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In future data centers, applications will make heavy use of far memory (including disaggregated memory pools
and NVM). The access latency of far memory is more widely distributed than that of local memory accesses.
This makes the efficiency of traditional out-of-order load/store mechanism in most general-purpose processors
decrease in this scenario. Therefore, this work proposes an in-core asynchronous memory access unit to fully

utilize the far memory resources.

1. Introduction

In recent years, to improve the utilization of resources in cloud
data centers, more and more resources are organized into resources
pools. Memory resources trends to be the next resources organized as
a pool. However, nowadays remote memory pools usually use software
interfaces (such as key-value, RDMA, files, etc.) rather than direct
load/store [1]. Recently, new interconnect technologies and protocols
(such as OpenCAPI [2], Gen-Z [3] and CXL [4]) enable the construction
of load/store interface based disaggregated memory pool that contains
multiple nodes. Prototypes of such systems have already been con-
structed by researchers [5]. It is foreseeable that complex disaggregated
memory pools using direct load/store interface will emerge soon.

On the other hand, Non-volatile Main Memory (NVMM) start to
emerge, offering higher memory density and lower standby power
consumption. However, it faces similar challenges as remote memory
systems. Compared to traditional DRAM, NVMM has higher latency and
a wide range of latency variation (6x-30x higher write latency and
5x-10x higher read latency) [6]. Currently, there is no efficient and
standard interface for accessing NVMM. Commercial products, such as
Intel’s Optane DC [7], still use a modified synchronous DRAM interface.

Both remote memory and non-volatile main memory are some-
times called “far memory” as their access latency is larger than local
DRAM [8]. There are two main differences in accessing far memory
compared to accessing traditional DRAM-based local memory.

Widely distributed latency The memory allocated from a disaggre-
gated memory pool can locate on some faraway remote nodes.
Furthermore, the memory device can be DRAM, NVM, or other
emerging memory devices. As a result, memory access latency
becomes uncertain. Latency may distribute over a wide range.

Potential large aggregated bandwidth As memory resources may
come from multiple different machines, the maximum aggre-
gated access bandwidth may increase significantly compared to
local memory which is limited by physical channels, making it
a challenge to make use of the abundant bandwidth.

Access latency in traditional memory systems is also uncertain due
to the multi-level cache hierarchy. However, the distribution of latency
is relatively narrow. The latency of a single access memory request is
around 1 ns (when L1 hits) to 100 ns (when accesses local DRAM).
Modern processors can tolerate this difference in latency by out-of-
order execution and non-blocking cache. Fig. 1 shows the limitations
of current Out-of-Order processors in far memory scenarios. The range
of latency they can tolerate is limited by the number of entries in
the instruction queue, ROB, MSHRs, etc. Once one of these resources
is exhausted, the OoO processor cannot issue more memory access
requests any longer. The resource insufficiency even occurs in the local
memory scenario. For example, due to the limited number of MSHRs,
a single core of Intel Skylake processor can only reach a memory
bandwidth of about 15 GB/S, which is even lower than that of a single
DDR4-2400 DIMM. It is difficult for modern processors to tolerate the
access latency fluctuations (300 ns-10 ps) of far memory.

Although improving the out-of-order execution capability of tra-
ditional general-purpose processor cores [9-12] (e.g., increasing the
number of entries of MSHRs and ROB, using multi-level MSHRs and
ROB, etc.) can also improve the performance of load/store in this
scenario. But such an improvement, even if it is feasible, requires sig-
nificant hardware resources. The key issue is that traditional load/store
instructions are synchronous, every outstanding memory access needs
to hold at least one hardware resource until the operation is completed.
The more parallelism the more hardware resources will be needed.

