
BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100062

A
o
Y
a

b

c

A

K
D
M
P
E

1

a
s
t
r
p
c
s
R
d
d
c
e
a
f
a
n
s

h
R
A
2
B

Contents lists available at ScienceDirect

BenchCouncil Transactions on Benchmarks,
Standards and Evaluations

journal homepage: https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-
benchmarks-standards-and-evaluations/

n efficient encrypted deduplication scheme with security-enhanced proof of
wnership in edge computing
ukun Zhou a,b,c, Zhibin Yu a,∗, Liang Gu b, Dan Feng c

Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
Sangfor Technologies Inc, Shenzhen, China
Wuhan National Laboratory for Optoelectronics, School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, China

R T I C L E I N F O

eywords:
eduplication
essage-locked encryption

roof of ownership
dge computing

A B S T R A C T

With the rapid expansion of Internet of Things (IoT), relevant files are stored and transmitted at the network
edge by employing data deduplication to eliminate redundant data for the best accessibility. Although
deduplication improves storage and network efficiency, it decreases security strength and performance.
Existing schemes usually adopt message-locked encryption (MLE) to encrypt data, which is vulnerable to
brute-force attacks. Meanwhile, these schemes utilize proof-of-ownership (PoW) to prevent duplicate-faking
attacks, while they suffer from replay attacks or incur large computation overheads. This paper proposes
SE-PoW, an efficient and location-aware hybrid encrypted deduplication scheme with a dual-level security-
enhanced Proof-of-Ownership in edge computing. Specifically, SE-PoW firstly encrypts files with an inter-edge
server-aided randomized convergent encryption (RCE) method and then protects blocks with an intra-edge
edge-aided MLE method to balance security and system efficiency. To resist duplicate-faking attacks and
replay attacks, SE-PoW performs the dual-level PoW algorithm. Then it combines the verification of a cuckoo
filter and the homomorphism of algebraic signatures in sequence to enhance security and improve ownership
checking efficiency. Security analysis demonstrates that SE-PoW ensures data security and resists the mentioned
attacks. Evaluation results show that SE-PoW reduces up to 61.9% upload time overheads compared with the
state-of-the-art schemes.
. Introduction

With the high-speed development of 5G and edge computing, large
mounts of data are collected in the core and edge devices, such as
martphones, wearables, automatic driving [1], and traffic flow detec-
ion [2]. In the big data era, IDC predicts that the digital universe will
each 175ZB in 2025 [3], and more than 44% of IoT-created data will be
rocessed and analyzed at the network edge. Edge computing deploys
omputing and storage resources at the network edge to handle time-
ensitive tasks while offering fast and convenient services to users [4].
esearch analysis shows that there exist large amounts of redundant
ata (up to 76%) for workloads like VM images and car multimedia IoT
ata [5–7]. Data deduplication has been adopted in the modern central
loud (e.g., Dropbox [8], OneDrive [9]) and also pushed to the network
dge for both optimized space and network efficiency. Fig. 1 describes
simple architecture of edge computing that deploys deduplication,

or example, Ctera [10]. Edge computing can be seen as a three-tiered
rchitecture. The central cloud stores and retrievals data from edge
odes and users. The edge nodes provide limited computing, indexing,
torage, and other services [11,12]. Deduplication eliminates duplicate

∗ Corresponding author.
E-mail address: zb.yu@siat.ac.cn (Z. Yu).

data on a file or block, which keeps only one physical copy and others
refer to it. Deduplication can be classified into client-side or server-side
approaches, while the former also saves network transmission. Edge
computing deployed with deduplication has attracted lots of attention
in both academia and industry [10–13], but it remains many security
issues and potential threats [14,15].

Users usually encrypt data before outsourcing them to the edge and
cloud for security and privacy concerns. However, encrypting the same
data with different keys will result in different ciphertexts and makes
deduplication impossible. Many researchers propose convergent en-
cryption(CE) and message-locked encryption(MLE) [16–21] that adopt
the hash value as the symmetric key to encrypt data, which users
carry out deduplication over ciphertexts. Unfortunately, MLE suffers
from resist brute-force attacks [18] that the attacker can recover the
target file from a known set by offline encryption. To mitigate the at-
tacks, researchers propose an oblivious pseudorandom function(OPRF)
to generate MLE keys aided by secret messages of the server. How-
ever, client-side deduplication suffers from various attacks and privacy
leakages, such as duplicate-faking attacks [15,22,23] and position
attacks. That is, a malicious user can gain access to files belonging
ttps://doi.org/10.1016/j.tbench.2022.100062
eceived 16 April 2022; Received in revised form 9 May 2022; Accepted 9 May 20
vailable online 24 May 2022
772-4859/© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of
Y-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
22

KeAi Communications Co. Ltd. This is an open access article under the CC

https://doi.org/10.1016/j.tbench.2022.100062
http://https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tbench.2022.100062&domain=pdf
mailto:zb.yu@siat.ac.cn
https://doi.org/10.1016/j.tbench.2022.100062
http://creativecommons.org/licenses/by-nc-nd/4.0/

Y. Zhou, Z. Yu, L. Gu et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100062

t
v
(
u
t
P
r
i
i
s
f
P

d
l
s
e
s

d
o
b
a
a
A
f
a
p

d
W
n
u
d
c
v
f
e
o
e
a
t
d
o
o
s

a
A
i
𝑇
e
k
i
𝑇
c
M

b
p
w
e
a
a
w
I
c

Fig. 1. An example of edge computing deployed with data deduplication.

o other users based on a hash value or upload corrupted data with
alid hash values [24]. Some deduplication with Proof of ownership
PoW) schemes [22,25–27] are proposed to verify ownership of data
sers, such as MHT-PoW [22] or BF-PoW [21,26]. The user convinces
he server that it owns the hash value and holds the file content.
oW is a protocol in which a server sends challenges, and the client
eturns the proofs as a response. Specifically, MHT-PoW encodes files
nto a fixed-size buffer and conducts a Merkle hash tree via a pairwise
ndependent hash function [20,28]. BF-PoW divides files into fixed-
ize blocks, calculates the hash digests, and inserts them into a bloom
ilter [29]. However, existing encrypted deduplication schemes with
oW face new challenges.

First, existing schemes adopt MLE [17,30] or RCE [20,21] to protect
ata security, but they are vulnerable to brute-force attacks for the
ow-entropy files especially. Moreover, other encrypted deduplication
chemes, such as OPRF [18], data re-encryption [20,21], and public
ncryption [31] bring a significant computational burden. They are not
uitable for resource-constrained edge nodes and IoT devices.

Second, existing schemes introduce proof-of-ownership to resist
uplicate-faking attacks. They nevertheless incur large computation
verheads or suffer from replay attacks. Generally speaking, MHT-PoW
rings a heavy computation burden because of the encoding of files
nd constructions of the Merkle hash tree. BF-PoW suffers from replay
ttacks and the privacy leakage of the false positive in a bloom filter.
n attacker passes the verification of BF-PoW by generating valid proof

rom previous proofs without owning the original data. The replay
ttacks also have occurred in many scenes, such as provable data
ossession(PDP) and proof of retrievability (PoRs) [32].

To overcome these challenges, we propose an efficient encrypted
eduplication with Security-Enhanced Proof-of-Ownership (SE-PoW).
e observe that the capabilities and security risks for inter-/intra edge

odes are different [4], and duplicate files are mainly from multiple
sers [33,34]. The core idea behind SE-PoW is to employ different ran-
omized MLE methods based on the location of deduplication. Specifi-
ally, SE-PoW first performs inter-edge encrypted deduplication for files
ia a server-aided RCE method. If the file is non-duplicate, SE-PoW
urther performs intra-edge encrypted deduplication for blocks via an
dge-aided MLE method. Moreover, SE-PoW utilizes a dual-level proof-
f-ownership to guarantee higher security. SE-PoW performs own-
rship checking based on a cuckoo filter to resist duplicate-faking
ttacks. SE-PoW adds unique labels and verifies the homomorphism of
he algebraic signature [35] to resist replay attacks. Security analysis
emonstrates that SE-PoW resists the above attacks from inside and
utside attackers. Therefore, SE-PoW significantly reduces computation
verheads compared with state-of-the-art schemes and ensures data
ecurity.

This paper makes the following contributions.

• We propose SE-PoW, a location-aware hybrid encrypted dedupli-
cation scheme in edge computing. SE-PoW performs inter-edge
2

file-level and intra-edge block-level encrypted deduplication via
server-aided RCE and edge-aided MLE algorithms, respectively.
Thus SE-PoW balances data confidentiality and efficiency.

• SE-PoW proposes a dual-level security-enhanced proof-of-
ownership by leveraging a cuckoo filter and algebraic signatures.
SE-PoW achieves a higher security level and only increases little
overheads, in which SE-PoW resists duplicate-faking attacks and
replay attacks.

• We present a prototype of SE-PoW. Security analysis demon-
strates that SE-PoW can ensure data confidentiality and resist
duplicate-faking attacks and replay attacks under the proposed
threat model. Experimental results based on real-world datasets
show that SE-PoW reduces 21.9–61.9% upload time overheads
compared with the state-of-the-art MHT-PoW.

The reset of our paper is organized as follows. Section 2 intro-
duces the background and problems of SE-PoW in edge computing. In
Section 3 the system model, threat model and security requirements are
defined. Section 4 introduces the design and implementation details of
SE-PoW. Section 5 discusses the security of SE-PoW. Section 6 presents
the performance evaluation on real-world datasets. In Section 7, the re-
lated works on encrypted deduplication schemes are reviewed. Finally,
Section 8 concludes this paper.

2. Background & problems

This section briefly introduces encrypted deduplication in edge
computing and proof of ownership schemes. We further present the
problems and motivation of SE-PoW.

2.1. Encrypted deduplication in edge computing

Many users store files at the network edge and respond to users’
requests with low latency [4,34]. In Fig. 1, edge computing employs
data deduplication at the network edge for space and network effi-
ciency [11–13]. The user uploads/retrieves data and relevant informa-
tion to the edge nodes. Then edge nodes could compute the tags of data
via a hash function (i.e., SHA256) and encrypt data. Edge nodes main-
tain a deduplication index structure for local or cross-domain duplicate
checking. Decentralized deduplication distributes data to multiple edge
nodes for load balancing [13].

