
BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100083

a

b

z

Contents lists available at ScienceDirect

BenchCouncil Transactions on Benchmarks,
Standards and Evaluations

journal homepage: www.keaipublishing.com/en/journals/benchcouncil-transactions-on-
benchmarks-standards-and-evaluations/

Research Article

HPC AI500 V3.0: A scalable HPC AI benchmarking framework
Zihan Jiang a,b,∗, Chunjie Luo a, Wanling Gao a, Lei Wang a, Jianfeng Zhan a,b

Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
University of Chinese Academy of Sciences, Beijing, China

A R T I C L E I N F O

Keywords:
Artificial intelligence
High performance computing
Benchmarking
Scalability

A B S T R A C T

In recent years, the convergence of High Performance Computing (HPC) and artificial intelligence (AI) makes
the community desperately need a benchmark to guide the design of next-generation scalable HPC AI systems.
The success of the HPL benchmarks and the affiliated TOP500 ranking indicates that scalability is the
fundamental requirement to evaluate HPC systems. However, being scalable in terms of these emerging AI
workloads like deep learning (DL) raises nontrivial challenges. This paper formally and systematically analyzes
the factor that limits scalability in DL workloads and presents HPC AI500 v3.0, a scalable HPC AI benchmarking
framework. The HPC AI500 V3.0 methodology is inspired by bagging, which utilizes the collective wisdom of
an ensemble of base models and enables the benchmarks to be adaptively scalable to different scales of HPC
systems. We implement HPC AI500 V3.0 in a highly customizable manner, maintaining the space of various
optimization from both system and algorithm levels. By reusing the representative workloads in HPC AI500
V2.0, we evaluate HPC AI500 V3.0 on typical HPC systems, and the results show it has near-linear scalability.
Furthermore, based on the customizable design, we present a case study to perform a trade-off between AI
model quality and its training speed. The source code of HPC AI500 V3.0 is publicly available from the HPC
AI500 project homepage https://www.benchcouncil.org/aibench/hpcai500/.
1. Introduction

Deep Learning (DL) has been a dominating technology in Artificial
Intelligence (AI) as its huge success in many challenging AI problems,
such as image classification [1–3], object detection [4–6], and natural
language processing [7–9]. DL allows building a computational model
composed of multiple processing layers with trainable weights to learn
the presentation of data [10]. To harness larger datasets and achieve
higher model quality (e.g., Top1 accuracy), in recent years, tremendous
DL models have been proposed endlessly, both for commercial applica-
tions [11–16] and scientific computing [17–20]. These giant models
usually have deeper layers and billions of weights, which is extremely
computation-intensive. Hence, academia and industry are greatly in-
terested in designing and building next-generation HPC systems to run
these emerging AI workloads for their computation requirement [21,
22]. Benchmark plays an important role in this process, as it provides
the input and methodology for evaluation [23].

In the past three decades, the HPL benchmark [24] and the affiliated
TOP500 ranking [25] witnessed the thriving of HPC systems. From
CM-5 (1993) [26] to Fugaku (2020) [27], the FLOPS performance of
the NO.1 supercomputer on the TOP500 list improves by more than
106×. HPL has become the measurement standard [28] in the HPC field
for thirty years and will continue to be. The reason for its success is

∗ Corresponding author at: Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China.
E-mail addresses: jiangzihan@ict.ac.cn (Z. Jiang), luochunjie@ict.ac.cn (C. Luo), gaowanling@ict.ac.cn (W. Gao), wanglei_2011@ict.ac.cn (L. Wang),

hanjianfeng@ict.ac.cn (J. Zhan).

twofold. On the one hand, HPL solves a (random) dense linear system in
double precision, which captures the general characteristic that many
scientific applications share. We conclude this property as relevancy.
On the other hand, HPL can adapt to scalable systems by adjusting
the input matrix size. We summarize this property as scalability. The
HPL lesson indicates that relevancy and scalability are two significant
properties for an ideal benchmark. Most of the previous work [29–34]
in AI benchmarking focus on relevancy and select represent workloads
in real-world AI applications. However, they ignored the scalability
issue.

Scalability is difficult to guarantee for AI workloads. According to
the experiences in the previous researches [36,46], each AI workload
has the best training batchsize, which is irrelevant to the system scale,
to achieve state-of-the-art quality. This observation indicates that no
matter how the scale of the system changes, the amount of parallel
computation processed remains the same. Although many system op-
timizations [13,47–52] are proposed, all they can do is process this
constant amount of computation as fast as possible by utilizing various
parallel techniques (e.g., data parallelism [53]). Therefore, with the
continuous growth of system scale, the speed of training existing AI
workloads is rapidly accelerated. As shown in Fig. 1, from 2017 to
2021, with the development of HPC AI systems, the training time of
https://doi.org/10.1016/j.tbench.2022.100083
Received 17 November 2022; Received in revised form 23 December 2022; Accepte
Available online 29 December 2022
2772-4859/© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
d 23 December 2022

KeAi Communications Co. Ltd. This is an open access article under the CC

https://doi.org/10.1016/j.tbench.2022.100083
https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tbench.2022.100083&domain=pdf
https://www.benchcouncil.org/aibench/hpcai500/
mailto:jiangzihan@ict.ac.cn
mailto:luochunjie@ict.ac.cn
mailto:gaowanling@ict.ac.cn
mailto:wanglei_2011@ict.ac.cn
mailto:zhanjianfeng@ict.ac.cn
https://doi.org/10.1016/j.tbench.2022.100083
http://creativecommons.org/licenses/by-nc-nd/4.0/

Z. Jiang, C. Luo, W. Gao et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100083

r

R
s
b
a
o
w
u

A
b
(
n
d
L
i

s
o
i
b
a
s
t
r
r
t
b
e
V
f
a
m
A
m
B
o
b
n
t
A
s

m
v
f

2

i
c
r
d
u
u
t

t

t
i
i
i

Fig. 1. ImageNet/ResNet-50 is a popular showcase for optimizing HPC AI systems from
academia [35] and industry [36–44]. PN refers to Preferred Networks [45]. The 𝑥-axis
efers to the training time measured in minutes.

esNet-50 [2] has dropped exponentially, and the result of Nvidia [44]
hows that it now can be done in under half a minute. From the
enchmarking perspective, such a short running time does not allow for
thorough and endurable evaluation. Furthermore, the fixed amount

f computation is distributed on the HPC system with a growing scale,
hich makes the resource utilization of each computing node extremely
nsaturated.

Two prior works attempt to address the scalability problem in HPC
I benchmarking, namely AIPerf [54] and HPL-AI [55]. However, they
oth have their own flaws. AIPerf uses network architecture search
NAS) [56] as the primary workload. NAS automatically searches the
etwork architecture with a predefined probability, introducing ran-
omness to the benchmarking process. HPL-AI allows mixed-precision
U decomposition to solve a linear equation system and tends to be
rrelevant to most AI workloads [57].