One approach to address this problem is asynchronous memory
access. A similar predicament had already existed in network program-
ming, where applications call blocking socket interfaces made program
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Fig. 1. Ways to improve memory bandwidth utilization.

performance suffer from network latency. To solve this problem, asyn-
chronous non-blocking interfaces such as select() and epoll() had been
built. Just as network programming has evolved from the early syn-
chronous blocking model to today’s asynchronous non-blocking model,
we suggest that an asynchronous non-blocking model for memory
access is also needed. Therefore, there should be some mechanisms for
invoking asynchronous memory access efficiently in a general purpose
processor.

Another approach is supporting memory access with variable gran-
ularity. As shown in Fig. 1, to improve performance, applications can
initiate memory requests with a large granularity to hide the latency
and fully utilize the bandwidth. Furthermore, applications can adjust
the granularity based on data semantics to access memory flexibly and
efficiently.

Concerning the above approaches, we propose an in-core Asyn-
chronous Memory access Unit (AMU) to support asynchronous access
in a general purpose processor. AMU enables applications to asyn-
chronously initiate many variable granularity memory access requests
by simple instructions, such as asynchronous load/store. AMU also
enables applications to start various complex memory access requests
with additional configuration registers. Processors can still use tra-
ditional synchronous load/store instructions for compatibility while
the data from both sources can be consumed by computation instruc-
tions transparently. We argue that this is a more practical and effi-
cient way than designing an un-core or off-chip asynchronous memory
accelerator.

The following chapters outline the main features of the asyn-
chronous memory access unit.

2. Asynchronous memory access unit
Traditionally, mostly used load/store instructions are implemented

as synchronous mode. Each pending memory operation will hold cer-
tain hardware resources such as GPR, ROB and MSHR entry. The

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100061

hardware resources will not be released until the memory operations
have finished.

We propose a new class of asynchronous memory access instruc-
tions that will not hold hardware resources during the operation. An
asynchronous instruction that invokes a memory access request will be
committed immediately once it is accepted by functional unit and sent
out. Thus, applications can continue to execute other operations rather
than waiting for the memory access operation to finish. Then, appli-
cations can poll whether there is a completed request later. Moreover,
even if an outstanding request did not finish for a long time, there is no
pipeline stall due to the shortage of ROB or other hardware resources.

Asynchronous memory access instructions are decoded and issued
as normal instructions. The functional unit to process asynchronous
instructions is called Asynchronous Memory access Unit (AMU). AMU is
inspired by the Vector Processing Unit (VPU) of many modern proces-
sors. The VPU is a separate functional unit in the CPU. Applications use
the VPU through a standalone instruction set (i.e., vector instruction
set), which contains a set of extra registers (i.e., vector registers)
to hold the wide data to be processed. Besides, vector instructions
are scheduled together with scalar instructions. Vector registers and
scalar registers can exchange data efficiently. Just as VPU, AMU can
coexist with synchronous load/store Unit and can be ignored when
compatibility comes first.

AMU is responsible for processing asynchronous instructions. How-
ever, it cannot depend on internal hardware registers or queues to
keep the status of outstanding memory operations, which will become
another potential bottleneck for parallelism. In fact, the status of pend-
ing requests are stored in SPM. Each processor core is equipped with
a ScratchPad Memory (SPM), which acts as vector registers in VPU
but has a larger capacity and flexible data structure. Data is moved
asynchronously and automatically between SPM and main memory by
AMU. To initiate asynchronous memory access requests, applications
can prepare data in SPM and then execute asynchronous memory
access instructions. After receiving the request, AMU will move the data
between memory and SPM in background.

From the view of an application, the SPM is a stand-alone mem-
ory space. Applications can use synchronous load/store instructions
to access the data in the SPM and process them with other regular
instructions. In addition, applications can copy data from main memory
to the SPM and vice versa. The SPM is fully compatible with the
processor’s original data access and processing mechanisms.

By asynchronous access, AMU can support as many requests as
the capacity of SPM can support in theory. However, AMU does not
assure the consistency among all outgoing memory operations. The
overhead of hardware consistency checking is one of the reasons that
limit the capacity of traditional load/store queue and MSHRs. In the
AMU design, we leave the consistency issue to software. We argue
that software and hardware cooperation is the right way to exploit the
memory parallelism over large latency.