To protect data confidentiality, Douceur et al. [16] propose con-
vergent encryption(CE) and Bellare et al. [17] propose Message-locked
Encryption(MLE) and random to enable deduplication over ciphertexts.
Specifically, the client derives a key 𝐾 ← 𝐻(𝑃 ,𝑀) from message 𝑀 ,
nd 𝑃 is a public parameter and 𝐻 is a cryptographic hash function.
nd it encrypts the message as 𝐶 ← Encry(𝐾,𝑀), where 𝐸𝑛𝑐𝑟𝑦∕𝐷𝑒𝑐𝑟𝑦

s a pair of encryption and decryption functions. The tag 𝑇 derives
← 𝐻(𝑃 , 𝐶). In randomized convergent encryption(RCE), the client

ncrypts a message 𝐶1 ← 𝐸𝑛𝑐𝑟𝑦(𝐿,𝑀), where 𝐿 is a randomly chosen
ey. Then it encrypts the key 𝐿 and generate 𝐶2 ← 𝐿 ⊕ 𝐾, where 𝐾
s derived from the message 𝐾 ← 𝐻(𝑃 ,𝑀). The client generates tag
← 𝐻(𝑃 ,𝐾). When any owner receives 𝐶1‖𝐶2‖𝑇 from the server, he

omputes 𝐿 ← 𝐶2⊕𝐾, and obtains 𝑀 via 𝑀 ← 𝐷𝑒𝑐𝑟𝑦(𝐿,𝐶1). However,
LE and RCE are vulnerable to brute-force attacks.

Bellare et al. [18] present server-aided MLE algorithms via an RSA-
ased oblivious PRF protocol to resist brute-force attacks. In edge com-
uting, Ni et al. [36] put forward edge-based encrypted deduplication
ith BLS-OPRF and adopted proxy re-encryption on edge nodes. Yang
t al. [15] propose a cross-domain deduplication scheme with server-
ided MLE via HPS-OPRF in blockchain-enabled edge computing. In
ddition, Hur et al. [20] propose authorized encrypted deduplication
ith dynamic ownership management via proxy re-encryption [21].

n summary, encrypted deduplication has been widely used in edge
omputing.

Y. Zhou, Z. Yu, L. Gu et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100062

B

2

t
c
f
u
i
t
c
T
(

f
t
h

a
o
t
n
i
r
b
o
c

[
l
c
a
e
c
b
a
l

m
b
P

Fig. 2. We describe the procedure of MHT-PoW and BF-PoW. In figure (a), MHT-PoW encodes a file into a fixed-size buffer and constructs a Merkle hash tree. In figure (b),
F-PoW splits a file into blocks, generates tokens (e.g., 𝑒𝑖), and inserts them into a bloom filter. Finally, the verifier randomly selects 𝑁 challenged blocks for ownership checking.
Fig. 3. The system model of SE-PoW in edge computing.
r
f
w
i
e
c
c
w
u
i
i

3

S
a

3

C
o
e
a
a
c

.2. PoW Schemes & problems

Client-side encrypted deduplication schemes occur from the en-
ities(i.e., IoT devices) and diminish bandwidth consumption signifi-
antly. However, the risks of privacy leakage arise in existing schemes,
or example, duplicate-faking attacks [15,22]. In particular, an attacker
ses a hash value to gain unauthorized access and download files
n Dropbox [23]. Researchers propose proof-of-ownership to tackle
he problem, which checks ownership and achieves authorized ac-
ess. Existing schemes are classified into two categories: Merkle Hash
ree based PoW (MHT-PoW) [15,22,25] and Bloom Filter based PoW
BF-PoW) [21,37] in Fig. 2.
MHT-PoW. Halevi et al. [22] propose MHT-PoW to resist duplicate-

aking attacks. In Fig. 2(a), the client and server simultaneously encode
he file into a buffer via erasure coding and the pairwise independent
ash function. The buffer is divided into fixed-size blocks as 𝐵𝑖 (0

< 𝑖 < 𝑛), and computes the hash value 𝑛𝑖 for each data block 𝐵𝑖
s the leaf node. And the parent node is to calculate the hash value
f the two child nodes. Finally, they get the root node 𝑛15. During
he verification of MHT-PoW, the server randomly selected 𝑁 leaf
ode indexes as the challenge information. The client returns the path
nformation from the leaf node to the root node, and the server finally
ecalculates and compares the value of the root node. Similarly, ECC-
ased accumulators are adopted in [15]. Unfortunately, the encoding
f files and the construction of structures in MHT-PoW will bring great
omputational and I/O overhead.
BF-PoW. To reduce the computation and I/O overheads, BF-PoW

21,26,30] uses a bloom filter to resist duplicate-faking attacks with a
ow error rate. In Fig. 2(b), BF-PoW divides the file into blocks and
alculates the token 𝑒𝑖 (1 ≤ 𝑖 < 5) of the corresponding block with
pseudo-random function, and inserts it into the bloom filter. For

xample, the server selects data blocks 1 and 3 as challenge blocks. The
lient calculates tokens 𝑒1 and 𝑒3 and queries whether they exist in the
loom filter to check the ownership. When the false positive occurs in
bloom filter or the attackers utilize the previous valid proofs, BF-PoW

eads to privacy leakage.
According to our analysis, existing schemes face security and perfor-

ance challenges. First, encrypted deduplication schemes suffer from
rute-force attacks or a heavy computational burden. Second, MHT-

oW incurs extensive time and I/O overheads. BF-PoW is subjected to

3

eplay attacks. We analyze the redundant distribution and architectural
eatures in edge computing to solve these problems. From previous
ork in [4,33,34,38], more than 90.5%–99% redundant data remains

n cross-domain duplicate files and duplicate blocks within users. In
dge computing, performing deduplication at edge nodes is highly effi-
ient and prevents privacy risks and information leakage. Meanwhile,
lient-side deduplication between edge nodes and the central saves net-
ork bandwidth and achieves security guarantees [14]. These motivate
s to propose SE-PoW, a hybrid encrypted deduplication scheme for
ntra- and inter-edge with proof-of-ownership to achieve higher security
n edge computing.

. System model & threat model

This section firstly describes the system model and threat model of
E-PoW. Next, the security requirements and design goals of SE-PoW
re listed as follows.

.1. System model

Fig. 3 describes our system model that consists of three entities:
entral Cloud(CC), Edge Node(EN), and End User (EU). The CC cannot
ffer high-quality services for large-scale data in a restricted network
nvironment. Edge nodes locate on the user side and provide computing
nd storage services with limited resources. In the cloud offloading
pplications, deduplication will be done at edge nodes and the central
loud to save storage space and network bandwidth.

• Central Cloud(CC). The CC provides centralized storage
/retrieval services. When a user is connected to the CC, CC will
verify his password and credential. CC maintains file-level indices
for inter-edge data deduplication. CC also stores ciphertexts of
blocks, keys, information of PoW, and metadata. It assigns tasks
to multiple edge nodes to handle a large amount of data.

• Edge Node(EN). The EN is an entity located at the network
edge, which provides computing and storage services with limited
resources. EN connects to CC via inter-network (e.g., Wide Area
Network(WAN)) but communicates with users in a restricted do-

main (via intra-network). EN acts as a proxy between CC and the

Y. Zhou, Z. Yu, L. Gu et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100062

3

T
t
d
g
a
a
a
E
a
i

3

g

user, supporting duplicate checking, encryption, and challenge-
and-response of PoW. A trusted EN assists the user in generating
random keys.

• End User(EU). The EU is a client or outsourcing entity (e.g., Mo-
bile and IoT devices) consisting of initial and subsequent up-
loaders. EU uploads data to and retrievals data from the CC
through the EN. The EU connects to edge nodes via intra-network
(e.g., Local Area Network(LAN)). Moreover, EN can generate keys
and encrypt/decrypt data with limited computation and storage
resources. The initial uploader transmits data to CC and initializes
the PoW. The subsequent uploaders with duplicate files need to
verify the PoW protocol.

.2. Threat model

We assume that the CC is ‘‘honest-but-curious’’ in edge computing.
he CC will not maliciously delete or modify users’ data, but the CC
ries to learn the sensitive information as much as possible, such as
ata, keys, tags(i.e., hash value), and proofs PoW. Without loss of
enerality, we assume that the malicious CC may collude with other
dversaries. The EN will perform our proposed protocol honestly. We
ssume that the EN is hard to be compromised in the intra-network [14]
nd is protected by firewalls and access control systems. A trusted
N helps users to generate secure keys. In our threat model, the
dversaries can be classified into two types: outside adversaries and
nside adversaries.

• Outside adversaries may be malicious users or hackers. They
obtain some sensitive data (e.g., a hash value, proofs of PoW) via
a public network, such as a web crawler and artificial intelligence.
Outside adversaries aim to get target users’ sensitive data content
and keys from CC and EN. They may disguise themselves as a
legitimate user to interact with the CC or EN.

• Inside adversaries follow the prescribed protocols but try to ob-
tain users’ information, such as plaintexts of data, tags, and proofs
of a specific file. The inside adversaries try to cheat the EN and
CC by using previous proofs and make the verification of PoW
successful.

.3. Security requirements & design goals

We aim to achieve the following security requirements and design
oals based on the above threat model.

• Data confidentiality: We require that the encrypted data and
keys will be achieved semantically secure and resist brute-force
attacks [17].

• Tag consistency: The deduplication scheme should allow the
users to verify data integrity. It can resist poison attacks, in which
a malicious attacker cannot upload a valid hash value but replaces
a file with a poisoned one.

• Backward privacy: When a user uploads a duplicate file that
exists in the CC, CC will check the ownership. Unauthorized data
owners who cannot pass the verification of the PoW would not
access files.

• Resistance to duplicate-faking attacks: An attacker who only
has the data tag cannot download the corresponding ciphertexts
of files.

• Resistance to replay attacks: An attacker cannot pass the verifi-
cation of PoW, even if it generates valid proofs from the previous
message without owning files.

Design goals. Our scheme should achieve the following design
goals. First, SE-PoW should meet the mentioned security requirements.
SE-PoW also realizes upload and download protocols using encrypted
deduplication, key generation, and proof-of-ownership among the EU,
EN, and CC. Second, SE-PoW ensures system efficiency, which re-
duces the cost of computation, transmission, and storage. At last,
other problems, such as data reliability [39], updating, and ownership
management, are beyond the scope of this paper.
4

Table 1
Notations used in the proposed scheme.

Notation Description

𝑢𝑖 An end user
𝐼𝐷𝑢𝑖 The identity of 𝑢𝑖
𝐹𝑖 A file
𝐵𝑖 A block
𝑛 Number of blocks
𝐶 Ciphertext of a block/key
𝑂𝐿𝑖𝑠𝑡𝐹𝑖

An owner list of 𝐹𝑖
𝐾𝑢𝑖 /𝐾𝐹𝑖

/𝐾𝐵𝑖
A user/file/block key

𝐶𝐹𝑃 𝑜𝑊 [𝐹𝑖] A cuckoo filter based PoW
𝑆𝑖𝑔𝑔 (𝐵𝑖) An algebraic signature
𝑉𝑖 A tag to resist replay attacks

3.4. Preliminaries

Before introducing the design of SE-PoW, we describe two data
structures: cuckoo filter and algebraic signature.

