
BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100074

(

Contents lists available at ScienceDirect

BenchCouncil Transactions on Benchmarks,
Standards and Evaluations

journal homepage: www.keaipublishing.com/en/journals/benchcouncil-transactions-on-
benchmarks-standards-and-evaluations/

Research Article

Understanding hot interconnects with an extensive benchmark survey
Yuke Li a, Hao Qi a, Gang Lu b, Feng Jin b, Yanfei Guo c, Xiaoyi Lu a,∗

a University of California, Merced, 5200 North Lake Rd., Merced, 95343, CA, USA
b Tencent, No. 33, Haitian Second Road, Shenzhen, 518054, Guangdong, China
c Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, 60439, IL, USA

A R T I C L E I N F O

Keywords:
Benchmarks
Interconnects
RDMA

A B S T R A C T

Understanding the designs and performance characterizations of hot interconnects on modern data center
and high-performance computing (HPC) clusters is a fruitful research topic in recent years. The rapid and
continuous growth of high-bandwidth and low-latency communication requirements for various types of
data center and HPC applications (such as big data, deep learning, and microservices) has been pushing
the envelope of advanced interconnect designs. We believe this is high time to investigate the performance
characterizations of representative hot interconnects with different benchmarks. Hence, this paper presents
an extensive survey of state-of-the-art hot interconnects on data center and HPC clusters and the associated
representative benchmarks to help the community to better understand modern interconnects. In addition, we
characterize these interconnects by the related benchmarks under different application scenarios. We provide
our perspectives on benchmarking data center interconnects based on our survey, experiments, and results.
1. Introduction

The scales of data center and high-performance computing (HPC)
clusters grow rapidly with the increasingly large volume of data and
the high demand for distributed computing capabilities [1]. This trend
has led to various designs of modern data center interconnects and
made their performance characterizations a rewarding research topic.
To continuously improve the performance and scalability of data move-
ment or communication across a large number of nodes in modern data
center or HPC clusters, different types of advanced interconnects have
been designed to meet the requirements of high-bandwidth and low-
latency communications in popular data center applications, such as
deep learning, big data, microservices, etc.

To upgrade the conventional Ethernet (∼10 Gbps) network and
accelerate the efficiency of data center applications, hardware ven-
dors have demonstrated multiple types of advanced data center in-
terconnects. For example, NVIDIA (Mellanox) has produced 200 Gbps
InfiniBand (IB) [2] with well-optimized Remote Direct Memory Ac-
cess (RDMA) subsystems to speedup the inter-node communication in
applications. Cray has the Slingshot interconnect [3] and the Aries
interconnect [4] as high-speed interconnects for modern HPC systems.
RIKEN (Japanese Institute of Physical and Chemical Research) and
Fujitsu developed the Tofu interconnect [5] family to be equipped on
their designed supercomputers. Meanwhile, the Ethernet network speed
has improved from 10 Gbps to 100 Gbps [6] and even above [7] during
the decades of development.

∗ Corresponding author.
E-mail addresses: yli304@ucmerced.edu (Y. Li), hqi6@ucmerced.edu (H. Qi), gateslu@tencent.com (G. Lu), ronyjin@tencent.com (F. Jin), yguo@anl.gov

Y. Guo), xiaoyi.lu@ucmerced.edu (X. Lu).

With the trend of hardware evolution and the new interconnects
being created, there are several issues that the application developers
need to pay attention to. With the hardware upgrading, the developers
need to re-evaluate the performance of different generations of hard-
ware to design the proper systems software based on the improved
data transfer rates. Also, many new interconnects are emerging with
the development of novel hardware features. These features may po-
tentially impact application performance and need to be systematically
investigated.

On the other hand, different types of data center applications repre-
sent various performance characterizations, like HPC workloads, deep
learning training and inferences, big data analytics, and cloud-based
microservice. The impacts of new interconnects on these different
workloads should be evaluated separately and carefully. Therefore, we
believe this is high time to investigate the performance characteri-
zations of modern data centers and HPC interconnects via standard
benchmarking experiments under different application scenarios. This
observation motivates us to extensively survey hot interconnects on
modern data centers and HPC clusters and the associated representative
benchmarks to help the community better understand these advanced
interconnects.

There exist some surveys to summarize benchmarking experiences
with different workloads. For example, Han et al. [8] surveyed ten big
data benchmarks to discuss benchmarking challenges. Zhang et al. [9]
https://doi.org/10.1016/j.tbench.2022.100074
Received 19 September 2022; Received in revised form 21 October 2022; Accepted
Available online 28 October 2022
2772-4859/© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
21 October 2022

KeAi Communications Co. Ltd. This is an open access article under the CC

https://doi.org/10.1016/j.tbench.2022.100074
https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tbench.2022.100074&domain=pdf
mailto:yli304@ucmerced.edu
mailto:hqi6@ucmerced.edu
mailto:gateslu@tencent.com
mailto:ronyjin@tencent.com
mailto:yguo@anl.gov
mailto:xiaoyi.lu@ucmerced.edu
https://doi.org/10.1016/j.tbench.2022.100074
http://creativecommons.org/licenses/by-nc-nd/4.0/


Y. Li, H. Qi, G. Lu et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100074
Fig. 1. An overview of data center interconnects and benchmarks.
investigated fourteen deep learning benchmarks. Zhou et al. [10] dis-
cussed seven microservice benchmarks. Gao et al. [11] compared fif-
teen big data and AI (Artificial Intelligence) benchmarks. However, we
did not find such a survey that can extensively cover a broad range
of the latest advanced interconnects in modern data centers and the
associated representative benchmarks for different application scenar-
ios. Therefore, this paper addresses the need to survey different hot
interconnects deployed in modern data centers and the corresponding
benchmarks to expose their performance characteristics.

Fig. 1 shows an overview of this paper’s surveying scope, including
various kinds of hot interconnects and the associated representative
and popular benchmarks in the community. The following sections will
introduce each component in Fig. 1 with a bottom-up approach. In
Section 2, we survey the features and characteristics of hot intercon-
nects in modern data centers and HPC clusters. In Section 3, we survey
well-used micro benchmarks for evaluating these hot interconnects
with their network primitives and mechanisms. Section 4 will sur-
vey application-level benchmarks with diverse evaluation granularity,
as shown in Fig. 1. In Section 5, we choose several representative
benchmarks, which include Netperf [12], Perftest [13], and OSU Micro-
Benchmarks (OMB) [14] for MPI (Message Passing Interface) [15] and
PGAS (Partitioned Global Address Space) [16] applications, and inter-
connects, which include IB, Omni-Path [17], and Ethernet to run exper-
iments. We present the results to show performance characterizations
of these hot interconnects as examples or reference numbers. Section 6
will discuss some of our observations and perspectives on benchmark-
ing data center interconnects based on our survey, experiments, and
results. Section 7 discusses more related studies and Section 8 concludes
the paper.

The main contributions of this paper are as follows:

• We perform an extensive survey on advanced hot interconnects in
current-generation and emerging data centers and HPC clusters.

• We also comprehensively survey the associated representative
benchmarks from both micro benchmarking and application-level
benchmarking perspectives.

• We perform a set of benchmarking experiments on real inter-
connects hardware with well-used benchmarks and discuss their
performance characterizations.

• We share our observations on improvable aspects of existing
benchmarks, such as performance stability, reference number,
experimental instructions, etc., to help the community to design
better ones.

2. Overview of modern interconnects

As an indispensable part of HPC and data center systems, inter-

connects play an essential role in achieving higher scalability and

2

performance for modern clusters. In recent years, the community has
witnessed the development of conventional interconnects like Ether-
net and InfiniBand, and the birth of proprietary interconnects such
as Fugaku Tofu [5] and BXI (Bull eXascale Interconnect) [18]. This
section will briefly overview some representative state-of-the-art mod-
ern interconnects, and their features [1]. After we go through these
interconnects one by one, Table 1 shows a brief comparison of these
hot interconnects.

2.1. Ethernet

Ethernet is one of the most traditionally utilized interconnects for
HPC and data center clusters. At the early stage, 1 Gb/s Ethernet
(1-GigE) was widely used. However, with the advancement of CPU per-
formance and I/O speed, the 1-GigE has become the bottleneck. With
the demand for higher bandwidth and data transfer rate, Ethernet with
10-GigE, 25-GigE, 50-GigE, and even 100-GigE, has been developed.
As of June 2022, 25-GigE is the most widely used interconnect in the
Top500 list, and the Ethernet interconnect family is the majority in the
list, taking up nearly 50% [19].

Taken the advantages of RDMA, RDMA over Converged Ethernet
(RoCE) [20] is developed, which is a network protocol that allows
RDMA to operate over Ethernet networks. RoCE is designed to support
RDMA over Ethernet on layer 2 networks, and its extended version
RoCE v2 enables transportation on layer 3 networks. Traditionally, Eth-
ernet has left the congestion control to the TCP (Transmission Control
Protocol) layer. With the development, the first algorithm proposed
for the Ethernet network is pause frame [21] in 1996. Congestion
control on RoCE uses an extension to the TCP/IP protocol called
ECN (Explicit Congestion Notification) [22]. Other techniques, such
as the QCN (Quantized Congestion Notification) [23], were developed
afterward. Both traditional Ethernet and RoCE are available for vari-
ous interconnect topologies. In 2019, Amazon announced EFA (Elastic
Fabric Adapter) [24] for its EC2 (Elastic Compute Cloud) instance. The
libfabric [25] interface on EFA provides up to 100 Gbps speed and
reduces overhead with techniques like operating system bypass.

2.2. InfiniBand

Provided by NVIDIA, InfiniBand (IB) is an industry-standard switch
fabric and the second most popular interconnect family in the Top500
list [19]. As of June 2022, 32.4% of the Top500 clusters are intercon-
nected by IB, especially for Top10 clusters such as Summit [26] and
Sierra [27]. Besides the higher bandwidth (up to 400 Gbps) and lower
latency (<1 μs), IB also supports advanced features like RDMA, which

allows the software to read/write data from/to the memory in remote



Y. Li, H. Qi, G. Lu et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100074
Table 1
Comparison of interconnects.

Name Ethernet InfiniBand Omni-Path Slingshot Aries TofuD BXI

25–100 Gbps 200–400 Gbps RoCE

Manufacturer Many Many Many NVIDIA/Mellanox Intel/Cornelis Cray Cray Fujitsu Atos
Commodity Public Public Public Public Public Proprietary Proprietary Proprietary Proprietary
Unidirectional Bandwidth (Gbps) 25–100 [37] 200–400 [37] 100 [38] 400 [39] 100 [37] 200 [37] 40 [4] 56 [40] 100 [37]
End to End Latency (μs) 10–30 N/A ∼1 [37] <1 [37] <1 [37] <2 [37] ∼1 [4] 0.5–1 [5] <1 [37]
Congestion Control Yes Yes Yes Yes Yes Yes Yes Yes Yes
Topology Various Various Various Fat-tree, Dragonfly+ Fat-tree Dragonfly Dragonfly Torus Various
RDMA No No Yes Yes Yes Yes Yes Yes Yes
Year 2014 2017 2010 1999 2015 2019 2012 2018 2015
nodes without any CPU involvement from the remote side. IB pro-
vides reliable or unreliable, and connected or datagram data transport
types [28]. The reliable transport can guarantee the packet delivery in
order but it spends extra time to wait for the acknowledgment from
the receiving side. The unreliable transport cannot ensure the packet
is received, but it does not need extra time for waiting the acknowl-
edgment. The queue pairs for connected transports are connected in
the one-to-one mapping, while the queue pairs for datagram transports
are connected in the one-to-any mapping. The connected transport is
more suitable for applications with a small number of connections.
The datagram transport usually performs better in large-scale appli-
cations because fewer connection contexts need to be maintained in
memory [29].

