
BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100063

S
Y
a

b

c

A

K
S
A
B

1

m
t
c
t
i
a
t
o
T
a
s
S

i
s
O
i
i
f
S
r
t

C

h
R
A
2
B

Contents lists available at ScienceDirect

BenchCouncil Transactions on Benchmarks,
Standards and Evaluations

journal homepage: www.keaipublishing.com/en/journals/benchcouncil-transactions-on-
benchmarks-standards-and-evaluations/

AIBench: Benchmarking AI for Science
atao Li a,b,c,∗, Jianfeng Zhan a,b

Institute of Computing Technology Chinese Academy of Science, No. 6 Kexueyuan South Road, Haidian District, 100190, Beijing, China
University of Chinese Academy of Sciences, No. 19 (A) Yuquan Road, Shijingshan District, 100049, Beijing, China
Microsoft Research Asia, Building 2, No. 5 Dan Ling Street, Haidian District, 100080, Beijing, China

R T I C L E I N F O

eywords:
cientific computing
rtificial intelligence
enchmarking

A B S T R A C T

Scientific research communities are embracing AI-based solutions to target tractable scientific tasks and
improve research work flows. However, the development and evaluation of such solutions are scattered across
multiple disciplines. We formalize the problem of scientific AI benchmarking, and propose a system called
SAIBench in the hope of unifying the efforts and enabling low-friction on-boarding of new disciplines. The
system approaches this goal with SAIL, a domain-specific language to decouple research problems, AI models,
ranking criteria, and software/hardware configuration into reusable modules. We show that this approach is
flexible and can adapt to problems, AI models, and evaluation methods defined in different perspectives. The
project homepage is https://www.computercouncil.org/SAIBench.
. Introduction

Artificial Intelligence has seen continuous and significant advance-
ents over the past years, with Deep Learning methods being arguably

he most representative and focused on. Blessed by the ever-increasing
omputation power in AI accelerators and general-purpose architec-
ures alike, new AI paradigms and models are proposed which greatly
mprove the scalability, flexibility, and applicability of this data-driven
pproach. As a result, the IT industry is welcoming AI-powered solu-
ions, integrating them into existing data processing pipelines that will
therwise require human intervention or prohibitive computation cost.
his trend is also propagating into scientific research communities,
s researchers are gaining interest in leveraging state-of-the-art AI
olutions to tackle equally if not more difficult tasks, hence AI for
cience.

From a bird’s eye view, a scientific research activity can be mechan-
cal or creative. A mechanical research activity can be algorithmically
pecified, with quantized or computationally verifiable input/output.
n the other hand, a creative research activity breaks out of a mechan-

cal system, for example, by defining a new problem or introducing
deas hard to quantify. In this work, we call a computationally veri-
iable research task a ‘‘tractable scientific task’’. That said, an AI for
cience solution is introduced to bring improvements into the scientific
esearch workflow and is usually targeting towards a tractable scientific
ask, such as:

• Mathematical Problem Solving — to solve mathematically well-
defined problems.

∗ Corresponding author at: Institute of Computing Technology Chinese Academy of Science, No. 6 Kexueyuan South Road, Haidian District, 100190, Beijing,
hina.

E-mail addresses: yatli@microsoft.com (Y. Li), jianfengzhan@ict.ac.cn (J. Zhan).

• Pattern Matching — to classify, identify patterns, and detect
region-of-interest in high volume scientific data.

• Prediction — to compute future world states, given an initial
snapshot of the world state and evolving rules.

• Artifact enhancement — to improve the quality of data acquired
from imperfect observations, e.g. incomplete, fragmented, noisy
sensor data.

• Control — to use actuators to drive sensor readings into desired
states, despite the imperfection of both.

• Hypothesis and Confirmation — to propose a theory (e.g. equa-
tions) that conforms with the observations.

Examples of these tasks are shown in Table 1. The term ‘‘AI for
Science’’ is also conventionally deemed as an ensemble of vertical fields
and tasks [1]. However, we argue that to fully realize the potential of
AI for Science, it is not enough to cherry-pick an AI method, match
it against a specific task, and heuristically compare it with existing
methods. One strength of AI methods is that they abstract away the
problem details and mathematical procedures, into generic functions
that transform inputs into outputs — that is, every AI model possesses
the potential to adapt to other tasks, some (for example, neural net-
works) even being universal approximators. Science is vast, and AI
methods are many. A single effort to evaluate a taskmethod pair would
leave other research communities unaware, of both the potential tasks
that a model is capable of processing and potential models that can be
applied to a task. This problem is exaggerated by the fact that the AI
research is moving forward fast, that by the time a specific method is
ttps://doi.org/10.1016/j.tbench.2022.100063
eceived 15 April 2022; Received in revised form 11 May 2022; Accepted 11 May
vailable online 24 May 2022
772-4859/© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of
Y license (http://creativecommons.org/licenses/by/4.0/).
2022

KeAi Communications Co. Ltd. This is an open access article under the CC

https://doi.org/10.1016/j.tbench.2022.100063
https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tbench.2022.100063&domain=pdf
https://www.computercouncil.org/SAIBench
mailto:yatli@microsoft.com
mailto:jianfengzhan@ict.ac.cn
https://doi.org/10.1016/j.tbench.2022.100063
http://creativecommons.org/licenses/by/4.0/


Y. Li and J. Zhan BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100063

m
c
t
c
b
p

p
d
s
e

2

w
v
s
s
i
d
o
B
d
g

f

Table 1
Examples of tractable scientific tasks.