Bagging (Bootstrap Aggregation) [58] is designed to improve the
tability and quality of the prediction by utilizing the collective wisdom
f an ensemble of base models. As a meta-algorithm of ensemble learn-
ng [59], a critical feature of bagging is the independence between each
ase model. This independence makes bagging can be implemented as
highly parallel way to scale out with the number of nodes in an HPC

ystem. Another merit of bagging is its flexibility and not being bound
o any AI algorithm. In other words, we can easily and quickly achieve
elevancy by integrating a state-of-the-art or state-of-the-practice algo-
ithm into our bagging-based benchmarking framework. Considering
he advantages above, this paper presents a bagging-based scalable AI
enchmarking framework, which we call HPC AI500. HPC AI500 V3.0
xtends our previous works: HPC AI500 V1.0 [50] and HPC AI500
2.0 [57]. Table 1 summarizes the differences between HPC AI V3.0

rom the other related works. HPC AI500 V3.0 not only leverages the
dvantages of bagging to achieve scalability and relevancy but also
aintains user-customizable parallel optimization opportunities. HPC
I500 V3.0 implements two modules, bagging management (BM) and
odel parallelism management (MPM), to achieve this customizability.
M determines the algorithm adopted in data sampling and the number
f base models. MPM determines the degree of parallelism inside each
ase model. Through these two modules, users can customize the
umber of base models and the degree of parallelism to make the
rade-off between the model quality and training speed. Based on HPC
I500 [57], we evaluate HPC AI500 V3.0 on typical HPC systems to
how its scalability and customizability.

Our main contributions are summarized as follows:

• According to the unique challenges of HPC AI Benchmarking, we
reformulated the HPC AI scalability issue (Section 2).

• We propose the bagging approach in HPC AI benchmarking to
achieve relevancy and scalability and implement HPC AI500
V3.0, a scalable and customizable framework for HPC AI bench-
marking (Section 3).
 u

2

• We evaluate HPC AI500 V3.0 by reusing HPC AI500 v2.0 work-
loads on typical HPC systems to show its scalability and customiz-
ability (Section 4).

2. Background and challenge

2.1. Deep learning preliminary

The whole training process of modern DL models is essentially a
non-convex optimization. Mathematically, it can be represented as:

min
∀𝑥∈R𝑛

𝑓 (𝑥) ∶= 1
𝑁

𝑁
∑

𝑖=1
𝑓𝑖(𝑥), (1)

where 𝑓𝑖 is a loss function for data point 𝑖 ∈ {1, 2, 3,… , 𝑁}, which
easures the deviation of the model prediction from the data. 𝑥 is the

ector of weights being optimized. The process of optimizing the loss
unction is called training and is performed iteratively.

.1.1. Mini-batch stochastic gradient descent
Stochastic Gradient Descent (SGD) is the dominant method for train-

ng DL models. Vanilla SGD updates weight 𝑥 by adding the gradient
omputed on a single data point of the whole dataset. Since only one
andom data point is processed at one iteration, this approach has two
isadvantages. First, such a noisy update makes the training process
nstable [62]. Second, the computation is inefficient, especially when
sing computing devices such as GPUs. Mini-batch SGD is proposed
o remedy these two deficiencies. It minimizes the loss function 𝑓

iteratively in the following form:

𝑥𝑘+1 = 𝑥𝑘 − 𝜂𝑘

(

1
|𝐵𝑘|

∑

𝑖∈𝐵𝑘

∇𝑓𝑖(𝑥𝑘)

)

(2)

where 𝐵𝑘 ∈ {1, 2, 3,… , 𝑁} is the batch sampled from the whole dataset
and 𝜂𝑘 is the learning rate of iteration 𝑘. |𝐵𝑘| refers to the batchsize. The
ratio of 𝑁 and |𝐵𝑘| determines the number of iterations in a training
epoch.

2.2. The scalability issue

With the convergence of AI and HPC, both academia and industry
players [63–65] leverage the computing power of HPC systems to speed
up the training process of DL models. However, SGD training has a
significant drawback, limited by the batchsize.

2.2.1. The limitation of batchsize
Although there are millions of data in a DL dataset with the size

𝑁 [66], the intrinsic sequential property of SGD only allows a batch
with size 𝐵𝑘 (e.g., 𝐵𝑘 = 256) of data to be processed in parallel in
an iteration. We call the computation cost required by a batch as the
Amount of Parallel Computation in an Iteration(in short, APC). Compared
to Linpack, whose APC can be tuned by the size of the input matrix,
the APC of DL workloads is usually a constant and can be represented
as:

𝐴𝑃𝐶𝑑𝑙 =
|𝐵𝑘|
∑

𝑗=1
𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑓𝑗 (𝑥)) (3)

where 𝑗 ∈ {1, 2, 3,… , |𝐵𝑘|} is data that is randomly sampled from the
DL dataset with the size 𝑁 and included in batch 𝐵𝑘. And
𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑓𝑗 (𝑥)) is the computation cost required by the DL model
o process a single data and can be measured by FLOPs.

Eq. (3) indicates that 𝐴𝑃𝐶𝑑𝑙 is determined by the |𝐵𝑘|. However,
he value of 𝐵𝑘 is usually a small number, where |𝐵𝑘| ≪ 𝑁 . Specif-
cally, 𝐵𝑘 ∈ {16, 32, 64, 256...512} in many DL applications such as
mage classification [2] and object detection [4,5]. In this context, it
s hard to fully utilize the computing power of HPC systems, which are
sually equipped with hundreds or even thousands of nodes. Taking

Z. Jiang, C. Luo, W. Gao et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100083

s

1

Table 1
Comparison of HPC AI500 V3.0 against HPC AI500 V1.0, V2.0, and other HPC AI benchmarks. The equivalence, affordability, representativeness,
and repeatability issues are resolved in our previous work HPC AI500 V2.0 [57]. HPC AI500 V3.0 is an HPC AI benchmarking framework which
inherits and extends HPC AI500 V2.0 with scalability. HPC AI500 V3.0 can naturally integrate other HPC AI benchmarks. ‘‘✗’’ and ‘‘✓’’ indicate
whether they have the corresponding properties. ‘‘-’’ indicates not verified.
Related work Equivalence Representativeness Affordability Repeatability Scalability

HPC AI500 V1.0 (2018) [50] ✗ ✓ ✓ ✗ ✗

HPL-AI (2019) [55] ✓ ✗ ✓ ✓ ✓

Deep500 (2019) [60] ✗ ✗ ✓ – ✗

HPC AI500 V2.0 (2020) [57] ✓ ✓ ✓ ✓ ✗

AIPerf (2020) [54] ✓ ✓ ✓ – ✓

MLPerf (HPC) (2021) [61] ✓ ✓ ✓ ✓ ✗

HPC AI500 V3.0 ✓ ✓ ✓ ✓ ✓
the ImageNet/ResNet-50 training on Summit [50,57] as an example.
|𝐵𝑘| = 512, according to Eq. (3), the APC of ImageNet/ResNet-50 is
11 776GFLOPs. Considering Summit has 4608 nodes (six Nvidia Tesla
GPUs in each node), each node only can allocate the computation of
11776
4608 = 2.55GFLOPs, which is far away from the peak performance of
ix V100 GPUs.1

Naively enlarging |𝐵𝑘| to improve 𝐴𝑃𝐶𝑑𝑙 leads to a degradation
in the model quality due to the sharp minima [36,46,67]. The tricks
proposed in [36,46,67] indeed increase |𝐵𝑘| to a larger number, but it
is still far from the peak performance of the HPC system, leading to poor
resource utilization. Furthermore, the proposed tricks are empirical,
lack generalization ability, and depend on a specific DL workload.
So far, no research can systematically and theoretically quantify the
relationship between 𝐵𝑘 and model quality.

2.2.2. The reformulation of HPC AI scalability
Based on the aforementioned analysis, we reformulate the HPC

AI scalability from the following two perspectives. In the previous
work [57], we have discussed how to resolve equivalence, represen-
tativeness, affordability, and repeatability issues.

• The 𝐴𝑃𝐶𝑑𝑙 should be large enough to accommodate the scale
and computing capability of HPC systems. To be specific, it is
necessary to maintain a high resource utilization and near-linear
speed up.