Specifically, RDMA-capable networks (like InfiniBand) typically
support four types of transport modes: Reliable Connection (RC), Re-
liable Datagram (RD), Unreliable Connection (UC), and Unreliable
Datagram (UD). SEND and RECV operations are supported by all
modes, while the RDMA WRITE operation is unsupported by UD, and
the RDMA READ operation is unsupported by UD and UC. The most
commonly used network topology for IB is fat-tree [30], but it also sup-
ports other topologies like dragonfly+ [31]. The IB standard includes
a congestion control mechanism to detect and resolve congestion by
using two relay messages: FECN (Forward Explicit Congestion Notifica-
tion) [32] and BECN (Backward Explicit Congestion Notification) [33].
When applying IB to GPU, CUDA 5.0 first introduced GDR (GPUDirect
RDMA) [34]. GDR allows IB adapters to directly access the GPU
memory while also bypassing the host. GDR can significantly increase
data communication performance among GPUs, which further benefits
the increasing number of redesigned classical HPC and machine/deep
learning applications.

2.3. Omni-Path

Omni-Path was first released by Intel in 2015 as a part of Intel’s
Scalable System Framework with the purpose of increasing HPC work-
load scalability and aiming for low communication latency, low power
consumption, and high throughput [17]. Omni-Path mainly includes
the network card, switch, and network manager components. It is
built on Intel technology with multiple features, such as traffic flow
optimization and packet integrity protection. It is mainly designed
to support fat-tree topology, and its CCA (Congestion Control Archi-
tecture) has been updated continuously since its first release. The
first generation Omni-Path delivers 100 Gbps bandwidth per port and
is integrated into some CPU architectures like Skylake and Knights
Landing (KNL) [35]. Although Intel stopped the development of the
second-generation Omni-Path in 2019, it still takes 7.8% of Top500
clusters as of June 2022 [19]. In late 2020, Intel announced its spin-off
to Cornelis Networks [36] to continue the business as a successor to the
Omni-Path product.

2.4. Slingshot

In 2019, Cray launched its new generation of HPC interconnect

technology called Slingshot [3]. Slingshot uses protocols on standard

3

Ethernet while also being compatible with proprietary HPC networks
when needed. It offers key features like adaptive routing, quality of
service guarantee, and advanced congestion control fully implemented
in hardware. The slingshot switch is equipped with 64 ports, and
each port is running at 200 Gbps. Slingshot also supports multiple
interconnect topologies such as fat-tree and dragonfly [41]. As Cray’s
eighth major high-performance interconnection network technology,
Slingshot is deployed on a variety of clusters like pre-exascale cluster
Perlmutter [42] and exascale cluster Frontier [43], which is currently
the top 1 supercomputer in the world. Slingshot is also planned to
be deployed on upcoming exascale clusters like Aurora [44] and EI
Capitan [45]. Slingshot is taking up 4.8% of the clusters in Top500 list
as of June 2022 [19].

2.5. Aries interconnect

As Cray’s third-generation interconnect architecture, Aries was in-
troduced as part of the Cray XC system with the dragonfly topology,
and it has been widely used in the HPC field [4]. A single Aries device
with four NICs (Network Interface Card) and a 48-port tiled router
can provide a network connection for all four nodes on a Cray XC
blade. The NIC and switch in Aries are closely coupled in the dragonfly
network to provide cost-effective and scalable global bandwidth. The
system is configurable according to users’ global bandwidth require-
ment, and its optical connection number can be adjusted according to
the cost constraint. It also provides technologies such as adaptive rout-
ing, communication mechanisms, and synchronization mechanisms.
Aries adopts the dragonfly topology and achieves congestion control by
implementing Valiant’s routing algorithm [46]. As of June 2022, 5% of
the Top500 clusters use Aries, including Piz Daint [47] and Cori [48].

2.6. Tofu interconnect D

As one of the representatives of proprietary interconnects, Tofu [49]
is an interconnect family developed by RIKEN and Fujitsu that is used
for the K computer [50]. In 2018, TofuD (Tofu Interconnect D) was in-
troduced as a new member of the Tofu family. Its main features are just
as indicated by the name. The Tofu represents ‘‘torus fusion’’ and the
letter D stands for high ‘‘density’’ node and ‘‘dynamic’’ packet slicing
for ‘‘dual-rail’’ transfer [5]. TofuD is a proprietary torus-based [5] six-
dimensional network, and it mainly supports congestion control with
the family’s virtual channel scheduling algorithm. Compared to previ-
ous Tofu and Tofu2 [51], TofuD has a much higher communication
resource density, such as 48 cores per node. It also introduced dynamic
packet slicing for the dual-rail transfer technique to solve the latency
and fault tolerance issue in Tofu2. TofuD is adopted by the Fugaku [52],
which was the top 1 cluster in the Top500 list at the time built in 2020
and ranked 2nd as of June 2022 [19].

2.7. Bull eXascale interconnect (BXI)

In 2015, Atos designed BXI as a new interconnect for HPC [18].
BXI is based on the scalable and reliable Portals4 [53] network pro-

gramming interface and decouples computation and communication



Y. Li, H. Qi, G. Lu et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100074
Table 2
The summary of micro-benchmarks.

Perftest [13] RDMA-bench [56] NetPerf [12] iPerf [57–60] qperf [61] GPCNeT [62]

Link layer IB, Eth (RoCE) IB, Eth (RoCE) Eth Eth IB, Eth (RoCE) IB, Eth (RoCE), etc.
Programming
Models

RDMA RDMA Socket Socket RDMA/Socket MPI

Transport
Protocols

RC/UC/UD
DCT, SRD

RC/UC/UD TCP, UDP, SCTP TCP, UDP, SCTP TCP, UDP, SCTP,
SDP
RC/UC/UD, RDS

Any protocol that
can be used by MPI

Main metrics Throughput,
Average latency,
Tail latency

Throughput,
Average latency,
Tail latency,
WQE cache misses

Throughput,
Average latency

Throughput,
Average latency,
Tail latency

Throughput,
Average latency

Throughput,
Average latency,
Tail latency,
Congestion Impact

Language C C C C C C
Thread Model Single-thread Single-thread Single-thread Multi-thread Single-thread Multi-process (MPI)
Communication
pattern P2P P2P P2P P2P; multicast P2P P2P, collective

communication
Real scenario N Y (w/ real

applications)
N N N Y

Real workload
or trace

N N N N N Y

Parameters of
protocol internals

N N N Y N N

Year of last update 2022 2018 2021 2022 2018 2021
by hardware offloading. It consists of two ASIC (Application-Specific
Integrated Circuit)-based components: BXI NIC and BXI switch. The
BXI NIC provides functions like OS bypass, communication offload,
and reliability. Each BXI switch is equipped with forty-eight 100 Gbps
ports and provides power saving and network performance monitoring
functions. BXI supports multiple network topologies such as fat-tree,
butterfly [54], and torus. BXI implements efficient fine-grain adaptive
routing on each port basis to minimize the possibility of congestion. It
also provides reliability and stability guarantees by some optimizations
like deadlock-avoidance and load-balancing mechanisms. As of June
2022, Tera-1000-2 adopts BXI 1.2 and it is ranked 45th in the Top500
list [19].

2.8. Summary

We survey the above hot interconnects because of their popularity
for clusters in the Top500 list. Table 1 summarizes a brief comparison
of these hot interconnects. They show a huge diversity in aspects,
such as bandwidth, latency, congestion control mechanism, and net-
work topology, which motivates us to investigate their performance
characteristics. Due to the lack of access to proprietary interconnects,
we mainly focus on evaluating Ethernet, RoCE, IB, and Omni-Path in
this paper. InfiniBand is an essential interconnect for native RDMA
designs. 10/25 Gbps Ethernet networks are the majority (27.2%) of
interconnects used in data center and HPC clusters. RoCE and TCP/IP
can be deployed on 10/25 Gbps Ethernet [55]. We evaluate these
different interconnects and show the results in Section 5.

3. Survey of micro-benchmarks

The community has designed many benchmarks to evaluate various
types of interconnects. In this section, we survey six micro-benchmarks
designed to measure low-level performance metrics such as latency
and bandwidth. We introduce their features and discuss their pros and
cons. As shown in Table 2, six publicly-available micro-benchmarks
are included for comparison. The rest of this section discusses these
micro-benchmarks one by one.

3.1. Perftest

Perftest [13] was developed by Mellanox and has been well main-
tained since 2005. The RDMA community widely uses it for latency and
bandwidth performance evaluation on InfiniBand and RoCE networks.

The included micro benchmarks adopt a single-thread and ping-pong

4

communication pattern to evaluate the throughput and latency of basic
RDMA operations. We can also use it to compare different transports
by specifying the transport as RC, UC, UD, Raw Ethernet, and even
Mellanox DCT (Dynamic Connected Transport) [63] and AWS SRD
(Scalable Reliable Datagram) [64] transports that are not specified in
the standard IB specification [65]. Besides the basic operations and
transports, Perftest also supports the GPUDirect feature for direct inter-
GPU communication through GPUDirect RDMA and the AESXTS [66]
feature for data encryption and decryption scenarios using RDMA.
Perftest is designed without emulating any real application traffic or
traffic probability distribution. It does not allow users to choose the
traffic pattern but only with a parameter to specify the message size
in each test. These tests are mainly helpful for hardware or software
tuning as well as for functional testing.

3.2. RDMA-bench

RDMA-bench [56] was developed by Carnegie Mellon University
in 2016. Unlike Perftest, RDMA-bench is a new benchmark suite used
to understand the RDMA performance in a few scenarios extracted
from real applications. With the guidelines obtained from running
RDMA-bench, the authors of RDMA-bench succeeded in developing a
networked sequencer and a key–value store far superior to others [67].

The benchmarks in RDMA-bench can be classified into several
categories: (1) application benchmarks which include HERD [68] and
MICA [69] as RDMA-based key–value store systems, and DrTM-KV [70]
as an RDMA-based in-memory transaction processing system; (2) micro-
benchmarks which measure the throughput of outbound and inbound
RDMA operations; (3) micro-benchmarks that emulate an echo server,
in which users can choose different RDMA operations for the re-
quests and responses; (4) micro-benchmarks which emulate an RPC
(Remote Procedure Calls) based sequencer server using different RDMA
transports and operations; (5) micro-benchmarks which emulate a com-
plex communication scheme with configurable thread-QP ratios to the
scalability evaluation; (6) micro-benchmarks which help understand
low-level factors that affect RDMA performance, such as WQE cache
misses of outbound READs and WRITEs, etc.

3.3. Netperf

Netperf [12] was developed by Hewlett-Packard in 2005. It is
widely used to measure the performance of BSD Sockets [71] for TCP,
UDP, or SCTP (Stream Control Transmission Protocol) [72] using IPv4

and IPv6, Unix domain sockets [73], and DLPI (Data Link Provider



Y. Li, H. Qi, G. Lu et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100074
Interface) [74]. Netperf adopts a simple client–server model without
multi-threading support. The main parameters include the socket buffer
size, the message size, the TCP_NODELAY option, and the test mode.
There are two test modes supported in Netperf: (1) the STREAM mode,
which transfers bulk data through a TCP or UDP socket; (2) the RR
(Request/Response) mode, which emulates iterative requester–response
transactions between the client and server. The data transmitted is
synthetic. Neither different probability distributions nor real-world
data trace is supported. Hewlett-Packard made a plan of version 4.x
of Netperf, which aimed to support synchronized and multi-threaded
benchmarking.

