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A B S T R A C T

Emerging and future applications rely heavily upon systems consisting of Internet of Things (IoT), edges,
data centers, and humans-in-the-loop. Significantly different from warehouse-scale computers that serve
independent concurrent user requests, this new class of computer systems directly interacts with the physical
world, considering humans an essential part and performing safety-critical and mission-critical operations; their
computations have intertwined dependencies between not only adjacent execution loops but also actions or
decisions triggered by IoTs, edge, datacenters, or humans-in-the-loop; the systems must first satisfy the accuracy
metric in predicting, interpreting, or taking action before meeting the performance goal under different cases.

This article argues we need a paradigm shift to reconstruct the IoTs, edges, data centers, and humans-in-
the-loop as a computer rather than a distributed system. We coin a new term, high fusion computers (HFCs),
to describe this class of systems. The fusion in the term has two implications: fusing IoTs, edges, data centers,
and humans-in-the-loop as a computer, fusing the physical and digital worlds through HFC systems. HFC is
a pivotal case of the open-source computer systems initiative. We laid out the challenges, plan, and call for
uniting our community’s wisdom and actions to address the HFC challenges. Everything, including the source
code, will be publicly available from the project homepage: https://www.computercouncil.org/HFC/.
1. Introduction

The past decades have witnessed solid achievements and ambitious
plans on planetary-scale infrastructures. Typical examples include but
are not only limited to Grid computing [2], planet-scale data cen-
ters hosting internet services or called warehouse-scale computers [3],
virtual supercomputers in the cloud [4], interplanetary Internet [5],
networked systems of embedded computers [6], planet-scale computing
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E-mail addresses: gaowanling@ict.ac.cn (W. Gao), wanglei_2011@ict.ac.cn (L. Wang), cmy@ict.ac.cn (M. Chen), xiongjin@ict.ac.cn (J. Xiong),
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1 According to [1] a safety-critical system is ‘‘a system whose failure may result in injury, loss of life or serious environmental damage, e.g., a control system
or a chemical manufacturing plant’’. https://ifs.host.cs.st-andrews.ac.uk/Books/SE9/Web/Dependability/CritSys.html

2 According to [1] a mission-critical system is ‘‘a system whose failure may fail some goal-directed activity, e.g., a navigational system for a spacecraft’’; a
usiness-critical system is ‘‘a system whose failure may result in very high costs for the business using that system, e.g., customer accounting system in a bank’’.
ttps://ifs.host.cs.st-andrews.ac.uk/Books/SE9/Web/Dependability/CritSys.html

networks [7,8] or planetary computer [9]. However, emerging and
future applications raise daunting challenges beyond the reach of the
state-of-the-practice systems.

Emerging and future applications rely heavily on systems consist-
ing of IoTs, edges, data centers, and humans-in-the-loop [10]. These
networked systems of embedded computers [6] or IoTs, collaborating
with data centers, edges, and humans-in-the-loop, can radically change
https://doi.org/10.1016/j.tbench.2022.100075
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the way people interact with the physical world and perform safety-
critical,1 or mission-critical,2 tasks. This new class of systems appears
n many forms and continues to expand: ‘‘implemented as a kind
f digital nervous system to enable instrumentation of all sorts of
paces, ranging from in situ environmental monitoring to surveillance
f battlespace conditions’’ [6], e.g., climate change monitoring and
efense systems; embodied as integrated instrumentation, operation,
aintenance, and regulation facilities of critical physical infrastructure,

.g., industrial digital twin, energy infrastructure management and civil
viation regulation; ‘‘employed in personal monitoring strategies (both
efense-related and civilian), synthesizing information from sensors on
nd within a person with information from laboratory tests and other
ources’’ [6], e.g., medical emergency applications; augmented as an
xtension of the real-world life for entertainment, education, and social
ctivities, e.g., Metaverse; instrumented as a kind of digital sensing and
utonomic control systems to perform safety-critical or mission-critical
asks, e.g., automotive driving and interplanetary explorations.

Significantly different from warehouse-scale computers that non-
top serve independent concurrent user requests [3], the new class of
omputer systems has three unique requirements. First, they directly
nteract with the physical world — considering humans an essential
art: human-in-the-loop, performing safety-critical and mission-critical
perations, and a significant fraction of actions may have an irre-
ersible effect. The role of humans and their interactions with the
ther system components cannot be ignored in the final impact on the
hysical world. Second, unlike Internet services that process indepen-
ent concurrent requests across data centers, their computations have
ntertwined dependencies between not only adjacent execution loops
which we call internal dependencies) but also actions or decisions
riggered by IoTs, edge, data centers, or humans-in-the-loop (which we
all external dependencies), and traverse different paths through and
round IoTs, edges, and data centers. Third, under this highly entangled
tate, the systems must first satisfy the quality metric before meet-
ng the performance goal under different conditions, like worst-case,
verage-case, and best-case. The quality metric measures the accuracy
f an application, task, or algorithm in predicting, interpreting, or
aking action.

Even considering a simple IoT application — 95% queries reporting
he status and 5% user queries accessing the database, serving 10-
illion devices needs about one thousand to one hundred thousand
odes under the threshold of 50 ms response time. Further, considering
he three unique system requirements mentioned above and the sea
hange in computing, data access, and networking patterns, this new
lass of computer systems demand resources that are several orders of
agnitude beyond the reach of the state-of-the-practice systems, which

aises daunting challenges.
This article argues that we need a paradigm shift to rebuild the

oTs, edges, data centers, and humans-in-the-loop as a computer rather
han a distributed system. We coin a new term, high fusion computers
HFCs), to describe this new class of computer systems. According to
he Oxford English Dictionary, fusion means ‘‘the process or result of
oining two or more things together to form a single entity’’. Fusion
n HFCs has two-fold meanings: fusing IoTs, edges, data centers, and
umans-in-the-loop as a computer, fusing the physical world and digital
orld. Fig. 1 shows a concept viewpoint of HFCs. Our intuition in

ebuilding the HFC systems is simple: We explicitly value the role of
umans-in-the-loop in different contexts and consider them as essential
omponents of the system; we aggressively embrace co-design from
ertical and horizontal dimensions, and will co-explore the design space
rom the algorithms, runtime systems, resource management, storage,
emory, networking, and chip systems from a vertical dimension;
eanwhile, we will consider the close collaboration among IoTs, Edges,

ata centers, and humans-in-the-loop from a horizontal dimension, and
onder how to facilitate the interactions of humans-in-the-loop with

ther hardware and software systems.

2

To dismantle the complexity of building the systems and improve
he efficiency, we use the funclet abstraction, architecture, and method-
logy, inspired by the philosophy of building large systems out of
maller functions [11,12]. The funclet abstract represents ‘‘the common
roprieties of basic building blocks: each funclet is a well-defined, in-
ependently deployable, testable, evolvable, and reusable functionality
ith modest complexity; funclets interoperate with each other through
ell-defined interconnections’’ [12]. Four kinds of funclets form the

our-layer funclet architecture: chiplet, HWlet, envlet, and servlet —
t the chip, hardware, environment management, and service layers,
espectively [12].