Cuckoo Filter. A cuckoo filter [40] is a data structure that is used
to provide approximate set membership tests whether a given item is
in a set or not. It is similar to Bloom filter [29]. A cuckoo filter is a
compact variant of a cuckoo hash table that stores only fingerprints
instead of key–value pairs. A set membership query for item 𝑥 searches
the hash table for the fingerprint of 𝑥 and returns true if an identical
fingerprint is found. A cuckoo filter can show false positives but not
false negatives. It supports adding and removing items dynamically. It
provides a higher lookup performance than Bloom filters. The cuckoo
filter has various advantages over the Bloom filter. (1) It takes less time
for lookups. (2) It has fewer false positives than the bloom filter for the
same number of items stored. (3) It supports the deletion of items.

Algebraic Signature. Algebraic signature [35,41] is a hash function
with homomorphic and algebraic properties. Algebraic signature has
been widely used in remote data possession checking in distributed
system [35] and cloud storage [42]. An algebraic signature consists of
𝑛 symbols to verify the uniqueness of data content. The basic feature of
the algebraic signature method is that the sum of the algebraic signa-
ture of data blocks is equal to the signature result of the corresponding
sum of data blocks. Concretely speaking, let 𝜆 be a tuple in Galois Field,
which 𝜆 = (𝜆1, 𝜆2, ⋯, 𝜆𝑛) is a vector of distinct non-zero elements. The
file 𝐹 is divided into 𝑛 blocks 𝑓 [1], 𝑓 [2], ⋯, 𝑓 [𝑛], and the formula for
calculating the algebraic signature of file 𝐹 is

𝑆𝜆(𝐹) =
𝑛
∑

𝑖=1
𝑓 [𝑖] ⋅ 𝜆𝑖−1 (1)

The properties of an algebraic signature are as follows:

Property 1. Concatenating two data blocks 𝑓 [𝑖] and 𝑓 [𝑗] of length 𝑙 and 𝑚,
into a super block denoted 𝑓 [𝑖] ∥ 𝑓 [𝑗]. Then the signature 𝑆𝜆(𝑓 [𝑖] ∥ 𝑓 [𝑗])
is as follows.

𝑆𝜆(𝑓 [𝑖] ∥ 𝑓 [𝑗]) = 𝑆𝜆(𝑓 [𝑖]) + 𝜆𝑙𝑆𝜆(𝑓 [𝑗]) (2)

Property 2. The algebraic signature of the sum of all data blocks of file 𝐹
equals the sum of the algebraic signatures of each data block.

𝑆𝜆(𝑓 [1]) + 𝑆𝜆(𝑓 [2]) +⋯ + 𝑆𝜆(𝑓 [𝑛])

= 𝑆𝜆(𝑓 [1] + 𝑓 [2] +⋯ + 𝑓 [𝑛])
(3)

4. Design and implementation of SE-PoW

In this section, we first describe the overview of SE-PoW. Then we
present the design and proof of ownership algorithms used in SE-PoW.
Table 1 describes the notations.

Y. Zhou, Z. Yu, L. Gu et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100062

4

s
i
f
a
s
t
C
a
M
o
b
b
T
i

f
f
s
C
s
S
d

4

i
d
e
m
f

Fig. 4. The procedure of initial and subsequent data upload.
.1. Overview of SE-PoW

We perform an inter-edge and intra-edge encrypted deduplication
cheme for files and blocks in the upload phase. In Fig. 4, the EU
s allowed to transfer files to the EN and CC and retrieves relevant
iles on demand. Data are encrypted via different MLE algorithms
ccording to the location of deduplication to balance security and
ystem efficiency. Specifically, the EU generates a file tag and encrypts
he file before sending it to an EN. The EN outsources the file tag to
C for inter-edge(cross-domain) file-level deduplication via a server-
ided RCE algorithm. If unique, EU encrypts blocks via an edge-aided
LE algorithm and initializes the tokens and algebraic signatures. EU

utsources them to the EN for re-encryption and performs intra-edge
lock-level deduplication. Besides, the EN stores the data of SE-PoW
ased on a cuckoo filter and algebraic signatures for PoW verification.
he EN transfers non-duplicated blocks and metadata to the CC and

nitializes a PoW protocol.
In the subsequent upload phase, the EU sends a tag of a duplicate

ile to the CC. Then the user performs a dual-level proof of ownership
or duplicate files in edge computing to ensure data privacy. Concretely
peaking, we first perform the challenge-and-response protocol over
F-PoW. If it passes, we will verify the homomorphism of algebraic
ignatures as the second-level PoW. Only verifying the ownership of
E-PoW, the end-user will send the file metadata without uploading
ata content.

.2. Encrypted deduplication in SE-PoW

To resist brute-force attacks and minimize bandwidth overheads
n edge computing, we proposed a location-aware hybrid encrypted
eduplication in SE-PoW. SE-PoW combines server-aided RCE for inter-
dge files and edge-aided MLE for intra-edge blocks. The encryption
ethods, such as MLE [17], RCE [17], and RSA-OPRF [18], are adopted

rom previous works. Details are shown as follows.
System setup. We choose two hash functions 𝐻1 and 𝐻2 ∶ {0, 1}∗ →

Z𝑝. And the uploader adopts the AES APIs [43], such as Encry() and
Decry(). The public parameters 𝑒 and 𝑁 of RSA are initialized and 𝑑 is
generated via 𝑒 ⋅𝑑 ≡ 1𝑚𝑜𝑑𝜙(𝑁). Each edge node will initialize a master
key 𝐾𝑒𝑖 .

Data Upload. As show in Fig. 4(a), an user 𝑢𝑖 uploads a file 𝐹𝑖 to
the central cloud. The CC will verify the identity 𝐼𝐷𝑢𝑖 and password.
The following details are the file/block-level encrypted deduplication.

(1) 𝑢𝑖 computes the tag 𝑇𝐹𝑖 ←𝐻1(𝐻1(𝐹𝑖)). Then 𝑢𝑖 generates a server-
aided RCE key 𝐾𝐹𝑖 via oblivious pseudorandom protocol [18].
Specifically, for 𝐹𝑖, 𝑢𝑖 chooses a random number 𝑟 ∈ 𝑁 , and
sends 𝑥 = 𝐻1(𝐹𝑖) ⋅ 𝑟𝑒 𝑚𝑜𝑑 𝑁 to a trusted edge node. The
trusted edge node computes 𝑦 = 𝑥𝑑 𝑚𝑜𝑑 𝑁 and sends 𝑦 back.
𝑢𝑖 calculates 𝑧 = 𝑦 ⋅ 𝑟−1 𝑚𝑜𝑑 𝑁 . 𝑢𝑖 could verify whether or
not 𝐻1(𝐹𝑖) ≡ 𝑧𝑒 𝑚𝑜𝑑 𝑁 . Thus, 𝑢𝑖 chooses a random key via

𝑘(𝜆)
𝐿𝐹𝑖 ← {0, 1} , and denotes as 𝐾𝐹𝑖 = (𝐿𝐹𝑖 , 𝑧).

5

(2) 𝑢𝑖 sends 𝑇𝐹𝑖 to the edge nodes(EN) and forwards it to the central
cloud(CC) for inter-edge file-level deduplication. The CC will
check whether 𝑇𝐹𝑖 exists in the inter-edge global file index.
If no, 𝑢𝑖 performs block-level deduplication and jumps to (3).
Otherwise, the CC will check the ownership, and details are in
Section 4.3.

(3) 𝑢𝑖 performs intra-edge block-level encrypted deduplication via
an edge-aided MLE. In particular, 𝑢𝑖 divides 𝐹𝑖 into 𝑛 blocks via
{𝐵𝑖} ← Chunking (𝐹𝑖). For a block 𝐵𝑖 (0 ≤ 𝑖 < 𝑛), 𝑢𝑖 generates
a MLE key 𝐾𝐵𝑖

via 𝐾𝐵𝑖
← 𝐻1(𝐵𝑖). Then 𝑢𝑖 encrypts the block

into ciphertexts 𝐶𝑖||𝐶2
𝑖 ||𝐶3

𝑖 via 𝐶𝑖 ← 𝐸𝑛𝑐𝑟𝑦(𝐾𝐵𝑖
, 𝐵𝑖) and 𝐶2

𝑖 ←

𝐸𝑛𝑐𝑟𝑦(𝐿𝐹𝑖 , 𝐾𝐵𝑖
), and 𝐶3

𝑖 ← 𝑧 ⊕ 𝐿𝐹𝑖 .
(4) 𝑢𝑖 transmits all block ciphertexts (𝐶𝑖, 𝐶2

𝑖 , 𝐶
3
𝑖) to the EN. Then

EN re-encrypts 𝐶𝑖 via 𝐶1
𝑖 ← Encry(𝐾𝑒𝑖 , 𝐶𝑖). The tag of block

𝐵𝑖 is generated via 𝑇𝐵𝑖
← 𝐻1(𝐶1

𝑖). The EN performs intra-edge
block-level encrypted deduplication by checking 𝑇𝐵𝑖

in the local
block-level index. Then, the EN will upload all the ciphertext of
non-duplicated blocks 𝐶1

𝑖 || 𝐶2
𝑖 || 𝐶3

𝑖 and metadata information
𝑇𝐵𝑖

|| 𝐼𝐷𝑢𝑖 to the central cloud. The CC receives and stores
ciphertexts and metadata. Then the central cloud adds the 𝐼𝐷𝑢𝑖
to the owner list 𝑂𝐿𝑖𝑠𝑡𝐹𝑖 .

(5) The EN has to generate tokens and algebraic signatures to ini-
tialize a dual-level PoW protocol. Details are present in the
initialization of SE-PoW in Section 4.3.

Subsequent Upload. In Fig. 4(b), an subsequent uploader 𝑢𝑗 sends
the file 𝐹𝑖 to the edge nodes and central cloud. First, 𝑢𝑗 generates the
file tag 𝑇𝐹𝑖 as described in the upload phase. 𝑢𝑗 outsources them to the
central cloud. The central cloud finds that 𝑇𝐹𝑖 exists in the file index
via duplicate checking. Second, the central cloud performs a challenge-
and-response phase to verify the ownership of 𝑢𝑖. (1) The central cloud
randomly generates 𝑐 challenged blocks and returns the position of
blocks. (2) The edge node computes tokens and algebraic signatures of
challenged blocks based on the position of blocks and transfers them
to the central cloud. (3) The central cloud firstly checks the tokens
whether or not they exist in the cuckoo filter. If it passes, the CC
will verify the homomorphism of algebraic signatures. Otherwise, the
central cloud returns failed results. Details are present in the Algorithm
2. Third, if 𝑢𝑗 passes the verification of PoW, his identify 𝐼𝐷𝑢𝑗 will be
added to the owner list 𝑂𝐿𝑖𝑠𝑡𝐹𝑖 . And the CC returns results to the EN
and 𝑢𝑗 .