2.1. Instructions

There are three core instructions of AMU. These instructions enable
the most basic asynchronous memory access.

Asynchronous load/store instructions In AMU, aload/astore instruc-
tion invokes a data movement request between SPM and mem-
ory. An SPM address and a memory address are passed to AMU
by registers. AMU will move data between the provided SPM
address and off-core memory address. Then a request id, which
is used for tracking the request, is stored in the destination
register.

Instruction for getting an id of finished request We propose getfin
instruction for getting an id of any completed request. If there is
no finished request, the instruction returns a failure code. This
instruction does not block execution regardless of whether there
is a completed request or not.
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2.2. Registers

Due to the limited field space of instructions, some complex memory
access settings cannot be encoded in a single instruction. To solve this
problem, we designed several configuration registers, which contain
advanced parameters.

Memory Access Configuration Registers These registers contain ad-
vanced memory access configurations, including address for-
mat, granularity, priority, etc. Settings in the configuration will
be combined with each access instruction to form a rich se-
mantic memory request. Application can keep several different
configuration registers for different data regions.

Default Configuration Register Due to the limited encoding space of
some instructions, it is even not possible to specify all configu-
ration registers. For such case, the system automatically chooses
the configuration register specified in this register.

Access Pattern Registers The access pattern registers are used to ini-
tiate complex asynchronous memory access. They contain the
access pattern(such as stride, neighbor, stream, etc.) of a class
of complex memory access requests.

2.3. Programming model

Listing 1 shows a basic example of asynchronous memory accessing.
The code initiates an asynchronous memory access request with the
aload instruction. The code then keeps retrying the getfin instruction
to get the id of a completed request and can do other work while the
request is still pending. After the request completes, the code then reads
the data from the SPM with the load instruction.

Listing 1: Asynchronous Memory Access Basic Example

int memory_need_to_be_accessed;
int xspm_space = (intx) A_SPM _ADDR;
// Invoke an asynchronous memory access
// requests. The request’s id is ignored.
aload (spm_space,
&memory_need_to_be_accessed);
while ((rd = getfin()) != 0) {
// Do something else
}
// Access data from SPM via load/store
printf("%d\n", xspm_space);

AMU instructions can support a variety of programming paradigms.

+ Vector Model Vector instructions and vector processors are ma-
ture techniques for exploiting data-level parallelism. As a tech-
nique to improve data-level parallelism, AMU instructions have
many similarities to vector instructions. Thus, it is possible to
combine AMU instructions with vector instructions efficiently.
Event-Driven Model The event-driven model is a common para-
digm in single-thread non-blocking network programming. Fur-
thermore, the aload/astore instructions are like non-blocking
socket read()/write(). getfin instructions are like the select() in
network programming. Thus, the event-driven model can be
naturally applied to asynchronous memory accesses especially for
out of order scenarios.

Coroutine Model For asynchronous access requests with com-
plex access patterns, coroutines or lightweight software threads
are more suitable programming paradigms. Coroutines can eas-
ily work with high performance concurrent data structures and
enable more interactions between software and AMU.
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Fig. 2. Architecture design.

3. Architecture design

Fig. 2 shows the architecture design of AMU. There are three key
design choices:

CPU Pipeline Integration To support efficient asynchronous memory
access instructions, many state control registers are integrated
into CPU core pipeline. Some of these registers indicate the
AMU’s status, which allows programs to rapidly get the status
of outstanding instructions. In addition, speculative execution of
asynchronous memory access instructions brings new challenges
since some states are stored in SPM. This requires the pipeline
of the processor core to be designed carefully.