Mathematical Problem Solving Partial derivative equations
General matrix multiplication
Matrix decomposition
Integration
Monte Carlo methods

Pattern Matching Species Classification
Event Identification [2]
Climate Analysis [3]
Anomaly Detection

Prediction High-Energy Particle Simulation
Molecular Dynamics
Fluid Dynamics
Protein Folding

Artifact Enhancement Genome Sequence Alignment
Astronomy Image Enhancement
Medical Image Enhancement
MRI Reconstruction

Control Tokamak Plasma Control [4]
Sensor Triggering

Hypothesis and Confirmation Automatic Physics Laws Discovery
Symbolic Regression

picked up by a scientific computing task, or a task is adapted to an AI
method, it may be already bested by then state-of-the-art.

To help the scientific research communities as a whole system-
atically absorb and integrate the advancements of AI research, and
to avoid repeated efforts in development and evaluation, we propose
SAIBench, a system that bridges scientific computing tasks and AI

ethods, and automatically benchmarks every sensible combination,
ollects performance metrics, and projects it back into rankings proper
o each research community. Research groups of different backgrounds
an focus on their needs while taking advantage of other benchmarking
uilding blocks, without having to re-invent end-to-end evaluation
rocesses.

The rest of this article is organized as follows. We first define the
roblem of scientific AI benchmarking in Section 2. In Section 3 we
iscuss the methodology, goal, and challenges. Section 4 elaborates our
ystem design, including the details of each component. We showcase
nd-to-end scenarios involving multiple modules in Section 5.

. Problem definition

Here we define the problem of scientific AI benchmarking. To begin
ith, we have a set of tractable scientific tasks as defined in the pre-
ious section, and an array of AI methods, each needs to be trained to
olve a specific problem. To evaluate a method for such tasks, different
cientific communities have different criteria. For example, instruments
n High Energy Physics generate zettabytes of data, and the training
ata for AI models is virtually unlimited. An AI method could thus focus
n throughput, time-to-solution, sample selection, etc. Meanwhile, for
iology and Life Sciences, sometimes there are just a few hundred
ata points, requiring high sample efficiency, and a strong ability to
eneralize and extrapolate onto unseen problem configurations.

Nonetheless, the qualification of a method can be categorized as
ollows:

• Defined by Problem Class. For purely computational tasks such
as mathematical problem solving, it is preferable to target against
classes of problems to see how the method performs under each
set of mathematical constraints. For example in equation solving,
it is desired to study how a method behaves for both stiff and
non-stiff systems, where both types contain their problem class
definitions.

• Defined by Problem Setting. Compared to purely mathematical
problem classes, this type of problem definition usually embodies
specific constraints under a class to match a physical setting.
Scientific research communities have established well-respected
2

Table 2
Examples of qualification criterion.

Problem class Boundary Value Problem
Stochastic Differential Equations
Many-body Interactions
Positive Definite Matrix Decomposition

Problem setting Temperature and pressure dependence of
alanine dipeptide
Straight wire Magnetostatics
Community Atmosphere Model
(CAM5) [5] Simulation

Problem case ANI-1x [6], GDB-17 [7]
OASIS [8]

problem settings that have been practiced and confirmed. This
allows computational methods to interoperate with real-world
experiments, as specific experimental settings can be virtually
replicated.

• Defined by Problem Cases. For some tasks we are only inter-
ested in a narrow range within the whole problem space. Most
data-driven tasks fall into this category, where the typical work-
loads of a task are defined by collected and/or labeled data. There
are also ‘‘golden standards’’ defined in research fields, which are
computational methods with superior accuracy and other desir-
able properties, at expensive computational costs. These methods
are then used to collect data for very specific problem cases so
that other faster but less accurate methods can be developed and
evaluated.

This categorization is not mutually exclusive though, as some tasks
require more than one qualification criteria to properly define the prob-
lem. For example, a robotic control algorithm can be tested both in a
simulated setting and on data points collected from real-world sensors.
Nevertheless, the principle is that this categorization describes the hi-
erarchy of problem definition — the more the definition leans towards
the former (problem classes), the more computation is required; On the
other hand, the more towards the latter (problem cases), the more data.
Furthermore, the problem definition serves as a specification for the AI
model behavior, for both training and testing.

Examples of these qualifications are shown in Table 2. However, AI-
based methods likely require training, so the problem definition of all
three types must be reduced to case-by-case training data points — for
a problem class, the problem definition should generate independent
problem instances that sufficiently cover the problem space. For a
problem setting, the problem definition should generate state snapshots
that conform to the constraints. For data-driven problem cases, the
problem definition should simply enumerate from the dataset.

Furthermore, the evaluation of a method depends on the problem
definition generating tests. For each test case, the performance is
represented with a cost function. For a mathematical problem instance,
the cost function can be the error against ground truth solution, or
error against equality constraints [9,10]. For simulation settings, the
cost function can be obtained by comparing the performance metrics
derived from such experiments, as shown by previous works on specific
tasks [11–13]. Lastly, for data-driven problem cases, the dataset can be
split into training and test sets, and the cost function is the loss function
applied to the test set.

Finally, it is crucial to realize that different benchmarking com-
munities use the word ‘‘performance’’ to refer to different concepts.
Scientific AI benchmarking concerns not only the accuracy of AI models
but also the computation cost. The computation cost can be further
broken down into two phases: (1) the cost for a model to reach
certain accuracy, and (2) once the model is properly trained, the
cost of using the model for inference tasks. For the first phase, the
standard practice is to measure training time (wall clock or total
CPU/GPU time) against the best/mean/worst accuracies, and for the
second, the throughput/latency etc. for completing the inference tasks.