Data Download. If a user 𝑢𝑖 wants to download a file 𝐹𝑖, 𝑢𝑖 will
firstly send the identity 𝐼𝐷𝑢𝑖 and file tag 𝑇𝐹𝑖 to the edge nodes and
central cloud. The central cloud will firstly verify his identity 𝐼𝐷𝑢𝑖
whether or not in the owner list. If no, the download request will be
rejected. Otherwise, the CC will read the metadata of 𝐹𝑖 to return the
ciphertexts of all blocks and keys 𝐶1

𝑖 || 𝐶2
𝑖 || 𝐶3

𝑖 (0 ≤ 𝑖 < 𝑛) to the
EN. After receiving the ciphertexts, EN decrypts 𝐶1

𝑖 with 𝐾𝑒𝑖 via 𝐶𝑖 ←

Decry(𝐾𝑒𝑖 , 𝐶
1
𝑖) And the EN forwards 𝐶𝑖 || 𝐶2

𝑖 || 𝐶3
𝑖 (0 ≤ 𝑖 < 𝑛) to 𝑢𝑖. Next,

𝑢𝑖 decrypts the block key via 𝐿𝐹𝑖 ← 𝐶3
𝑖 ⊕ 𝑧 and 𝐾𝐵𝑖

← Decry(𝐿𝐹𝑖 , 𝐶
2
𝑖).

Thus, 𝑢𝑖 decrypts the ciphertext of block to get 𝐵𝑖 via 𝐵𝑖 ← Decry(𝐾𝐵𝑖
,

𝐶𝑖). At last, 𝑢𝑖 creates a new file 𝐹𝑖 and writes each block 𝐵𝑖(0 ≤ 𝑖 < 𝑛)
sequentially to recover the file 𝐹 .
𝑖

Y. Zhou, Z. Yu, L. Gu et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100062

𝛱
c
i
T

a
v
𝐵
s
i
𝑉
𝐼
E
c
t
c
i
t

c
a

f
d
a
g
𝑢
a

P
f
A
o
𝐻
o
e
d
o
𝑢
c
b

1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2

Algorithm 1 The initialization of SE-PoW

Input: File 𝐹𝑖 & parameter 𝑚 of CF.
Output: 𝐶𝐹𝑃𝑜𝑊 [𝐹𝑖] & 𝑆𝑖𝑔𝑔(𝐵𝑖).
1: 𝑢𝑖 divides 𝐹𝑖 into blocks 𝐵𝑖(0 ≤ 𝑖 < 𝑛).
2: 𝑢𝑖 generates tokens 𝑡𝐵𝑖

← 𝐻2(𝐵𝑖).
3: 𝑢𝑖 generates algebraic signatures of blocks 𝑆𝑖𝑔𝑔(𝐵𝑖) ←

𝑆𝜆(𝐵𝑖||𝐼𝐷𝐹𝑖 ||𝑖).
4: 𝑢𝑖 generates 𝑉𝑖 ← 𝑆𝜆(𝐼𝐷𝐹𝑖 ||𝑖)
5: 𝑢𝑖 outsources 𝑡𝐵𝑖

||𝑆𝑖𝑔𝑔(𝐵𝑖)||𝑉𝑖 to the EN and CC.
6: CC initializes 𝐶𝐹𝑃𝑜𝑊 =InitCF(𝑚) and PRF.
7: for 𝑖 = 0 → 𝑛 − 1 do
8: 𝑒𝑖 ← PRF(𝑡𝐵𝑖

, 𝑖)
9: 𝐶𝐹𝑃𝑜𝑊 [𝐹𝑖] ← AddCF(𝑒𝑖)

10: end for
11: CC stores all 𝑆𝑖𝑔𝑔(𝐵𝑖)||𝑉𝑖 and 𝐶𝐹𝑃𝑜𝑊 [𝐹𝑖].

4.3. Proof of ownership in SE-PoW

We propose a dual-level PoW algorithm over encrypted deduplica-
tion with a cuckoo filter and algebraic signatures to resist duplicate-
faking attacks and replay attacks. The cuckoo filter [40] and alge-
braic signature have been used in storage systems [41]. SE-PoW is
a challenge-and-response protocol between two entities on a file 𝐹 :

= (𝑃 , 𝑉). 𝑃 is the end-user and the edge node, and 𝑉 indicates the
entral cloud. In addition, protocol 𝛱 consists of three phases: Initial-
zation(Data upload), challenge, and verification (Subsequent upload).
he details are present in Algorithm 1 and 2.
Initialization of SE-PoW. An initial uploader 𝑢𝑖 generates tokens

nd algebraic signatures of each block in file 𝐹𝑖 for the ownership
erification. As shown in algorithm 1, 𝑢𝑖 firstly divides 𝐹𝑖 into blocks
𝑖(0 ≤ 𝑖 < 𝑛). 𝑢𝑖 generates tokens via 𝑡𝐵𝑖

← 𝐻2(𝐵𝑖) and algebraic
ignatures 𝑆𝑖𝑔𝑔(𝐵𝑖) ← 𝑆𝜆(𝐵𝑖‖𝐼𝐷𝐹𝑖‖𝑖) ←

∑𝑛
𝑗=1(𝐵𝑖,𝑗‖𝐼𝐷𝐹𝑖‖𝑖) ⋅ 𝜆

𝑗−1. 𝐼𝐷𝐹𝑖
s the identity of file 𝐹𝑖 and 𝑖 is the index of block 𝐵𝑖. 𝑢𝑖 also computes
𝑖 ← 𝑆𝜆(𝐼𝐷𝐹𝑖 ∥ 𝑖). Then SE-PoW resists replay attacks via unique labels
𝐷𝐹𝑖 ∥ 𝑖. 𝑢𝑖 sends tokens 𝑡𝐵𝑖

and algebraic signatures 𝑆𝑖𝑔𝑔(𝐵𝑖) to the
N. Next, the EN outsources tokens and signatures to the CC. Then the
entral cloud constructs a cuckoo filter 𝐶𝐹𝑃𝑜𝑊 [𝐹𝑖] ← InitCF(𝑚) with
he parameter of total items 𝑚. For each token 𝑡𝐵𝑖

(0 ⩽ 𝑖 < 𝑛), the CC
omputes 𝑒𝑖 ← PRF(𝑡𝐵𝑖

, 𝑖) with a pseudorandom function PRF. The CC
nserts all tokens into a cuckoo filter 𝐶𝐹𝑃𝑜𝑊 [𝐹𝑖] ← 𝐴𝑑𝑑𝐶𝐹 (𝑒𝑖). Finally,
he CC stores all the algebraic signatures 𝑆𝑖𝑔𝑔(𝐵𝑖) || 𝑉𝑖 and 𝐶𝐹𝑃𝑜𝑊 [𝐹𝑖].

If a subsequent uploader 𝑢𝑗 uploads a file 𝐹𝑖, 𝑢𝑗 will perform the
hallenge and verification of SE-PoW to resist duplicate-faking attacks
nd replay attacks in Algorithm 2.
Challenge of SE-PoW. An subsequent uploader 𝑢𝑗 generates the

ile tag and outsources it to the CC to perform inter-edge file-level
eduplication. Specifically, 𝑢𝑗 computes the file tag 𝑇𝐹𝑖 ← 𝐻1(𝐻1(𝐹𝑖))
nd outsources 𝑇𝐹𝑖 to the central cloud. The CC searches 𝑇𝐹𝑖 in the
lobal file index. If it does not exist, the CC will return the result to
𝑗 . Otherwise, CC randomly selects 𝑐 indices of blocks 𝐼[𝑘] (0 ⩽ 𝑘 < 𝑐)
s the challenge, and returns it to the edge node and 𝑢𝑗 .
Verification of SE-PoW. Then, CC will perform verification of SE-

oW among CC, EN, and 𝑢𝑗 via a dual-level PoW, including a cuckoo
ilter and algebraic signatures. Specifically, details are described in
lgorithm 2. (1) 𝑢𝑗 divides file 𝐹 ′

𝑖 into blocks and generates tokens
f the challenged position belong to 𝐼[𝑘] (0 ⩽ 𝑘 < 𝑐) via 𝑡𝐵′

𝑘
←

2(𝐵′
𝑘). Then 𝑢𝑗 sends 𝑡𝐵′

𝑘
to EN and CC for the first-level verification

f PoW. CC receives 𝑡𝐵′
𝑘

and computes 𝑒′𝑘 ← PRF(𝑡𝐵′
𝑘
, 𝑘). Then CC

xecutes 𝜂 = ContainCF(𝐶𝐹𝑃𝑜𝑊 [𝐹𝑖], 𝑒′𝑘) for all tokens. If any token
oes not exist in 𝐶𝐹𝑃𝑜𝑊 , 𝑢𝑗 does not pass the first-level verification
f SE-PoW. (2) If 𝑢𝑗 passes the first-level verification, CC will request
𝑗 to verify the homomorphism of algebraic signatures. 𝑢𝑗 reads the
hallenged blocks 𝐵′

𝑘(𝑘 ∈ 𝐼[𝑘]) and computes the sum of challenged
locks via 𝛾 ←

∑𝑐−1 𝐵′ . Then, 𝑢 sends 𝛾 to the EN. EN computes the
𝑘=0 𝑘 𝑗

6

Algorithm 2 The challenge and verification of SE-PoW

Input: 𝐶𝐹𝑃𝑜𝑊 [𝐹𝑖] & 𝑆𝑖𝑔𝑔(𝐵𝑘).
Output: The result of SE-PoW verification.
1: CC generates the index of challenged blocks 𝐼[𝑘] (0 ⩽ 𝑘 < 𝑐) and

sends to 𝑢𝑗 .
2: EN requests 𝑢𝑗 to divide 𝐹 ′

𝑖 into 𝐵′
𝑖 ((0 ≤ 𝑖 < 𝑛)) and selects

challenged blocks 𝐵′
𝑖 according to 𝐼[𝑘]

3: while 𝑘 ∈ 𝐼[𝑘] do
4: 𝑢𝑗 executes 𝑡𝐵′

𝑘
← 𝐻2(𝐵

′

𝑘) and sends to EN.