Re-configurable Cache/SPM Space We propose to dynamically con-
figure part of the CPU Cache as SPM. So there are no proprietary
SPM resources and interface needed. This design also allows
more flexibility for the software to decide how to use the SPM.
Applications can adjust the size of Cache and SPM themselves
based on the workload. For example, Random-Access bench-
mark needs only about 12 KB to support up to 512 in-flight 8B
memory requests.

Integration with L2 Controller We propose to integrate the AMU
logic with the L2 cache controller. Since the size of L2 is large
enough compared to register file and reserve part of L2 will
not affect much performance as L1. The logic implements the
management and execution of asynchronous access requests and
the engine to move data between SPM and memory controller.

Because the main metadata of memory requests maintained by AMU
are stored in the SPM, the extra storage overhead is only about a few
KB and does not vary when the required MLP increases.

AMU can work with a standard memory controller for local memory
or far memory access. However to better support various asynchronous
memory instructions with rich semantics and various far memory re-
sources, there should also be newly designed memory controllers that
can do the transformation between local bus requests and network
packets, such as packing, unpacking, filtering, compressing, routing,
etc.

We do not specify the server-side of memory resources. For asyn-
chronous memory access supported by AMU, there are no latency or
granularity limitations for memory servers. Different kinds of memory
resources can be accessed through a unified interface. That is the
separation of memory organization and memory access.

4. Early evaluation
To demonstrate the concepts of AMU, an early simulator prototype

has been built. We modified GEM5 to implement a cycle-accurate
model of AMU and evaluated it by running Random-Access benchmark
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Fig. 3. Performance of random access benchmark.

from HPCC (shown in Fig. 3). The far memory latency is set to several
different values (from 0.1 ps to 5 ps) respectively. 64 KB of the 256
KB Cache Capacity are reserved for SPM. AMU performs similarly
across different configurations, while the performance of baseline drops
rapidly when access latency increases. The results show that AMU can
better tolerate a large range of access latency.

5. Discussion

5.1. Efficient ID management

When initiating an asynchronous access request, an id needs to be
assigned to the request and be released after finishing. Since the id is
needed every time an asynchronous access is initiated, the overhead
of id management must be as low as possible. For this goal, we chose
to design an efficient hardware id management mechanism instead of
leaving id management to software. Also, this mechanism should be
integrated with out-of-order and speculation mechanisms smoothly.

5.2. Consistency

As mentioned in Section 2, this work relies on software to handle
the consistency. For many data-parallel programs (such Key-Value
databases and graph processing [13], etc.), they easily apply corou-
tine model mentioned above. As each interleaved coroutines processes
independent data, thus naturally avoiding data consistency problems.

For other programs that need strong consistency, it is possible to
use a combination of hardware and software solution to handle the
consistency problem of asynchronous access to far memory. For exam-
ple, consistency checking can be implemented in local memory or local
cache. Applications can check the consistency of requests locally before
invoking asynchronous accesses to far memory. In addition, some
explicit and efficient locking mechanisms might also be provided by
hardware to ensure consistency. Furthermore, software can deal with
locking asynchronously to avoid blocking. Although these approaches
introduce extra complexity, we argue that the overhead is acceptable
comparing with the benefit.

5.3. Comparison with prefetching

There are three major differences between asynchronous memory
access and prefetching. First, prefetching mechanisms do not provide
any method to query whether prefetch requests have been completed.
Thus, applications cannot know if the data has been transferred to local
cache. This may impact the efficiency of the application as the access
latency is distributed in a wide range. Second, modern processors’
prefetching mechanisms are also limited by the number of MSHR
entries, while the proposed AMU fully bypass the MSHRs. Third, the
memory space for prefetching results is not reserved so prefetched data
might be lost before access.
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6. Future work

In this paper, only the basic instructions and structures of AMU are
presented. Further design and evaluation are undertaking. The AMU
design can be easily extended support more memory access protocols.
For example, we can add configuration registers and instructions for
issuing processing-in-memory related requests. The AMU will enable
more programming flexibility if the underlying memory system sup-
port more richer semantics, such as message interface based memory
systems [14].
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