Y. Li and J. Zhan BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100063
Moreover, for both phases, we can investigate the system performance
with standard parallel computing benchmarking techniques [14] to
expose different performance characteristics of a solution, for example,
time-to-solution or cost-efficiency.

3. Methodology

The main goal of SAIBench is to build an inclusive and intercon-
necting environment for all the relevant research efforts, including
problem definition, AI method, training algorithm, software and hard-
ware environment, metric definition and ranking definition, and deliver
benchmarking result efficiently with given computation resources. The
desiderata brought by this goal is multifold.

We need to design the system with a modular paradigm and pro-
vide friendly programming interfaces for different modules. It should
handle the impedance mismatches between different programming lan-
guages and environments while maintaining consistent standards. This
is traditionally implemented with language bindings (for example, the
computational chemistry package NWChem [15] can either execute its
own scripting language, or be controlled by a Python language binding)
or file-based inter-process communication, which is suboptimal because
different programming environments may have incompatible constructs
that cannot be bound into a single process, and distributed computing
modules cannot be modeled easily.

A module should be self-descriptive so that the system can au-
tomatically discover benchmarking tasks it can participate in, so in
addition to modular interfaces targeting benchmarking tasks, there
should be a protocol for modules to exchange metadata and relate
to each other. It is challenging to design such a protocol because it
has to be generic, extensible, and yet carrying concrete meanings. For
example, if we model the input/output of an AI model as tensors of
required dimensions, it places strict constraints on what the AI model
can solve, and the system will not be able to associate this AI model
with even slightly incompatible tensors, not to mention non-tensor
data that has to be converted to adapt. On the other hand, if we
simply attach a textual description to each module, it would be too
hard for machine-understanding, and require human in- tervention to
develop the connections. To this end, machine-understandable flexibil-
ity and extensibility are needed, to enable modules to cooperate less
rigidly. The previous example shows how a module for an AI model
should describe itself. Similarly, for a problem definition, it should
programmatically set up the training and test fixtures, and conduct
the experiments. This way all the three types of problem definitions
previously can be normalized and become accessible to AI models. In
addition, it should expose metadata that allows the system to inspect
the execution workflow, and identify tasks that can be completed by
other modules. This type of meta-programming is practiced in program-
ming language research and recently machine learning frameworks,
implemented in declarative languages and domain-specific languages
(DSLs) [16], yet largely unexplored in scientific computing, where most
execution engines take a parse–interpret–execute approach [15,17].

As we discussed above, the system is not a single benchmark, but
a collection of such, to be projected back to each research field and
aggregated by a ranking criterion. Conflict of interests naturally arises,
for example, to favor speed vs. to favor accuracy, first principle metrics
vs. a particular set of derived properties. The system should be able
to allow different perspectives of the same metrics and provide an
interface for ranking modules to declare their preferences.

The performance of an end-to-end AI solution to a tractable sci-
entific task depends on multiple aspects, including the AI model, the
training algorithm, the computing software stack, the empowering
hardware, and so on. These factors do not contribute to the final
performance linearly, for example, a particular AI model may have
the best work-precision properties under one hardware configuration
but not the others. It is thus desirable to consider all these factors as

benchmarking hyperparameters. There are several implications brought

3

by this requirement. The AI module implementation should be declar-
ative instead of being bound to a specific software/hardware stack;
The software stack module should declare the capabilities (e.g. matrix
multiplication and backward propagation) so that the system finds com-
patible model-software pairs; Also, the software stack module should
describe the hardware compatibility and accept a standardized hard-
ware configuration descriptor, so that the system can automatically
schedule scalability tests.

With all the components modularized and parameterized, the whole
benchmarking workflow can be formulated as follows. Each type of
module introduces some dimensions to the benchmarking task, and
the goal is to enumerate and test against the Cartesian product of all
such dimensions, where each point in the problem space represent
the combination of a specific task, solver, metrics, software and hard-
ware configuration. This allows the modules to advertise themselves,
discover the others, and therefore reuse data and interact with each
other, without knowing them beforehand. This paradigm aligns well
with the FAIR guiding principles for scientific data management [18],
which suggests that scientific data should have findability, accessibility,
interoperability, and reusability. This is the key difference between
the methodology of this work and previous AI benchmarking and
scientific benchmarking systems, where the benchmarked scenarios are
pre-determined workload and model combinations, and the addition of
a new AI model or dataset would not be automatically discovered and
reused by existing modules in the system and has to be scripted by a
programmer.

Last but not least, because the system automatically discovers poten-
tial benchmarking tasks, it is desired that the system can concurrently
schedule computation resources to them. As different benchmarking
tasks may require different computing environments, it is crucial that
the system can elastically provision the environment for each task
in a standardized manner, including the operating system, runtime
libraries, setup scripts, and test fixture data. The challenge lies in how
to design the system to efficiently support such needs and minimize the
deployment overhead.

4. System design

In this section, we illustrate the overall design of the system and tap
into each system component, and discuss how to address the aforemen-
tioned challenges. The architecture of the system is depicted in Fig. 1.
The workflow is straightforward. The planner pulls all modules from
the module repository and joins them into feasible tuples according to
the metadata descriptors. The execution plan is then dispatched to the
elastic

computing platform which provides storage, processors, and accel-
erators, where each benchmarking task tuple is executed in a ‘‘bench-
marking pod’’. The purpose of the BenchPod is to provide task-level
isolation to computation resources, a communication endpoint to in-
teract with the planner, and experiment orchestration. A problem
definition module either generates data on-the-fly or retrieves a well-
known dataset into the BenchPod instance. The hardware definition
module acquires hardware resources. The software definition module
constructs a containerized environment, based on a standardized soft-
ware package requirement descriptor. The entry point of the container
is a shim program provided by the BenchPod instance that orchestrates
the actual execution of the solver, metric collection, and aggregation.