3.4. iPerf

iPerf [57,58] is used to evaluate the performance of TCP, UDP, and
SCTP traffic with IPv4 and IPv6. It provides abundant features [57,58]:
(1) iPerf adopts a multi-threaded design that can scale with the number
of CPUs within a system; (2) iPerf supports tuning of various parameters
that are rarely supported in Netperf, such as timing, buffers, and most
importantly, the internal parameters of the protocols; (3) iPerf supports
multicast tests and bidirectional tests; (4) iPerf can run on many
platforms which include Linux and Windows; (5) users can get various
forms of outputs in iPerf; (6) iPerf provides the libiperf library, which
is an straightforward way to use and customized the functionality of
iPerf.

iPerf has evolved into two incompatible active branches. One branch
is iPerf2 [57] which is the newer version of the original iPerf. The other
branch is iPerf3 [58] which is a redesign of the original iPerf and was
now principally developed by ESnet and Lawrence Berkeley National
Laboratory. Either of them contains several options and functions that
are not present in the other. Generally, for TCP and UDP in Ethernet,
iPerf2 and iPerf3 are about the same if running with the default
configuration. However, users should check the detailed comparison
in [59,60] to avoid misuse.

3.5. qperf

qperf [61] was initially developed by QLogic in 2007 and then
maintained by the Linux community. qperf can measure the bandwidth
and latency between two hosts using TCP, UDP, SCTP, RDMA, SDP
(Sockets Direct Protocol), and RDS (Reliable Datagram Sockets). It
adopts a single-threaded client–server model similar to Netperf. For
RDMA, we can test the bandwidth and latency of RC, UC, and UD
transports. All the operations can be measured for each transport in
the tests. Compared to Perftest, qperf supports fewer transports and
features from the perspective of evaluating RDMA performance. For
non-RDMA protocols, the option of qperf can only change the message
size. Evaluations of the internal features of the protocols cannot be done
by using qperf. Even though qperf only reports average latency and fails
to perform precise tail latency measurements, it is still popular as it is
a handy and tool. The release of qperf is stable and the light-weight
update was four years ago.

3.6. GPCNeT

The Global Performance and Congestion Network Test (GPCNeT)
[62,75] was developed by Cray in 2019 to evaluate the network per-
formance of MPI-based systems with the MPI-3.0 specification [76].
GPCNeT is compromised of two benchmarks: network_test and net-
work_load_test.

network_test characterize the latency and bandwidth of an MPI
application when it runs without network congestion. It builds the
natural ring and random ring pattern such that all communication
occurs over the network rather than within local groups. The commu-
nication patterns include two-sided peer-to-peer (8 bytes latency and
128K bytes bandwidth, natural and random rings), one-sided remote
5

memory access (8 bytes latency and 128K bytes bandwidth, random
ring), allreduce (8 bytes latency, random ring), and alltoall (128 bytes
bandwidth, random ring).

network_load_test measure the performance of an MPI application
with network congestion. This simulates the scenario when running
on multi-tenant HPC networks. Each congestor has a unique random
ring, and the communication patterns include Point-to-point Incast,
All-to-all, One-sided RMA Incast, and One-sided RMA Broadcast. Two
measurements execute in the random ring infrastructure: Point-to-point
Latency measurement by sending and receiving 8 bytes messages from
and to two sides, Point-to-point Bandwidth with Synchronization by
sending and receiving eight 128K bytes messages from two sides.

The default settings are intended to be utilized in general production
scenarios. It reports the mean and 99th percentile latencies as well as
the bandwidth per rank. With congestors, it also reports the Congestion
Impact metric, which is defined as the ratio of congested latency or
bandwidth divided by the uncongested latency or bandwidth. The Con-
gestion Impact metric is an indicator to study the impact of congestion
across systems with different networks.

3.7. Summary

The above micro-benchmarks are surveyed because of their pop-
ularity in the community. In Table 2, we show a summary of these
micro-benchmarks. Among the six micro-benchmarks, we will test the
interconnects with Perftest and NetPerf in this survey. They are both
widely used and well maintained since their first release. Besides,
Perftest is provided by Mellanox, the most popular manufacturer of In-
finiBand. Hence, we believe Perftest and NetPerf can represent defacto
standard benchmarks for RDMA-based and socket-based programming
models on various interconnects, respectively. We show the related
results in Section 5.

4. Survey of application-level benchmarks

There are diverse types of workloads running across machines in
a data center, from parallel computing to microservice, from GPU
applications for deep learning workloads to Key–Value Store for big
data workloads. The same issue these workloads share is that they
all need efficient data communication through the interconnects. As
mentioned above, different interconnects may show different charac-
terizations on the same application. Therefore, researchers need to
use benchmarks to characterize the application that runs on a specific
interconnect. This section surveyed application-level benchmarks with
diverse evaluation granularity for different application scenarios in data
centers that involve cross-node communication via interconnects. To
save space, we put detailed descriptions of these benchmarks in tables.

4.1. MPI benchmarks

MPI [15] is a message-passing standard and widely used in HPC
where many processes or cores are organized to run parallel program
simultaneously for acceleration. Using a benchmark to characterize
MPI libraries on different interconnects can help developers understand
the characteristics of interconnects and design applications in efficient
ways.

We surveyed three popular MPI benchmarks. The OSU MPI Micro-
Benchmarks [14] provided by Ohio State University (OSU) consist of
point-to-point MPI operations, blocking/non-blocking collective MPI
operations, and one-sided MPI operations. Table 3 shows the descrip-
tion details. The NAS Parallel Benchmarks (NPB) [77], provided by
NASA, are derived from CFD (computational fluid dynamics) applica-
tions and are designed with MPI programming. Its description details
are shown in Table 4. The Intel MPI Benchmarks (IMB) [78] provided
by Intel perform MPI 1.0 ∼ 3.0 measurements for communication
operations for a range of message sizes, which are shown in Table 5.



Y. Li, H. Qi, G. Lu et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100074
Table 3
The details of OSU MPI Micro-Benchmarks.

Table 4
The details of NAS Parallel Benchmarks (NPB).

4.2. PGAS benchmarks

PGAS (Partitioned Global Address Space) is a parallel programming
model in the HPC community. PGAS is defined by communications on
a shared memory space that every Processing Element (PE) can access
without permission issues. Many programming languages and libraries
are designed from the PGAS model, e.g., Unified Parallel C (UPC) [79]
and OpenSHMEM [80]. Communication happens when the processes
transfer data from the global memory or to the global memory space,
including within and across a node. OSU Micro-Benchmarks also pro-
vides benchmarks on PGAS model: OpenSHMEM benchmark is shown
in Table 6; UPC and UPC++ benchmarks with point-to-point (put and
get) and collective communications.

4.3. RPC benchmarks

RPC is a method when a process on a machine calls procedures on
other machines where the execution of the procedure happens [81]. It
is a client–server interaction where data is transferred frequently over
the interconnects to call (from the client) and respond (from the server)
procedures. Therefore, the characteristics of the interconnect can have
a direct impact on the RPC performance.

We surveyed three benchmarks for RPC applications in data centers:
Apache Thrift Benchmarks (ATB), TF-gRPC-Bench, and RPC-perf. ATB
is proposed in [82], which evaluates the Apache Thrift [83] based
6

Table 5
The details of Intel MPI Benchmarks.

RPC performance and consists of three categories: the RPC latency
evaluation benchmark, the RPC throughput evaluation benchmark, and
the mixed RPC latency and throughput evaluation benchmark. Table 7
shows the details of TF-gRPC-Bench, which evaluates the communi-
cation performance between parameter server and worker process.
Twitter maintains RPC-perf [84]. It is designed to evaluate the RPC’s
performance for caching systems regarding latency and message rate.

4.4. Storage benchmarks

With the development of hardware technology, much new storage
hardware is produced, such as the NVMe SSD [85]. Storage systems
rely on different drivers and libraries in data center, with interactions
between the processors and the storage devices via interconnects. Intel
SPDK [86] provides NVMe perf [87] as an NVMe SSDs benchmarking
tool with minimal overhead in benchmarking. NVMe perf provides
several runtime options to support the most common workload. Users



Y. Li, H. Qi, G. Lu et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100074
Table 6
The details of OSU OpenSHMEM Micro-Benchmarks.

Table 7
The details of TF-gRPC-Bench.

Table 8
The details of IOzone and Iometer.

can configure the NVMe perf in many aspects like the workload charac-
terizations (e.g., the percentage of Read/Write, with/without random
Read/Write), the data movement protocols (e.g., PCIe, RDMA, TCP),
and the execution time [87].

Besides the hardware, modern data centers also have different
storage systems. Two surveyed benchmarks for storage systems are
shown in Table 8. IOzone [88] is a filesystem benchmark to measure
the file operations in storage systems. Iometer [89] is an I/O subsystem
measurement tool for single and clustered systems. And one bench-
mark for EC (Erasure Coding) coder on distributed storage systems.
EC-Bench [90] is an erasure coding scheme benchmark for storage
architectures with description details in Table 9.

4.5. GPU applications benchmarks

GPU has been becoming incredibly popular for compute-intensive
workloads in data centers and HPC clusters in recent years. Two
popular deep learning frameworks, TensorFlow [91] and PyTorch [92],
provide benchmarks to evaluate deep learning models, such as Per-
fZero [93] and TorchBench [94]. PerfZero is a benchmark framework
7

Table 9
The details of EC-Bench.

Table 10
The details of PerfZero and TorchBench.

for debugging and tracking the TensorFlow performance regression
and change. TorchBench includes a collection of open-source bench-
marks to evaluate models and workloads with PyTorch. More details
about PerfZero and TorchBench are shown in Table 10. The PARAM
benchmark [95] from Meta Platforms (Facebook formerly) can both
evaluate the performance of communication components in the Py-
Torch deep learning framework, and evaluate the application-level
workloads, like deep learning recommendation models [96,97]. Deep-
Bench [98] produced by BaiduResearch is another benchmark for eval-
uating deep learning operations on different platforms. NCCL (NVIDIA
Collective Communications Library) [99] and Gloo [100] provide their
benchmarks on collective communication libraries, which are NCCL
Tests [101] and Gloo Benchmarking [102] to evaluate the performance
on collective operations.

OSU Micro-Benchmarks also provide several extensions for GPU
programming models and libraries, such as CUDA [103], ROCm [104],
and OpenACC [105] extensions by configuring with --enable-cuda,
--enable-rocm, and --enable-openacc in the runtime [14].

4.6. Key-Value Store benchmarks

Key–Value Store holds a data storage model that stores associa-
tions between keys and values. Keys are primitives, and values can
be primitive or complex. It is popular in the big data community
and widely used in NoSQL databases in data centers because of its
high efficiency and scalability. We surveyed two benchmarks for Key–
Value Store. YCSB [106] (Yahoo! Cloud Serving Benchmark) is used
for evaluating the performance of key–value and cloud serving stores.
YCSB provides five workloads with different percentages of database
operations and evaluates three metrics of performance: the latency
of requests, the database performance when increasing machines, and
the database performance with increasing machines while the sys-
tem is running. OSU HiBD-Benchmarks [107] provide benchmarks for
evaluating Memcached and HBase based Key–Value Store.