5: CC executes 𝑒′𝑘 ← PRF(𝑡𝐵′
𝑖
, 𝑘).

6: CC executes 𝜂 = ContainCF(𝑒′𝑘) (First-level PoW)
7: if 𝜂 = 0 then
8: return ⊥
9: end if
0: end while
1: CC verifies the second-level PoW.
2: while 𝑘 ∈ 𝐼[𝑘] do
3: 𝑢𝑗 reads the blocks 𝐵′

𝑘.
4: 𝑢𝑗 executes 𝛾 ←

∑𝑐−1
𝑘=0 𝐵

′

𝑘.
5: end while
6: 𝑢𝑗 and EN compute 𝜎 ← 𝑆𝑖𝑔𝑔(𝛾) and send 𝜎 to CC.
7: while 𝑘 ∈ 𝐼[𝑘] do
8: CC reads the signature 𝑆𝑖𝑔𝑔(𝐵𝑘) and 𝑉𝑘 of 𝐹𝑖.
9: CC executes 𝜇 ←

∑𝑐−1
𝑘=0 𝑆𝑖𝑔𝑔(𝐵𝑘)⊕ 𝑉𝑘

0: end while
1: if 𝜎 = 𝜇 then
2: return 1
3: else
4: return 0
5: end if

algebraic signature 𝜎 ← 𝑆𝑖𝑔𝑔(𝛾) and sends 𝜎 to the CC. (3) CC reads the
block signature 𝑆𝑖𝑔𝑔(𝐵𝑘) of 𝐹𝑖 and executes 𝜇 ←

∑𝑐−1
𝑘=0 𝑆𝑖𝑔𝑔(𝐵𝑘)⊕ 𝑉𝑘

(𝑘 ∈ 𝐼[𝑘]). Finally, CC verifies whether 𝜎 equals 𝜇 or not. If no, CC will
return that 𝑢𝑗 does not pass the verification. Otherwise, CC will add
𝐼𝐷𝑢𝑗 to the owner list 𝑂𝐿𝑖𝑠𝑡𝐹𝑖 . 𝑢𝑗 just updates the metadata of 𝐹𝑖 and
does not upload the content of 𝐹𝑖.

4.4. Implementation detail of SE-PoW

We propose a prototype based on the design of SE-PoW. To achieve
the balance between security and efficiency, SE-PoW implements a
dual-level hybrid encrypted deduplication in edge computing. Thus,
SE-PoW lessens the pressure on network bandwidth and improves data
security and privacy. Specifically, SE-PoW adopts a global file index
in the central cloud and block indices in the edge nodes. The index is
a key–value storage structure for tags and data storage locations, for
example, hash tables. The key is the block’s tag, and the value is the
physical address of the data block (such as block offset and length).
Furthermore, the hash and encryption function in SE-PoW is the CTR
mode of SHA-256 and AES-256 [43], and the token calculation uses
the SHA-1 function. The secure network transmission between the edge
nodes and the central cloud uses SSL/TLS [43]. A trusted edge node is
used to compute server-aided keys, and RSA-OPRF [18] is implemented
for evaluation.

To realize the dual-level PoW, SE-PoW uses an efficient cuckoo
filter [40] with better performance and lower false positive rate than a
bloom filter. The cuckoo filter supports InitCF(), AddCF(), ContainCF()
and DeleteCF(). In addition, the overall collision probability of an
algebraic signature used in SE-PoW is very low [35].

Y. Zhou, Z. Yu, L. Gu et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100062

t
e
𝐾
c
o
p
r
f
d
i
t
v
S

t
t
r
i
g
P
i
w
P
a

5

P
T
c

t
c
f
p
o

𝑃

p
p
P
s

b
w

𝜎

v

𝜇

a
t

𝑝

b
f
p
e

𝑃

5. Security analysis

SE-PoW is designed to ensure data confidentiality and backward pri-
vacy and resist attacks for encrypted deduplication in edge computing.
We consider two types of adversaries: inside and outside adversaries.
We assume that the following technologies are secure, such as sym-
metric encryption [43] and OPRF protocols [18]. In worst cases, the
adversaries may compromise the CC and collude with users.

5.1. Data confidentiality

In this case, the adversary gets the ciphertexts of blocks by com-
promising the CC or EU. SE-PoW resists brute-force attacks in the
hybrid deduplication scheme and ensures data confidentiality and tag
consistency.

In general, the adversary obtains the ciphertext of target block
𝐶1
𝑖 ‖𝐶

2
𝑖 ‖𝐶

3
𝑖 (0 ≤ 𝑖 < 𝑛) from a specific file 𝐹𝑖. The adversary knows

hat the blocks {𝐵′
𝑖}(0 ≤ 𝑖 < 𝑛) are from a specific set |𝑆|. For

ach block 𝐵′
𝑖 , the adversary first gets the hash to get the key via

𝐵𝑖
. The adversary gets the ciphertext via 𝐶1′

𝑖 ← 𝐸𝑛𝑐𝑟𝑦(𝐾𝐵′
𝑖
, 𝐵′

𝑖) and
ompares it with 𝐶1

𝑖 . However, 𝐶1
𝑖 is protected by the master key 𝐾𝑒𝑖

f each EN. SE-PoW generates a random file key 𝐾𝐹𝑖 via an oblivious
seudorandom function. All block keys 𝐾𝐵𝑖

are protected securely by
andom key 𝐿𝑖 || 𝐾𝐹𝑖 . Thus the adversary cannot get the plaintext of
ile 𝐹𝑖. As a result, SE-PoW can resist brute-force attacks to ensure
ata confidentiality. In addition, the adversary compromises the data
ntegrity by colluding with users. It uploads the valid tags but replaces
he blocks with poisoned data. SE-PoW computes the hash value of 𝐶1

𝑖
ia 𝑇𝐵′

𝑖
← 𝐻1(𝐶1

𝑖) and compares whether or not 𝑇𝐵′
𝑖

equals 𝑇𝐵𝑖
. Thus,

E-PoW ensures tag consistency.
We discuss the security of SE-PoW under different situations. In

he best case, the adversary compromises the CC but cannot access
he EN. All data and metadata stored in the CC are encrypted with
andom keys. The adversary cannot obtain the plaintext of files even
f it performs brute-force attacks. In the worst case, the adversary may
et the master key of a specific EN and collude with malicious users. SE-
oW can still ensure security for unpredictable data that are not falling
nto a known set. The users access the EN through an intra-network,
hich naturally faces fewer security threats than inter-network. SE-
oW makes the worst-case rarely occur by further protecting the EN
nd file metadata with access control policies.

.2. Security of proof of ownership

For a file 𝐹𝑖, the adversary’s goal is to pass the verification of SE-
oW by leveraging replay attacks or the false positive in a cuckoo filter.
he adversary knows parts of the file, but he does not own the entire
ontent of the file.

We define that the event 𝑣𝑖 is the adversary could pass the verifica-
ion of SE-PoW when he gets a token. It happens in the following two
ases: (1) The adversary receives the correct proof. (2) When the cuckoo
ilter checks the element, a false positive occurs. We define the false
ositive of the CF as 𝑝𝑓 . According to the above analysis, the probability
f event 𝑣𝑖 can be described as:

(𝑣𝑖) = 𝑃 (𝑣𝑖 ∩ (𝑡𝑜𝑘𝑒𝑛𝑖 ∪ 𝑡𝑜𝑘𝑒𝑛𝑖))

= 𝑃 (𝑣𝑖|𝑡𝑜𝑘𝑒𝑛𝑖)𝑃 (𝑡𝑜𝑘𝑒𝑛𝑖) + 𝑃 (𝑣𝑖|𝑡𝑜𝑘𝑒𝑛𝑖)𝑃 (𝑡𝑜𝑘𝑒𝑛𝑖)

= 𝑃 (𝑡𝑜𝑘𝑒𝑛𝑖) + 𝑝𝑓𝑃 (𝑡𝑜𝑘𝑒𝑛𝑖)

(4)

The adversary performs replay attacks by leveraging the previous
roofs and the false positive of the cuckoo filter. After receiving the
roofs, the CC will verify the ownership. To resist these attacks, SE-
oW adopts algebraic signatures as the second verification of PoW. It
atisfies the property that the sum of algebraic signatures of challenged
7

locks equals the signature of the sum of challenged blocks. That is
hether or not 𝜎 = 𝜇.

= 𝑆𝑖𝑔𝑔(𝛾)

= 𝑆𝜆(
𝑐−1
∑

𝑘=0
𝐵′
𝑘)

= 𝑆𝜆(𝐵′
0 + 𝐵′

1 +⋯ + 𝐵′
𝑐−1)

= 𝑆𝜆(𝐵′
0) + 𝑆𝜆(𝐵′

1) + 𝑆𝜆(𝐵′
𝑐−1)

=
𝑐−1
∑

𝑘=0
𝑆𝜆(𝐵′

𝑘)

(5)

After receiving the proofs from the EN and end user, the CC could
erify the ownership.

=
𝑐−1
∑

𝑘=0
𝑆𝑖𝑔𝑔(𝐵𝑘)⊕ 𝑉𝑖

=
𝑐−1
∑

𝑘=0
𝑆𝜆(𝐵𝑘‖𝐼𝐷𝐹𝑖‖𝑖)⊕𝑆𝜆(𝐼𝐷𝐹𝑖 ∥ 𝑖)

=
𝑐−1
∑

𝑘=0
𝑆𝜆(𝐵𝑘)⊕ 𝜆𝑙𝑆𝜆(𝐼𝐷𝐹𝑖 ∥ 𝑖)⊕𝑆𝜆(𝐼𝐷𝐹𝑖 ∥ 𝑖)

=
𝑐−1
∑

𝑘=0
𝑆𝜆(𝐵𝑘)

= 𝜎 (𝐵′
𝑘 = 𝐵𝑘)

(6)

Then, SE-PoW prevents the attacks of the false positive of CF via
dual-level PoW. Moreover, SE-PoW can resist replay attacks because

he adversary does not know 𝑉𝑖. Thus we denote:

𝑓𝑃 (𝑡𝑜𝑘𝑒𝑛𝑖) = 0, 𝑎𝑛𝑑 𝑃 (𝑣𝑖) = 𝑃 (𝑡𝑜𝑘𝑒𝑛𝑖) (7)

We define event 𝑔𝑖, the adversary gets tokens of the challenged
lock 𝐵𝑖, and the probability is 𝑝. The token is the output of the hash
unction of 𝐻2 with the length 𝑙. Based on the random oracle model, the
robability of guessing the correct token is 2−𝑙. Thus, the probability of
vent 𝑡𝑜𝑘𝑒𝑛𝑖 is:

(𝑡𝑜𝑘𝑒𝑛𝑖) = 𝑃 (𝑡𝑜𝑘𝑒𝑛𝑖 ∩ (𝑔𝑖 ∪ 𝑔𝑖))

= 𝑃 (𝑡𝑜𝑘𝑒𝑛𝑖|𝑔𝑖)𝑃 (𝑔𝑖) + 𝑃 (𝑡𝑜𝑘𝑒𝑛𝑖|𝑔𝑖)𝑃 (𝑔𝑖)

= 𝑝 + (1 − 𝑝) ⋅ 2−𝑙
(8)

The adversary needs to get at least 𝑐 tokens of challenged blocks.
Thus, the probability 𝑃 (𝑠𝑢𝑐𝑐) is defined as the adversary can pass the
verification of SE-PoW.