4.1. SAIL: Scientific AI domain-specific language

Previous AI benchmarking systems either implicitly define a series
of built-in modules [19,20], or expose a markup language schema to
define modules [21]. For better programmability, discoverability, and
user ergonomics, we propose to define modules with an embedded
domain-specific language (eDSL) called SAIL. The eDSL is implemented

as a Python package so that a module implementer can take advantage



Y. Li and J. Zhan BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100063
Fig. 1. System architecture.
Fig. 2. MNIST Problem Definition.
of modern IDE features such as auto-completion and type checking
while writing the module definition. To design an eDSL means that
the desired features must be retrofitted into the target language. To
achieve this, we take advantage of various Python language constructs
that best fit the required features. Some features can be implemented
with static analysis, for example, we use Python decorators to identify
module entry points. This way we can easily scan for modules with
reflection, and build our module repository. We use Python classes to
represent type descriptors for our type system, which is a dual-role
construct that both encodes the type information for static analysis, and
dispatches code during benchmarking runtime. Benchmarking concepts
are modeled as well-known global objects, and the methods attached
to them represent benchmarking primitives. This gives a hint to the
user that these concepts are stateful, and the primitives can function as
both computation routine and data storage. Finally, we use declarative
methods to construct the computation graph for AI models. Table 3
shows some language construct examples.

The module script, rather than directly executed in a Python inter-
preter, is first sent to the SAIL parser. The SAIL parser substitutes the
actual execution logic with computation nodes and connects the nodes
with computational dependencies to construct the computation graph,
similar to the tape-recording technique in automatic differentiation
frameworks [22]. The parser then analyzes the computation graph and
synthesizes actual benchmarking code. The eDSL provides its own type
system with both tensors and symbolic equations as first-class citizens,
and helper functions to help connect different modules. In fact, with
proper type inference, there is even no need to explicitly declare the
input/output types of a module.

The flexibility of a scripting language also simplifies module defini-
tions, for example, Fig. 2 illustrates a ‘‘hello world’’ problem definition

module — the MNIST [23] image classification problem. This is a

4

Table 3
Examples of SAIL language constructs.

Feature Construct Instances

Module entry points Decorators @ProblemDefinition
@MetricDefiniton . . .

Type descriptors Classes class Tensor
class Scalar . . .

Concepts and Primitives Well-known Train. Classify
Global Objects Model. Predict

Test. Compare . . .

AI models Declarative methods Pipeline
Linear
Relu
Softmax . . .

typical ‘‘defined by cases’’ problem as we illustrated in Section 2. The
definition of this problem reads from four input files, joins them into
pairs, and declares the data points and associated classification tasks
into Train and Test collections. Note that the existence of both train
and test collections is not necessary for some kinds of problems — for
example, a PDE ‘‘problem class’’ definition may define a few equations
in the test collection and expect a solver to accomplish the task without
training or hints.

Note that the problem definition of MNIST resembles a machine
learning training loop — but not entirely. The key point is that it
only defines the problem, and does not try to solve or evaluate the
results. This allows us to plug different evaluation metrics into the
workflow. For example, the Machine Learning community traditionally
focuses on the average performance over the whole dataset, while in
a production critical environment, one may prefer to evaluate 99%



Y. Li and J. Zhan BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100063

p
s
w
i
b
m

f
s
p
a
r
r
o
o

c
t
i
i
g
s
n
t
g
s
c
c

4

a
g
b
t
m
t
o
e
i
o
f
t
e
a
D
f
i
m

Fig. 3. Custom Evaluation Metric Definition.

ercentile precision, or a hard fail condition, as shown in Fig. 3. Also
hown in the code is a simple timer metric, and a task can be evaluated
ith multiple metrics. For example, the two in the code will combine

nto a work–critical loss 2D graph. For iterative tasks, a metric will also
e evaluated iteratively, and a module can choose to keep states across
ultiple iterations, memorize the data points or obtain the average, etc.

Even for the same task, different research communities have dif-
erent interests in performance evaluation. For example, scientific re-
earch groups focus on the quality of the end result, while com-
uter system researchers focus on system performance metrics, such
s throughput and latency [24]. This is why we further split the
anking module from problems and metrics. A ranking module can
eference multiple metrics and aggregate them to obtain a total order,
r implement a comparison between two instances to obtain partial
rder.

Another advantage of this approach is that the module definition
an take input parameters and programmatically generate configura-
ions. For example, in Fig. 4 we define how to pick the correct docker
mage tag for TensorFlow based on the hardware configuration, which
s hard to model with a markup language. This also allows us to define
eneric AI modules that adapt to different input sizes and types and
uggest hyper-parameter values. Fig. 5 shows the definition of a simple
eural network, which not only defines the computation graph, but also
he intended tasks, input/output type conversion, and layer width sug-
estions, so that the planner can grid search this hyperparameter. Also
hown in the code snippet are two type converters, when combined,
an automatically convert the input of an atom sequence into a single
oncatenated tensor.