• The model quality should be maintained or improved while in-
creasing the 𝐴𝑃𝐶𝑑𝑙 and |𝐵𝑘|. Otherwise, the whole training pro-
cess is meaningless.

Compared to the traditional HPC scalability, which focuses on
scale efficiency and resource utilization [24], the reformulated HPC AI
scalability emphasizes the restraint of model quality and batchsize |𝐵𝑘|.

2.3. Prior work

In addition to the other AI benchmarks [29–34], MLPerf (HPC) [61],
HPL-AI [55], AIPerf [54], and HPC AI500 [50,57] are representative
HPC AI benchmarking works. Among them, the earliest work is the
HPC AI500 V1.0 [50], dating back to 2018. HPC AI500 V1.0 [50]
and V2.0 [57] and MLPerf(HPC) fail to tackle the scalability issue
and focus on selecting typical HPC AI applications and parallel-based
optimizations. HPL-AI and AIPerf manage to achieve scalability but
bring other problems. HPL-AI evaluates HPC systems by performing
mixed-precision LU decomposition at the kernel level. Same to HPL,
it can increase the 𝐴𝑃𝐶 by adjusting the size of the input matrix.
However, LU decomposition is irrelevant to most AI workloads [57].
The AIPerf methodology is inspired by AutoML, whose core process
is performed by NAS. Although AutoML can scale automatically with
the number of nodes, the high randomness of NAS (Fig. 2) calls into
question whether AutoML is desirable as an HPC AI benchmark. Table 1
summarizes the related work chronologically and compares our work
with other related work in five dimensions.

1 The peak performance of six V100 GPUs in terms of FLOPS is: 6 ×
5.7 × 103 GFLOPS = 94.2 × 103 GFLOPS.
3

Fig. 2. The randomness of NAS. In different runs, the amount of computation required
to train NAS to the target model quality varies, which leads to unfair and unrepeatable
evaluation.

3. HPC AI500 V3.0

This section first presents the HPC AI500 v3.0 methodology. Then
we detail the design, workflow, and customizable configuration. Fi-
nally, we introduce the measurement method and the proposed metrics.

3.1. Methodology

3.1.1. Ensemble learning and bagging
The ensemble learning idea is to solve a common problem by

combining the predictions of a group of base models. Rather than
making decisions depending on a single model, a group of models
makes it possible for ensemble learning to reduce the variance of pre-
dictions [59], so-called the wisdom of crowds [68]. Bagging (Bootstrap
AGGregatING) is a fundamental paradigm of Ensemble learning. As
its name suggests, bagging consists of two parts: bootstrapping and
aggregating. Bootstrapping is essentially a data sampling process with
replacement from the original dataset. The data generated through
this process is called the bootstrapped dataset. The training process
of bagging is highly parallel as each base model in the ensemble is
trained based on its corresponding bootstrapped dataset rather than
the original dataset. After finishing the training, the final decision is
aggregated by averaging all the predictions of the base models.

3.1.2. Applying bagging in HPC AI benchmarking
For HPC AI benchmarking, to tackle the scalability problem, the first

thing is to enlarge the 𝐴𝑃𝐶 to keep up with the increasingly larger scale
of HPC systems. Inspired by the Bagging, we introduce the base model
ensemble on the basis of the training of a single model in the previous
AI benchmark like HPC AI500 V2.0. We rewrite Eq. (3) in the following
bagging form:

𝐴𝑃𝐶𝑑𝑙 =
𝑀
∑

|𝐵𝑘|
∑

𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑓𝑚,𝑗 (𝑥)) (4)

𝑚=1 𝑗=1

Z. Jiang, C. Luo, W. Gao et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100083

i
t
t
c
t

Fig. 3. The system overview of HPC AI500 V3.0. APC refers to the amount of parallel computing in an iteration.
Fig. 4. System design and workflow of HPC AI500 V3.0. NFS refers to the Network File System of HPC systems that each node shares.
3

f
M
C

where 𝑀 is the number of the base models in the ensemble, 𝑓𝑚 is the
𝑚𝑡ℎ base model. Note that each base model is the instance of the orig-
inal model, so the computation cost of each base model is equivalent
to that in Eq. (3). Compared to AutoML, the re-sampled bootstrapped
dataset makes every base model dissimilar, but the computational logic
of each model is consistent, guaranteeing no randomness shown in
Fig. 2. All the base model in the ensemble is trained independently,
enlarging the |𝐵𝑘| by 𝑀 times, and so does 𝐴𝑃𝐶𝑑𝑙. Considering each
base model may train in a distributed manner across several nodes,
the ensemble size 𝑀 and the parallelism degree inside a base model
𝑃 _𝑑𝑒𝑔𝑟𝑒𝑒 should satisfy Eq. (5), where 𝑆𝑦𝑠𝑠𝑐𝑎𝑙𝑒 refers to how many
nodes are contained in an HPC system.

𝑆𝑦𝑠_𝑠𝑐𝑎𝑙𝑒 = 𝑀 × 𝑃 _𝑑𝑒𝑔𝑟𝑒𝑒 (5)

3.2. System overview

Based on the Bagging approach, we present HPC AI500 V3.0 and the
system overview shown in Fig. 3. HPC AI500 V3.0 does not focus on
workload selection and construction as previous AI benchmarks [29,31,
34]. Instead, it is a framework that is compatible with these efforts. We
briefly introduce the positioning and role of HPC AI500 V3.0 through
Fig. 3. This figure shows that HPC AI500 V3.0 scales out the upper-layer
AI workloads on lower-layer HPC systems by adaptively increasing
𝐴𝑃𝐶𝐴𝐼 . Specifically, the batchsize of each AI workload is initially only
a fixed 𝐵𝑘. After Bagging, a set of 𝑀 base models are generated, which
ncreases 𝐴𝑃𝐶𝑑𝑙 by concurrently running 𝑀 base models. This way,
hereby, achieves higher resource utilization. In addition, the size of
he base model set, 𝑀 , can be adjusted according to the system size,
orresponding to the same adjustable input matrix size in HPL, to adapt
o the future growth of the HPC system scale.
4

.3. System design and workflow

HPC AI500 V3.0 consists of three components, namely, User Con-
iguration (UC), Bagging Management (BM), and Model Parallelism
anagement (MPM). BM focuses on managing Bagging, including Job
ontroller and Data Sampler. Job Controller schedules 𝑀 jobs to the

corresponding nodes, then launch training, and finally aggregates the
predictions. Note that each job corresponds with a base model training.
Data Sampler controls the data sampling algorithm. MPM is divided
into Parallelism Controller and Data Duplicator. Parallelism Controller
sets the parallel mode and 𝑃 _𝑑𝑒𝑔𝑟𝑒𝑒. Data Duplicator is responsible for
copying and migrating data according to parallelism-related configura-
tion. As shown in Fig. 4, we summarize the workflow of HPC AI500
V3.0 as follows:

1. UC sends the configurations to BM and MPM. BM receives the
configurations, including job number, equal to ensemble size 𝑀 ,
and saves the DL model and original dataset that needs to be
trained. MPM receives the configurations, such as parallelism
mode, 𝑃𝑑𝑒𝑔𝑟𝑒𝑒, and 𝑆𝑦𝑠𝑠𝑐𝑎𝑙𝑒.

2. Parallelism Controller in MPM checks if 𝑀 , 𝑃𝑑𝑒𝑔𝑟𝑒𝑒, and 𝑆𝑦𝑠𝑠𝑐𝑎𝑙𝑒
satisfy Eq. (5) and generates the mapping of the jobs to the nodes
according to the received messages (e.g., 𝑇 𝑎𝑠𝑘1 → 𝑁𝑜𝑑𝑒1), then
sends this mapping to Job Scheduler in BM.

