/A 0.436 0.435 0.418
N/A 37 37 37
N/A 4.940 11.055 3.266

msdoor

N/A 59.794 21.374 20.206
N/A 5.378 5.373 5.442
N/A 892 892 892
N/A 65.172 26.747 25.648

thermal2

/ 0.401 0.527 0.340
/ 11.700 11.696 11.701
>10 000 2086 2086 2086
/ 12.101 12.223 12.041

Fault_639

N/A 185.893 42.994 37.524
N/A 10.032 10.022 10.013
N/A 1226 1226 1226
N/A 195.925 53.016 47.537

any given preconditioner, the first two rows are the execution time of
the preconditioning algorithm and GPUPBICGSTAB, respectively, and
the third row is the iteration number of GPUPBICGSTAB, and the fourth
row is the total of the first two rows; if the iteration number of GPUP-
BICGSTAB is more than 10,000, we record the number of iterations
‘‘>10 000’’ in the third row, and the other rows that record the time are
represented by ‘‘/’’; if the out-of-memory error for GPUPBICGSTAB is
encountered, all rows will be denoted by ‘‘N/A’’. The time unit is second
(𝑠), and the minimum value of the fourth row for each matrix is marked
in the red font. For the convenience, SSPAI-VCL + GPUPBICGSTAB,
 a

6

Table 6
Comparison of four algorithms with (𝐸 + |𝐴|) on A40.

Matrix SSPAI-V SPAI-A GSPAI-A GSPAI-Opt

cbuckle

N/A 3.717 1.167 0.878
N/A 0.272 0.318 0.236
N/A 96 96 96
N/A 3.989 1.485 1.114

2cubes_sphere

4.952 0.336 0.327 0.221
0.019 0.236 0.311 0.317
5 4 4 4
4.971 0.572 0.638 0.538

offshore

13.726 0.858 1.075 0.627
0.047 0.255 0.284 0.269
12 5 5 5
13.773 1.113 1.359 0.896

ASIC_320ks

N/A 2.764 0.772 0.307
N/A 0.253 0.316 0.286
N/A 10 10 10
N/A 3.017 1.088 0.593

apache2

4.471 0.122 0.201 0.088
1.646 1.353 1.709 1.331
2503 1256 1256 1256
6.117 1.475 1.910 1.419

G3_circuit

/ 0.069 0.106 0.061
/ 1.072 1.189 1.068
>10 000 472 472 472
/ 1.141 1.295 1.129

power9

N/A 2.073 7.346 1.519
N/A 0.336 0.359 0.345
N/A 37 37 37
N/A 2.409 7.705 1.864

msdoor

N/A 20.142 9.964 8.225
N/A 1.635 2.033 1.790
N/A 656 656 656
N/A 21.777 11.997 10.015

thermal2

/ 0.176 0.273 0.144
/ 3.757 3.806 3.699
>10 000 2186 2186 2186
/ 3.933 4.079 3.843

Fault_639

N/A 65.339 20.396 15.558
N/A 3.348 3.821 3.419
N/A 1149 1149 1149
N/A 68.687 24.217 18.977

SPAI-Adaptive + GPUPBICGSTAB, GSPAI-Adaptive + GPUPBICGSTAB
and GSPAI-Opt + GPUPBICGSTAB are denoted by SSPAI-V, SPAI-A,
GSPAI-A and GSPAI-Opt, respectively.