We take HFC as a pivotal example of the open-source computer
ystem plan. We abstract reusable functions (funclets) across system
tacks among IoTs, edges, and data centers. Based on funclets, we
ebuild the IoTs, edges, data centers, and humans-in-the-loop as a com-
uter in a structural manner, with full-fledged functions of autonomic
esource discovery, management, programming, workload scheduling,
nd coordinated collaboration between software, hardware and human
omponents. Our plans are three-fold. First, we value the importance of
enchmarks and funclet-based standards in evaluating and building the
ystems. Second, we emphasize the methodology and tool to facilitate
he workload-driven exploration of the system and architecture design
pace. Third, we will provide the first open-source implementation of
he funclet architecture of HFC systems.

We organize the rest of this paper as follows. Section 2 explains the
otivation. Section 3 illustrates the HFC challenges. Section 4 explores

he HFC software and hardware design space. Section 5 describes our
lan. Section 6 summarizes the related work. Section 7 concludes.

. Motivation

In this section, we first analyze seven typical emerging and future
pplications’ unique requirements, then explain why we need to build
n HFC system.

.1. The requirements of emerging and future applications

This subsection analyzes seven emerging and future applications.
able 1 characterizes those applications. I detail two applications
pecifically as follows.

.1.1. Medical emergency management
According to the data from the World Bank, there are more than

23 million people over the age of 65 in the world in 2020, accounting
or 9.321% of the world’s total population [14]. What is worse, despite
he slowdown in world population growth, the proportion of people
ver the age of 65 is growing rapidly, which will account for 16% of
he total population by 2050 [15,16]. Due to the decline of physical
unction and pathological changes, the elderly will experience many
nplanned emergencies in terms of companionship, nursing, medical
reatment, etc., bringing massive pressure to the emergency medical
are of the entire lifecycle in the future [17]. In addition, the surge
f patients will rapidly overwhelm the overcrowded medical facilities
hen a disaster occurs [18].

Many computing technologies (e.g., IoT, AI, cloud computing) are
ntroduced to support the health system to overcome current and future
ilemmas of the elderly emergency medical care [19–22]. However, as
hown in Fig. 2, Many elderly emergency medical care issues of the
ntire lifecycle remain unsolved, posing enormous challenges to the
omputer systems sustaining emergency medical care applications.

• Task types: emergent and mainly safe-critical. The elderly
are more likely to experience medical emergencies (e.g., stroke,
myocardial infarction, falls, etc.) than younger adults, and these
events often cause more significant harm to the elderly. When an
emergency medical event occurs, it is required that the medical

system can handle the safe-critical task in real-time and that
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Fig. 1. A Concept Viewpoint of High Fusion Computers (HFCs).
Table 1
Summarization of emerging or future applications.

Application Critical or
typical tasks

Task type Effect Metrics IoT Devices Dependencies∗ Data Management Access Patterns

Medical
emergency
management

Emergency
detection

Safety-critical Reversible Worst-case Camera, blood pressure
monitor, spirometer,
gyroscopes, CT scanner,
mass spectrometer, etc.

Observe, fuse,
recommend, train
(Internal & external
dependencies)

Image, video,
relational data, XML

Real-time write;
Non-periodic
random readRescue planning Mission-critical Reversible Average-case

Rapid diagnosis Safety-critical Reversible Worst-case

Autonomous
driving

Trajectory
planning

Safety-critical

Irreversible Worst-case

Camera, LiDAR, Radar,
ultrasonic, GNSS, GPS,
etc.

Observe, fuse, act,
coordinate (Internal
& external
dependencies)

Image, video, LAS
binary, ASCII [13],
text, XML, float
matrix, csv

Real-time write;
Periodic burst
read

Surrounding
object detection

Safety-critical

Autonomic
control

Mission-critical

Smart defense
systems

Battlespace
surveillance

Safety-critical Irreversible Worst-case Seismic, acoustic,
magnetic, and imaging
sensors or terminal
control units, etc.

Observe, orient,
decide, act (Internal
& external
dependencies)

SEG-Y files, MP3,
WAV, image

Real-time write;
Real-time read

Digital Twin

Smart
manufacturing

Mission-critical Reversible Average-case Cameras, sensors,
analog-to-digital
converter,
digital-to-analog
converter, etc.

Observe, model,
decide, control
(Internal & external
dependencies)

Image, binary,
relational data

Periodic write;
Periodic read

Oil well drilling Safety-critical Irreversible Worst-case

Civil aviation
safety regulation

Airport security Safety-critical

Irreversible Worst-case

Cameras, Radars, VHF,
Flight-Data Acquisition
Unit (FDAU), etc.

Observe, fuse,
decide, and alert
(Internal & external
dependencies)

Image, binary,
relational data

Real-time write;
Random read

Air navigation Mission-critical

Anomaly
detection

Safety-critical

Metaverse

Scenario
generating

Mission-critical Reversible Average-case
Head-mounted display
(HMD), Handheld
devices (HHDs), etc.

Observe, recognize,
fuse, act (Internal &
external
dependencies)

Dynamic
multimedia,
relational data

Real-time write;
Real-time readAvatar

maintaining
Mission-critical Reversible Average-case

Decentralized
finance

Mission-critical Irreversible Worst-case

Interplanetary
explorations

Knowledge
discovery

Mission-critical Reversible Best-case

Satellite, Space probe,
Robots, etc.

Observe, recognize,
infer, control
(Internal & external
dependencies)

Image, Hierarchical
data format(HDF),
Network Common
Data Form (NetCDF)

Real-time write;
Batch transfer;
Random read

Collision
avoidance

Safety-critical Irreversible Worst-case

Space navigation Mission-critical Irreversible Worst-case
∗Internal dependency indicates the dependencies between adjacent execution loops.
∗External dependency indicates the dependency between actions or decisions triggered by IoTs, edge, data centers, or humans-in-the-loop.
the medical system can reasonably allocate medical resources for
rapid rescue. It is worth noticing that medical experts play a deci-
sive role in the system. Medical emergency management systems
consider medical professionals a reliable external component in
the control loop, which we call reliable-human-in-the-loop. In
this scenario, the system may make recommendations, but the
medical expert takes the responsibility, and the decision made by
the system is Reversible.
3

• Metrics: In the worst-case and average-case, the quality of com-
putation results is vital. Though the medical experts will take the
final responsibility, the systems are valuable only by providing
high-quality and interpretable computation results. To provide
real-time and safe-critical services, the worst-case performance is
important besides the average performance, including the latency
and throughput. Since the workloads are often spiky, the systems
must gracefully handle overloading.
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Due to the specificity of medical care, security and privacy are
always the first issues that medical systems have to consider. The
future healthcare systems involve a more significant number and
variety of devices, a larger population, and more applications, and
its complexity brings more significant challenges to security and
privacy.

• Various IoT devices generate a massive volume of heteroge-
neous data. Unlike traditional emergency medical care, modern
elderly emergency medical care has been extended to their daily
lives: before, during, and after the hospital. The emergency med-
ical systems not only rely on a large number of different sensors
(such as cameras, gyroscopes, blood pressure monitors, etc.) and
also need to access various professional medical equipment (such
as CT scanner, mass spectrometer, spirometer, etc.). These devices
generate a large amount of heterogeneous data. The emergency
medical care system needs to integrate and process large amounts
of heterogeneous data in real-time to provide emergency medical
services to the elderly throughout their life cycle.