4.7. Microservice benchmarks

Microservice is a type of cloud service architecture. Unlike tradi-
tional monolithic applications, microservice consists of multiple ser-
vices working together to finish a workload. Therefore, communi-
cations happen frequently among services via interconnects in data
centers. We surveyed two benchmarks for microservice workloads.



Y. Li, H. Qi, G. Lu et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100074
Table 11
The details of DeathStarBench.

Table 12
The details of 𝜇Suite.

DeathStarBench [108] is an open-source benchmark suite for microser-
vices on cloud and edge systems, and the details are shown in Table 11.
𝜇Suite [109] can be used for evaluating the influence of OS and
network on microservices, and the details are shown in Table 12.

4.8. Summary

The above-mentioned application-level benchmarks can represent
a broad range of data center applications, including HPC, big data,
AI, and cloud computing. In this survey, we choose MPI and PGAS
based benchmarks as application examples and run them on different
interconnects. MPI and PGAS based benchmarks have been designed
and maintained for many years with a lot of contributed optimizations
from the community. Our experience also reveals that they are easy
to deploy and convenient to run. The experiment results are shown in
Section 5.

5. Experiment

This section presents performance characterizations with the se-
lected benchmarks on various hot interconnects.
8

Table 13
The details of the testbeds in the experiments. PADSYS and Pinnacles [110] clusters
are used in Section 5.2 and Section 5.3, Bebop [111] and JLSE [112] clusters are used
in Section 5.4.

Testbed
(Nodes)

Interconnect
(Gbps)

Intel Xeon
CPU

RAM
(GB)

Communication
Subsystem

PADSYS
(2)

InfiniBand
(200) Gold 6330 256 OFED

MLNX-5.5
Pinnacles
(40)

InfiniBand
(100) Gold 6330 256 RHTL 8.6

IB Driver
Bebop
(36)

Omni-Path
(100)

Broadwell
E5-2695v4 128 Libfabric [25]

v1.15.1
JLSE
(13)

InfiniBand
(100)

Platinum
8180M/8176 768 UCX [113,114]

v1.13.0

Fig. 2. The latency of Perftest on 200Gbps InfiniBand, Perftest on RoCE (25Gbps
Ethernet), Netperf on 10/25Gbps Ethernet, and Netperf on IPoIB (200Gbps InfiniBand).

5.1. Benchmarking setup

We run benchmarks on different clusters with various interconnects
and Table 13 shows the details of each cluster. We try to keep the
comparisons of the experiment results as fair as possible by: (1) allocat-
ing nodes in the same rack across different experiments; (2) tuning the
number of iterations (Perftest) or time duration (Netperf) of benchmark
options until getting the relatively stable results.

5.2. Micro-benchmark evaluation

We organize the following experiments using two programming
models, RDMA and socket, with two Perftest and Netperf micro-
benchmarks on three 10/25 Gbps Ethernet and 200 Gbps InfiniBand
interconnects. We discuss the experiment results in three aspects:
(1) the latency comparison; (2) the bandwidth usage comparison;
(3) the impact on the performance using two different InfiniBand
interconnects.

5.2.1. Latency
Fig. 2 shows the latency of benchmarks based on different network.

The Perftest benchmark on 200 Gbps InfiniBand, the fastest intercon-
nect in our experiments, has the lowest latency because of the nature
of kernel-bypass and high-performance protocol in RDMA. Although
RoCE also supports RDMA, the hardware it uses is 25 Gbps Ethernet
on our testbed which is lower than 200 Gbps InfiniBand, so the Perftest
on RoCE are slower than those on InfiniBand. The Netperf [12] is a TCP
benchmark running on IPoIB and 10/25 Gbps Ethernet. Due to the well-
known heavy overhead of TCP [29,115], the latency numbers of these
three are far slower than the native RDMA designs, and the latency

becomes larger with the decrease of the network bandwidth.



Y. Li, H. Qi, G. Lu et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100074

r
t

5

t

5

s
M
o
I
w
r

Fig. 3. The bandwidth of Perftest on 200Gbps InfiniBand, Perftest on RoCE (25Gbps
Ethernet), Netperf on 10/25Gbps Ethernet, and Netperf on IPoIB (200Gbps InfiniBand).

5.2.2. Bandwidth
Fig. 3 shows the bandwidth comparisons using different benchmarks

on different interconnects. The RDMA benchmark, Perftest, runs on
200 Gbps InfiniBand and can achieve the highest bandwidth of Infini-
Band when the message size is large enough (4K bytes) because of the
4K bytes MTU setting on InfiniBand. The same benchmark running on
25 Gbps Ethernet, shown as RoCE in the figure, shows the same behav-
ior but its MTU is 1K bytes so RDMA RoCE saturates the bandwidth
earlier than the one on RDMA IB. The Netperf benchmark running
on 10/25 Gbps Ethernet shows a similar behavior when the message
size is larger than one MTU (1K bytes) but does not show the same on
200 Gbps InfiniBand. The reason is the TCP protocol stack overhead by
deploying IPoIB on InfiniBand. We also observed the unstable results
on Netperf benchmark evaluations and the reason could come from
the performance fluctuation nature of TCP. Therefore, we ran the
experiment five times for each one and took the average results to show
in the figure.

5.2.3. InfiniBand EDR VS. HDR
200 Gbps InfiniBand (HDR) is emerging as a replacement of the

widely-used 100 Gbps InfiniBand (EDR) in data center and HPC clus-
ters. Therefore, it is high time to use benchmarks to compare the
performance characteristics between EDR and HDR. In this experiment,
we run the same benchmark, Perftest, on these two kinds of InfiniBand
interconnects. Fig. 4 shows the bandwidth comparison and Fig. 5 shows
the throughput comparison. As we expect, the saturated bandwidth
(when message size is larger than 4K bytes, which equals to one MTU)
of IB HDR is around two times that of IB EDR. We observe that the
throughput of IB EDR is lower than the throughput of IB HDR all
the time, and the IB HDR throughput numbers are 1.5X–2X times of
the EDR numbers, which corresponds to the bandwidths differences
between IB EDR and HDR. For read in 4K bytes message size, its
performance is poorer than send and write. The reason is the read
equests need to be maintained with more context overhead to wait
he responses arrive [68].

.3. MPI benchmark evaluation

This section gives the evaluation results (latency, bandwidth, and
hroughput) with OSU MPI Micro-Benchmarks on IB EDR and HDR.

.3.1. Latency
The latency evaluation is shown in Fig. 6. MPI adds an extra

oftware layer over low-level RDMA verbs. Therefore, the latency of
PI is slightly higher than that of Perftest in Section 5.2. The first

bservation is that running MPI on IB HDR has lower latency than on
B EDR, as expected. The second observation is that the average latency
ill increase with more processes usage, which scenario is closer to the

eal world because of the more communication overhead.
9

Fig. 4. Bandwidth evaluations on IB EDR and HDR.

Fig. 5. Throughput evaluations on IB EDR and HDR.

Fig. 6. OSU Micro-Benchmarks for MPI latency on multiple process pairs scenario. The
first number in the bracket means the number of process pairs, and the second number
is the highest bandwidth of InfiniBand.



Y. Li, H. Qi, G. Lu et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100074

p

5

b
b
E
s

5

i
o
o
r
M
s
p
o
I
i

5

t
i

t
c
P
d

6

m
a
g
s
a
m
g
r
t
t
l

Fig. 7. The OSU Micro-Benchmarks for MPI bandwidth and throughput on multiple
rocesses scenario.

.3.2. Bandwidth
We also see the same trend as in Section 5.2.2 when the MPI

enchmark runs on different IB interconnects in Fig. 7(a): The saturated
andwidth on IB HDR is two times the saturated bandwidth on IB
DR. The more processes are used, the earlier the bandwidth will be
aturated.

.3.3. Throughput
Although in Section 5.2.3 we can see that when the message size

s the same, the throughput of Perftest on IB EDR is lower than that
n IB HDR, we do not get the exact same behavior on the throughput
f OSU Micro-Benchmarks for MPI which is shown in Fig. 7(b). The
eason comes from different aspects. When the message size is small,
PI cannot saturate the bandwidth, so the throughput is almost the

ame at that stage. When the message size becomes larger, the through-
ut decreases rapidly and starts to saturate the bandwidth. We can
bserve that the throughput of IB HDR is around two times that of
B EDR, corresponding to the bandwidth ratio between two InfiniBand
nterconnects.

.4. PGAS benchmark evaluation

We use OSU Micro-Benchmarks for OpenSHMEM to characterize
he performance of running OpenSHMEM benchmarks on different
nterconnects. We use Sandia-OpenSHMEM (SOS) [116] because SOS
 u

10
Fig. 8. OSU Micro-Benchmarks for OpenSHMEM for point-to-point communication on
Omni-Path and InfiniBand.

is one of the native OpenSHMEM implementations. To evaluate how
interconnect influences the OpenSHMEM performance, we evaluate the
latency of point-to-point communication on 2 nodes (1 PE per node)
and collective communication on 8 nodes (1 PE per node) on two
different interconnects: Omni-Path Fabric and InfiniBand with the same
100 Gbps bandwidth. Fig. 8 shows the latency performance comparison
that are divided into two parts, point-to-point operations: put and get,
and Fig. 9 shows the comparison of collective operations: broadcast
(one-to-all) and alltoall (all-to-all).

For the point-to-point communication in Fig. 8, the latency results
on Omni-Path and InfiniBand are comparable in most cases. The latency
of get operation on Omni-Path is slightly better than that on IB with
medium message size (∼1K bytes). When it goes to large messages (16–
512K bytes), the latency of IB is better than that of Omni-Path for both
put and get operations. Although SOS has some specific optimizations
on Omni-Path, we do not observe the corresponding optimizations
compared with IB for put and get, which could attribute to the hetero-
geneous hardware configurations, like the cache size or CPU, on two
clusters.

The collective communication performance is shown in Fig. 9.
InfiniBand shows a lower latency number than Omni-Path in most
cases, except for alltoall operation in small message size. Especially,
the latency number of alltoall operation on Omni-Path is much slower
han the one on InfiniBand. In addition to the heterogeneous hardware
onfigurations, the different network frameworks (Libfabric on Omni-
ath and UCX on InfiniBand) could also be why the performance is
ifferent.

. Discussion

This section summarizes some improvable aspects of existing bench-
arks as we have observed after showing the example experiments

nd performance characterization results. (1) It is not always easy to
et stable numbers. As we mentioned earlier, many benchmarks are not
table, and we may need to tune many parameters carefully or take the
verage of multiple rounds of running to get stable numbers. (2) Not
any benchmarks provide reference numbers. Some benchmarks do not
ive reference numbers so that the users cannot evaluate whether their
esults are reasonable or not. Hence, we encourage our community
o publish more reference numbers with the surveyed benchmarks in
his paper on various interconnects as guidance. (3) Some benchmarks
ack clear instructions or specifications. Some benchmarks assume that

sers are experts and do not provide clear instructions or specifications



Y. Li, H. Qi, G. Lu et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100074

p
P
B
S
m
b
p
a

7

t

Fig. 9. OSU Micro-Benchmarks for OpenSHMEM with Broadcast and Alltoall on
Omni-Path and InfiniBand.

about benchmark installation, configuration, and usage information.
(4) Not many benchmarks provide detailed warnings. We find that the
roper warning messages are helpful for benchmarking. For example,
erftest can warn the users when ‘CPU frequency is not max’. (5)
enchmarks usually use different ways to calculate and present numbers.
ome benchmarks may use number of iterations to characterize perfor-
ance, while some use time duration. Some benchmarks present the

est performance numbers, while some benchmarks give the average
erformance numbers. Therefore, users need to compare the numbers
cross benchmarks carefully.