3. Data Sampler in BM determines the sampling algorithm and
generates the bootstrap data for each task. All the generated data
is sent to the NFS of the HPC system.

4. Data Duplicator in MPM duplicates the bootstrap data according
to the mapping that Parallelism Controller generates. For exam-
ple, 𝐽𝑜𝑏1− > 𝑁𝑜𝑑𝑒1 means the bootstrap data in Job1 only need

Z. Jiang, C. Luo, W. Gao et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100083

a

D

3

S
i
f
d
𝑠

Table 2
The Customizable Configuration of HPC AI500 V3.0. 𝑁𝑜𝑑𝑒_𝑎𝑐𝑐 refers to the number of
ccelerators equipped in a node of the HPC system.
Type Default setting Alternatives

Basic 𝑃𝑑𝑒𝑔𝑟𝑒𝑒 = 𝑁𝑜𝑑𝑒_𝑎𝑐𝑐
𝑀 = 𝑆𝑦𝑠𝑠𝑐𝑎𝑙𝑒

𝑃𝑑𝑒𝑔𝑟𝑒𝑒

Any 𝑀 and 𝑃𝑑𝑒𝑔𝑟𝑒𝑒
that satisfy Eq. (5)

Learning Rate
Scheduler

warm-up schema and
linear scaling [69]

LARS [35], LAMB [70]

Optimizer SGD with momentum Adam [71], AdaGrad
[72]

Data Precision
for Training

FP16 mixed-precision, Int8

Data Precision
for Communication

FP32 FP16, Int8

Parallel Mode data parallelism model parallelism,
pipeline parallelism
[73],
mixed parallelism

Communication
Mode

synchronous all-reduce 2D-Torus [41],
Hierarchical all-reduce
[40]

Framework TensorFlow [74] PyTorch [75],
Mindspore [76]

to be duplicated once. All the duplicated data is sent to the local
storage of the corresponding node.

5. Job Scheduler sends the job to the corresponding nodes and
launches the training of the whole ensemble.

6. After the training is finished, Job Scheduler collects all the
ensemble output and then makes the final prediction.

3.4. Customizable configuration

In order to maintain the optimization space, in addition to the
basic configuration, such as 𝑀 and |𝑃𝑑𝑒𝑔𝑟𝑒𝑒|, we summarize other
customizable configurations in Table 2. We provide a default setting
and some alternatives in each configuration type. Note that alternatives
just list the favored option, and the user can customize the efficient
implementation according to their situation.

3.5. Metrics

Same as HPL, we use FLOPS (Floating point operations per second)
as our primary metric:

𝐹𝐿𝑂𝑃𝑆 =
∑𝑁∕|𝐵𝑘|

𝑖=1 𝐴𝑃𝐶𝑑𝑙

𝑇𝑒𝑝𝑜𝑐ℎ
(6)

where 𝑇𝑒𝑝𝑜𝑐ℎ refers to the training time of one epoch and 𝑁∕|𝐵𝑘| refers
to the number of iterations in one training epoch. In addition to FLOPS,
we also adopt a metric that considers both system throughput and
model quality, namely Valid FLOPS (VFLOPS) [57]. The definition of
VFLOPS is shown as follows:

𝑉 𝐹𝐿𝑂𝑃𝑆 = 𝐹𝐿𝑂𝑃𝑆 ∗ 𝑝𝑒𝑛𝑎𝑙𝑡𝑦_𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (7)

𝑝𝑒𝑛𝑎𝑙𝑡𝑦_𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = (𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑_𝑞𝑢𝑎𝑙𝑖𝑡𝑦∕𝑡𝑎𝑟𝑔𝑒𝑡_𝑞𝑢𝑎𝑙𝑖𝑡𝑦)𝑛 (8)

where 𝑝𝑒𝑛𝑎𝑙𝑡𝑦_𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 is used to penalize or award the FLOPS based
on the achieved quality. 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑_𝑞𝑢𝑎𝑙𝑖𝑡𝑦 refers to the actual model
quality achieved in the evaluation. 𝑡𝑎𝑟𝑔𝑒𝑡_𝑞𝑢𝑎𝑙𝑖𝑡𝑦 is predefined in the
Table 4. The value of 𝑛 defines the sensitivity to the model quality.
According to the setting of HPC AI500 V2.0 [57], we set n as 10 for
Extreme Weather Analytics and 5 for Image Classification.
5

Table 3
The FLOPs calculation rules for primary operators in a DL model.
𝐾 refers to the kernel size, 𝐶𝑖𝑛 and 𝐶𝑜𝑢𝑡 refers to the input and
output channel, 𝐻 and 𝑊 refers to the data size, 𝐺𝑟𝑜𝑢𝑝𝑠𝑖𝑧𝑒 refers
to the group size of the convolution, and 𝐹𝐿 refers to the flatten
layer used in the Fully-connected.

Operators FLOPs

Convolution 2 ×𝐾2 × 𝐶𝑖𝑛 ×𝐻 ×𝑊 × 𝐶𝑜𝑢𝑡

Depth-wise Convolution 2 ×𝐾2 × 𝐶𝑖𝑛 ×𝐻 ×𝑊

Group Convolution 2×𝐾2×𝐶𝑖𝑛×𝐻×𝑊 ×𝐶𝑜𝑢𝑡

𝐺𝑟𝑜𝑢𝑝𝑠𝑖𝑧𝑒

Fully-connected 𝐹𝐿𝑖𝑛 × 𝐹𝐿𝑜𝑢𝑡

Element-wise 𝐶𝑜𝑢𝑡 ×𝐻 ×𝑊

Pooling 𝐶𝑖𝑛 ×𝐻 ×𝑊

Normalization 𝐶𝑖𝑛 ×𝐻 ×𝑊

3.6. Measurement

According to Eq. (4) and Eq. (6), to determine the 𝐹𝐿𝑂𝑃𝑆, we
need to first measure the 𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑓 (𝑥)). Although profiling tools
such as Nsight [77] are able to count the FLOPs by kernel replay, it
is dependent on the Nvidia hardware. In order to reduce the influence
of the hardware and the hardware-specific optimizations performed by
bundled low-level libraries (e.g., CuDnn for Nvidia GPUs), we present
an analytical method to calculate the FLOPs that a DL model requires.

Modern AI frameworks, such as TensorFlow, describe the computa-
tion of a DL model using a directed acyclic graph (DAG) that consists
of multiple nodes and edges. The Node in the DAG represents a kind of
operator, and the edge represents the data flow. Each operator defines
a computation logic and receives the data from the input edge, and
then sends the intermediate result to the next operator after finishing
its computation. Unlike HPL, which has only one kind of operator (LU
decomposition), a DL model usually consists of multiple operators with
different kinds. Hence, we summarize the most frequent operators in DL
as shown in Table 3. In addition to these listed operators, we ignore
other low-proportion operators contained in the DL model. Based on
this table, we can calculate the 𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑓 (𝑥)) by traversing the

AG.