.2. Automatic benchmarking task discovery

As discussed before, the module definitions are not used for the
ctual execution of the benchmarking tasks. Rather, they are metapro-
ramming constructs that can be seen as a ‘‘dryrun’’ for the actual
enchmarking. The system scans all python files and uses reflection
o identify module entry points, and create records for them in the
odule repository. The system then enumerates all the modules from

he repository and constructs candidate test fixtures, which are tuples
f different kinds of modules. For each candidate tuple, the system
xecutes the modules in it, providing input parameters, and extracting
nformation such as the problems a model can solve, the research field
f a problem, the suggested hyperparameters, and compatible metrics
or a kind of task and so on. The execution order is determined by the
ype of modules and the implied dependencies — problem definitions
xecute first because they generally do not depend on other modules,
nd populate the metadata required to associate metrics and ranking.
uring execution, the system maintains the context for the current test

ixture and accumulates the metadata from already executed modules
n the candidate tuple, and later modules can either be filtered by

etadata matching (for example, by matching data types) or actively

5

reject the context. This is demonstrated in earlier examples, where a
module can use the DSL primitive Fail to indicate that it does not
know how to solve the problem, or the hardware does not support
the current software configuration. Additionally, the system builds a
graph where the nodes are data types and edges are converters, and
employs breadth-first search to also allow type converter composition
so that multiple converters can work together to relax type constraints
and improve module compatibility. This process is akin to the inner
join operation in relational databases, and the system builds complete
tuples of the modules as test scenarios. Apart from automatic discovery,
a module can also explicitly declare relationships with other modules so
as to narrow down the search space. The logic is presented in algorithm
1.

4.3. Experiment orchestration

When the planner is done generating benchmarking configuration
tuples, it is necessary to prune unnecessary entries and make a sched-
ule for the rest. There are multiple invariances in the benchmarking
tasks to help pruning. For example, given the same AI model, soft-
ware/hardware configuration, and similar problem size (of different
problems), the throughput (in terms of FLOPS) can be comparable.
Likewise, the precision evaluation should not be heavily impacted for
the same model and problem on different software/hardware configu-
rations. The executor should only pick significant tuples to maximize
the diversity in measurements for all the metric dimensions, including
model performance, scalability, generalization, and so on. Once the
pruning is done, the scheduling problem concerns how to estimate the
costs of each tuple, and efficiently pack them onto the hardware-task

timeline.



Y. Li and J. Zhan BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100063

5

n
v
a
p
c
t
‘
b
m
p
t

p
a
O
a
t
f
v
p
o

Fig. 4. TensorFlow Software Configuration.
Fig. 5. AI Model Definition.

. Case study

Now we discuss the details of a particular use case, Molecular Dy-
amics (MD). Given the initial states of the atoms (position and velocity
ectors), the problem asks for a prediction of the movement of the
toms. In practice, the problem is decomposed into the problem of force
rediction (Molecular Mechanics), and the integrated force over time to
ompute new states. In particular, force prediction is achieved in mul-
iple ways developed by the Molecular Dynamics research community.
‘Classical MD’’ employs empirical models to compute pairwise forces
etween atoms, and first-principle methods (AIMD) employ quantum
echanic methods as DFT [25] and CCSD(t) [26] to first predict the
otential energy of the system, and then obtain the forces by computing
he partial derivatives of the energy over atom positions.

The problem definition module is shown in Fig. 6. It consists of two
hases. First, an AI model is trained to predict the potential energy of
system, guided by a Molecular Dynamics software package, such as
RCA or Gaussian. Then, the performance of the model is evaluated on
different set of atom configurations. Unlike traditional AI benchmarks

hat merely evaluate the output of a model, here we provide multiple
ixtures, including both the energy prediction, and the position and
elocity updates computed from the prediction. It is the flexibility of
roblem scripting that gives us the ability to model additional fixtures
ther than the energy, which can be extended to benchmark fields other
6

than Molecular Dynamics, for example, Raman Spectroscopy. This is
a typical ‘‘defined by setting’’ problem as we illustrated in Section 2,
because although it reads multiple data points from input files, each
data point is not fed into the AI model, but rather into a simulation
software to compute data points for the AI model.

There are multiple ways to specify an AI model for this problem
— namely, given a set of atoms (atom types, positions, and velocities),
predict a single scalar energy value. One way is to implement an end-
to-end energy prediction model [27,28]. The other way aims to capture
the essence of the end-to-end solutions and let the system synthesize the
whole model. One key insight of the aforementioned energy prediction
models is that the atom configuration is permutation invariant, which
means that the input should be modeled as a set of atoms, not a list.
Therefore, our goal here is to enable the system to compose an AI model
to honor this property and take advantage of existing building blocks.
A possible solution is shown in Fig. 7, where the input is typechecked
to be a list, and the module requires a submodule that can complete
the specified task (prediction in the Molecular Dynamics context) to
map the element type to the output type. The element-wise results are
then summed to combine a permutation invariant output. This way,
the system is able to pick up the modules we defined earlier, such
as the atom embedding converter, and the MLP model for conducting
element-wise prediction.

Now we discuss another benchmarking scenario, deep-learning-
based electron microscopy image segmentation, which is becoming
a popular topic in Biological Chemistry [29–31]. One of the main
challenges in this topic is the scarce of training data, due to complex
and costly data acquisition process. Given limited data, supervised
deep-learning methods require heavy human intervention and may
fail to generalize to unseen data [32,33]. One way to circumvent the
data problem is to introduce semi-supervised deep-learning techniques,
such as pre-training with high volume unlabeled data [34]. To support
pre-training in the benchmarking system means that a model under
evaluation should be able to carry a part of its internal states (weights)
from one task to another, and adjust its computation graph accordingly.
The problem definition should also evaluate the performance of the
model given different amounts of training data, to test its sample
efficiency. The code for this scenario is shown in Fig. 8.