𝑃 (𝑠𝑢𝑐𝑐) = (𝑝 + (1 − 𝑝) ⋅ 2−𝑙)𝑐 (9)

We set up a security parameter 𝑘 to derive a lower bound for 𝑐,
that is 𝑃 (𝑠𝑢𝑐𝑐) ⩽ 2𝑘. To ensure the security of SE-PoW, the number of
challenged blocks is:

𝑐 ≥ 𝑘 ln 2
𝑝 + (1 − 𝑝) ⋅ 2−𝑙

(10)

The probability of running a successful SE-PoW should be negligible
under the security parameter 𝑘 and the number of tokens 𝑐. SE-PoW can
resist duplicate-faking attacks, and it also prevents replay attacks and
the false positive of CF.

5.3. Security discussion of SE-PoW

Table 2 shows the comparison results of encrypted deduplication
schemes. Halevi [22] and Xu [25] refer to the encrypted deduplica-
tion schemes that implement with MHT-PoW and the variants of CE.
Yang [15] encrypts data with server-aided MLE and achieves MHT-PoW
via ECC-based accumulators. In addition, Lorena [37] and Jiang [21]
realize an encrypted deduplication via BF-PoW. The difference is that

Y. Zhou, Z. Yu, L. Gu et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100062

S
4

n
M
m
M
e
C
l
a
e
P
c
d
i
o

a
a
t
5
a
D
m
(
s
s
t
s

Table 2
Comparison of encrypted schemes with PoW.

Scheme Brute-force Duplicate- Replay Perf.a
attack faking attack attack

Halevi [22]/
×

√

× 𝐿Xu [25]

Yang [15]
√ √

× 𝐿
Lorena [37] ×

√

× 𝐻
Jiang [21] ×

√

× 𝐻
SE-PoW

√ √ √

𝐻

a ‘‘L’’ means Low and ‘‘H’’ refers to High.

they use CE and RCE, respectively. We discuss them regarding resis-
tance to brute-force attacks, duplicate-faking attacks and replay attacks,
and performance.

Since all the schemes allow users to encrypt data and realize dedu-
plication over ciphertexts, they can guarantee data confidentiality. On
the one hand, the method of Halevi et al. suffers from brute-force
attacks because of the utilization of CE. The scheme of Halevi et al. [22]
and Yang et al. [15] are both vulnerable to replay attacks and incur
large time overheads due to the Merkle Hash Tree. On the other hand,
Lorena et al. [37], and Jiang et al. [21] cannot prevent brute-force
attacks and replay attacks, but they achieve high performance. As
mentioned above, SE-PoW can resist brute-force attacks and ensure
data confidentiality and tag consistency. Furthermore, SE-PoW also
resists duplicate-faking attacks and replay attacks to ensure backward
privacy, only adding little overheads compared with the scheme of
Jiang [21].

6. Performance evaluation

6.1. Experimental setup

Platform: We conduct experiments to evaluate the performance of
E-PoW. These machines are equipped with an Intel(R) Core(TM) i7-
770@3.40 GHZ 8-core CPU, 96 GB memory and 2 TB hard disk.

They are installed with an Ubuntu 20.04 LTS 64-bit operation system.
These machines are connected with 100 Mbps and 1000 Mbps ethernet
etwork.
ethodology: To evaluate the performance of SE-PoW, we imple-
ent a research prototype to compare the related schemes, including
HT-PoW [22,25] and BF-PoW [21,26,30,37]. MHT-PoW is a file-level

ncrypted deduplication scheme based on the MHT and variants of
E [22,25]. BF-PoW refers to Jiang et al. [21] scheme that is a block-

evel encrypted deduplication scheme with BF-PoW and hybrid RCE
lgorithms. Meanwhile, the encryption schemes consist of convergent
ncryption(CE), server-aided Message-locked Encryption(MLE), and SE-
oW. We mainly use quantitative metrics for encryption time, the
umulative time of SE-PoW, initial and subsequent upload time, meta-
ata, and storage overheads. The time of SE-PoW consists of phases:
nitialization, challenge, and verification. We also observe the impacts
f varying block size, number of tokens, and file size.

Finally, the security parameters are set according to MHT-PoW [22]
nd BF-PoW [21,37]. Where security parameters, the number 𝑘 is 66,
nd the token length is set to 16 bytes. According to formula (10) in
he security analysis, the number of challenge blocks is set {102, 204,
09, 1017}. Note that our evaluation results should be interpreted as an
pproximate assessment of other schemes.
atasets: There are two types of datasets used in SE-PoW for perfor-
ance evaluation, including synthetic datasets and real-world datasets.

1) Synthetic datasets: artificial files with random content of different
izes or different average block size, and each file is divided into fixed-
ize blocks. (2) Table 3 describes the real-world datasets, which contain
hree different types, namely LINUX-set, VMA-set and WEB-set. Linux-

et contains the tar package file of the 258 version of the Linux source

8

Table 3
Description of three real-world datasets.

Name Size (GB) Num. Description

LNX-set 111.32 258 258 tar files
of linux source code

VMA-set 58.67 135 Virtual machine images,
including Fedroa & Ubuntu.

WEB-set 43.31 16 16 days of snapshot files,
retrieval depth is 3 by wget

code. VMA-set [44] is collected images of different operating systems of
virtual machines, including Fedora and Ubuntu. WEB-set is a snapshot
of 15-day web pages downloaded from 𝑛𝑒𝑤𝑠.𝑠𝑖𝑛𝑎.𝑐𝑜𝑚 using the tool
𝑤𝑔𝑒𝑡, and the maximum retrieval depth is 3.

6.2. A sensitivity study on encryption & PoW

This subsection evaluates the performance of encryption and proof-
of-ownership algorithms varying different block sizes and file sizes with
synthetic datasets. First, to assess time overheads of encryption, we
upload a 1024 MB unique file repeatedly with varying block sizes, i.e., 2
kB, 4 kB, and 8 kB. Second, to evaluate time overheads of related pow
schemes, we use files that are generated with random contents of size
2𝑖 kB for 𝑖 ∈ {5,… , 21}, which ranging from 16 kB to 2048 MB. Third,
to evaluate the performance of SE-PoW, we use a 2 GB file varying
different average block sizes, file sizes, and the number of tokens.

Fig. 5(a) shows that the location-aware hybrid encryption scheme
used in SE-PoW reduces more time overheads than server-aided MLE,
and it is similar to CE and RCE as discussed in Section 4.2. In addition,
the larger the average block size, the shorter time overhead. It is
because the OPRF protocol costs a lot and the time of key generation
decreases, as discussed in Section 2. As described in other papers [30],
encrypted deduplication schemes based on proxy re-encryption [21]
also incur high computation cost.

We also evaluate the overheads on the edge side of SE-PoW. SE-PoW
mainly adds the time overheads of data re-encryption, tag generation,
and duplication checking in the block-level index. For example, we use
a 2 GB unique file with random content, and the average block size is 8
kB. We evaluate the server-side overhead of SE-PoW. The re-encryption
time is 10.639 s. The time of tag generation and duplication checking
are 0.841 s and 8.576 s, respectively.

Fig. 5(b) shows the results that SE-PoW significantly reduces the
cumulative time compared with MHT-PoW and only increases little
overheads than BF-PoW as discussed in Section 4.3. Specifically, for an
individual file of 1 GB, SE-PoW reduces 70–86.7% time overheads rel-
ative to MHT-PoW. The erasure coding and construction of the Merkle
hash tree used in MHT-PoW incur large time overheads. Compared
with BF-PoW, SE-PoW only increases 13.2–14.9% the cumulative time
overheads because of the calculation of algebraic signatures.

Fig. 6(a), (b) and (c) evaluate the time overheads of the proof of
ownership protocol in SE-PoW, including initialization, challenge and
verification phases. Fig. 6(a) shows that the cumulative time increases
with the file size, and the initialization phase accounts for more than
60%. The time overhead of PoW is low. For example, SE-PoW costs
0.88 s for a file with 2 GB. Fig. 6(b) evaluates the performance of vary-
ing different average block sizes. The result shows that the cumulative
time of SE-PoW decreases with the increase of the average block size.
Fig. 6(c) shows that only the verification phase costs more time for a
larger number of tokens, as discussed in Section 4.3.

6.3. Evaluating SE-PoW on real-world datasets

In this subsection, we evaluate the overall performance of SE-PoW
compared with MHT-PoW and BF-PoW on three real-world datasets.

First, we assess the storage and metadata overheads. Second, the user

Y. Zhou, Z. Yu, L. Gu et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100062

p
u

h
r
h
5
P
s

Fig. 5. The encryption time on different average block size and the cumulative time of three PoW methods.
Fig. 6. He cumulative time overheadT of SE-PoW varying on file size, average block length and the number of tokens.
Fig. 7. Comparison of storage overhead and metadata overhead under datasets of MHT-PoW, BF-PoW and SE-PoW.
Fig. 8. The relative time of the initial and subsequent uploads of files under datasets of MHT-PoW, BF-PoW and SE-PoW.
erforms file-level and block-level deduplication in the first upload,
ploads non-duplicated data blocks, and initializes the PoW protocol.

Fig. 7(a), compared with MHT-PoW, SE-PoW reduces storage over-
ead by 31.7–73.3%. SE-PoW reduces storage overhead by 10.8–52.9%
elative to BF-PoW. In Fig. 7(b), the growth trend of metadata over-
ead is exactly the opposite of storage overhead. SE-PoW increases
6.6–68.2% and 7.7–15.6% metadata overheads compared with MHT-
oW and BF-PoW. MHT-PoW has less metadata. BF-PoW needs to
tore tokens of blocks, while SE-PoW stores extra algebraic signatures
9

of all blocks. Compared to MHT-PoW and BF-PoW, SE-PoW reduces
the overall data and metadata storage overhead by 31.7–73.3% and
10.8–52.9%, respectively. It is because that SE-PoW combines them
for inter-edge and intra-edge and utilizes a content-defined chunking
algorithm to balance efficiency and storage overheads.