.7. Implementation details

Job scheduler of the Bagging management module is based on
LURM (Simple Linux Utility for Resource Management) [78]. SLRUM
s the most commonly used scheduling system in HPC AI systems,
ault-tolerant and highly scalable, and suitable for Linux clusters of
ifferent sizes. We implement the submitted job script based on the
𝑏𝑎𝑡𝑐ℎ interface of SLRUM and use 𝑠𝑖𝑛𝑓𝑜 and 𝑠𝑚𝑎𝑝 to monitor the

training progress of the base model in each job, and the basic unit of
job scheduling is a container implemented by Docker [79]. According
to the literature [58], the implemented random sampling algorithm
guarantees that the 𝑖𝑡ℎ training sample is selected 𝑛 (𝑛 ∈ {0, 1, 2...})
times. The probability of the times approximates the Poisson distribu-
tion of 𝜆 = 1, so the probability of at least one occurrence of the 𝑖𝑡ℎ
sample is 1 − (1𝑒) = 0.632. So for any Bagging base classifier, about
36.8% of the samples of the original dataset will not be used at the
time of training. The default parallel implementation in the parallel
management module uses data parallelism implemented by Horovod
and OpenMPI, which is also the most common parallel method in
HPC AI systems [17–19]. The measurement of bandwidth is divided
into intra-node communication and inter-node communication, and we
use Nvidia-smi (NVIDIA System Management Interface) tool [80] to
monitor communication within nodes and use iftop tool [81] to monitor
communication between nodes.

Z. Jiang, C. Luo, W. Gao et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100083
Fig. 5. The scalability experiments of HPC AI500 V3.0 in terms of FLOPS and VFLOPS.
The 𝑝𝑒𝑛𝑎𝑙𝑡𝑦_𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 is 0.44 for Extreme Weather Analytics and 0.96 for Image
Classification.

4. Evaluation

4.1. Experimental setup

4.1.1. Hardware
Our experiments are conducted on a 64GPUs-cluster, consisting of

eight nodes, each of which is equipped with one Intel(R) Xeon(R)
Platinum 8268 CPU and eight NVIDIA Tesla V100 GPUs. Each GPU
in the same node has 32 GB HBM memory, connected by NVIDIA
NVLink—a high-speed GPU interconnection whose theoretical peak
bi-directional bandwidth is 300 GB/s. The nodes are connected with
Ethernet networking with a bandwidth of 10 Gb/s. Each node has 1.5
TB system memory and an 8 TB NVMe SSD disk.

4.1.2. Software
We use TensorFlow v1.14, compiled with CUDA v10.1 and cuDnn

v7.6.2 backend. We use Horovod v0.16.4 for synchronous distributed
training, compiled with OpenMPI v3.1.4 and NCCL v2.4.8. NCCL is
short for the NVIDIA Collective Communications Library, which is a
closed-source library of multi-GPU collective communication primitives
that are topology-aware.

4.2. Workloads

HPC AI500 V3.0 is a benchmarking framework, which means any
AI benchmark can be integrated into this framework in a bagging
6

manner. Here, our default implementation is based on HPC AI500
V2.0 [57], a well-received HPC AI benchmark that mainly consists
of two workloads, covering AI applications in business and scientific
computing. As shown in Table 4, Image Classification uses ResNet-
50 [2]and ImageNet [66] for training, which is a well-known showcase
for optimizing HPC AI systems. Extreme Weather Analytics [82] is a
representative scientific application, it uses Faster-RCNN for detecting
the extreme weather in the climate image. Each climate image in
Extreme Weather Dataset consists of 16 channels and contains four
extreme weather patterns.

4.3. The scalability experiments

The scalability experiments are conducted with the default setting
of HPC AI500 V3.0, as shown in Table 2. We set the 𝑃𝑑𝑒𝑔𝑟𝑒𝑒 = 8,
which is equal to the number of GPUs in a node. In each node, a
job is distributed to 8 GPUs by using data parallelism. We perform
the experiment sequentially on different system scales, typically the
𝑆𝑦𝑠𝑠𝑐𝑎𝑙𝑒 = 8, 16, 24, 32, 40, 48, 56, 64 GPUs. According to Eq. (5), the
corresponding job number is 𝑀 = 1, 2, 3, 4, 5, 6, 7, 8. The results of scala-
bility experiments are shown in Fig. 5. As we can see, HPC AI500 V3.0
shows near-linear scalability in both FLOPS and VFLOPS. Note that, in
Fig. 5(a), the 𝑝𝑒𝑛𝑎𝑙𝑡𝑦_𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 0.44 leads to a gap between the
VFLOPS line and FLOPS of Extreme Weather Analytics. Furthermore,
we measure the GPU utilization by Nsight at the scale of 64 GPUs and
the result is shown in Fig. 6. Both Extreme Weather Analytics and Image
Classification achieve high GPU utilization.

4.4. The customizability experiments

4.4.1. Trade-off between the model quality and training speed
To exhibit this trade-off, we take Image Classification as the show-

case. We set the 𝑀 = 8, 4, 1 while the corresponding 𝑃𝑑𝑒𝑔𝑟𝑒𝑒 = 8, 16, 64.
As shown in Fig. 7, the training speed increases along with a decrease in
𝑀 . When 𝑀 = 1, the process becomes training a single model through
the whole cluster, achieving the highest training speed. However, since
only one model makes decisions in the ensemble, the model quality
suffers about a 3% drop compared to the case of 𝑀 = 8. In practical
scenarios, users can choose appropriate 𝑀 and 𝑃𝑑𝑒𝑔𝑟𝑒𝑒 according to their
training speed and model quality requirements.

4.4.2. Optimizations
To show the customizability of HPC AI500, we implement two

frequently-used optimizations, mixed-precision training, and commu-
nication compression. The former utilizes Tensor Cores in Nvidia Volta
architecture to accelerate the model’s fully-connected and convolution
layer, allowing a fused-multiply-add computation. When performing
mixed precision training with a Tensor Core, we use FP16 for calcu-
lation and FP32 for accumulation. The latter is the communication
compress-on that compresses the tensor precision for synchronizing
from 32FP to 16FP to reduce communication overhead. We configure
the optimization experiments in the same way as Section 4.3, and the
results are shown in Fig. 8. We compared the optimized version to
the original version to observe the corresponding effect. Since mixed-
precision Extreme Weather Analysis leads to a significant loss of the
model quality, here we only report the performance of the model
compression. As we can see, mixed-precision training brings about 2x
speed up for Image Classification. As for communication compression,
it brings about 1.2x for Extreme Weather Analytics but barely has
any speed up on Image Classification. The size of the communication
tensor in Extreme Weather Analytics is 1.6x larger than that of Image
Classification, allowing Extreme Weather Analytics to get a notable
benefit.

Z. Jiang, C. Luo, W. Gao et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100083

4

s

Table 4
The Specification of HPC AI500 V2.0 workloads [57]. HPC AI500 V3.0 can integrate any HPC AI benchmarks. In our evaluation,
we reuse the HPC AI500 V2.0 workloads for testing.
Problem domains Models Datasets Target quality

Image Classification ResNet-50 ImageNet TOP1 Accuracy
= 0.763

Extreme Weather Analytics Faster-RCNN Extreme Weather Dataset mAP@[IoU=0.5]
= 0.35
Fig. 6. GPU utilization (%) of HPC AI500 V3.0. The 𝑋-axis represents different time steps.
Fig. 7. The trade-off between the training speed and model quality. The workload is Image Classification. We use images per second to indicate how fast the training is.
Fig. 8. The optimization experiments of HPC AI500 V3.0. In Fig. 8(b), the lines of the original and mixed precision overlap for their similar performance.
.5. Comparison experiments

We compare our work with data parallelism (DP), which is a main-
tream parallel method used in many previous work [17,18,47,61]. In
7

this experiment, we focus on scale efficiency in terms of FLOPS. The
system scales from 8 GPUs to 64 GPUs. As shown in Fig. 9, the scaling
efficiency of DP is much lower than our approach in both Extreme
Weather Analysis and Image Classification. The heavy communication

Z. Jiang, C. Luo, W. Gao et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100083

o
t
o
A
s

5

p
H
u
m
l
p
t
l
l
r
V
t
t
a

D

c
i

R

Fig. 9. The comparison experiments between HPC AI500 V3.0 against a setting using data parallelism.
verhead of DP is the main reason for this phenomenon because all
he model copies of DP need to be synchronized globally at the end
f each training step. The base model in the model ensemble of HPC
I500 V3.0 is trained highly independently without synchronization,
o the communication overhead is avoided.