. Related work

Besides the related survey studies and benchmarks discussed in Sec-
ion 1, 3, and 4, this section summarizes more benchmarking studies.
Benchmarking distributed storage systems: The distributed stor-

age benchmarks evaluate how the storage system serves requests for
reading and writing files and objects. For example, SKB [117] sup-
ports performance benchmarking of 43 distributed storage systems.
The Cloud Object Storage Benchmark [118] is for benchmarking cloud
object storage services. Acquaviva et al. [119] developed a benchmark
to evaluate different Cloud Distributed File Systems.

Benchmarking big data systems: Many benchmarks are proposed
to evaluate the big data systems with the big data boom. HiBench [120]
and MRBench [121] are designed for evaluating MapReduce systems.
TextBenDS [122] is applied to evaluate the performance of Hive,
Spark, and MongoDB on a textual corpus. The TPC [123] organiza-
tion designed benchmark standards what were data-centric benchmark
and disseminated verifiable data to the industry. Wang et al. [124]
discussed the challenges of using the widely-used benchmarks (TPC-C
and YCSB) for systems evaluation. DCQCN [125] and DSCP-BASEDPFC
[126] introduce how to benchmark and monitor the RDMA traffic on
data centers with RoCEv2 networks.

Benchmarking AI systems: Both AIBench [127–129] and MLPerf
[130–132] cover a broad diversity of scenarios to evaluate the AI
systems. DataPerf [133] benchmarks the datasets in machine learning
and the algorithms in processing these datasets. HPC AI500 [134]
is a benchmark suite to evaluate HPC systems that run real-world
workloads.

Benchmarking computing systems: SPEC (Standard Performance
Evaluation Corporation) [135] designed standardized benchmarks and
tools to evaluate performance and energy efficiency for computing sys-
tems. PARSEC (Princeton Application Repository for Shared-Memory
11
Computers) [136] benchmarks the workloads and shared-memory pro-
grams for chip-multiprocessors and contains thirteen programs in dif-
ferent areas.

To the best of our knowledge, we are the first to extensively survey
the benchmarks for hot interconnects.

8. Conclusion

This paper presents an extensive survey on hot interconnects in
modern data centers and HPC clusters and associated benchmarks
to help the community understand these advanced interconnects bet-
ter. After introducing some representative modern interconnects and
their features, we survey some commonly used micro-benchmarks and
application-level benchmarks that can be used on these interconnects
to measure their performance. Based on the micro-/application-level
benchmarks survey, we conduct experiments on some kinds of real in-
terconnects with the corresponding benchmarks, illustrate performance
characteristics of these interconnects, and provide our interpretation of
the experiment results. Considering the continuous evolution of data
center interconnects and benchmarks in the future, we also discuss
existing benchmarks’ improvable aspects and our insights for future
benchmark design and development.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work was supported in part by the NSF research grant CCF
#2132049. Part of this research was supported by the Exascale Comput-
ing Project (17-SC-20-SC), a collaborative effort of the U.S. Department
of Energy Office of Science and the National Nuclear Security Admin-
istration, and by the U.S. Department of Energy, Office of Science,
under Contract DE-AC02-06CH11357. We gratefully acknowledge the
computing resources provided on Bebop, an HPC cluster operated by
the Laboratory Computing Resource Center at Argonne National Labo-
ratory, USA. Part of this research was conducted using Pinnacles (NSF
MRI, #2019144) at the Cyberinfrastructure and Research Technologies
(CIRT) at University of California, Merced.

References

[1] D.K. Panda, X. Lu, D. Shankar, High-Performance Big Data Computing, The MIT
Press, 2022.

[2] Mellanox, Introducing 200G HDR InfiniBand Solutions, 2022, https:
//network.nvidia.com/sites/default/files/pdf/whitepapers/WP_Introducing_
200G_HDR_InfiniBand_Solutions.pdf.

[3] Slingshot, 2022, https://www.hpe.com/us/en/compute/hpc/slingshot-
interconnect.html.

[4] B. Alverson, E. Froese, L. Kaplan, D. Roweth, Cray XC Series Network, 2012,
Cray Inc., White Paper WP-Aries01-1112.

[5] Y. Ajima, T. Kawashima, T. Okamoto, N. Shida, K. Hirai, T. Shimizu, S.
Hiramoto, Y. Ikeda, T. Yoshikawa, K. Uchida, et al., The Tofu Interconnect
D, in: 2018 IEEE International Conference on Cluster Computing, CLUSTER,
IEEE, 2018, pp. 646–654.

[6] 100 Gigabit Ethernet, 2022, https://en.wikipedia.org/wiki/100_Gigabit_
Ethernet.

[7] Terabit Ethernet, 2022, https://en.wikipedia.org/wiki/Terabit_Ethernet.
[8] R. Han, X. Lu, J. Xu, On Big Data Benchmarking, in: Workshop on Big Data

Benchmarks, Performance Optimization, and Emerging Hardware, Springer,
2014, pp. 3–18.

[9] Q. Zhang, L. Zha, J. Lin, D. Tu, M. Li, F. Liang, R. Wu, X. Lu, A Survey
on Deep Learning Benchmarks: Do We Still Need New Ones? in: International
Symposium on Benchmarking, Measuring and Optimization, Springer, 2018, pp.
36–49.

[10] X. Zhou, X. Peng, T. Xie, J. Sun, C. Xu, C. Ji, W. Zhao, Poster: Bench-
marking Microservice Systems for Software Engineering Research, in: 2018
IEEE/ACM 40th International Conference on Software Engineering: Companion
(ICSE-Companion), IEEE, 2018, pp. 323–324.

http://refhub.elsevier.com/S2772-4859(22)00061-8/sb1
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb1
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb1
https://network.nvidia.com/sites/default/files/pdf/whitepapers/WP_Introducing_200G_HDR_InfiniBand_Solutions.pdf
https://network.nvidia.com/sites/default/files/pdf/whitepapers/WP_Introducing_200G_HDR_InfiniBand_Solutions.pdf
https://network.nvidia.com/sites/default/files/pdf/whitepapers/WP_Introducing_200G_HDR_InfiniBand_Solutions.pdf
https://network.nvidia.com/sites/default/files/pdf/whitepapers/WP_Introducing_200G_HDR_InfiniBand_Solutions.pdf
https://network.nvidia.com/sites/default/files/pdf/whitepapers/WP_Introducing_200G_HDR_InfiniBand_Solutions.pdf
https://www.hpe.com/us/en/compute/hpc/slingshot-interconnect.html
https://www.hpe.com/us/en/compute/hpc/slingshot-interconnect.html
https://www.hpe.com/us/en/compute/hpc/slingshot-interconnect.html
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb4
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb4
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb4
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb5
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb5
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb5
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb5
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb5
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb5
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb5
https://en.wikipedia.org/wiki/100_Gigabit_Ethernet
https://en.wikipedia.org/wiki/100_Gigabit_Ethernet
https://en.wikipedia.org/wiki/100_Gigabit_Ethernet
https://en.wikipedia.org/wiki/Terabit_Ethernet
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb8
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb8
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb8
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb8
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb8
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb9
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb9
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb9
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb9
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb9
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb9
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb9
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb10
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb10
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb10
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb10
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb10
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb10
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb10


Y. Li, H. Qi, G. Lu et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100074
[11] W. Gao, J. Zhan, L. Wang, C. Luo, D. Zheng, X. Wen, R. Ren, C. Zheng, X. He,
H. Ye, et al., BigDataBench: A Scalable and Unified Big Data and AI Benchmark
Suite, 2018, arXiv preprint arXiv:1802.08254.

[12] Netperf, 2022, https://github.com/HewlettPackard/netperf.
[13] Open Fabrics Enterprise Distribution (OFED) Performance Tests, 2022, https:

//github.com/linux-rdma/perftest.
[14] D.K. Panda, H. Subramoni, C.-H. Chu, M. Bayatpour, The MVAPICH

project: Transforming Research into High-performance MPI Library for
HPC Community, J. Comput. Sci. 52 (2021) 101208, http://dx.doi.org/10.
1016/j.jocs.2020.101208, URL https://www.sciencedirect.com/science/article/
pii/S1877750320305093. Case Studies in Translational Computer Science.

[15] M.P.I. Forum, MPI: A Message-Passing Interface Standard Version 4.0, 2021,
URL https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf.

[16] G. Almasi, PGAS (Partitioned Global Address Space) Languages, in: D. Padua
(Ed.), Encyclopedia of Parallel Computing, Springer US, Boston, MA, 2011, pp.
1539–1545, http://dx.doi.org/10.1007/978-0-387-09766-4_210.

[17] OmniPath, 2022, https://www.cornelisnetworks.com/products/.
[18] S. Derradji, T. Palfer-Sollier, J.-P. Panziera, A. Poudes, F.W. Atos, The

BXI Interconnect Architecture, in: 2015 IEEE 23rd Annual Symposium on
High-Performance Interconnects, IEEE, 2015, pp. 18–25.

[19] TOP 500 Supercomputer Sites, 2022, http://www.top500.org.
[20] I.T. Association, et al., Supplement to InfiniBand Architecture Specification,

Release 1 (2) (2010) 1.
[21] IEEE std 802.3x-1997 and IEEE std 802.3y-1997 (supplement to ISO/IEC 8802-

3: 1996, in: ANSI/IEEE Std 802.3, 1996 ed., IEEE Standards for Local and
Metropolitan Area Networks: Supplements to Carrier Sense Multiple Access with
Collision Detection (CSMA/CD).

[22] S. Floyd, TCP and Explicit Congestion Notification, ACM SIGCOMM Comput.
Commun. Rev. 24 (5) (1994) 8–23.

[23] M. Alizadeh, B. Atikoglu, A. Kabbani, A. Lakshmikantha, R. Pan, B. Prabhakar,
M. Seaman, Data Center Transport Mechanisms: Congestion Control Theory
and IEEE Standardization, in: 2008 46th Annual Allerton Conference on
Communication, Control, and Computing, IEEE, 2008, pp. 1270–1277.

[24] Elastic Fabric Adapter - Amazon Elastic Compute Cloud, 2022, https://docs.
aws.amazon.com/AWSEC2/latest/UserGuide/efa.html.

[25] OpenFabrics Interfaces Working Group, Libfabric OpenFabrics, 2022, URL https:
//ofiwg.github.io/libfabric/.

[26] Summit, 2022, https://www.olcf.ornl.gov/summit/.
[27] Sierra, 2022, https://hpc.llnl.gov/hardware/compute-platforms/sierra.
[28] InfiniBand Trade Association, InfiniBand Architecture Specification : Release

1.2.1, 2007, https://www.afs.enea.it/asantoro/V1r1_2_1.Release_12062007.pdf.
[29] X. Lu, D. Shankar, S. Gugnani, H. Subramoni, D.K. Panda, Impact of HPC

Cloud Networking Technologies on Accelerating Hadoop RPC and HBase, in:
2016 IEEE International Conference on Cloud Computing Technology and
Science (CloudCom), IEEE Computer Society, Los Alamitos, CA, USA, 2016,
pp. 310–317, http://dx.doi.org/10.1109/CloudCom.2016.0057, URL https://
doi.ieeecomputersociety.org/10.1109/CloudCom.2016.0057.

[30] M. Al-Fares, A. Loukissas, A. Vahdat, A Scalable, Commodity Data Center
Network Architecture, ACM SIGCOMM Comput. Commun. Rev. 38 (4) (2008)
63–74.