• Computation patterns, computation dependencies, and inter-
action patterns:
The computation patterns follow the observe, fuse, recommend,
and train patterns. The IoT devices observe the data of the pa-
tients at different levels. The system may fuse various obser-
vations at the edge or data center. The data centers or edges
will train and update an AI model through the widely collected
and labeled data. The IoT or edge makes a recommendation like
alert and further-taken actions. The medical experts make a final
decision.
The computation dependencies are mainly internal dependencies
— the dependency between adjacent execution loops of observ-
ing, fusing, recommending, and training. For example, a patient’s
previous diagnosis and treatment recommendations would impact
their subsequent recommendations. Besides, external dependen-
cies exist between the decisions triggered by different IoTs, edges,
data centers, or humans. Typical examples include new emer-
gency cases reported by the IoTs, the newly trained models, and
interventions brought out by the experts.
Over the other applications, the interaction patterns are simpler.
Each IoT works within different conditions, and each computation
may trigger different algorithms but only involve local data. Rec-
ommendations may be made at edges locally, involving collected
data with different spatial–temporal scopes. When training the
model, the data are widely collected from IoTs or edges and
annotated at the data center for further training. Or in another
manner, the labeled data at IoT or edges are distributed training
using federation learning techniques [23,24]. Then lightweight
models are deployed at IoT and edges.

• Data management and access pattern: Patients generate a large
number of real-time data from various sensors and professional
medical devices. The formats of patient data are diverse — image,
video, relational data, XML, etc [25]. Patient data is written
into the emergency medical care system in real-time. When an
emergency medical event is detected, the emergency medical care
system immediately initiates rapid diagnosis and develops rescue
planning. Patient data helps medical experts understand how a
critical health event unfolds, uncover the geographic characteris-
tics of events, and locate the nearest medical resources. Patient
data is accessed only when the patient experiences a medical
emergency. Therefore, medical emergencies result in non-periodic
random access patterns.

.1.2. Autonomous driving
Autonomous driving is a promising technology that changes the way

eople travel. According to the standard of SAE International [26], au-
onomous driving is classified into six levels—‘‘no driving automation
4

Fig. 2. The healthcare lifecycle of the elderly.

(Level 0), driver assistance (Level 1), partial driving automation (Level
2), conditional driving automation (Level 3), high driving automation
(Level 4), and full driving automation (Level 5)’’ [26]. With its contin-
uous development, self-driving cars will hit the roads and enter into a
highly-automated era in the future [27].

• Task types: highly-automated and mainly safety-critical. The
future autonomous driving would be highly-automated, even
fully-automated, and consider no human in the control loop. The
corresponding system needs to perceive and collect multi-source
and multi-dimensional data in real-time and respond within sev-
eral milliseconds. Considering the properties of high autonomy,
hard real-time, and potentially destructive effects, the decision
and action made by the system are irreversible. It will be a system
failure in hard real-time when missing a deadline. In auto-driving,
missing a deadline will be catastrophic.

• Metrics: In the worst-case and average-case, the quality of com-
putation results is vital as no person takes responsibility. The
systems must provide high-quality and interpretable computa-
tion results. The worst-case performance of autonomous driving
is highly significant. For the safety of cars, pedestrians, and
surroundings, an autonomous driving system is demanded to
manage and coordinate massive self-driving cars synchronously,
assure the performance of almost all vehicles and guarantee
the worst-case performance — make the tail latency as low as
possible.
Security and privacy are critical challenges in autonomous driv-
ing. Besides the traditional security issue, security also means
the car can perceive the environment, make decisions, and take
actions correctly.

• Various IoT devices generate a massive volume of hetero-
geneous data. Autonomous driving depends on a large number
of sensors; even a single car may deploy multiple kinds of sen-
sors [28,29] including cameras, ultrasonic radar, millimeter-wave
radar, lidar, IMU (Inertial Measurement Unit), etc., to obtain the
environment information comprehensively. The input data are
multi-source and heterogeneous; thus, the system should be able

to fuse multi-sensor data for quick processing.
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• Computation patterns, computation dependencies, and inter-
action patterns:
The computation patterns follow the observe, fuse, act, coor-
dinate, and train patterns. The IoT devices observe and detect
the data of the weather, surroundings, road lanes, traffic signs,
pedestrians, other vehicles, etc. The system fuses various obser-
vations, makes a decision, and acts locally at the edge (within
each car), including the control of the steering wheel, brake,
speed, acceleration, and engine [30]. Meanwhile, vehicles, roads,
and surroundings will synchronize their data with each other
through data centers and finally coordinate their behaviors. In the
background, different models are trained and updated regularly.
The computations have severe internal and external dependen-
cies. Internally, a self-driving car’s current status and actions
would impact its subsequent computations and actions through
the observe, fuse, act, and coordinate loop. Externally, a self-
driving car’s status and action would affect the behaviors of the
other vehicles.

• Data management and access pattern: The autonomous driving
system relies on a large number of sensors to provide comprehen-
sive environmental information, such as traffic signs, pedestrians,
and weather. The environment information is continuously writ-
ten for trajectory planning, surrounding object detection, and
autonomous control. The dataset includes LAS binary, float ma-
trix, CSV file, etc [31–33]. Moreover, in the morning and evening
rush hour, cars often need real-time path planning to avoid traf-
fic congestion. The autonomous driving system needs to handle
periodic burst accesses.

.2. Why we need to build an HFC system?

.2.1. The three unique requirements of HFC systems
Significantly different from the warehouse-scale computers that

on-stop serve user requests [3], HFC systems have three unique re-
uirements. First, they directly interact with the physical world —
onsidering humans as an essential part: human-in-the-loop [10], and
erform safety-critical and mission-critical operations. Each action may
ave an irreversible effect. Some systems treat humans as ‘‘an external
nd unpredictable element in the control loop’’ [10], which we call
nreliable-human-in-the-loop. For example, many security systems rely
n a ‘‘human in the loop’’ to perform security-critical functions [34],
ut humans are incompetent and often fail in their security roles [34];
n contrast, the other systems consider humans, who make the final
ecision, a reliable component in the control loop, which we call
eliable-human-in-the-loop. For example, medical expert plays a deci-
ive role in medical emergency management systems. Meanwhile, more
cenarios ‘‘bolster a closer tie with the human through human-in-the-
oop controls that consider human skills, intents, psychological states,
motions, and actions inferred through sensory data’’ [10], which we
all collaborative-human-in-the-loop. Collaborative-human-in-the-loop
ndicates that humans are complements of the other components of the
ystem. Still, an uncoordinated collaboration between a human being
nd other system components may result in disaster.

Second, unlike Internet services that process independent concur-
ent requests on planet-scale data center infrastructures, HFC com-
utations have intertwined dependencies between not only adjacent
xecution loops but also actions or decisions triggered by IoTs, edge,
ata centers, or humans. Third, under this extremely entangled state,
he systems must first satisfy the accuracy metric in predicting, inter-
reting, or taking action before meeting the performance goal under
ifferent conditions, like worst-case, average-case, and best-case.