. Conclusion

In this paper, we reformulate the HPC AI scalability issue and
resent HPC AI500 V3.0, a scalable and customizable framework for
PC AI benchmarking. The methodology of HPC AI500 V3.0 allows
sers to integrate existing AI benchmarks in a bagging manner, a
eta-algorithm of ensemble learning with intrinsic high parallelism,

eading to scalable benchmarking. The bagging management and model
arallelism management of HPC AI500 V3.0 gives users the flexibility
o control the size of model ensembles and the degree of model paral-
elism, enabling various optimizations from both system and algorithm
evels. Based on HPC AI500 V2.0, which tackles the equivalence,
epresentativeness, affordability, and repeatability issues, HPC AI500
3.0 provide a complete HPC AI benchmarking framework. Reusing

he workloads of HPC AI500 V2.0, we evaluate HPC AI500 V3.0 on a
ypical HPC system and the experimental results show the scalability
nd customizability of the proposed benchmarking framework.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

eferences

[1] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep
convolutional neural networks, Adv. Neural Inf. Process. Syst. 25 (2012).

[2] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 770–778.

[3] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the inception
architecture for computer vision, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2016, pp. 2818–2826.

[4] S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: Towards real-time object
detection with region proposal networks, Adv. Neural Inf. Process. Syst. 28
(2015).

[5] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, A.C. Berg, SSD:
Single shot multibox detector, in: European Conference on Computer Vision,
Springer, 2016, pp. 21–37.

[6] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: Unified,
real-time object detection, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 779–788.

[7] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kaiser,
I. Polosukhin, Attention is all you need, Adv. Neural Inf. Process. Syst. 30 (2017).
8

[8] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of deep
bidirectional transformers for language understanding, 2018, arXiv preprint
arXiv:1810.04805.

[9] K. Han, A. Xiao, E. Wu, J. Guo, C. Xu, Y. Wang, Transformer in transformer,
Adv. Neural Inf. Process. Syst. 34 (2021).

[10] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015)
436–444.

[11] OpenAI, OpenAI: AI and Compute, https://openai.com/blog/ai-and-compute/.
[12] A. Gholami, Medium: AI and Memory Wall, https://medium.com/riselab/ai-and-

memory-wall-2cb4265cb0b8/.
[13] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, B. Catanzaro, Megatron-

LM: Training multi-billion parameter language models using model parallelism,
2019, arXiv preprint arXiv:1909.08053.

[14] T. Brown, B. Mann, N. Ryder, M. Subbiah, J.D. Kaplan, P. Dhariwal, A.
Neelakantan, P. Shyam, G. Sastry, A. Askell, et al., Language models are few-shot
learners, Adv. Neural Inf. Process. Syst. 33 (2020) 1877–1901.

[15] D. Lepikhin, H. Lee, Y. Xu, D. Chen, O. Firat, Y. Huang, M. Krikun, N. Shazeer, Z.
Chen, Gshard: Scaling giant models with conditional computation and automatic
sharding, 2020, arXiv preprint arXiv:2006.16668.

[16] W. Fedus, B. Zoph, N. Shazeer, Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity, 2021, arXiv preprint arXiv:2101.03961.

[17] A. Mathuriya, D. Bard, P. Mendygral, L. Meadows, J. Arnemann, L. Shao, S. He,
T. Kärnä, D. Moise, S.J. Pennycook, et al., CosmoFlow: Using deep learning
to learn the universe at scale, in: SC18: International Conference for High
Performance Computing, Networking, Storage and Analysis, IEEE, 2018, pp.
819–829.

[18] T. Kurth, S. Treichler, J. Romero, M. Mudigonda, N. Luehr, E. Phillips, A.
Mahesh, M. Matheson, J. Deslippe, M. Fatica, et al., Exascale deep learning
for climate analytics, in: SC18: International Conference for High Performance
Computing, Networking, Storage and Analysis, IEEE, 2018, pp. 649–660.

[19] W. Jia, H. Wang, M. Chen, D. Lu, L. Lin, R. Car, E. Weinan, L. Zhang, Pushing
the limit of molecular dynamics with ab initio accuracy to 100 million atoms
with machine learning, in: SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, IEEE, 2020, pp. 1–14.

[20] Z. Guo, D. Lu, Y. Yan, S. Hu, R. Liu, G. Tan, N. Sun, W. Jiang, L. Liu, Y. Chen,
et al., Extending the limit of molecular dynamics with ab initio accuracy to 10
billion atoms, 2022, arXiv preprint arXiv:2201.01446.

[21] Oak Ridge National Laboratory, Summit, https://www.olcf.ornl.gov/summit/.
[22] Fujitsu, Fugaku, https://www.fujitsu.com/global/about/innovation/fugaku/.
[23] J.L. Hennessy, D.A. Patterson, Computer Architecture: A Quantitative Approach,

Elsevier, 2011.
[24] J.J. Dongarra, P. Luszczek, A. Petitet, The LINPACK benchmark: Past, present

and future, Concurr. Comput.: Pract. Exper. 15 (9) (2003) 803–820.
[25] J. Dongarra, Top500 Website, https://www.top500.org/.
[26] J. Dongarra, CM-5 in TOP500 List, https://www.top500.org/lists/top500/1993/

06/.
[27] J. Dongarra, Fugaku in TOP500 List, https://www.top500.org/news/japan-

captures-top500-crown-arm-powered-supercomputer/.
[28] J. Zhan, Call for establishing benchmark science and engineering, 2021, arXiv

preprint arXiv:2112.09514.
[29] R. Adolf, S. Rama, B. Reagen, G.-Y. Wei, D. Brooks, Fathom: Reference workloads

for modern deep learning methods, in: 2016 IEEE International Symposium on
Workload Characterization, IISWC, IEEE, 2016, pp. 1–10.

[30] C. Coleman, D. Narayanan, D. Kang, T. Zhao, J. Zhang, L. Nardi, P. Bailis,
K. Olukotun, C. Ré, M. Zaharia, Dawnbench: An end-to-end deep learning
benchmark and competition, Training 100 (101) (2017) 102.