From Tables 5 and 6, we can see that as compared to SSPAI-VCL
on two GPUs, for some matrices such as thermal2 and G3_circuit,
GPUPBICGSTAB with SSPAI-VCL cannot converge in 10,000 iterations
while GSPAI-Opt can. Especially, for the matrices with large 𝑛2𝑚𝑎𝑥
alue, e.g., cbuckle, power9, ASIC_320ks, msdoor and Fault_639, GPUP-
ICGSTAB with SSPAI-VCL will encounter the out-of-memory error.
urthermore, for 2cubes_sphere, offshore, and apache2, the total time
f SSPAI-VCL and GPUPBICGSTAB on two GPUs is much more than
hat of GSPAI-Opt and GPUPBICGSTAB. This verifies that GSPAI-Opt
s much better than SSPAI-VCL for all test matrices. Compared with
PAI-Adaptive and GSPAI-Adaptive, GSPAI-Opt does not only have
maller execution time, but also the total time of GSPAI-Opt and GPUP-
ICGSTAB is much less than that of SPAI-Adaptive and GPUPBICGSTAB
nd that of GSPAI-Adaptive and GPUPBICGSTAB for all test cases.
ig. 11 shows the execution time ratios of SPAI-Adaptive to GSPAI-Opt
nd GSPAI-Adaptive to GSPAI-Opt on two GPUs. On the GTX1070 GPU,
he minimum and maximum execution time ratios of SPAI-Adaptive to
SPAI-Opt are roughly 1.0 and 4.95, respectively, and the average ratio

s roughly 2.62; the minimum and maximum execution time ratios of
SPAI-Adaptive to GSPAI-Opt are roughly 1.13 and 3.73, respectively,
nd the average ratio is roughly 1.57. On the A40 GPU, the minimum
nd maximum execution time ratios of SPAI-Adaptive to GSPAI-Opt

X. Chu, Y. Wang, Q. Chen et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100087

G

a
2
A
a
o

t
t
G
T
m
G
r
o
a
a
r
2
A
a

4

p
O
s
c
w
w
c
i

p

D

c
i

R

Table 7
Comparison of three algorithms with (𝐸 + |𝐴|)2.

Matrix GTX1070 TITANXp

SPAI-A GSPAI-A GSPAI-Opt SPAI-A GSPAI-A GSPAI-Opt

cbuckle

29.119 9.213 7.159 12.773 4.361 3.071
0.492 0.470 0.477 0.272 0.319 0.270
66 66 66 55 55 55
29.479 9.564 7.500 13.045 4.680 3.341

2cubes_sphere

50.005 25.548 25.114 16.383 10.040 8.461
0.171 0.171 0.161 0.132 0.141 0.151
2 2 2 4 4 4
50.176 25.719 25.275 16.515 10.181 8.612

offshore

133.587 73.907 69.016 44.813 30.238 22.370
0.213 0.213 0.196 0.173 0.186 0.207
3 3 3 3 3 3
133.800 74.120 69.212 44.986 30.424 22.577

ASIC_320ks

10.223 2.460 1.699 5.667 1.185 1.040
0.346 0.338 0.341 0.287 0.282 0.291
6 6 6 6 6 6
10.569 2.798 2.040 5.954 1.467 1.331

apache2

3.934 3.627 3.249 1.500 1.391 1.314
2.913 2.907 2.883 1.026 0.989 0.984
629 629 629 600 600 600
6.847 6.534 6.132 2.526 2.380 2.298

G3_circuit

1.864 2.094 1.467 0.709 0.946 0.652
2.291 2.283 2.292 0.985 0.946 0.982
299 299 299 345 345 345
4.155 4.377 3.759 1.714 1.892 1.634

power9

20.575 26.960 13.497 10.866 17.445 6.981
0.411 0.409 0.393 0.329 0.302 0.309
21 21 21 21 21 21
20.986 27.369 13.890 11.195 17.747 7.290

msdoor

335.084 115.082 108.323 108.962 44.192 33.335
2.471 2.470 2.471 1.072 0.959 0.955
892 892 892 298 298 298
337.555 117.552 110.794 110.034 45.151 33.290

thermal2

4.082 3.753 2.991 1.526 1.431 1.260
11.462 11.466 11.469 3.469 3.477 3.529
1502 1502 1502 1464 1464 1464
15.544 15.219 14.460 4.995 4.908 4.789