[31] A. Shpiner, Z. Haramaty, S. Eliad, V. Zdornov, B. Gafni, E. Zahavi, Dragonfly+:
Low Cost Topology for Scaling Datacenters, in: 2017 IEEE 3rd International
Workshop on High-Performance Interconnection Networks in the Exascale and
Big-Data Era (HiPINEB), IEEE, 2017, pp. 1–8.

[32] J. Jiang, R. Jain, C. So-In, An Explicit Rate Control Framework for Lossless Eth-
ernet Operation, in: 2008 IEEE International Conference on Communications,
IEEE, 2008, pp. 5914–5918.

[33] P. Newman, Backward Explicit Congestion Notification for ATM Local Area
Networks, in: Proceedings of GLOBECOM’93. IEEE Global Telecommunications
Conference, IEEE, 1993, pp. 719–723.

[34] GPUDirect RDMA, 2022, https://docs.nvidia.com/cuda/gpudirect-rdma/index.
html.

[35] A. Sodani, Knights Landing (KNL): 2nd Generation Intel® Xeon Phi Processor,
in: 2015 IEEE Hot Chips 27 Symposium, HCS, IEEE, 2015, pp. 1–24.

[36] Cornelis Networks, 2022, https://www.cornelisnetworks.com/.
[37] A. Tekin, A. Tuncer Durak, C. Piechurski, D. Kaliszan, F. Aylin Sungur, F.

Robertsén, P. Gschwandtner, State-of-The-Art and Trends for Computing and
Interconnect Network Solutions for HPC and AI, 2021, Partnership for Advanced
Computing in Europe, Available Online At www.Praceri.Eu.

[38] QSFP28 Adapter, 2022, https://www.ibm.com/docs/en/power9?topic=ad-
pcie3-2-port-100-gbe-nic-roce-qsfp28-adapter-fc-ec3l-ec3m-ccin-2cec.

[39] NVIDIA Mellanox InfiniBand NDR 400G Architecture, 2022, https:
//applieddatasystems.com/wp-content/uploads/2020/11/br-ndr-architecture-
brochure.pdf.

[40] About Fugaku, 2022, https://www.r-ccs.riken.jp/en/fugaku/about/.
[41] J. Kim, W.J. Dally, S. Scott, D. Abts, Technology-driven, Highly-scalable Drag-

onfly Topology, in: 2008 International Symposium on Computer Architecture,
IEEE, 2008, pp. 77–88.

[42] Perlmutter, 2022, https://www.nersc.gov/systems/perlmutter/.
[43] Frontier, 2022, https://www.olcf.ornl.gov/frontier/.
[44] Aurora, 2022, https://www.alcf.anl.gov/aurora.
12
[45] EI Capitan, 2022, https://www.hpe.com/us/en/compute/hpc/cray/doe-el-
capitan-press-release.html.

[46] L.G. Valiant, A Scheme for Fast Parallel Communication, SIAM J. Comput. 11
(2) (1982) 350–361.

[47] Piz Daint, 2022, https://www.cscs.ch/computers/piz-daint/.
[48] Cori, 2022, https://docs.nersc.gov/systems/cori/.
[49] Y. Ajima, S. Sumimoto, T. Shimizu, Tofu: A 6D Mesh/Torus Interconnect for

Exascale Computers, Computer 42 (11) (2009) 36–40.
[50] Y. Ajima, T. Inoue, S. Hiramoto, T. Shimizu, Tofu: Interconnect for the K

Computer, Fujitsu Sci. Tech. J. 48 (3) (2012) 280–285.
[51] Y. Ajima, T. Inoue, S. Hiramoto, S. Uno, S. Sumimoto, K. Miura, N. Shida,

T. Kawashima, T. Okamoto, O. Moriyama, et al., Tofu Interconnect 2:
System-on-chip Integration of High-performance Interconnect, in: International
Supercomputing Conference, Springer, 2014, pp. 498–507.

[52] Fugaku, 2022, https://www.fujitsu.com/global/about/innovation/fugaku/.
[53] B.W. Barrett, R.B. Brightwell, R.E. Grant, K.S. Hemmert, K.T. Pedretti, K.B.

Wheeler, K.D. Underwood, R. Riesen, A.B. Maccabe, T. Hudson, The Portals
4.0. 2 Networking Programming Interface, Sandia National Lab.(SNL-NM),
Albuquerque, NM (United States); Intel Corp . . . , 2014.

[54] D.-G. Sun, Z.-H. Weng, Butterfly Interconnection Implementation for an n-bit
Pparallel Ripple Carry Full Adder, Appl. Opt. 30 (14) (1991) 1781–1785.

[55] A. Kashyap, X. Lu, NVMe-OAF: Towards adaptive NVMe-of for IO-intensive
workloads on HPC cloud, in: Proceedings of the 31st International Sympo-
sium on High-Performance Parallel and Distributed Computing, HPDC ’22,
Association for Computing Machinery, New York, NY, USA, 2022, pp. 56–70,
http://dx.doi.org/10.1145/3502181.3531476.

[56] RDMA-bench: A Framework to Understand RDMA Performance, 2022, https:
//github.com/efficient/rdma_bench.

[57] iPerf2 - A Means to Measure Network Responsiveness and Throughput, 2022,
https://sourceforge.net/projects/iperf2/.

[58] iPerf3 - The Ultimate Speed Test Tool for TCP, UDP and SCTP, 2022, https:
//iperf.fr/.

[59] Comparison Table of iPerf2 and iPerf3, 2022, https://iperf2.sourceforge.io/
IperfCompare.html.

[60] Change between iPerf 2.0, iPerf 3.0 and iPerf 3.1, 2022, https://iperf.fr/iperf-
doc.php.

[61] qperf: Measure RDMA and IP performance, 2022, https://github.com/linux-
rdma/qperf.

[62] GPCNet, 2022, https://github.com/netbench/GPCNET.
[63] H. Subramoni, K. Hamidouche, A. Venkatesh, S. Chakraborty, D.K. Panda,

Designing MPI Library with Dynamic Connected Transport (DCT) of InfiniBand:
Early Experiences, in: International Supercomputing Conference, Springer, 2014,
pp. 278–295.

[64] L. Shalev, H. Ayoub, N. Bshara, E. Sabbag, A Cloud-Optimized Transport
Protocol for Elastic and Scalable HPC, IEEE Micro 40 (6) (2020) 67–73.

[65] Transport Modes - RDMA Aware Programming User Manual v1.7, 2022,
https://docs.nvidia.com/networking/display/RDMAAwareProgrammingv17/
Transport+Modes#.

[66] IEEE Standard for Cryptographic Protection of Data on Block-Oriented Storage
Devices, IEEE Std 1619-2007 (2008) 1–40, http://dx.doi.org/10.1109/IEEESTD.
2008.4493450.

[67] A. Kalia, M. Kaminsky, D.G. Andersen, Design Guidelines for High Performance
RDMA systems, in: 2016 USENIX Annual Technical Conference (USENIX ATC
16), 2016, pp. 437–450.

[68] A. Kalia, M. Kaminsky, D.G. Andersen, Using RDMA Efficiently for Key-Value
Services, in: Proceedings of the 2014 ACM Conference on SIGCOMM, SIGCOMM
’14, Association for Computing Machinery, New York, NY, USA, 2014, pp.
295–306, http://dx.doi.org/10.1145/2619239.2626299.

[69] H. Lim, D. Han, D.G. Andersen, M. Kaminsky, MICA: A Holistic Approach to
Fast In-Memory Key-Value Storage, in: 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14), 2014, pp. 429–444.

[70] X. Wei, J. Shi, Y. Chen, R. Chen, H. Chen, Fast In-memory Transaction
Processing Using RDMA and HTM, in: Proceedings of the 25th Symposium on
Operating Systems Principles, 2015, pp. 87–104.

[71] Wikipedia contributors, Berkeley Sockets — Wikipedia, the free encyclopedia,
2022.

[72] Wikipedia contributors, Stream Control Transmission Protocol — Wikipedia,
the free encyclopedia, 2022, https://en.wikipedia.org/w/index.php?title=
Stream_Control_Transmission_Protocol&oldid=1091520392 (Online; Accessed 12
September 2022).

[73] W. contributors, Unix Domain Socket — Wikipedia, the free encyclopedia,
2022, https://en.wikipedia.org/w/index.php?title=Unix_domain_socket&oldid=
1100609125 (Online; Accessed 12 September 2022).

[74] The Open Group, Data Link Provider Interface (DLPI), 2022, https://pubs.
opengroup.org/onlinepubs/009638599/toc.htm (Online; accessed 12 September
2022).

[75] S. Chunduri, T. Groves, P. Mendygral, B. Austin, J. Balma, K. Kandalla,
K. Kumaran, G. Lockwood, S. Parker, S. Warren, N. Wichmann, N. Wright,
GPCNeT: Designing a Benchmark Suite for Inducing and Measuring Contention
in HPC Networks, SC ’19, Association for Computing Machinery, New York,
NY, USA, 2019, http://dx.doi.org/10.1145/3295500.3356215.