We take autonomous driving as an example. The systems directly
nteract with the world. Each action has an irreversible effect. The cur-
ent status and action of a self-driving car would impact its subsequent
omputations and actions; a self-driving car’s status and action would
ffect the behaviors of the other vehicles. Autonomous driving must
irst ensure the accuracy of the decision (quality) and then guarantee

he worst-case performance (tail latency). n

5

2.2.2. HFCs demand resources that are several orders of magnitude beyond
the reach of the state-of-the-practice systems

Even only taking the worst-case performance metrics – tail latency –
as examples, we illustrate that the state-of-the-practice systems are far
from satisfying the processing requirements. Even for a much simpler
application with simpler computation patterns (our motivating exam-
ple) compared to those in Table 1 – a simplified smart home application
with 95% queries reporting the status and sending heartbeat pack-
ets, and 5% queries processing user requests and accessing the Redis
database, serving vast concurrent connections is still tricky. Zhang
et al. [35] simulate this application using a million-level client load
generator (MCC) and evaluate the service capacity of kernel TCP and
mTCP v2.1 on an X86 server equipped with Intel Xeon E5645 processor,
Centos 7.2, Kernel 3.10.0, and 64 GB memory. Taking 50 ms as the
99th percentile latency threshold, the kernel TCP supports one hun-
dred thousand concurrent connections, while for the user-level mTCP
network stack, the number is nine hundred and sixty thousand [35].
Accordingly, to achieve ten billion concurrent connections under the
threshold of 50 ms, more than ten thousand nodes, even one hundred
thousand nodes, would be needed.

Considering the three unique requirements discussed in Section 2.2.1
and the other factors, HFCs demand resources that are several orders of
magnitude beyond the reach of the state-of-the-practice systems. The
other factors considered in this rough estimation include scheduling,
complex computation and interaction patterns, complex data access
patterns, heterogeneous systems and networks, longer communication
links, and differentiated processing abilities of IoTs, edges and data
centers, which will aggravate the situation exponentially.

We further present several factors in detail. For example, as shown
in Fig. 3, a lot of emerging and future applications usually require
nearly perfect quality (i.e., predicting and interpreting accuracy in
Autonomous driving) and the worst-case tail latency within several
milliseconds, which are overlooked in the above motivating example.

From the perspective of task scheduling, different scheduling strate-
gies may significantly impact performance. The previous experiments
reveal that different placement and scheduling policies of data and
workloads across IoTs, edges, and data centers may substantially affect
the overall performance: even with the same infrastructure, the gap
may achieve dozens or even hundreds of times considering the total
response time [36]. The scheduling strategies are affected by multi-
ple factors, including task complexity, device processing capability,
available resources, network condition, pending tasks, etc. However,
the state-of-the-practice solutions provide separate management of IoT,
edge, and data center, lacking a global perspective, and further hardly
to discover the optimal scheduling strategy. Consequently, unified man-
agement and efficient collaboration across IoTs, edges, and data centers
are required to assure high performance and resource utilization.

Instead of simple status reports in our motivating example, HFC
computations are much more complex and intricate, such as object
recognition interference, OODA (observe, orient, decide, and act) [37]
or even complex Avatar behavior in terms of machine learning or big
data processing; An HFC system manages multi-source and heteroge-
neous data from various IoT devices, manifesting diverse data access
patterns in real-time, random, burst, periodic, non-periodic, and batch
manners, which also significantly impact the performance; IoT devices
have a vast number that substantially outweighs the size of Internet
users, with notable discrepant functions.

3. The challenges

This section lays out several HFC challenges.
Organizability and manageability challenges. Unlike a tradi-

ional computer system, e.g., a supercomputer or warehouse-scale com-
uter, an HFC system is geographically distributed, consisting of IoTs,
dges, data centers, and humans-in-the-loop. Moreover, they are dy-

amic. For example, in smart defense systems and applications [6],
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Fig. 3. This figure compares the worst-case quality and performance requirements between the emerging and future applications in Table 1 and the traditional applications.
The quality requirement indicates the required model accuracy of the application or tasks; for example, autonomous driving requires nearly 100% accuracy to assure safety. The
worst-case performance requirement illustrates the required tail latency of the application. For example, autonomous driving requires extremely low tail latency within several
milliseconds.
sensors or terminal control units can be dispersed by airdrop, inserted
by artillery, and/or individually placed by an operation team [6]. In an
extreme case, the spatial realm even has no bound. For example, un-
manned spacecraft may have no bounded destination in interplanetary
exploration applications.

So it is challenging to discover the resources and assemble them
into a computer system. The challenges lie in managing these resources
efficiently, keeping their survivability in the case of highly possible
failures, guaranteeing the immunizability from malicious intrusions
and attacks, and improving the programmability and schedulability of
massive funclets across a large scale of IoTs, edges, and data centers.

Collaboration challenges between software, hardware and peo-
ple components. More systems exhibit ‘‘a closer tie with the human
through human-in-the-loop controls’’ [34]. However, not all these con-
trols are reliable-human-in-the-loop. For example, some systems treat
humans as ‘‘an external and unpredictable element in the control
loop’’ [10]; thus, the action may have an irreversible effect and result
in disaster. The challenge is (1) how do we handle the dilemma of
choosing between the system and humans’ decision, especially con-
sidering ‘‘human skills, intents, psychological states, emotions, and
actions inferred through sensory data’’ [10]? (2) how do we support the
collaboration between the system and humans? (3) how do we decide
the respective responsibility in the partnerships? On the other hand,
when the system makes a solo decision, especially for safety-critical
functions or worst-case performance, how do we verify and validate
its behavior? What is the human’ responsibility behind the system? Let
us look at these challenges from the perspective of intelligent defense
systems described in Table 1. These challenges are not abstract but
vivid and concrete in terms of casualties and losses of people and
equipment.

Irreversible effect challenges. Most HFC systems or applications
perform safety-critical and mission-critical operations, directly inter-
acting with the physical world. Each action may have an irreversible
effect under unreliable-human-in-the-loop and collaborative-human-in-

the-loop conditions. Even with humans-in-the-loop, considering the

6

human’s reaction time, it is hard to make a timely decision and ac-
tion in an emergency. This irreversible effect demands that the sys-
tems’ behaviors be verified and validated in advance; the systems can
trace the impact of its attributing factors or causes or even achieve
interpretability.

Most HFC systems need to explicitly state the quality of computation
results and performance constraints in the entire process, including
design, implementation, verification, and validation, referring to its tar-
get applications’ correctness and performance constraints. For example,
an autonomous driving application requires a worst-case design that
assures high accuracy and tail latency within several milliseconds. In
this case, we need to holistically verify and validate the systems and
algorithms in terms of quality and performance in different cases like
best-case, worst-case, and average-case. We have not gained enough
experience in this regard.

Ecosystem wall challenge. An entire HFC ecosystem not only
consists of the ensemble of the respective IoT, edge, and data center
ecosystems but also involves multifarious meanwhile disparate tech-
nologies like processor design, operating system, toolchain, middle-
ware, networking, etc. Moreover, the design of IoT, edge, and data
centers follows distinct guidelines and targets according to their unique
requirements or constraints, thus generating various ecosystems with
different scopes and boundaries, which we call ecosystem walls. For
example, the processor design of IoT pursues low energy consumption
and a small chip area, while the data center regards performance
as the first element. The daunting complexities caution us that we
cannot reinvent the wheel. Instead, we need to be compatible with
the ecosystem while improving the performance, energy efficiency,
and other primary metrics to generate a positive change force that
overcomes the ecosystem inertia [12].

The effective evaluation challenges. Generally, we need to deploy
a system in a real-world environment and run a real-world applica-
tion scenario to evaluate the performance and provide optimization
guidelines. However, the real-world environment and emerging/future
application scenarios are inaccessible and costly in assessing and verify-

ing an HFC system. Hence, benchmarks as proxies of emerging/future
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application scenarios and simulators that emulate real-world systems
are necessities for designing, evaluating and optimizing an HFC system.