As shown in Fig. 8(a), in the initial upload, SE-PoW reduces 21.9–
61.9% and 6.8–27.7% upload time compared with MHT-PoW and
BF-PoW under the real-world datasets. The encoding and construc-
tion of the Merkle Hash tree bring large computation overheads, as

Y. Zhou, Z. Yu, L. Gu et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100062

p
e
r
s
O
w
c
b
h
c
c
d
e
a
e
P

c
u
v
c
d
o
e
b
a
e
w
o
i
b
h
v
d
o

8

s
s
c
w
m
r

discussed in Section 2.2. Fig. 8(b) shows that SE-PoW reduces the
subsequent upload time by over 80% compared with MHT-PoW. And
SE-PoW increases about 14.4% subsequent upload time related to BF-
PoW. Compared with BF-PoW, SE-PoW adds the calculation overheads
of algebraic signatures (See Section 4.3).

7. Related work

Edge computing has been gaining much popularity in recent years.
Data deduplication at the network edge can exploit the geographic dis-
tribution and low latency to achieve high performance and optimized
storage cost. Li et al. [11] partition the resource-constrained edge nodes
into disjoint clusters. They perform decentralized deduplication within
these clusters to improve the deduplication ratio. They also present
HotDedup [13] to maximize edge service rate and storage efficiency
with deduplication at the network edge by exploiting data popularity
and similarity. Cheng et al. [12] proposed LOFS, a file storage strategy
via a three-layer hash mapping scheme to allocate files to the proper
edge servers for data deduplication. However, they do not solve the
problem of data confidentiality and proof-of-ownership.

Encrypted Deduplication. To protect data confidentiality of dedu-
lication, randomized convergent encryption(CE) and message-locked
ncryption(MLE) and their variants have been proposed in [16,17]. To
esist brute-force attacks, DupLESS [18] and ClearBox [45] leverage
erver-aided MLE via an oblivious pseudorandom protocol (e.g., RSA-
PRF, BLS-OPRF). Liu et al. [46] present a secure deduplication scheme
ithout additional independent servers by using a PAKE protocol. The

onvergent key management [38,47] are studied to ensure key relia-
ility and reduce space overheads. Moreover, encrypted deduplication
as gained much attention in fog and edge computing. Koo et al. [14]
ombine server-side deduplication and client-side deduplication in fog
omputing. Fo-SSD [48] leverages BLS-OPRF to support encrypted
eduplication and enables fog nodes to remove replicate data. Yang
t al. [15] use a hash proof system-based OPRF to resist brute-force
ttacks and provide dynamic cross-domain deduplication in blockchain-
nabled edge computing. However, they do not address the problem of
oW or suffer from potential attacks and time overheads.
Proof-of-Ownership. To solve the problem that attackers can ac-

ess files with a small hash value, Halevi et al. [22] present MHT-PoW,
sing erasure coding to build a Merkle Hash Tree(MHT) for ownership
erification. Ng et al. [49] proposed a private PoW scheme over en-
rypted data. Xu et al. [25] firstly encrypt data and generate a hash
igest to construct a Merkle Hash Tree, which enhances data security
f client-side deduplication under a bounded leakage setting. Yang
t al. [15] adopt ECC-based accumulators for MHT-PoW and achieve
etter performance. However, these schemes require high computation
nd I/O overheads, which are not suitable for edge computing. Pietro
t al. [50] propose s-PoW to reduce computation and I/O overheads,
hich outputs a proof with each bit that is selected at a random position
f the file. BF-PoW [21,26,30,37] generates a token for each block and
nserts tokens into a bloom filter for ownership checking under the
ounded leakage setting. In addition, access control and user revocation
ave been studied. REED [39] encrypts data with a deterministic
ersion of the all-or-nothing transform. It achieves deduplication with
ynamic access control. Nevertheless, they suffer from privacy leakage
f false positives in a bloom filter and replay attacks.

. Conclusion

Nowadays, edge computing employs data deduplication to reduce
torage and computation overheads. However, the state-of-the-art
chemes face some security and performance problems, including data
onfidentiality and security of proof-of-ownership. We design SE-PoW,
hich employs a location-aware hybrid encrypted deduplication
ethod and a dual-level security-enhanced proof-of-ownership algo-
ithm.

10
To resist brute-force attacks, SE-PoW exploits server-aided RCE for
inter-edge file-level encrypted deduplication. For non-duplicate files,
SE-PoW utilizes edge-aided MLE for intra-edge block-level encrypted
deduplication. To resist duplicate-faking attacks, we further exploit a
cuckoo filter as the first-level PoW to verify the ownership. Then we
prove the homomorphism of algebraic signatures to enhance the secu-
rity of SE-PoW and resist replay attacks. Finally, the security analysis
demonstrates that SE-PoW achieves higher security. And the perfor-
mance evaluation makes it clear that SE-PoW is efficient compared with
the state-of-the-art schemes. The problems of data reliability, updating,
and dynamic user management are our future work.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

We want to thank the reviewers and editors for their construc-
tive comments and suggestions. This research is partly supported by
ZDSY20200811143600002. We also thank anyone who helped us im-
prove this work.

References

[1] Fengmin Tang, Feng Gao, Zilong Wang, Driving capability-based transition
strategy for cooperative driving: From manual to automatic, IEEE Access 8 (2020)
139013–139022.

[2] Wang Xiaoyang, Ma Yao, Wang Yiqi, Jin Wei, Wang Xin, Tang Jiliang, Jia
Caiyan, Jian Yu, Traffic flow prediction via spatial temporal graph neural
network, in: Proceedings of the Web Conference 2020(WWW’20), 2020, pp.
1082–1092.

[3] The future of data: Data age 2025, 2019, https://www.seagate.com/files/www-
content/our-story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf.

[4] Rethik data: Put more of your business data to work - from edge
to cloud, 2021, https://www.seagate.com/files/www-content/our-story/rethink-
data/files/Rethink_Data_Report_2020.pdf.

[5] Tim Süß, Tunahan Kaya, Markus Mäsker, Andre Brinkmann, Deduplication
analyses of multimedia system images, in: USENIX Workshop on Hot Topics in
Edge Computing (HotEdge’18), Boston, MA, 2018.

[6] Jianbing Ni, Kuan Zhang, Yong Yu, Xiaodong Lin, Xuemin Sherman Shen,
Providing task allocation and secure deduplication for mobile crowdsensing via
fog computing, IEEE Transactions on Dependable and Secure Computing(TDSC)
17 (3) (2020) 581–594.

[7] Yu Wang Hongyang Yan, Chunfu Jia, Centralized duplicate removal video storage
system with privacy preservation in IoT, Sensors 18 (6) (2018) 1814.

[8] Dropbox, 2022, https://www.dropbox.com/.
[9] Microsoft OneDrive, 2022, https://drive.google.com/.

[10] Ctera edge X series, 2022, https://www.ctera.com/x-series/.
[11] Shijing Li, Tian Lan, Bharath Balasubramanian, Moo-Ryong Ra, Hee Won Lee, Ra-

jesh Panta, EF-Dedup: Enabling collaborative data deduplication at the network
edge, in: 2019 IEEE 39th International Conference on Distributed Computing
Systems (ICDCS), 2019, pp. 986–996.

[12] Geyao Cheng, Deke Guo, Lailong Luo, Junxu Xia, Siyuan Gu, LOFS: A Lightweight
online file storage strategy for effective data deduplication at network edge, IEEE
Trans. Parallel Distrib. Syst. (TPDS) (01) (2021) 1.

[13] Shijing Li, Tian Lan, Hotdedup: managing hot data storage at network
edge through optimal distributed deduplication, in: IEEE INFOCOM 2020-IEEE
Conference on Computer Communications, IEEE, 2020, pp. 247–256.

[14] Dongyoung Koo, Youngjoo Shin, Joobeom Yun, Junbeom Hur, A hybrid dedu-
plication for secure and efficient data outsourcing in fog computing, in: IEEE
CloudCom’2016, 2016, pp. 285–293.

[15] Yang Ming, Chenhao Wang, Hang Liu, Yi Zhao, Jie Feng, Ning Zhang, Weisong
Shi, Blockchain-enabled efficient dynamic cross-domain deduplication in edge
computing, IEEE Internet Things J. (2022) 1.

[16] J. Douceur, A. Adya, W.J Bolosky, et al., Reclaiming space from duplicate files
in a serverless distributed file system, in: Proceedings of IEEE ICDCS, 2002, pp.
617–624.

[17] M. Bellare, S. Keelveedhi, T. Ristenpart, Message-locked encryption and secure
deduplication, in: Proceedings of EUROCRYPT, 2013, pp. 296–312.

[18] S. Keelveedhi, M. Bellare, T. Ristenpart, DupLESS: server-aided encryption for
deduplicated storage, in: Proceedings of Usenix Security, 2013, pp. 1–16.

http://refhub.elsevier.com/S2772-4859(22)00049-7/sb1
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb1
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb1
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb1
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb1
https://www.seagate.com/files/www-content/our-story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf
https://www.seagate.com/files/www-content/our-story/rethink-data/files/Rethink_Data_Report_2020.pdf
https://www.seagate.com/files/www-content/our-story/rethink-data/files/Rethink_Data_Report_2020.pdf
https://www.seagate.com/files/www-content/our-story/rethink-data/files/Rethink_Data_Report_2020.pdf
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb5
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb5
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb5
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb5
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb5
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb6
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb6
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb6
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb6
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb6
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb6
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb6
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb7
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb7
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb7
https://www.dropbox.com/
https://drive.google.com/
https://www.ctera.com/x-series/
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb11
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb11
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb11
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb11
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb11
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb11
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb11
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb12
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb12
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb12
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb12
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb12
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb13
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb13
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb13
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb13
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb13
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb14
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb14
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb14
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb14
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb14
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb15
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb15
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb15
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb15
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb15

Y. Zhou, Z. Yu, L. Gu et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100062
[19] Jingwei Li, Zuoru Yang, Yanjing Ren, Patrick P.C. Lee, Xiaosong Zhang, Bal-
ancing Storage Efficiency and Data Confidentiality with Tunable Encrypted
Deduplication, Association for Computing Machinery, New York, NY, USA, 2020.

[20] Junbeom Hur, Dongyoung Koo, Youngjoo Shin, Kyungtae Kang, Secure data
deduplication with dynamic ownership management in cloud storage, IEEE
Transactions on Knowledge and Data Engineering(TKDE) 28 (11) (2016)
3113–3125.