http://arxiv.org/abs/1802.08254
https://github.com/HewlettPackard/netperf
https://github.com/linux-rdma/perftest
https://github.com/linux-rdma/perftest
https://github.com/linux-rdma/perftest
http://dx.doi.org/10.1016/j.jocs.2020.101208
http://dx.doi.org/10.1016/j.jocs.2020.101208
http://dx.doi.org/10.1016/j.jocs.2020.101208
https://www.sciencedirect.com/science/article/pii/S1877750320305093
https://www.sciencedirect.com/science/article/pii/S1877750320305093
https://www.sciencedirect.com/science/article/pii/S1877750320305093
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
http://dx.doi.org/10.1007/978-0-387-09766-4_210
https://www.cornelisnetworks.com/products/
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb18
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb18
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb18
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb18
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb18
http://www.top500.org
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb20
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb20
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb20
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb21
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb21
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb21
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb21
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb21
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb21
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb21
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb22
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb22
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb22
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb23
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb23
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb23
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb23
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb23
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb23
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb23
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa.html
https://ofiwg.github.io/libfabric/
https://ofiwg.github.io/libfabric/
https://ofiwg.github.io/libfabric/
https://www.olcf.ornl.gov/summit/
https://hpc.llnl.gov/hardware/compute-platforms/sierra
https://www.afs.enea.it/asantoro/V1r1_2_1.Release_12062007.pdf
http://dx.doi.org/10.1109/CloudCom.2016.0057
https://doi.ieeecomputersociety.org/10.1109/CloudCom.2016.0057
https://doi.ieeecomputersociety.org/10.1109/CloudCom.2016.0057
https://doi.ieeecomputersociety.org/10.1109/CloudCom.2016.0057
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb30
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb30
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb30
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb30
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb30
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb31
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb31
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb31
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb31
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb31
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb31
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb31
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb32
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb32
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb32
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb32
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb32
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb33
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb33
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb33
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb33
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb33
https://docs.nvidia.com/cuda/gpudirect-rdma/index.html
https://docs.nvidia.com/cuda/gpudirect-rdma/index.html
https://docs.nvidia.com/cuda/gpudirect-rdma/index.html
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb35
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb35
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb35
https://www.cornelisnetworks.com/
http://www.Praceri.Eu
https://www.ibm.com/docs/en/power9?topic=ad-pcie3-2-port-100-gbe-nic-roce-qsfp28-adapter-fc-ec3l-ec3m-ccin-2cec
https://www.ibm.com/docs/en/power9?topic=ad-pcie3-2-port-100-gbe-nic-roce-qsfp28-adapter-fc-ec3l-ec3m-ccin-2cec
https://www.ibm.com/docs/en/power9?topic=ad-pcie3-2-port-100-gbe-nic-roce-qsfp28-adapter-fc-ec3l-ec3m-ccin-2cec
https://applieddatasystems.com/wp-content/uploads/2020/11/br-ndr-architecture-brochure.pdf
https://applieddatasystems.com/wp-content/uploads/2020/11/br-ndr-architecture-brochure.pdf
https://applieddatasystems.com/wp-content/uploads/2020/11/br-ndr-architecture-brochure.pdf
https://applieddatasystems.com/wp-content/uploads/2020/11/br-ndr-architecture-brochure.pdf
https://applieddatasystems.com/wp-content/uploads/2020/11/br-ndr-architecture-brochure.pdf
https://www.r-ccs.riken.jp/en/fugaku/about/
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb41
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb41
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb41
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb41
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb41
https://www.nersc.gov/systems/perlmutter/
https://www.olcf.ornl.gov/frontier/
https://www.alcf.anl.gov/aurora
https://www.hpe.com/us/en/compute/hpc/cray/doe-el-capitan-press-release.html
https://www.hpe.com/us/en/compute/hpc/cray/doe-el-capitan-press-release.html
https://www.hpe.com/us/en/compute/hpc/cray/doe-el-capitan-press-release.html
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb46
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb46
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb46
https://www.cscs.ch/computers/piz-daint/
https://docs.nersc.gov/systems/cori/
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb49
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb49
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb49
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb50
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb50
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb50
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb51
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb51
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb51
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb51
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb51
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb51
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb51
https://www.fujitsu.com/global/about/innovation/fugaku/
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb53
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb53
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb53
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb53
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb53
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb53
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb53
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb54
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb54
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb54
http://dx.doi.org/10.1145/3502181.3531476
https://github.com/efficient/rdma_bench
https://github.com/efficient/rdma_bench
https://github.com/efficient/rdma_bench
https://sourceforge.net/projects/iperf2/
https://iperf.fr/
https://iperf.fr/
https://iperf.fr/
https://iperf2.sourceforge.io/IperfCompare.html
https://iperf2.sourceforge.io/IperfCompare.html
https://iperf2.sourceforge.io/IperfCompare.html
https://iperf.fr/iperf-doc.php
https://iperf.fr/iperf-doc.php
https://iperf.fr/iperf-doc.php
https://github.com/linux-rdma/qperf
https://github.com/linux-rdma/qperf
https://github.com/linux-rdma/qperf
https://github.com/netbench/GPCNET
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb63
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb63
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb63
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb63
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb63
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb63
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb63
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb64
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb64
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb64
https://docs.nvidia.com/networking/display/RDMAAwareProgrammingv17/Transport+Modes#
https://docs.nvidia.com/networking/display/RDMAAwareProgrammingv17/Transport+Modes#
https://docs.nvidia.com/networking/display/RDMAAwareProgrammingv17/Transport+Modes#
http://dx.doi.org/10.1109/IEEESTD.2008.4493450
http://dx.doi.org/10.1109/IEEESTD.2008.4493450
http://dx.doi.org/10.1109/IEEESTD.2008.4493450
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb67
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb67
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb67
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb67
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb67
http://dx.doi.org/10.1145/2619239.2626299
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb69
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb69
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb69
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb69
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb69
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb70
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb70
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb70
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb70
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb70
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb71
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb71
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb71
https://en.wikipedia.org/w/index.php?title=Stream_Control_Transmission_Protocol&oldid=1091520392
https://en.wikipedia.org/w/index.php?title=Stream_Control_Transmission_Protocol&oldid=1091520392
https://en.wikipedia.org/w/index.php?title=Stream_Control_Transmission_Protocol&oldid=1091520392
https://en.wikipedia.org/w/index.php?title=Unix_domain_socket&oldid=1100609125
https://en.wikipedia.org/w/index.php?title=Unix_domain_socket&oldid=1100609125
https://en.wikipedia.org/w/index.php?title=Unix_domain_socket&oldid=1100609125
https://pubs.opengroup.org/onlinepubs/009638599/toc.htm
https://pubs.opengroup.org/onlinepubs/009638599/toc.htm
https://pubs.opengroup.org/onlinepubs/009638599/toc.htm
http://dx.doi.org/10.1145/3295500.3356215


Y. Li, H. Qi, G. Lu et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100074
[76] M.P.I. Forum, MPI: A Message-Passing Interface Standard Version 3.0, 2012,
URL https://www.mpi-forum.org/docs/mpi-3.0/mpi30-report-book.pdf.

[77] NAS Parallel Benchmarks, 2022, https://www.nas.nasa.gov/software/npb.html.
[78] Intel® MPI Benchmarks, 2022, https://www.intel.com/content/www/us/en/

developer/articles/technical/intel-mpi-benchmarks.html.
[79] U. Consortium, D. Bonachea, G. Funck, UPC Language and Library Speci-

fications, Version 1.3, 2013, http://dx.doi.org/10.2172/1134233, URL https:
//www.osti.gov/biblio/1134233.

[80] OpenSHMEM Application Programming Interface, v1. 5 Final, 2022.
[81] M. Van Steen, A.S. Tanenbaum, Distributed Systems, Maarten van Steen Leiden,

The Netherlands, 2017.
[82] T. Li, H. Shi, X. Lu, HatRPC: Hint-Accelerated Thrift RPC over RDMA, in:

Proceedings of the International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, SC ’21, Association for Computing
Machinery, New York, NY, USA, 2021, http://dx.doi.org/10.1145/3458817.
3476191.

[83] Apache Thrift, 2022, https://thrift.apache.org/.
[84] rpc-perf, 2022, https://github.com/twitter/rpc-perf.
[85] Wikipedia contributors, NVM Express — Wikipedia, the free encyclo-

pedia, 2022, https://en.wikipedia.org/w/index.php?title=NVM_Express&oldid=
1105967834 (Online; accessed 13-September-2022).

[86] Z. Yang, J.R. Harris, B. Walker, D. Verkamp, C. Liu, C. Chang, G. Cao, J. Stern,
V. Verma, L.E. Paul, SPDK: A Development Kit to Build High Performance Stor-
age Applications, in: 2017 IEEE International Conference on Cloud Computing
Technology and Science (CloudCom), IEEE, 2017, pp. 154–161.

[87] SPDK: NVMe Driver, 2022, https://spdk.io/doc/nvme.html.
[88] IOzone Filesystem Benchmark, 2022, https://www.iozone.org/.
[89] Iometer project, 2022, http://www.iometer.org/.
[90] H. Shi, X. Lu, D.K. Panda, EC-Bench: Benchmarking Onload and Offload Erasure

Coders on Modern Hardware Architectures, in: C. Zheng, J. Zhan (Eds.),
Benchmarking, Measuring, and Optimizing, Springer International Publishing,
Cham, 2019, pp. 215–230.

[91] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S.
Ghemawat, G. Irving, M. Isard, et al., TensorFlow: A System for Large-Scale
Machine Learning, in: 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16), 2016, pp. 265–283.

[92] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, et al., PyTorch: An Imperative Style,
High-Performance Deep Learning Library, Adv. Neural Inf. Process. Syst. 32
(2019).

[93] PerfZero, 2022, https://github.com/tensorflow/benchmarks/tree/master/
perfzero.

[94] TorchBench, 2022, https://github.com/pytorch/benchmark.
[95] Meta, PARAM, 2022, https://github.com/facebookresearch/param.
[96] M. Naumov, D. Mudigere, H.M. Shi, J. Huang, N. Sundaraman, J. Park,

X. Wang, U. Gupta, C. Wu, A.G. Azzolini, D. Dzhulgakov, A. Mallevich, I.
Cherniavskii, Y. Lu, R. Krishnamoorthi, A. Yu, V. Kondratenko, S. Pereira,
X. Chen, W. Chen, V. Rao, B. Jia, L. Xiong, M. Smelyanskiy, Deep Learning
Recommendation Model for Personalization and Recommendation Systems,
2019, CoRR arXiv:1906.00091.

[97] Deep Learning Recommendation Model for Personalization and Recommenda-
tion Systems, 2022, https://github.com/facebookresearch/dlrm.

[98] BaiduResearch, DeepBench, 2022, https://github.com/baidu-research/
DeepBench.

[99] S. Jeaugey, Nccl 2.0, in: GPU Technology Conference, GTC, vol. 2, 2017.
[100] Gloo, 2022, https://github.com/facebookincubator/gloo.
[101] NCCL Tests, 2022, https://github.com/NVIDIA/nccl-tests.
[102] Gloo, 2022, https://github.com/facebookincubator/gloo.
[103] D. Kirk, et al., NVIDIA CUDA Software and GPU Parallel Computing

Architecture, in: ISMM, vol. 7, 2007, pp. 103–104.
[104] ROCm, 2022, https://www.amd.com/en/graphics/servers-solutions-rocm.
[105] OpenACC, 2022, https://www.openacc.org/.
[106] B.F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, R. Sears, Benchmarking

Cloud Serving Systems with YCSB, in: Proceedings of the 1st ACM Symposium
on Cloud Computing, Association for Computing Machinery, New York, NY,
USA, 2010, pp. 143–154, http://dx.doi.org/10.1145/1807128.1807152.

[107] The High-Performance Big Data Project, 2022, https://hibd.cse.ohio-state.edu/.
[108] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno, J. Hu,

B. Ritchken, B. Jackson, K. Hu, M. Pancholi, Y. He, B. Clancy, C. Colen, F.
Wen, C. Leung, S. Wang, L. Zaruvinsky, M. Espinosa, R. Lin, Z. Liu, J. Padilla,
C. Delimitrou, An Open-Source Benchmark Suite for Microservices and Their
Hardware-Software Implications for Cloud & Edge Systems, in: Proceedings
of the Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, Association for Computing
Machinery, New York, NY, USA, 2019, pp. 3–18, http://dx.doi.org/10.1145/
3297858.3304013.

[109] A. Sriraman, T.F. Wenisch, 𝜇Suite: A benchmark suite for microservices, in:
2018 IEEE International Symposium on Workload Characterization, 2018, pp.
1–12, http://dx.doi.org/10.1109/IISWC.2018.8573515.

[110] Pinnacles cluster, 2022, https://ucmerced.github.io/hpc_docs/#/Pinnacles.
[111] Bebop, 2022, https://www.lcrc.anl.gov/systems/resources/bebop/.
13
[112] Joint Laboratory for System Evaluation (JLSE), 2022, https://www.jlse.anl.gov/.
[113] The Unified Communication X Library, 2022, http://www.openucx.org.
[114] P. Shamis, M.G. Venkata, M.G. Lopez, M.B. Baker, O. Hernandez, Y. Itigin,

M. Dubman, G. Shainer, R.L. Graham, L. Liss, et al., UCX: An Open Source
Framework for HPC Network APIs and Beyond, in: 2015 IEEE 23rd Annual
Symposium on High-Performance Interconnects, IEEE, 2015, pp. 40–43.

[115] X. Lu, D. Shankar, S. Gugnani, D.K. Panda, High-Performance Design of Apache
Spark with RDMA and Its Benefits on Various Workloads, in: 2016 IEEE
International Conference on Big Data (Big Data), 2016, pp. 253–262, http:
//dx.doi.org/10.1109/BigData.2016.7840611.

[116] Sandia-OpenSHMEM/SOS, 2022, https://github.com/Sandia-OpenSHMEM/SOS.
[117] K. Munegowda, N. Sanjay Kumar, Design and Implementation of Storage Bench-

mark Kit, in: Emerging Research in Computing, Information, Communication
and Applications, Springer, 2022, pp. 45–62.