Fault_639

627.18 201.616 180.840 235.209 83.214 63.198
16.245 6.242 6.242 2.373 1.748 1.751
588 588 588 473 473 473
633.425 207.858 187.082 237.582 84.962 64.949

Fig. 11. Execution time ratios of SPAI-Adaptive vs GSPAI-Opt and GSPAI-Adaptive vs
SPAI-Opt for 𝐸 + |𝐴| on two GPUs.

re roughly 1.12 and 9, respectively, and the average ratio is roughly
.79; the minimum and maximum execution time ratios of GSPAI-
daptive to GSPAI-Opt are roughly 1.21 and 4.83, respectively, and the
verage ratio is roughly 2.03. These observations verify that GSPAI-Opt
utperforms SPAI-Adaptive and GSPAI-Adaptive.
7

Fig. 12. Execution time ratios of SPAI-Adaptive vs GSPAI-Opt and GSPAI-Adaptive vs
GSPAI-Opt for (𝐸 + |𝐴|)2 on two GPUs.

For the sparsity pattern of (𝐸 + |𝐴|)2, from Table 7, we can observe
hat comparing with SPAI-Adaptive and GSPAI-Adaptive, we can draw
he same conclusion as the sparsity pattern of (𝐸 + |𝐴|) for GSPAI-Opt.
SPAI-Opt is much better than SPAI-Adaptive and GSPAI-Adaptive.
his can also be confirmed from Fig. 12. On the GTX1070 GPU, the
inimum and maximum execution time ratios of SPAI-Adaptive to
SPAI-Opt are roughly 1.99 and 6.02, respectively, and the average

atio is roughly 2.59; the minimum and maximum execution time ratios
f GSPAI-Adaptive to GSPAI-Opt are roughly 1.01 and 2, respectively,
nd the average ratio is roughly 1.28. On the A40 GPU, the minimum
nd maximum execution time ratios of SPAI-Adaptive to GSPAI-Opt are
oughly 1.14 and 5.45, respectively, and the average ratio is roughly
.55; the minimum and maximum execution time ratios of GSPAI-
daptive to GSPAI-Opt are roughly 1.05 and 2.5, respectively, and the
verage ratio is roughly 1.39.

. Conclusion

In this study, we propose an optimized sparse approximate inverse
reconditioners on GPU called GSPAI-Opt. In the proposed GSPAI-
pt, for any given sparsity pattern of the preconditioner, a selection

trategy is presented to determine the size of the thread group for each
olumn of the preconditioner. Furthermore, no matter which strategy
e choose, each column of the preconditioner is performed in parallel
ithin a thread group. The experimental results verify that GSPAI-Opt

an well fuse the advantages of SPAI-Adaptive and GSPAI-Adaptive and
s highly effective.

Next, we will further do research in this field, and apply the
roposed GSPAI-Opt to more practical problems.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

eferences

[1] CUDA C Programming guide 1.0, 2007, https://developer.nvidia.com/content/
cuda-10.

[2] X. Chu, J. Gao, B. Sheng, Efficient concurrent L1-minimization solvers on GPUs,
Comput. Syst. Sci. Eng. 38 (3) (2021) 305–320.

[3] J. Gao, Y. Xia, R. Yin, G. He, Adaptive diagonal sparse matrixvector
multiplication on GPU, J. Parallel Distrib. Comput. 157 (2021) 287–302.

[4] K. Li, W. Yang, K. Li, A hybrid parallel solving algorithm on GPU for quasi-
tridiagonal system of linear equations, IEEE Trans. Parallel Distrib. 27 (10)
(2016) 2795–2808.