[21] Shunrong Jiang, Tao Jiang, Liangmin Wang, Secure and efficient cloud data
deduplication with ownership management, IEEE Transactions on Services
Computing (TSC) 13 (6) (2018) 1152–1165.

[22] Shai Halevi, Danny Harnik, Benny Pinkas, Alexandra Shulman-Peleg, Proofs of
ownership in remote storage systems, in: Proceedings of ACM CCS, 2011.

[23] Dropship: dropbox aip utilities, 2012, https://github.com/driverdan/dropship.
[24] Martin Mulazzani, Sebastian Schrittwieser, Manuel Leithner, Markus Huber,

Edgar Weippl, Dark clouds on the horizon: Using cloud storage as attack vector
and online slack space, in: The 20th USENIX Security Symposium (Security’11),
2011, pp. 363–370.

[25] Jia Xu, Ee-Chien Chang, Jianying Zhou, Weak leakage-resilient client-side dedu-
plication of encrypted data in cloud storage, in: Proceedings of ACM AsiaCCS,
2013, pp. 195–206.

[26] J. Blasco, R. DiPietro, A. Orfila, A. Sorniotti, A tunable proof of ownership
scheme for deduplication using Bloom filter, in: Proceedings of IEEE CNS, 2014,
pp. 481–489.

[27] Dongyoung Koo, Junbeom Hur, Privacy-preserving deduplication of encrypted
data with dynamic ownership management in fog computing, Future Generation
Computer Systems(FGCS) 78 (2018) 739–752.

[28] Haoran Yuan, Xiaofeng Chen, Jianfeng Wang, Jiaming Yuan, Hongyang Yan,
Willy Susilo, Blockchain-based public auditing and secure deduplication with
fair arbitration, Inform. Sci. 541 (2020) 409–425.

[29] B.H. Bloom, Spacetime trade-offs in hash coding with allowable errors, Commun.
ACM 13 (7) (1970) 422–426.

[30] Jinbo Xiong, Yuanyuan Zhang, Shaohua Tang, Ximeng Liu, Zhiqiang Yao, Secure
encrypted data with authorized deduplication in cloud, IEEE Access 7 (2019)
75090–75104.

[31] Xue Yang, Rongxing Lu, Kim Kwang Raymond Choo, Fan Yin, Xiaohu Tang,
Achieving efficient and privacy-preserving cross-domain big data deduplication
in cloud, IEEE Trans. Big Data 8 (1) (2022) 73–84.

[32] Yong Yu, Yafang Zhang, Jianbing Ni, Man Ho Au, Lanxiang Chen, Hongyu Liu,
Remote data possession checking with enhanced security for cloud storage, 52
(C), November 2015.

[33] Dutch T. Meyer, William J. Bolosky, A study of practical deduplication, in: The
9th USENIX Conference on File and Storage Technologies (FAST’11), USENIX
Association, San Jose, CA, USA, 2011, pp. 229–241.

[34] The digitization of the world - from edge to core, 2019, https:
//www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-
dataage-whitepaper.pdf.

[35] Thomas J.E. Schwarz, Ethan L. Miller, Store, forget and check: Using algebraic
signatures to check remotely administered storage, in: Proceedings of IEEE
ICDCS, 2006, pp. 1–12.

[36] Jianbing Ni, Xiaodong Lin, Kuan Zhang, Yong Yu, Secure and deduplicated
spatial crowdsourcing: A fog-based approach, in: IEEE GLOBECOM, 2016, pp.
1–6.

[37] Lorena Gonz’alez-Manzano, Agusti’n Orfila, An efficient confidentiality-
preserving proof of ownership for deduplication, J. Netw. Comput. Appl. 50
(2015) 49–59.

[38] Yukun Zhou, Dan Feng, Wen Xia, Min Fu, Fangting Huang, Yucheng Zhang,
Chunguang Li, SecDep: A user-aware efficient fine-grained secure deduplication
scheme with multi-level key management, in: Proceedings of IEEE MSST, 2015,
pp. 1–14.

[39] Jingwei Li Chuan Qin, Patrick P.C. Lee, The design and implementation of
a rekeying-aware encrypted deduplication storage system, ACM Trans. Storage
(TOS) 13 (1) (2017) 9:1–9:30.

[40] B. Fan, D. G. Andersen, M. Kaminsky, M. D. Mitzenmacher, Cuckoo filter:
Practically better than bloom, in: Proceedings of ACM CoNEXT, 2014, pp. 75–88.

[41] W. Litwin, T. Schwarz, Algebraic signatures for scalable distributed data
structures, in: Proceedings. 20th IEEE ICDE, 2004, pp. 412–423.

[42] Jian Shen, Dengzhi Liu, Debiao He, Xinyi Huang, Yang Xiang, Algebraic
signatures-based data integrity auditing for efficient data dynamics in cloud
computing, IEEE Trans. Sustain. Comput. (ISSN: 2377-3782) 5 (02) (2020)
161–173.

[43] OpenSSL Project, 2022, https://www.openssl.org/.
[44] W. Xia, Y. Zhou, H. Jiang, D. Feng, Y. Hua, Y. Hu, Q. Liu, Y. Zhang, FastCDC:

A fast and efficient content-defined chunking approach for data deduplication,
in: Proceedings of USENIX ATC’16, 2016, pp. 101–114.

[45] A. Frederik, B. Jens-Matthias, K. Ghassan O., Y. Franck, Transparent data
deduplication in the cloud, in: Proceedings of ACM CCS’15, 2015, pp. 886–900.
11
[46] Jian Liu, N. Asokan, Benny Pinkas, Secure deduplication of encrypted data
without additional independent servers, in: Proceedings of ACM CCS, 2015, pp.
874–885.

[47] Jin Li, Xiaofeng Chen, Mingqiang Li, Jingwei Li, Patrick PC Lee, Wenjing Lou,
Secure deduplication with efficient and reliable convergent key management,
IEEE TPDS 25 (6) (2014) 1615–1625.

[48] Jianbing Ni, Kuan Zhang, Yong Yu, Xiaodong Lin, Xuemin Sherman Shen,
Providing task allocation and secure deduplication for mobile crowdsensing via
fog computing, IEEE Transactions on Dependable and Secure Computing (TDSC)
(2018).

[49] Wee Keong Ng, Yonggang Wen, Huafei Zhu, Private data deduplication protocols
in cloud storage, in: Proceedings of ACM SAC, 2012, pp. 441–446.

[50] Roberto Di Pietro, Alessandro Sorniotti, Boosting efficiency and security in proof
of ownership for deduplication, in: Proceedings of the 7th ACM AsiaCCS, 2012,
pp. 81–82.

Yukun Zhou received the B.E. and Ph.D. degrees in com-
puter science and technology from Huazhong University of
Science and Technology in 2013, and 2019, respectively.
He is an expert at Sangfor Inc. His research interests
include storage security and edge computing. His research
works have been published in Usenix ATC, IEEE TC, TPDS,
INFOCOM, MSST, FGCS, etc.

Zhibin Yu received his Ph.D. degree in computer sci-
ence from Huazhong University of Science and Technology
(HUST) in 2008. He visited the Laboratory of Computer
Architecture (LCA) of ECE of the University of Texas at
Austin for one year and he worked in Ghent University
as a postdoctoral researcher for half of a year. Now he
is a professor in SIAT. His research interests are micro-
architecture simulation, computer architecture, workload
characterization and generation, performance evaluation,
multi-core architecture, GPGPU architecture, virtualization
technologies, big data processing and so forth. He won the
outstanding technical talent program of Chinese Academy of
Science (CAS) in 2014 and the ’peacock talent’ program of
Shenzhen City in 2013. He is a member of IEEE and ACM.
He serves for ISCA 2013, 2015, 2020, 2021, 2022, MICRO
2014, HPCA 2015, 2018, 2020, PACT 2016, and ICS2018.

Liang Gu received the Ph.D. degree in Computer Software
and Theory from Peking University in 2010. He worked as
an associate research fellow at Yale University from 2010
to 2015. He is currently the chief scientist and the director
of Sangfor Research Institute at Sangfor Technology Inc. As
the person in charge of R&D technology at Sangfor, he is
responsible for the technical framework improvement of a
series of core products, including NGAF, AC, a Cloud HCI,
aSAN, etc.

Dan Feng received the B.E., M.E., and Ph.D. degrees in
computer science and technology from Huazhong University
of Science and Technology (HUST), Wuhan, China, in 1991,
1994, and 1997, respectively. She is a Professor and the
Dean of the School of Computer Science and Technology,
HUST. Her research interests include computer architecture,
non-volatile memory technology, distributed and parallel
file system, and massive storage system. She published more
than 100 papers in IEEE TC, TPDS, TCAD, ACM TOS, FAST,
USENIX ATC, EuroSys, ICDCS, SC, ICS, IPDPS, and DAC. She
is a member of IEEE and ACM, chair of Information Storage
Technology Committee of Chinese Computer Academy.

http://refhub.elsevier.com/S2772-4859(22)00049-7/sb19
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb19
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb19
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb19
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb19
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb20
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb20
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb20
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb20
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb20
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb20
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb20
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb21
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb21
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb21
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb21
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb21
https://github.com/driverdan/dropship
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb24
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb24
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb24
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb24
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb24
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb24
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb24
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb27
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb27
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb27
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb27
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb27
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb28
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb28
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb28
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb28
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb28
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb29
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb29
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb29
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb30
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb30
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb30
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb30
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb30
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb31
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb31
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb31
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb31
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb31
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb33
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb33
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb33
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb33
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb33
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb36
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb36
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb36
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb36
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb36
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb37
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb37
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb37
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb37
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb37
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb39
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb39
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb39
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb39
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb39
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb42
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb42
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb42
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb42
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb42
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb42
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb42
https://www.openssl.org/
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb47
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb47
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb47
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb47
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb47
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb48
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb48
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb48
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb48
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb48
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb48
http://refhub.elsevier.com/S2772-4859(22)00049-7/sb48

	An efficient encrypted deduplication scheme with security-enhanced proof of ownership in edge computing
	Introduction
	Background problems
	Encrypted deduplication in edge computing
	PoW Schemes problems

	System model threat model
	System model
	Threat model
	Security requirements design goals
	Preliminaries

	Design and implementation of SE-PoW
	Overview of SE-PoW
	Encrypted deduplication in SE-PoW
	Proof of ownership in SE-PoW
	Implementation detail of SE-PoW

	Security analysis
	Data confidentiality
	Security of proof of ownership
	Security discussion of SE-PoW

	Performance evaluation
	Experimental setup
	A sensitivity study on encryption PoW
	Evaluating SE-PoW on real-world datasets

	Related work
	Conclusion
	Declaration of competing interest
	Acknowledgments
	References