[31] H. Zhu, M. Akrout, B. Zheng, A. Pelegris, A. Phanishayee, B. Schroeder, G.
Pekhimenko, TBD: Benchmarking and analyzing deep neural network training,
2018, arXiv preprint arXiv:1803.06905.

http://refhub.elsevier.com/S2772-4859(22)00070-9/sb1
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb1
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb1
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb2
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb2
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb2
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb2
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb2
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb3
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb3
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb3
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb3
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb3
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb4
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb4
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb4
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb4
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb4
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb5
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb5
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb5
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb5
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb5
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb6
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb6
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb6
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb6
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb6
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb7
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb7
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb7
http://arxiv.org/abs/1810.04805
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb9
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb9
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb9
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb10
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb10
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb10
https://openai.com/blog/ai-and-compute/
https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8/
https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8/
https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8/
http://arxiv.org/abs/1909.08053
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb14
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb14
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb14
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb14
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb14
http://arxiv.org/abs/2006.16668
http://arxiv.org/abs/2101.03961
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb17
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb17
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb17
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb17
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb17
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb17
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb17
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb17
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb17
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb18
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb18
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb18
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb18
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb18
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb18
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb18
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb19
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb19
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb19
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb19
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb19
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb19
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb19
http://arxiv.org/abs/2201.01446
https://www.olcf.ornl.gov/summit/
https://www.fujitsu.com/global/about/innovation/fugaku/
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb23
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb23
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb23
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb24
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb24
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb24
https://www.top500.org/
https://www.top500.org/lists/top500/1993/06/
https://www.top500.org/lists/top500/1993/06/
https://www.top500.org/lists/top500/1993/06/
https://www.top500.org/news/japan-captures-top500-crown-arm-powered-supercomputer/
https://www.top500.org/news/japan-captures-top500-crown-arm-powered-supercomputer/
https://www.top500.org/news/japan-captures-top500-crown-arm-powered-supercomputer/
http://arxiv.org/abs/2112.09514
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb29
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb29
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb29
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb29
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb29
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb30
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb30
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb30
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb30
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb30
http://arxiv.org/abs/1803.06905

Z. Jiang, C. Luo, W. Gao et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100083
[32] W. Gao, F. Tang, L. Wang, J. Zhan, C. Lan, C. Luo, Y. Huang, C. Zheng, J. Dai, Z.
Cao, et al., AIBench: An industry standard internet service AI benchmark suite,
2019, arXiv preprint arXiv:1908.08998.

[33] V.J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C.-J. Wu, B.
Anderson, M. Breughe, M. Charlebois, W. Chou, et al., Mlperf inference bench-
mark, in: 2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture, ISCA, IEEE, 2020, pp. 446–459.

[34] P. Mattson, C. Cheng, G. Diamos, C. Coleman, P. Micikevicius, D. Patterson, H.
Tang, G.-Y. Wei, P. Bailis, V. Bittorf, et al., Mlperf training benchmark, Proc.
Mach. Learn. Syst. 2 (2020) 336–349.

[35] Y. You, Z. Zhang, C.-J. Hsieh, J. Demmel, K. Keutzer, Imagenet training
in minutes, in: Proceedings of the 47th International Conference on Parallel
Processing, 2018, pp. 1–10.

[36] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A.
Tulloch, Y. Jia, K. He, Accurate, large minibatch SGD: Training imagenet in 1
hour, 2017, arXiv preprint arXiv:1706.02677.

[37] T. Akiba, S. Suzuki, K. Fukuda, Extremely large minibatch SGD: Training
resnet-50 on imagenet in 15 minutes, 2017, arXiv preprint arXiv:1711.04325.

[38] M. Cho, U. Finkler, S. Kumar, D. Kung, V. Saxena, D. Sreedhar, Powerai DDL,
2017, arXiv preprint arXiv:1708.02188.

[39] V. Codreanu, D. Podareanu, V. Saletore, Scale out for large minibatch SGD:
Residual network training on ImageNet-1K with improved accuracy and reduced
time to train, 2017, arXiv preprint arXiv:1711.04291.

[40] X. Jia, S. Song, W. He, Y. Wang, H. Rong, F. Zhou, L. Xie, Z. Guo, Y. Yang, L.
Yu, et al., Highly scalable deep learning training system with mixed-precision:
Training imagenet in four minutes, 2018, arXiv preprint arXiv:1807.11205.

[41] H. Mikami, et al., Imagenet/resnet-50 training in 224 seconds, 2018, arXiv
preprint arXiv:1811.05233.

[42] C. Ying, S. Kumar, D. Chen, T. Wang, Y. Cheng, Image classification at
supercomputer scale, 2018, arXiv preprint arXiv:1811.06992.

[43] M. Yamazaki, A. Kasagi, A. Tabuchi, T. Honda, M. Miwa, N. Fukumoto, T.
Tabaru, A. Ike, K. Nakashima, Yet another accelerated SGD: Resnet-50 training
on imagenet in 74.7 seconds, 2019, arXiv preprint arXiv:1903.12650.

[44] MLCommons, MLPerf-Training-Result-V1.1, https://mlcommons.org/en/training-
normal-11//.

[45] Preferred networks website, https://www.preferred.jp/en/.
[46] N.S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, P.T.P. Tang, On large-

batch training for deep learning: Generalization gap and sharp minima, 2016,
arXiv preprint arXiv:1609.04836.

[47] A. Sergeev, M. Del Balso, Horovod: Fast and easy distributed deep learning in
TensorFlow, 2018, arXiv preprint arXiv:1802.05799.

[48] J. Rasley, S. Rajbhandari, O. Ruwase, Y. He, Deepspeed: System optimizations
enable training deep learning models with over 100 billion parameters, in:
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 2020, pp. 3505–3506.

[49] N. Shazeer, Y. Cheng, N. Parmar, D. Tran, A. Vaswani, P. Koanantakool, P.
Hawkins, H. Lee, M. Hong, C. Young, et al., Mesh-tensorflow: Deep learning for
supercomputers, Adv. Neural Inf. Process. Syst. 31 (2018).

[50] Z. Jiang, W. Gao, L. Wang, X. Xiong, Y. Zhang, X. Wen, C. Luo, H. Ye, X.
Lu, Y. Zhang, et al., HPC AI500: A benchmark suite for HPC AI systems,
in: International Symposium on Benchmarking, Measuring and Optimization,
Springer, 2018, pp. 10–22.

[51] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N.R. Devanur, G.R.
Ganger, P.B. Gibbons, M. Zaharia, PipeDream: Generalized pipeline parallelism
for DNN training, in: Proceedings of the 27th ACM Symposium on Operating
Systems Principles, 2019, pp. 1–15.

[52] Z. Jia, M. Zaharia, A. Aiken, Beyond data and model parallelism for deep neural
networks, Proc. Mach. Learn. Syst. 1 (2019) 1–13.

[53] data-parallelim, https://en.wikipedia.org/wiki/Data_parallelism.
[54] Z. Ren, Y. Liu, T. Shi, L. Xie, Y. Zhou, J. Zhai, Y. Zhang, Y. Zhang, W. Chen,

AIPerf: Automated machine learning as an AI-HPC benchmark, Big Data Min.
Anal. 4 (3) (2021) 208–220.

[55] S. Kudo, K. Nitadori, T. Ina, T. Imamura, Prompt report on exa-scale HPL-
AI benchmark, in: 2020 IEEE International Conference on Cluster Computing,
CLUSTER, IEEE, 2020, pp. 418–419.

[56] B. Zoph, Q.V. Le, Neural architecture search with reinforcement learning, 2016,
arXiv preprint arXiv:1611.01578.
9

[57] Z. Jiang, W. Gao, F. Tang, L. Wang, X. Xiong, C. Luo, C. Lan, H. Li, J. Zhan,
HPC AI500 v2. 0: The methodology, tools, and metrics for benchmarking HPC AI
systems, in: 2021 IEEE International Conference on Cluster Computing, CLUSTER,
IEEE, 2021, pp. 47–58.

[58] L. Breiman, Bagging predictors, Mach. Learn. 24 (2) (1996) 123–140.
[59] Z.-H. Zhou, Ensemble learning, in: Machine Learning, Springer, 2021, pp.

181–210.
[60] T. Ben-Nun, M. Besta, S. Huber, A.N. Ziogas, D. Peter, T. Hoefler, A modular

benchmarking infrastructure for high-performance and reproducible deep learn-
ing, in: 2019 IEEE International Parallel and Distributed Processing Symposium,
IPDPS, IEEE, 2019, pp. 66–77.