• Benchmarking challenges. The real-world emerging or future ap-
plication scenarios are incredibly complex, involving the inter-
connection of IoT, edge, data center, and human-in-the-loop, and
including intricate and lengthy execution path [38]. Construct-
ing benchmarks for HFC systems faces significant challenges.
First, the benchmarks should reflect the three unique require-
ments discussed in Section 2.2.1, which are not easily embodied
in a benchmark manner. Second, the application designers and
providers are concerned about the interaction, interconnection,
task assignment, and end-to-end performance across IoT, edge,
data centers, and human-in-the-loop. Thus, the reality of a bench-
mark is fundamental. Considering the complexity and confidential
issues, the real-world application scenario is not fit to be used
directly as a benchmark; hence, a simplified scenario is necessary.
However, the real-world scenario contains hundreds or thousands
of modules and components; even a tracing or monitoring tool
can hardly figure out the execution path and call graph. Sim-
plifying the real-world scenario while maintaining the critical
parts is a big challenge. Moreover, considering the humans-in-the-
loop behaviors while constructing the benchmarks are a complex
problem.

• Simulation and validation challenges. At the early stage of system
and architecture evaluation, the simulator plays a vital role due
to the vast manufacturing investment of time and money and
the immaturity of the corresponding ecosystem. For example, the
effectiveness of the improved processor design, memory access
technologies, etc., is evaluated on a simulator. Considering the
cost of building a real-world HFC system, a simulation or vali-
dation system supporting the whole environment simulation and
technology verification is significant. However, the complexity
and diversity of application scenarios pose substantial challenges
in building such a simulator.
First, there has no unified interface for different application sce-
narios or architectures like IoT, edge, and data center. Thus, it is
challenging to manage different architectures and support various
scenarios.
Second, simulation accuracy is a crucial metric. High accuracy
means the simulator can reflect similar running characteristics to
the real world and exhibit running differences under different sys-
tem environments. Considering the difficulties of multiple-level
or multiple-scale simulation, including hardware level, e.g., pro-
cessor chip, cache, memory hierarchy, disk, and software level,
e.g., operation system, ensuring the simulation accuracy is neces-
sary but challenging.

. Exploring the solution space

We adopt a funclet methodology and architecture to facilitate
xploring the HFC software and hardware design space. According
o [12], the funclet represents ‘‘the common proprieties of basic build-
ng blocks’’ across the systems. Each funclet has the following charac-
eristics [12]:‘‘each contains a well-defined and evolvable functionality
ith modest complexity; each can be reusable in different contexts;
ach can be independently tested and verified before integrating; each
an be independently deployable; each can interoperate with other
unclets through a well-defined bus interface or interconnection’’.

The funclet architecture consists of four layers: chiplet, HWlet,
nvlet, and servlet. A chiplet is ‘‘an integrated circuit (IC) with mod-
st complexity, providing well-defined functionality’’ [39,40]; it is
‘designed to be susceptible to integration with other chiplets, con-
ected with a die-to-die interconnect scheme’’ [39,40]. A servlet is

‘an independently deployable and evolvable component that serves
sers with a well-defined and modest-complexity functionality’’ [12].
7

Microservices [41] or cloud functions [42] are two forms of servlet.
An HWlet is ‘‘an independently deployable, replaceable, and accessible
hardware component, e.g., CPU, memory, storage’’ [12]. An envlet
is ‘‘an independently deployable and evolvable environment compo-
nent with well-defined functionality that supports the management of
servlets’’ [12] .

The funclet architecture uses a three-tuple: {funclet set architecture
(FSA), organization, system specifics} [12] methodology to describe
the architecture. According to [12], the FSA refers to ‘‘the actual
programmer-visible function set [43], serving as the boundary between
two adjacent layers and among different funclets in the same layer’’;
The organization includes ‘‘the high-level aspects of how funclets in
the same layer and adjacent layers collaborate’’; The system specifics
describe ‘‘the design and implementation of a system built from fun-
clets’’ [12]. The advantages of the funclet architecture are discussed
in [12]: it increases technology openness, improves productivity, and
lowers cost; relieves the complexity of building systems; improves
reusability and reliability.

Fig. 4 illustrates the reference HFC architecture and components.
For the chiplet layer, we focus on workload-driven chiplet designs.
For the HWlet layer, we pay attention to the message interface-based
memory system and data path network processor. For the envlet layer,
we concentrate on the HFC operating systems and the performance-
deterministic distributed storage systems. Also, we provide several
tools. A system design tool suite is provided to help designers explore
the HFC design space across chiplet, HWlet, envlet, and servlet. A
scenario simulator is built across IoTs, edges, and data centers to accel-
erate innovative technologies’ deployment and verification; A full-stack
optimization tool is provided. We construct a series of benchmarks
and microservices for various HFC applications for the servlet layer.
Several scenario benchmarks are proposed as the proxy of real-world
application scenarios, aiming to support the whole-stack evaluation and
provide feedback to scenario simulators or even real-world scenarios.

Fig. 5 shows a funclet-based HFC architecture in terms of {funclet
set architecture (FSA), organization, system specifics}, which is derived
from an open-source computer system initiative [12]. Each layer of
chiplet, HWlet, envlet, and servlet specifies a set of FSAs for IoTs, edges,
and data centers. The FSAs are composable and collaborative through
the same-layer and adjacent layer. The organization specifies ‘‘the high-
level aspects of how funclets in the same layer and adjacent layers col-
laborate’’ [12], including IoT–IoT, Edge–Edge, Datacenter–Datacenter,
IoT–Edge, IoT–Datacenter, Edge–Datacenter, and IoT–Edge–Datacenter
collaborations. The system specifies shows how to implement an HFC
system. The different layers for IoTs, edges and data centers are in-
terconnected through the funclet-based open standards, including in-
terconnection, interface, protocol, and networking across IoTs, edges,
data centers, and humans-in-the-loop.

4.1. Benchmarks

As the foundation of system design and optimization, benchmarks
are of great significance for developing HFC systems. We aim to pro-
pose a series of benchmarks that reflect three unique characteristics
and other important factors of HFC computations for designing and
evaluating HFC systems.

Scenario benchmarks. From the perspective of the whole-stack
ystem benchmarking, e.g., the interconnection and communication of
oTs, edges, data centers, and humans-in-the-loop, we propose scenario
enchmarks as the proxy of the real-world application scenario. The
onstruction follows a scenario-distilling methodology that formalizes
real-world application scenario as a graph model and distills it into
combination of essential tasks and components [38]. This methodol-

gy identifies ‘‘the critical path and primary modules of a real-world
cenario since they consume the most system resources and are the
ore focuses for system design and optimization’’ [38], thus reducing
omplexity.
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Fig. 4. The overview of the reference architecture.

IoT Benchmarks. From the perspective of middle-level modular
enchmarking, we construct IoT benchmarks to evaluate mobile and
mbedded devices. The IoT benchmarks include the lightweight IoT
orkloads and light-weight AI workloads.
CPU Benchmarks. We present CPU benchmarks covering typical

orkloads from emerging and future application scenarios from the
ow-level architecture benchmarking perspective. Constructing CPU
enchmarks adopts a traceable methodology, managing the traceable
rocesses from problem definition, problem instantiation, solution in-
tantiation, and measurement [44].