5.1. Comparison to other benchmarking systems

As mentioned above, previous systems focus on a fixed set of
test scenarios [19–21]. Additionally, the lack of declarative modules
means that it is hard to share data between the benchmarking suite
and external scientific computing software packages, which is crucial
in scientific AI benchmarking. For example, the Gradient primitive
in SAIBench allows a training pipeline to extract gradients from an
external package, which is usually not exposed programmatically. The
differences are shown in Table 4.



Y. Li and J. Zhan BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100063
Fig. 6. Molecular Dynamics Problem Definition.
Fig. 7. Permutation Invariant Model Definition.

Table 4
Comparison to other benchmarking systems.

SAIBench MLPerf MLHarness

Focus Different scientific
tasks/criterion

Accuracy, system
throughput

Scalability,
MLCommon
coverage

Modules Declarative Hard-coded Markup

Test scenarios Automatic discovery Fixed Fixed

6. Discussion

We have elaborated on the methodology and the overview of the
system design, yet we look forward to further development in the
components. Brute-force enumeration of all possible test hyperparame-
ters may not be feasible and while pruning can mechanically improve
the situation, it is desirable that a particular problem module can
7

suggest parameters suitable for a research field. More design work
could be done to address model development and debugging needs, for
example, to allow model validation in addition to training and testing.
Python-based eDSL has its limitations, mostly due to the syntactic
constraints of the language. To represent the modules more naturally, a
programming language more geared towards scientific computing can
be investigated [35].

Currently, SAIBench targets tractable scientific tasks, which are
mechanical procedures that can be computed and measured. It is
challenging to extend it to more creative scientific research activities
because it would require the system to formally model the scientific
concepts, and gain a deeper understanding of research topics, motiva-
tions, methodologies, and goals, and how various concepts interact with
each other. Also, automated benchmarks require well-defined metrics,
while open-ended scientific research ideas, in general, are hard to
quantify.

Apart from type-based model composition, automatic AI model
synthesizing given a particular problem definition is also a promising
direction, given the advancement in AI-based code generation [36,37].

7. Conclusion

We have presented our definition of scientific AI benchmarking,
which is an ensemble of scientific task definition, AI benchmarking,
and system performance benchmarking. We have then presented our
methodology for scientific AI benchmarking, with the key idea of de-
coupling and modularizing various components, automatically bench-

marking sensible combinations. We have proposed a system design



Y. Li and J. Zhan BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100063
Fig. 8. Electron Microscopy Image Segmentation.
where the various modules are implemented with a domain-specific
language for scientific AI computing. We have demonstrated that this
design is flexible enough to support benchmarking different types of
scientific tasks, defining AI models, deriving multiple metrics, com-
bining metrics into ranking criteria, and configuring required hard-
ware/software.

Declaration of competing interest

Yatao Li reports financial support was provided by Microsoft Re-
search Asia. Yatao Li reports administrative support was provided
by Institute of Computing Technology Chinese Academy of Sciences.
Jianfeng Zhan reports financial support was provided by Institute of
Computing Technology Chinese Academy of Sciences.

References

[1] A.N. Laboratory, AI for science report.URL https://publications.anl.gov/anlpubs/
2020/03/158802.pdf.

[2] K. Albertsson, P. Altoe, D. Anderson, J. Anderson, M. Andrews, J.P.A. Espinosa,
A. Aurisano, L. Basara, A. Bevan, W. Bhimji, D. Bona-corsi, B. Burkle, P.
Calafiura, M. Campanelli, L. Capps, F. Carmi-nati, S. Carrazza, Y.-f. Chen, T.
Childers, Y. Coadou, E. Coniavitis, K. Cranmer, C. David, D. Davis, A. De Simone,

J. Duarte, M. Erd-mann, J. Eschle, A. Farbin, M. Feickert, N.F. Castro, C.

8

Fitzpatrick, M. Floris, A. Forti, J. Garra-Tico, J. Gemmler, M. Girone, P. Glaysher,
S. Gleyzer, V. Gligorov, T. Golling, J. Graw, L. Gray, D. Greenwood, T. Hacker,
J. Harvey, B. Hegner, L. Heinrich, U. Heintz, B. Hoober-man, J. Junggeburth,
M. Kagan, M. Kane, K. Kanishchev, P. Karpiński, Z. Kassabov, G. Kaul, D. Kcira,
T. Keck, A. Klimentov, J. Kowalkowski, L. Kreczko, A. Kurepin, R. Kutschke,
V. Kuznetsov, N. Köhler, I. Lako-mov, K. Lannon, M. Lassnig, A. Limosani, G.
Louppe, A. Mangu, P. Mato, N. Meenakshi, H. Meinhard, D. Menasce, L. Moneta,
S. Moort-gat, M. Neubauer, H. Newman, S. Otten, H. Pabst, M. Paganini, M.
Paulini, G. Perdue, U. Perez, A. Picazio, J. Pivarski, H. Prosper, F. Psihas, A.
Radovic, R. Reece, A. Rinkevicius, E. Rodrigues, J. Rorie, D. Rousseau, A. Sauers,
S. Schramm, A. Schwartzman, H. Severini, P. Seyfert, F. Siroky, K. Skazytkin,
M. Sokoloff, G. Stewart, B. Stienen, I. Stockdale, G. Strong, W. Sun, S. Thais,
K. Tomko, E. Upfal, E. Usai, A. Ustyuzhanin, M. Vala, J. Vasel, S. Vallecorsa,
M. Verzetti, X. Vilasís-Cardona, J.-R. Vlimant, I. Vukotic, S.-J. Wang, G. Watts,
M. Williams, W. Wu, S. Wunsch, K. Yang, O. Zapata, Machine learning in high
energy physics community white paper. URL http://arxiv.org/abs/1807.02876.