[61] S. Farrell, M. Emani, J. Balma, L. Drescher, A. Drozd, A. Fink, G. Fox, D.
Kanter, T. Kurth, P. Mattson, et al., MLPerf™ HPC: A holistic benchmark suite
for scientific machine learning on HPC systems, in: 2021 IEEE/ACM Workshop
on Machine Learning in High Performance Computing Environments, MLHPC,
IEEE, 2021, pp. 33–45.

[62] S. Ruder, An overview of gradient descent optimization algorithms, 2016, arXiv
preprint arXiv:1609.04747.

[63] R. Farber, AI-HPC is Happening Now, InsideHPC Special Report, InsideHPC, LLC,
2017.

[64] E.A. Huerta, A. Khan, E. Davis, C. Bushell, W.D. Gropp, D.S. Katz, V. Kindratenko,
S. Koric, W.T. Kramer, B. McGinty, et al., Convergence of artificial intelligence
and high performance computing on NSF-supported cyberinfrastructure, J. Big
Data 7 (1) (2020) 1–12.

[65] H. Lee, A. Merzky, L. Tan, M. Titov, M. Turilli, D. Alfe, A. Bhati, A. Brace,
A. Clyde, P. Coveney, et al., Scalable HPC & AI infrastructure for COVID-19
therapeutics, in: Proceedings of the Platform for Advanced Scientific Computing
Conference, 2021, pp. 1–13.

[66] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, Imagenet: A large-scale
hierarchical image database, in: 2009 IEEE Conference on Computer Vision and
Pattern Recognition, Ieee, 2009, pp. 248–255.

[67] I. Kandel, M. Castelli, The effect of batch size on the generalizability of the
convolutional neural networks on a histopathology dataset, ICT Express 6 (4)
(2020) 312–315.

[68] J. Surowiecki, The Wisdom of Crowds, Anchor, 2005.
[69] A. Krizhevsky, One weird trick for parallelizing convolutional neural networks,

2014, arXiv preprint arXiv:1404.5997.
[70] Y. You, J. Li, S. Reddi, J. Hseu, S. Kumar, S. Bhojanapalli, X. Song, J. Demmel,

K. Keutzer, C.-J. Hsieh, Large batch optimization for deep learning: Training bert
in 76 minutes, 2019, arXiv preprint arXiv:1904.00962.

[71] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, 2014, arXiv
preprint arXiv:1412.6980.

[72] J. Duchi, E. Hazan, Y. Singer, Adaptive subgradient methods for online learning
and stochastic optimization, J. Mach. Learn. Res. 12 (7) (2011).

[73] Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen, M. Chen, H. Lee, J. Ngiam,
Q.V. Le, Y. Wu, et al., Gpipe: Efficient training of giant neural networks using
pipeline parallelism, Adv. Neural Inf. Process. Syst. 32 (2019).

[74] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S.
Ghemawat, G. Irving, M. Isard, et al., TensorFlow: A system for large-scale
machine learning, in: 12th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 16, 2016, pp. 265–283.

[75] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al., Pytorch: An imperative style, high-performance
deep learning library, Adv. Neural Inf. Process. Syst. 32 (2019).

[76] Huawei, Mindspore, https://www.mindspore.cn/.
[77] Nvidia, Nsight system, https://developer.nvidia.com/nsight-systems.
[78] Lawrence Livermore National Laboratory, SLURM, https://slurm.schedmd.com/.
[79] T. Combe, A. Martin, R. Di Pietro, To docker or not to docker: A security

perspective, IEEE Cloud Comput. 3 (5) (2016) 54–62.
[80] Nvidia, Nvidia-smi, https://developer.nvidia.com/nvidia-system-management-

interface.
[81] iftop, https://en.wikipedia.org/wiki/Iftop.
[82] E. Racah, C. Beckham, T. Maharaj, S. Ebrahimi Kahou, M. Prabhat, C. Pal,

Extremeweather: A large-scale climate dataset for semi-supervised detection,
localization, and understanding of extreme weather events, Adv. Neural Inf.
Process. Syst. 30 (2017).

http://arxiv.org/abs/1908.08998
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb33
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb33
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb33
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb33
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb33
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb33
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb33
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb34
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb34
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb34
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb34
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb34
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb35
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb35
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb35
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb35
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb35
http://arxiv.org/abs/1706.02677
http://arxiv.org/abs/1711.04325
http://arxiv.org/abs/1708.02188
http://arxiv.org/abs/1711.04291
http://arxiv.org/abs/1807.11205
http://arxiv.org/abs/1811.05233
http://arxiv.org/abs/1811.06992
http://arxiv.org/abs/1903.12650
https://mlcommons.org/en/training-normal-11//
https://mlcommons.org/en/training-normal-11//
https://mlcommons.org/en/training-normal-11//
https://www.preferred.jp/en/
http://arxiv.org/abs/1609.04836
http://arxiv.org/abs/1802.05799
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb48
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb48
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb48
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb48
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb48
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb48
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb48
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb49
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb49
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb49
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb49
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb49
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb50
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb50
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb50
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb50
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb50
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb50
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb50
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb51
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb51
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb51
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb51
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb51
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb51
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb51
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb52
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb52
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb52
https://en.wikipedia.org/wiki/Data_parallelism
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb54
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb54
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb54
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb54
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb54
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb55
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb55
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb55
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb55
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb55
http://arxiv.org/abs/1611.01578
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb57
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb57
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb57
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb57
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb57
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb57
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb57
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb58
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb59
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb59
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb59
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb60
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb60
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb60
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb60
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb60
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb60
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb60
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb61
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb61
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb61
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb61
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb61
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb61
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb61
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb61
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb61
http://arxiv.org/abs/1609.04747
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb63
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb63
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb63
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb64
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb64
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb64
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb64
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb64
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb64
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb64
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb65
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb65
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb65
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb65
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb65
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb65
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb65
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb66
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb66
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb66
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb66
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb66
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb67
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb67
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb67
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb67
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb67
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb68
http://arxiv.org/abs/1404.5997
http://arxiv.org/abs/1904.00962
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb72
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb72
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb72
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb73
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb73
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb73
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb73
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb73
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb74
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb74
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb74
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb74
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb74
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb74
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb74
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb75
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb75
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb75
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb75
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb75
https://www.mindspore.cn/
https://developer.nvidia.com/nsight-systems
https://slurm.schedmd.com/
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb79
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb79
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb79
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface
https://en.wikipedia.org/wiki/Iftop
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb82
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb82
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb82
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb82
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb82
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb82
http://refhub.elsevier.com/S2772-4859(22)00070-9/sb82

	HPC AI500 V3.0: A scalable HPC AI benchmarking framework
	Introduction
	Background and Challenge
	Deep Learning Preliminary
	Mini-batch Stochastic Gradient Descent

	The Scalability Issue
	The Limitation of Batchsize
	The reformulation of HPC AI Scalability

	Prior Work

	HPC AI500 V3.0
	Methodology
	Ensemble Learning and Bagging
	Applying Bagging in HPC AI Benchmarking

	System Overview
	System Design and Workflow
	Customizable Configuration
	Metrics
	Measurement
	Implementation Details

	Evaluation
	Experimental Setup
	Hardware
	Software

	Workloads
	The Scalability Experiments
	The Customizability Experiments
	Trade-off Between the Model Quality and Training Speed
	Optimizations

	Comparison Experiments

	Conclusion
	Declaration of Competing Interest
	References