[118] Q. Zheng, H. Chen, Y. Wang, J. Duan, Z. Huang, COSBench: A Benchmark Tool
for Cloud Object Storage Services, in: 2012 IEEE Fifth International Conference
on Cloud Computing, IEEE, 2012, pp. 998–999.

[119] L. Acquaviva, P. Bellavista, A. Corradi, L. Foschini, L. Gioia, P.C.M. Picone,
Cloud Distributed File Systems: A Benchmark of HDFS, Ceph, GlusterFS, and
XtremeFS, in: 2018 IEEE Global Communications Conference, IEEE, 2018, pp.
1–6.

[120] S. Huang, J. Huang, J. Dai, T. Xie, B. Huang, The HiBench Benchmark Suite:
Characterization of the MapReduce-based Data Analysis, in: 2010 IEEE 26th
International Conference on Data Engineering Workshops, ICDEW 2010, IEEE,
2010, pp. 41–51.

[121] K. Kim, K. Jeon, H. Han, S.-g. Kim, H. Jung, H.Y. Yeom, MRBench: A Benchmark
for Mapreduce Framework, in: 2008 14th IEEE International Conference on
Parallel and Distributed Systems, IEEE, 2008, pp. 11–18.

[122] C.-O. Truică, E.-S. Apostol, J. Darmont, I. Assent, TextBenDS: a Generic Textual
Data Benchmark for Distributed Systems, Inform. Syst. Front. 23 (1) (2021)
81–100.

[123] The Transaction Processing Performance Council (TPC), 2022, https://www.tpc.
org/.

[124] Y. Wang, M. Yu, Y. Hui, F. Zhou, Y. Huang, R. Zhu, X. Ren, T. Li, X. Lu, A Study
of Database Performance Sensitivity to Experiment Settings, Proc. VLDB Endow.
15 (7) (2022) 1439–1452, http://dx.doi.org/10.14778/3523210.3523221.

[125] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron, J. Padhye,
S. Raindel, M.H. Yahia, M. Zhang, Congestion Control for Large-Scale RDMA
Deployments, in: Proceedings of the 2015 ACM Conference on Special In-
terest Group on Data Communication, Association for Computing Machinery,
New York, NY, USA, 2015, pp. 523–536, http://dx.doi.org/10.1145/2785956.
2787484.

[126] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye, M. Lipshteyn, RDMA over
Commodity Ethernet at Scale, in: Proceedings of the 2016 ACM SIGCOMM
Conference, Association for Computing Machinery, New York, NY, USA, 2016,
pp. 202–215, http://dx.doi.org/10.1145/2934872.2934908.

[127] AIBench, 2022, https://www.benchcouncil.org/aibench/.
[128] W. Gao, F. Tang, J. Zhan, X. Wen, L. Wang, Z. Cao, C. Lan, C. Luo, X. Liu,

Z. Jiang, Aibench Scenario: Scenario-distilling AI Benchmarking, in: 2021 30th
International Conference on Parallel Architectures and Compilation Techniques,
IEEE, 2021, pp. 142–158.

[129] F. Tang, W. Gao, J. Zhan, C. Lan, X. Wen, L. Wang, C. Luo, Z. Cao, X. Xiong,
Z. Jiang, et al., AIBench Training: Balanced Industry-standard AI Training
Benchmarking, in: 2021 IEEE International Symposium on Performance Analysis
of Systems and Software, IEEE, 2021, pp. 24–35.

[130] P. Mattson, V.J. Reddi, C. Cheng, C. Coleman, G. Diamos, D. Kanter, P.
Micikevicius, D. Patterson, G. Schmuelling, H. Tang, et al., MLPerf: An Industry
Standard Benchmark Suite for Machine Learning Performance, IEEE Micro 40
(2) (2020) 8–16.

[131] P. Mattson, C. Cheng, G. Diamos, C. Coleman, P. Micikevicius, D. Patterson, H.
Tang, G.-Y. Wei, P. Bailis, V. Bittorf, et al., MLPerf Training Benchmark, Proc.
Mach. Learn. Syst. 2 (2020) 336–349.

[132] C. Banbury, V.J. Reddi, P. Torelli, J. Holleman, N. Jeffries, C. Kiraly, P.
Montino, D. Kanter, S. Ahmed, D. Pau, et al., MLPerf tiny benchmark, 2021,
arXiv preprint arXiv:2106.07597.

[133] M. Mazumder, C. Banbury, X. Yao, B. Karlaš, W.G. Rojas, S. Diamos, G. Diamos,
L. He, D. Kiela, D. Jurado, D. Kanter, R. Mosquera, J. Ciro, L. Aroyo, B.
Acun, S. Eyuboglu, A. Ghorbani, E. Goodman, T. Kane, C.R. Kirkpatrick, T.-S.
Kuo, J. Mueller, T. Thrush, J. Vanschoren, M. Warren, A. Williams, S. Yeung,
N. Ardalani, P. Paritosh, C. Zhang, J. Zou, C.-J. Wu, C. Coleman, A. Ng, P.
Mattson, V.J. Reddi, DataPerf: Benchmarks for Data-Centric AI Development,
2022, http://dx.doi.org/10.48550/ARXIV.2207.10062, URL https://arxiv.org/
abs/2207.10062.

[134] Z. Jiang, W. Gao, L. Wang, X. Xiong, Y. Zhang, X. Wen, C. Luo, H. Ye, X. Lu,
Y. Zhang, S. Feng, K. Li, W. Xu, J. Zhan, HPC AI500: A Benchmark Suite for
HPC AI Systems, in: C. Zheng, J. Zhan (Eds.), Benchmarking, Measuring, and
Optimizing, Springer International Publishing, Cham, 2019, pp. 10–22.

[135] The Standard Performance Evaluation Corporation (SPEC), 2022, https://www.
spec.org/.

[136] C. Bienia, Benchmarking Modern Multiprocessors (Ph.D. thesis), Princeton
University, 2011.

https://www.mpi-forum.org/docs/mpi-3.0/mpi30-report-book.pdf
https://www.nas.nasa.gov/software/npb.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-mpi-benchmarks.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-mpi-benchmarks.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-mpi-benchmarks.html
http://dx.doi.org/10.2172/1134233
https://www.osti.gov/biblio/1134233
https://www.osti.gov/biblio/1134233
https://www.osti.gov/biblio/1134233
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb80
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb81
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb81
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb81
http://dx.doi.org/10.1145/3458817.3476191
http://dx.doi.org/10.1145/3458817.3476191
http://dx.doi.org/10.1145/3458817.3476191
https://thrift.apache.org/
https://github.com/twitter/rpc-perf
https://en.wikipedia.org/w/index.php?title=NVM_Express&oldid=1105967834
https://en.wikipedia.org/w/index.php?title=NVM_Express&oldid=1105967834
https://en.wikipedia.org/w/index.php?title=NVM_Express&oldid=1105967834
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb86
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb86
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb86
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb86
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb86
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb86
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb86
https://spdk.io/doc/nvme.html
https://www.iozone.org/
http://www.iometer.org/
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb90
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb90
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb90
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb90
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb90
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb90
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb90
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb91
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb91
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb91
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb91
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb91
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb91
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb91
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb92
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb92
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb92
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb92
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb92
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb92
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb92
https://github.com/tensorflow/benchmarks/tree/master/perfzero
https://github.com/tensorflow/benchmarks/tree/master/perfzero
https://github.com/tensorflow/benchmarks/tree/master/perfzero
https://github.com/pytorch/benchmark
https://github.com/facebookresearch/param
http://arxiv.org/abs/1906.00091
https://github.com/facebookresearch/dlrm
https://github.com/baidu-research/DeepBench
https://github.com/baidu-research/DeepBench
https://github.com/baidu-research/DeepBench
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb99
https://github.com/facebookincubator/gloo
https://github.com/NVIDIA/nccl-tests
https://github.com/facebookincubator/gloo
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb103
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb103
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb103
https://www.amd.com/en/graphics/servers-solutions-rocm
https://www.openacc.org/
http://dx.doi.org/10.1145/1807128.1807152
https://hibd.cse.ohio-state.edu/
http://dx.doi.org/10.1145/3297858.3304013
http://dx.doi.org/10.1145/3297858.3304013
http://dx.doi.org/10.1145/3297858.3304013
http://dx.doi.org/10.1109/IISWC.2018.8573515
https://ucmerced.github.io/hpc_docs/#/Pinnacles
https://www.lcrc.anl.gov/systems/resources/bebop/
https://www.jlse.anl.gov/
http://www.openucx.org
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb114
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb114
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb114
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb114
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb114
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb114
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb114
http://dx.doi.org/10.1109/BigData.2016.7840611
http://dx.doi.org/10.1109/BigData.2016.7840611
http://dx.doi.org/10.1109/BigData.2016.7840611
https://github.com/Sandia-OpenSHMEM/SOS
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb117
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb117
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb117
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb117
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb117
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb118
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb118
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb118
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb118
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb118
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb119
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb119
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb119
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb119
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb119
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb119
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb119
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb120
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb120
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb120
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb120
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb120
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb120
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb120
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb121
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb121
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb121
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb121
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb121
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb122
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb122
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb122
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb122
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb122
https://www.tpc.org/
https://www.tpc.org/
https://www.tpc.org/
http://dx.doi.org/10.14778/3523210.3523221
http://dx.doi.org/10.1145/2785956.2787484
http://dx.doi.org/10.1145/2785956.2787484
http://dx.doi.org/10.1145/2785956.2787484
http://dx.doi.org/10.1145/2934872.2934908
https://www.benchcouncil.org/aibench/
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb128
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb128
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb128
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb128
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb128
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb128
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb128
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb129
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb129
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb129
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb129
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb129
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb129
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb129
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb130
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb130
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb130
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb130
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb130
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb130
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb130
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb131
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb131
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb131
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb131
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb131
http://arxiv.org/abs/2106.07597
http://dx.doi.org/10.48550/ARXIV.2207.10062
https://arxiv.org/abs/2207.10062
https://arxiv.org/abs/2207.10062
https://arxiv.org/abs/2207.10062
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb134
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb134
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb134
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb134
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb134
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb134
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb134
https://www.spec.org/
https://www.spec.org/
https://www.spec.org/
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb136
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb136
http://refhub.elsevier.com/S2772-4859(22)00061-8/sb136

	Understanding hot interconnects with an extensive benchmark survey
	Introduction
	Overview of Modern Interconnects
	Ethernet
	InfiniBand
	Omni-Path
	Slingshot
	Aries Interconnect
	Tofu Interconnect D
	Bull eXascale Interconnect (BXI)
	Summary

	Survey of Micro-benchmarks
	Perftest
	RDMA-bench
	Netperf
	iPerf
	qperf
	GPCNeT
	Summary

	Survey of Application-Level Benchmarks
	MPI Benchmarks
	PGAS Benchmarks
	RPC Benchmarks
	Storage Benchmarks
	GPU applications Benchmarks
	Key-Value Store Benchmarks
	Microservice Benchmarks
	Summary

	Experiment
	Benchmarking Setup
	Micro-benchmark Evaluation
	Latency
	Bandwidth
	InfiniBand EDR VS. HDR

	MPI Benchmark Evaluation
	Latency
	Bandwidth
	Throughput

	PGAS Benchmark Evaluation

	Discussion
	Related Work
	Conclusion
	Declaration of Competing Interest
	Acknowledgments
	References