.2. Chiplets

This subsection presents the workload-driven chiplet design
ethodology to explore the ideal architecture for each class of emerg-

ng and future applications. We aim to provide reusable building blocks
onsidering the different PPA (performance, power, area) requirements
or IoT, edge, and data center.

For the first step, we perform comprehensive workload characteriza-
ion on a broad spectrum of tasks within target applications. For each
pplication in Table 1, we analyze the computation patterns drilling
own into the critical computations within the execution loop, like
ODA in smart defense scenarios across IoT, edge, and data center.
hen we analyze the interaction patterns covering the interactions be-
ween IoT–IoT, IoT–edge, IoT–datacenter, edge–edge, edge–datacenter,
nd datacenter–datacenter. Above all, the analysis contains computa-
ion, memory access, networking, and other characteristics. According
o the results, on a single level of IoT, edge, or data center, we
lassify their characteristics into several classes for each pattern, like
omputation. After that, we will obtain several classes, including (IoT,
omputation), (IoT, memory access), (IoT, networking), (edge, com-
utation), (edge, memory access), (edge, networking), (data center,
8

computation), (data center, memory access), (data center, networking),
etc.

For the second step, we attempt to define the ideal chiplet architec-
ture for different IoT, edge, data center layers and different analyzed
patterns. Specifically, according to the classifications in Step 1, we de-
fine the computation, memory, networking chiplets for IoT, edge, and
data center, respectively. Each layer of IoT, edge, or data center will
contain multiple chiplets for different patterns of computation, mem-
ory access, networking, etc. Additionally, each pattern may contain
multiple chiplet designs according to the classifications of workload
characteristics.

For the third step, we validate the chiplet architecture design and
further performs improvements according to the feedback. We adopt
FPGA-based simulation and evaluate the scenario, IoT, and CPU bench-
marks to conduct the functionality and performance validation. Fur-
ther, we explore the upgrades and design optimizations based on the
validation results.

The chiplet architecture design contains a loop of workload charac-
terization, chiplet design, and validation until the output designs satisfy
the application requirements.

4.3. Hwlets

This subsection presents the HWlets solutions, primarily focusing on
two innovative HWlets: a message interface-based memory system and
a data path network processor.

4.3.1. The message interface based memory system
As the boundary between internal and external memory is blurred,

a computer system may face different memory devices with various
latency, bandwidth, granularity, and capacity. Thus, the challenge is
providing a universal memory interface and a unified memory sys-
tem so that the programmers do not need to switch between byte-
level load/store CPU instructions (for internal memory) or block-level
read/write I/O operations.

We have proposed a message-interface-based memory access ap-
proach to solve various ‘‘memory wall’’ problems [45]. We plan to
extend the message interface to include internal and external memory
to build a unified memory system. The system assumes a high band-
width, high concurrency, and low latency network, which we believe
will come soon.

Instead of only using a fixed command format and address for a
memory request, we propose to use a message that contains rich seman-
tics to express a memory request. The semantic information consists
of size, sequence, priority, process id, persistence, etc., or even array,
link pointer, and locks. Furthermore, the memory resource provider is
no longer a simple dumb device but with different local computation
capabilities to service a message request.

The message interface base memory system decouples the data
access from the data organization. A client does not need to know the
details or memory resource organization like banks and rows of an
SDRAM, even the exact location of the data. The message interface-
based memory system also decouples the data access from data transfer.
Small data requests can be combined into a large network message. A
large data request can be divided into multiple messages.

There are three critical components to implementing a message
interface-based memory system. (1) a CPU core generates concurrent
memory requests with semantic information. Traditional load/store-
based instructions are too simple to express a rich-semantic memory
request. Instead, we need kinds of asynchronous and operand-variable
instructions. (2) a memory controller with a message interface. The
controller should group and assemble memory requests from internal
CPU cores into coarse-grained messages to exchange with different
memory servers through the network. (3) various message-interfaced
memory servers. The memory server manages local storage media and
accepts message requests and responses after specific local processing.
We will implement the previous two components as chiplets and the
message-interfaced memory servers as HWlets.
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Fig. 5. An HFC instance of the four-layer funclet architecture based on [12].
.3.2. The data path network processor
High-speed networks have been an indispensable part of modern

omputer systems. There are two distinct technical routes for network
cceleration: offloading [46–48] and onloading [49]. Offloading means
o offload part of the network processing to an external accelerator
ard, namely smart NICs [46,50], and save CPU resources for applica-
ion logic. For example, the checksum of TCP packets can be computed
n high-end NICs [48]. Although various smart NICs have been pro-
osed, none of them has occupied the dominant position in the market.
ore recently, smart NICs have a new name — DPU (Data processing

nit) [51]. On the other hand, onloading means pushing all network
acket processing onto general-purpose CPU cores to utilize the ever-
ncreasing computing power of the CPU core. DPDK by Intel [52] is
he industry standard for onloading with the help of hardware features
uilt-in Intel CPUs.

Whether offloading or onloading, there are many functions in a
etwork stack that can be accelerated by hardware, for example, check-
um, encryption/decryption, table lookup, keyword matching, queuing,
rdering, etc. Additionally, several functions can only be efficiently
rocessed by the CPU, such as fragments, lists, buffers, order, and other
omplex data structures.

Hence, we argue that the critical point is organizing these accel-
rating resources efficiently. Equipping a general-purpose CPU with
ccelerators accessed via the I/O bus is not the most efficient solution.
ikewise, putting a powerful general-purpose multi-core CPU into a NIC
ill not change much. The challenge here is how to design efficient

ontrol and data path of accelerators inside a CPU to combine both
he accelerator units’ special functions and the CPU cores’ general
rocessing ability.

For general-purpose processors, NIC is always an ‘‘external’’ device.
he processor has to initialize a DMA operation to move data from
he I/O bus to the local memory or cache to access packet data.
ost built-in processors in smart NICs still have such structures. That

esults in uncontrollable processing latency, so these processors are
nly suitable for processing control paths. Only hardware logic like
PGA or special function-limited core like P4 engine can process line-
peed data paths. They can reach the line speed only because their
unctions are simple and deterministic enough. Generally, they cannot
rocess complex semantic information in data paths that need complex
ata structures to store the state of many concurrent transactions.

We propose to design a processor for line-speed processing data
aths, which we call the data path network processor (a datapath
9

processor). We will implement the datapath processor as an accelerator.
However, the network packet will be the first-class citizen in the
datapath processor. The packet stream leaves the register file of the
primary CPU and arrives at the datapath processor directly without
going through a complex memory hierarchy. The datapath processor
has full functionality, including access to the cache and main memory.
Thus, the datapath processor can hold and process complex state infor-
mation necessary for the data plane. The datapath processor also has
accelerating units on the local bus; data exchange between the datapath
processor core and accelerator can be low latency, highly paralleled,
and fine-grain. We have not seen such the structure of the datapath
processor before, but fortunately, open-source processors, like RISC-V
based, allow us to design a novel processor architecture freely.

4.4. Envlets

This subsection presents the Envlets solutions, primarily focusing on
the HFC OS and the HFC distributed storage systems.

4.4.1. The HFC operating system
In the HFC scenarios, computing is ubiquitous, consisting of geo-

graphically distributed, heterogeneous hardware devices with different
performance and power consumption constraints. Hence, we need a
more efficient way to improve the organizability and manageability
of the HFC systems. Our OS solutions aim to provide the following
features:

(1) The new OS should have a flexible system structure. For different
devices and workloads, specific OS capabilities need to be built. OS is
no longer limited to a single kernel running directly in the local node
but a distributed OS architecture that adapts to hardware resources
in different computing nodes. OS needs to be able to reconfigure or
rebuild itself in run-time to adapt to various scenarios.