[3] T. Kurth, S. Treichler, J. Romero, M. Mudigonda, N. Luehr, E. Phillips, A.
Mahesh, M. Matheson, J. Deslippe, M. Fatica, M. Houston Prabhat, Exascale deep
learning for climate analytics, in: Proceedings of the International Conference for
High Performance Computing, Networking, Storage, and Analysis,

[4] J. Degrave, F. Felici, J. Buchli, M. Neunert, B. Tracey, F. Carpanese, T. Ewalds,
R. Hafner, A. Abdolmaleki, D. de las Casas, C. Don-ner, L. Fritz, C. Galperti,
A. Huber, J. Keeling, M. Tsimpoukelli, J. Kay, A. Merle, J.-M. Moret, S. Noury,
F. Pesamosca, D. Pfau, O. Sauter, C. Sommariva, S. Coda, B. Duval, A. Fasoli,
P. Kohli, K. Kavukcuoglu, D. Hassabis, M. Riedmiller, Magnetic control of
toka- mak plasmas through deep reinforcement learning 602 (7897) 414–419.
http://dx.doi.org/10.1038/s41586-021-04301-9. URL https://www.nature.com/
articles/s41586-021-04301-9.

https://publications.anl.gov/anlpubs/2020/03/158802.pdf
https://publications.anl.gov/anlpubs/2020/03/158802.pdf
https://publications.anl.gov/anlpubs/2020/03/158802.pdf
http://arxiv.org/abs/1807.02876
http://refhub.elsevier.com/S2772-4859(22)00050-3/sb3
http://refhub.elsevier.com/S2772-4859(22)00050-3/sb3
http://refhub.elsevier.com/S2772-4859(22)00050-3/sb3
http://refhub.elsevier.com/S2772-4859(22)00050-3/sb3
http://refhub.elsevier.com/S2772-4859(22)00050-3/sb3
http://refhub.elsevier.com/S2772-4859(22)00050-3/sb3
http://refhub.elsevier.com/S2772-4859(22)00050-3/sb3
http://dx.doi.org/10.1038/s41586-021-04301-9
https://www.nature.com/articles/s41586-021-04301-9
https://www.nature.com/articles/s41586-021-04301-9
https://www.nature.com/articles/s41586-021-04301-9


Y. Li and J. Zhan BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100063
[5] R.B. Neale, A. Gettelman, S. Park, C.-C. Chen, P.H. Lauritzen, D.L. Williamson,
A.J. Conley, D. Kinnison, D. Marsh, A.K. Smith, F. Vitt, R. Garcia, J.-F. Lamarque,
M. Mills, S. Tilmes, H. Morrison, P. Cameron-Smith, W.D. Collins, M.J. Iacono,
R.C. Easter, X. Liu, S.J. Ghan, P.J. Rasch, M.A. Taylor, Description of the NCAR
community atmosphere model (CAM 5.0) 289.

[6] J.S. Smith, R. Zubatyuk, B. Nebgen, N. Lubbers, K. Barros, A.E. Roit-berg, O.
Isayev, S. Tretiak, The ANI-1ccx and ANI-1x data sets, coupled-cluster and
density functional theory properties for molecules, Sci. Data 7 (1) 134. http://
dx.doi.org/10.1038/s41597-020-0473-z. URL http://www.nature.com/articles/
s41597-020-0473-z.

[7] L. Ruddigkeit, R. van Deursen, L.C. Blum, J.-L. Reymond, Enumeration of 166
billion organic small molecules in the chemical universe database GDB-17, J.
Chem. Inform. Model. 52 (11) 2864–2875. http://dx.doi.org/10.1021/ci300415d.
URL https://pubs.acs.org/doi/10.1021/ci300415d.

[8] D.S. Marcus, T.H. Wang, J. Parker, J.G. Csernansky, J.C. Morris, R.L. Buck-
ner, Open access series of imaging studies (OASIS): Cross-sectional MRI
data in young, middle aged, nondemented, and demented older adults, J.
Cogn. Neurosci. 19 (9) 1498–1507. http://dx.doi.org/10.1162/jocn.2007.19.
9.1498. URL https://direct.mit.edu/jocn/article/19/9/1498/4427/Open-Access-
Series-of-Imaging-Studies-OASIS-Cross.

[9] E. Weinan, J. Han, A. Jentzen, Deep learning-based numerical methods
for high-dimensional parabolic partial differential equations and back-
ward stochastic differential equations, Commun. Math. Stat. 5 (4)
349–380. http://dx.doi.org/10.1007/s40304-017-0117-6. URL https:
//collaborate.princeton.edu/en/publications/deep-learning-based-numerical-
methods-for-high-dimensional-parabo.

[10] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving
nonlinear partial differential equations, J. Computat. Phys. 378 686–707. http:
//dx.doi.org/10.1016/j.jcp.2018.10.045. URL https://www.sciencedirect.com/
science/article/pii/S0021999118307125.