[5] S.C. Rennich, D. Stosic, T.A. Davis, Accelerating sparse cholesky factorization on
GPUs, Parallel Comput. 59 (2016) 140–150.

https://developer.nvidia.com/content/cuda-10
https://developer.nvidia.com/content/cuda-10
https://developer.nvidia.com/content/cuda-10
http://refhub.elsevier.com/S2772-4859(23)00004-2/sb2
http://refhub.elsevier.com/S2772-4859(23)00004-2/sb2
http://refhub.elsevier.com/S2772-4859(23)00004-2/sb2
http://refhub.elsevier.com/S2772-4859(23)00004-2/sb3
http://refhub.elsevier.com/S2772-4859(23)00004-2/sb3
http://refhub.elsevier.com/S2772-4859(23)00004-2/sb3
http://refhub.elsevier.com/S2772-4859(23)00004-2/sb4
http://refhub.elsevier.com/S2772-4859(23)00004-2/sb4
http://refhub.elsevier.com/S2772-4859(23)00004-2/sb4
http://refhub.elsevier.com/S2772-4859(23)00004-2/sb4
http://refhub.elsevier.com/S2772-4859(23)00004-2/sb4
http://refhub.elsevier.com/S2772-4859(23)00004-2/sb5
http://refhub.elsevier.com/S2772-4859(23)00004-2/sb5
http://refhub.elsevier.com/S2772-4859(23)00004-2/sb5

X. Chu, Y. Wang, Q. Chen et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100087
[6] H. Anzt, M. Gates, J. Dongarra, M. Kreutzer, G. Wellein, M. Kohler,
Preconditioned Krylov solvers on GPUs, Parallel Comput. 68 (2017)
32–44.

[7] E. Chow, A. Patel, Fine-grained parallel incomplete LU factorization, SIAM J.
Sci. Comput. 37 (2) (2015) C169–C193.

[8] J. Gao, X. Chu, X. Wu, J. Wang, G. He, Parallel dynamic sparse approximate
inverse preconditioning algorithm on GPU, IEEE Trans. Parallel Distrib. 33 (12)
(2022) 4723–4737.

[9] Y. Saad, M.H. Schultz, GMRES: a generalized minimal residual algorithm for
solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput. 7 (3) (1986)
856–869.

[10] H.A. van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG
for the solution of non-symmetirc linear systems, SIAM J. Sci. Stat. Comput. 12
(3) (1992) 631–644.

[11] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse
preconditioners, SIAM J. Sci. Comput. 21 (5) (2000) 1804–1822.
8

[12] J. Gao, K. Wu, Y. Wang, P. Qi, G. He, GPU-accelerated preconditioned GMRES
method for two-dimensional Maxwell’s equations, Int. J. Comput. Math. 94 (10)
(2017) 2122–2144.

[13] K. Rupp, R. Tillet, F. Rudolf, et al., ViennaCL-linear algebra library for multi-
and many-core architectures, SIAM J. Sci. Comput. 38 (5) (2016) S412–S439.

[14] M.M. Dehnavi, D.M. Fernandez, J.L. Gaudiot, Parallel sparse approximate inverse
preconditioning on graphic processing units, IEEE Trans. Parallel Distrib. 24 (9)
(2013) 1852–1861.

[15] G. He, R. Yin, J. Gao, An efficient sparse approximate inverse preconditioning
algorithm on GPU, Concurr. Comput.-Pract. Exp. 32 (7) (2020) e5598, http:
//dx.doi.org/10.1002/cpe.5598.

[16] J. Gao, Q. Chen, G. He, A thread-adaptive sparse approximate inverse pre-
conditioning algorithm on multi-GPUs, Parallel Comput. 101 (2021) 102724,
http://dx.doi.org/10.1016/j.parco.2020.102724.

[17] T.A. Davis, Y. Hu, The university of florida sparse matrix collection, ACM Trans.
Math. Software 38 (1) (2011) 1–25.