(2) To efficiently manage the distributed heterogeneous hardware,
the new OS should rebuild a general and intelligent device driving
framework to discover, identify, register, access, and drive the mas-
sive hardware resources automatically. In addition, it can establish a
soft bus connection for interactions with the immunizability from the
malicious intrusions and attacks.

(3) To meet different HFC workloads’ performance targets, the new
OS needs to build fine-grained resource metering and application profil-
ing features to facilitate efficient scheduling for improving performance
and resource utilization.
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(4) The HFC ecological boundary is open. As a result, OS faces secu-
rity challenges, such as end-to-end device authentication access, iden-
tification issues in an open environment, and security isolation. Under
the premise of ‘‘zero trust’’, we need to embody security enhancement
strategies in the native OS kernel.

4.4.2. The performance-deterministic distributed storage systems
The emerging and future applications heavily rely on advanced

techniques like big data and AI, performing hybrid and concurrent
tasks with different requirements, e.g., latency-critical and throughput-
critical, and pursuing the worst, average, or best-case performance.
However, these hybrid tasks usually adopt different systems and archi-
tectures, and have distinct data access patterns and requirements [53,
54]. In addition, the worst-case tail latency poses great challenges even
for Internet services in data centers [55–57], let alone much more
complex applications across IoTs, edges, and data centers. Thus, to effi-
ciently serve these applications and tasks, building a single distributed
storage system (DSS) that provides deterministic performance and high
throughput is an urgent demand [58–60]. Note that the deterministic
performance means that a DSS should enforce differentiated tail latency
SLOs for concurrent latency-critical tasks. Throughput means the total
QPS (requests per second) or bandwidth of a DSS.

The design of a DSS needs to consider the characteristics of storage
devices. We conclude two development trends of storage devices. On
the one hand, the devices will be increasingly faster with microsecond-
scale or even lower latency. Storage devices have experienced several
technological breakthroughs in the past twenty years, such as the
development of commercial SSD products, NVM-based SSD products
(Intel Optane SSD [61]), and persistent memory products (Intel Optane
PM [62]). Compared to HDD and ordinary SSD, NVM-base devices have
much lower latency. In addition, emerging fast networks (e.g., 200
Gbps and 400 Gbps Infiniband) have round-trip latency of less than
1 μs [63]. These low latency devices put forward high demand to
the storage systems [64]. On the other hand, the devices will con-
tain enhanced computation capacities, such as computational storage
drives [65,66], SmarkNICs [67], and programmable switches [68].
Many studies propose to offload several tasks to the devices and have
shown the performance advantages, like offloading query processing
and data (de-)compression to SmartSSDs [69–72], data replication and
file system functions to SmartNIC [73,74], and global memory manage-
ment, load balance and data cache to programmable switches [75–77].
Hence, the design of a DSS needs to make full use of these in-device
computing resources.

Considering the application requirements and device characteristics,
building a DSS faces serious challenges. First, due to the distinct states
of different machines/threads, latency spikes [55,78], schedulability
issues [79], load burst [80–83], and resource contention inside storage
devices and the network stack [84–86], it is extremely hard to guar-
antee deterministic performance and high throughput. Second, many
technologies have been proposed to achieve low latency, including
using poll instead of interrupts [87], kernel-bypass I/O like user-space
communication mechanism [52,88], user-space device drivers [89,90],
and user-space file systems [91,92]. However, the previous DSS only
adopt a single technology, and it is challenging to integrate and benefit
from all these technologies in a single DSS. Third, there are increasing
computation capacities inside devices through either FPGA or low-
energy embedded processors. Previous work attempts to offload partial
computation to in-device computing logic [93–97]. We argue that
offloading partial infrastructure software like DSS [74,98] and SQL
engine [69,71] rather than user applications are better [74]. However,
due to the complicated functionalities of DSS, it is a tough thing.

Our solutions for a novel DSS include the following innovations.
First, a new DSS should exploit the leading technologies for emerging
devices with μs-scale latencies, including polling device events, user-
space I/O, and run-to-completion request processing. Existing efforts
focus on one individual technology and fail to integrate all of them
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into a single system in a systematic way for efficiency. Second, a new
DSS should embed scheduling along the whole I/O path from the clients
to the servers and storage devices. Schedulable architectures should be
used at each layer along the I/O path, including client-side, network,
server-side, and storage devices. Moreover, exploiting in-device com-
puting power through software–hardware co-design controls resource
utilization at the fine granularity and reduces latency. Third, a new
DSS should offload some functionalities to the devices without reducing
total throughput and impairing the performance of individual applica-
tions. Existing efforts exploit one type of in-device computing power,
either computational storage, SmartNIC, or programmable switches.
Unlike them, a new DSS should make full use of all these in-device
computing powers to achieve better performance and energy efficiency.

4.5. Tools

This section presents our tools: the system design tools, the full-stack
optimization tool, and the scenario simulator.

4.5.1. The system design tools
We propose system design tools to help designers explore the HFC

design space. The system design tools include the chiplet design tool,
the HWlet design tool, the envlet design tool, and the servlet de-
sign tool, which correspond to the funclet architecture. Each design
tool provides the simulation–validation–development tool suite. For
example, for the chiplet design tool, we propose a whole-picture sim-
ulation to explore the co-design space of the chiplet across stacks.
Unlike the traditional microarchitecture-level simulation, such as the
GEM5, our whole-picture simulation is across full system stack levels,
including three hierarchical levels: the IR (intermediate representation)
level, ISA, and microarchitecture levels [99]. The whole-picture simu-
lation combines the IR, ISA, and microarchitecture level simulations.
The design decisions at IR, ISA, and microarchitecture levels are ISA-
independent, microarchitecture-independent, or specific to the actual
processor’s microarchitecture. Combining the design decisions from the
IR, ISA, and microarchitecture, the user can explore the co-design space
across stacks. Furthermore, we propose cycle-accurate and bit-accurate
circuit simulations and verification tools for the validation. The valida-
tion tool is based on general x86 computing and heterogeneous FPGA
resources and provides an on-demand service for chiplet validation.
For the development, we propose AI-based open-sourced EDA tools for
integrated circuit design and development.

4.5.2. The full-stack optimization tool
The full-stack optimization tool has the following challenges:
(1) The optimization object is uncertain. Finding the performance

bottleneck in an HFC system is non-trivial. Users may feel confused
about the optimization objects because of the optimization possibil-
ities on IoTs, edges, or data centers and the complex hierarchies of
algorithms, frameworks, software, and hardware.

(2) The optimization space is vast. There are thousands of opti-
mization dimensions of the algorithm, software, and hardware, and
the values of the variate vary in an extensive range. As a result, the
optimization space is exceptionally huge.

(3) The optimization target is diverse. Different application scenar-
ios have additional user requirements. In addition to the vital impor-
tance of accuracy, some applications are sensitive to latency; some re-
quire high throughput, and some are concerned with energy consump-
tion. Therefore, different application scenarios have other optimization
goals.