[18] CUDA C Programming guide 11.1, 2021, http://docs.nvidia.com/cuda/cuda-c-
programming-guide.

http://refhub.elsevier.com/S2772-4859(23)00004-2/sb6
http://refhub.elsevier.com/S2772-4859(23)00004-2/sb6
http://refhub.elsevier.com/S2772-4859(23)00004-2/sb6
http://refhub.elsevier.com/S2772-4859(23)00004-2/sb6
http://refhub.elsevier.com/S2772-4859(23)00004-2/sb6
http://refhub.elsevier.com/S2772-4859(23)00004-2/sb7
http://refhub.elsevier.com/S2772-4859(23)00004-2/sb7
http://refhub.elsevier.com/S2772-4859(23)00004-2/sb7
http://refhub.elsevier.com/S2772-4859(23)00004-2/sb8
http://refhub.elsevier.com/S2772-4859(23)00004-2/sb8
http://refhub.elsevier.com/S2772-4859(23)00004-2/sb8
http://refhub.elsevier.com/S2772-4859(23)00004-2/sb8
http://refhub.elsevier.com/S2772-4859(23)00004-2/sb8
http://refhub.elsevier.com/S2772-4859(23)00004-2/sb9
http://refhub.elsevier.com/S2772-4859(23)00004-2/sb9
http://refhub.elsevier.com/S2772-4859(23)00004-2/sb9
http://refhub.elsevier.com/S2772-4859(23)00004-2/sb9
http://refhub.elsevier.com/S2772-4859(23)00004-2/sb9
http://refhub.elsevier.com/S2772-4859(23)00004-2/sb10
http://refhub.elsevier.com/S2772-4859(23)00004-2/sb10
http://refhub.elsevier.com/S2772-4859(23)00004-2/sb10
http://refhub.elsevier.com/S2772-4859(23)00004-2/sb10
http://refhub.elsevier.com/S2772-4859(23)00004-2/sb10
http://refhub.elsevier.com/S2772-4859(23)00004-2/sb11
http://refhub.elsevier.com/S2772-4859(23)00004-2/sb11
http://refhub.elsevier.com/S2772-4859(23)00004-2/sb11
http://refhub.elsevier.com/S2772-4859(23)00004-2/sb12
http://refhub.elsevier.com/S2772-4859(23)00004-2/sb12
http://refhub.elsevier.com/S2772-4859(23)00004-2/sb12
http://refhub.elsevier.com/S2772-4859(23)00004-2/sb12
http://refhub.elsevier.com/S2772-4859(23)00004-2/sb12
http://refhub.elsevier.com/S2772-4859(23)00004-2/sb13
http://refhub.elsevier.com/S2772-4859(23)00004-2/sb13
http://refhub.elsevier.com/S2772-4859(23)00004-2/sb13
http://refhub.elsevier.com/S2772-4859(23)00004-2/sb14
http://refhub.elsevier.com/S2772-4859(23)00004-2/sb14
http://refhub.elsevier.com/S2772-4859(23)00004-2/sb14
http://refhub.elsevier.com/S2772-4859(23)00004-2/sb14
http://refhub.elsevier.com/S2772-4859(23)00004-2/sb14
http://dx.doi.org/10.1002/cpe.5598
http://dx.doi.org/10.1002/cpe.5598
http://dx.doi.org/10.1002/cpe.5598
http://dx.doi.org/10.1016/j.parco.2020.102724
http://refhub.elsevier.com/S2772-4859(23)00004-2/sb17
http://refhub.elsevier.com/S2772-4859(23)00004-2/sb17
http://refhub.elsevier.com/S2772-4859(23)00004-2/sb17
http://docs.nvidia.com/cuda/cuda-c-programming-guide
http://docs.nvidia.com/cuda/cuda-c-programming-guide
http://docs.nvidia.com/cuda/cuda-c-programming-guide

	Optimizing the sparse approximate inverse preconditioning algorithm on GPU
	Introduction
	Optimizing SPAI on GPU
	Pre-GSPAI stage
	Compute-GSPAI stage
	Post-GSPAI stage

	Experimental results
	Accuracy of selection method
	Performance comparison

	Conclusion
	Declaration of Competing Interest
	References