The tool covers the optimization from vertical and horizontal di-
mensions. From the vertical dimension, we will co-explore the op-
timization space from the algorithm, software, and hardware. For
example, for deep learning applications, jointly optimizing the net-
work’s architecture and the hardware accelerators is promising in
improving performance and reducing energy consumption. We will
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consider the close collaboration among IoTs, Edges, data centers, and
humans-in-the-loop from the horizontal dimension. For example, we
will automatically offload whole or partial deep neural network com-
putations from end devices to more powerful devices, such as edges or
data centers.

Automatically co-optimization is non-trivial because of the vast op-
timization space. There are thousands of optimization dimensions of the
algorithm, software, and hardware, and the values of the variate vary
in an extensive range. As a result, the optimization space is too huge to
complete the search. Reinforcement learning has shown powerful capa-
bilities for the problem of searching for optimal policies in a vast space.
Evaluating is expensive in co-optimizing the algorithm, software, and
hardware across the IoTs, edges, and data center. We will investigate
the state-of-the-art learning algorithms and evaluation strategies and
develop the corresponding tools for automatic optimization.

4.5.3. The scenario simulator
The scenario simulator is a miniature of the real system, which con-

tains unified interfaces and replaceable components to enable rapid de-
ployment and verification of innovative technologies. The scenario sim-
ulator manages the whole environment of a computer system, e.g., pro-
cessor chip, operating system, memory, network, etc. It covers the
complete execution and interaction across IoTs, edges, data centers, and
humans-in-the-loop. It can demonstrate the effects visually, e.g., run-
ning results, performance, and power consumption, under different
technologies, deployments, or parameter settings, for example, the
latency performance of an autodrive scenario using other memory
devices and network protocols. For the first step, we plan to provide
a network simulator that simulates the communication patterns of rep-
resentative scenarios like big data and artificial intelligence, supporting
different networking technologies. The involved components are re-
placeable, and we can easily use emerging technology to replace the
existing one and verify its effectiveness. We will expand the scenario
simulator to the whole HFC environment for the next step.

5. Our plan

We aim to define a new paradigm — IoTs, edges, data centers,
and humans-in-the-loop as a computer and launch an open-source high
fusion computer (HFC) system initiative. The goal is to vastly enhance
the system capabilities under specific energy and cost constraints for
most emerging and future applications.

We abstract reusable functions (funclets) across system stacks
among IoTs, edges, and data centers to guide the HFC system design
and evaluation. We first propose to define a series of benchmarks
and funclet-based standards and then build the tools to facilitate the
workload-driven exploration of the system and architecture design
space. Finally, we provide open-source implementations of an HFC sys-
tem. We will perform system co-design from the vertical and horizontal
dimensions throughout the process. Vertically, we comprehensively ex-
plore the algorithms, runtime systems, resource management, storage,
memory, networking, and chip technologies. Horizontally, we deeply
discover the collaboration and interaction among IoT, edges, data
centers, and humans-in-the-loop.

We plan to build the first open-source implementation of an HFC
system using an iterative and evolving way. Fig. 6 shows the develop-
ment milestone of our HFC system. We first focus on one or two typical
application scenarios and essential funclets across IoT, edge, and data
centers to reduce the complexity. Then we expand the focus and update
or replace the technologies gradually. A scenario simulator is beneficial
to the expansion, update, and replacement. Finally, we will summarize
the experience and lessons during this period and dedicate ourselves
to the contributions of a useful HFC system and related advanced
technologies.

6. Related work

The development of the computer industry witnessed a series of
computer systems concepts and implementations, as shown in Fig. 7.
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In 1936, Turing proposed to invent the single machine to compute
any computable sequence, a concept of a ‘‘universal’’ computing de-
vice [100,101]. This kind of ‘‘universal’’ would incur additional perfor-
mance, cost, or energy overhead called ‘‘Turing Tax’’ – a fundamental
question that computer architects aim to reduce [100]. John Gage first
proposed the phrase ‘‘the network is the computer’’ in 1984 [102,103].
In 1985, Lewis proposed the concept of the ‘‘Internet of things’’ in
a speech to the Congressional Black Caucus Foundation 15th Annual
Legislative Weekend [104]. In the mid-1990s, grid computing was
proposed to provide computing power, data, and software on-demand,
through standardizing the protocols [2]. In 2001, EmNets [6] were
proposed and referred to as networked systems of embedded com-
puters. In 2005, cyber–physical systems were proposed to ‘‘bridge
the cyber-world of computing and communications with the physical
world" [105–107]. In 2009, Google proposed the concept of ‘‘the data
center as a computer’’, or called warehouse-scale computers (WSCs), to
efficiently deliver good levels of Internet service performance [108].
In 2009, the Chinese Academy of Sciences predicted that human–
cyber–physical ternary computing would be a development trend in
the next 50 years [109]. In 2012, the ‘‘Industrial Internet of Things
(IIoT)’’ concept, also known as ‘‘Industrial Internet’’, was proposed to
integrate the latest technologies, intelligence systems, and devices and
apply them to the entire industrial economy [110,111]. In 2016, the
director of Storage SRE at Google illustrated how they do planet-scale
engineering for a planet-scale infrastructure — keep all its services up
and running and reduce the downtime [3]. In 2017, Li et al. pointed
out that human–cyber–physical ternary intelligence is the leading tech-
nology and the main driving force of the new economy in the next
15–20 years [112]. In 2021, Mike Warren’s group worked with the
EC2 team, launching a virtual supercomputer in the cloud – 4,096 EC2
instances with 172,692 cores. This run achieved 9.95 PFLOPS (actual
performance), ranking at 40th on the June 2021 TOP500 list [4]. In
2021 and 2022, Wang et al. and Xu et al. pointed out ‘‘a new era
of human–cyber–physical ternary computing with diverse, intelligent
applications over trillions of devices’’ [7,8] and further proposed the
concept of ‘‘Information Superbahn’’, to achieve high system goodput
and application quality of service [7,8].

7. Conclusion

We call attention to the fact that more and more emerging and
future applications rely heavily upon systems consisting of Internet of
Things (IoT), edges, data centers, and humans-in-the-loop. We char-
acterized this new class of systems and coined a new term, high
fusion computers (HFCs), to describe them. Significantly different from
warehouse-scale computers that non-stop serve independent concurrent
user requests, HFCs directly interact with the physical world, con-
sidering humans an essential part and performing safety-critical and
mission-critical operations; their computations have intertwined depen-
dencies between not only adjacent execution loops but also actions
or decisions triggered by IoTs, edge, data centers, or humans-in-the-
loops; the systems must first satisfy the accuracy metric in predicting,
interpreting, or taking action before meeting the performance goal un-
der different cases. HFCs raise severe challenges in system evaluation,
design, and implementation.

We summarize several HFC challenges: organizability and manage-
ability, collaborations between software, hardware, and people com-
ponents, irreversible effect, ecosystem wall, and effective evaluation.
To tackle the above challenges, we propose reconstructing IoTs, edges,
data centers, and humans-in-the-loop as a computer rather than a
distributed system; we adopt a funclet methodology of building large
systems out of smaller functions and exploring HFC design space in
a structural manner. We will provide the first open-source implemen-
tation of the funclet architecture of HFC systems. The source code
will be publicly available from the project homepage: https://www.
computercouncil.org/HFC/.

https://www.computercouncil.org/HFC/
https://www.computercouncil.org/HFC/
https://www.computercouncil.org/HFC/
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Fig. 6. Development milestone of HFC system.
Fig. 7. An overview of the related work.
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