[11] F. Noé, Machine learning for molecular dynamics on long timescales, in:
K.T. Schütt, S. Chmiela, O.A. von Lilienfeld, A. Tkatchenko, K. Tsuda, K.-R.
Müller (Eds.), Machine Learning Meets Quantum Physics, Springer International
Publishing, pp. 331–372, http://dx.doi.org/10.1007/978-3-030-40245-7_16.

[12] A. Mardt, L. Pasquali, H. Wu, F. Noé, VAMPnets for deep learning of molec-
ular kinetics, Nature Commun. 9 (1) 5, http://dx.doi.org/10.1038/s41467-017-
02388-1. URL https://www.nature.com/articles/s41467-017-02388-1.

[13] W. Jia, H. Wang, M. Chen, D. Lu, L. Lin, R. Car, W. E, L. Zhang, Pushing the
limit of molecular dynamics with ab initio accuracy to 100 million atoms with
machine learning Version: 1. arXiv:2005.00223. URL http://arxiv.org/abs/2005.
00223.

[14] T. Hoefler, R. Belli, Scientific benchmarking of parallel computing sys- tems:
Ttwelve ways to tell the masses when reporting performance re- sults, in:
Proceedings of the International Conference for High Perfor- Mance Computing,
Networking, Storage and Analysis, ACM, pp. 1–12, http://dx.doi.org/10.1145/
2807591.2807644, URL https://dl.acm.org/doi/10.1145/2807591.2807644.

[15] E. Apra‘, E.J. Bylaska, W.A. de Jong, N. Govind, K. Kowalski, T.P. Straatsma, M.
Valiev, H.J.J. van Dam, Y. Alexeev, J. Anchell, V. Anisi-mov, F.W. Aquino, R.
Atta-Fynn, J. Autschbach, N.P. Bauman, J.C. Becca, D.E. Bernholdt, K. Bhaskaran-
Nair, S. Bogatko, P. Borowski, J. Boschen, J. Brabec, A. Bruner, E. Cauët, Y. Chen,
G.N. Chuev, C.J. Cramer, J. Daily, M.J.O. Deegan, T.H. Dunning, M. Dupuis,
K.G. Dyall, G.I. Fann, S.A. Fischer, A. Fonari, H. Früchtl, L. Gagliardi, J. Garza,
N. Gawande, S. Ghosh, K. Glaesemann, A.W. Götz, J. Ham-mond, V. Helms,
E.D. Hermes, K. Hirao, S. Hirata, M. Jacquelin, L. Jensen, B.G. Johnson, H.
Jónsson, R.A. Kendall, M. Klemm, R. Kobayashi, V. Konkov, S. Krishnamoorthy,
M. Krishnan, Z. Lin, R.D. Lins, R.J. Littlefield, A.J. Logsdail, K. Lopata, W.
Ma, A.V. Marenich, J. Martin del Campo, D. Mejia-Rodriguez, J.E. Moore, J.M.
Mullin, T. Nakajima, D.R. Nascimento, J.A. Nichols, P.J. Nichols, J. Nieplocha,
A. Otero-de-la Roza, B. Palmer, A. Panyala, T. Pirojsirikul, B. Peng, R. Peverati,
J. Pittner, L. Pollack, R.M. Richard, P. Sadayappan, G.C. Schatz, W.A. Shelton,
D.W. Silverstein, D.M.A. Smith, T.A. Soares, D. Song, M. Swart, H.L. Taylor,
G.S. Thomas, V. Tipparaju, D.G. Truh-lar, K. Tsemekhman, T. Van Voorhis,
Vázquez-Mayagoitia, P. Verma, O. Villa, A. Vishnu, K.D. Vogiatzis, D. Wang,
J.H. Weare, M.J. Williamson, T.L. Windus, K. Woliński, A.T. Wong, Q. Wu, C.
Yang, Q. Yu, M. Zacharias, Z. Zhang, Y. Zhao, R.J. Harrison, NWChem: Past,
present, and future 152 (18) 184102. http://dx.doi.org/10.1063/5.0004997. URL
http://aip.scitation.org/doi/10.1063/5.0004997.

[16] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T.
Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang,
Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang,
J. Bai, S. Chintala, PyTorch: An imperative style, high- performance deep
learning library, in: Advances in Neural Information Processing Systems,
Vol. 32, Curran Associates, Inc., URL https://papers.nips.cc/paper/2019/hash/
bdbca288fee7f92f2bfa9f7012727740-Abstract.html.

[17] M. Brehm, SANscript – A scientific algorithm notation language. URL https:

//brehm-research.de/sanscript.php.

9

[18] M.D. Wilkinson, M. Dumontier, I.J. Aalbersberg, G. Appleton, M. Ax-ton, A.
Baak, N. Blomberg, J.-W. Boiten, L.B. da Silva Santos, P.E. Bourne, J. Bouwman,
A.J. Brookes, T. Clark, M. Crosas, I. Dillo, O. Dumon, S. Edmunds, C.T. Evelo,
R. Finkers, A. Gonzalez-Beltran, A.J.G. Gray, P. Groth, C. Goble, J.S. Grethe,
J. Heringa, P.A.C. ’t Hoen, R. Hooft, T. Kuhn, R. Kok, J. Kok, S.J. Lusher,
M.E. Martone, A. Mons, A.L. Packer, B. Persson, P. Rocca-Serra, M. Roos,
R. van Schaik, S.-A. Sansone, E. Schultes, T. Sengstag, T. Slater, G. Strawn,
M.A. Swertz, M. Thompson, J. van der Lei, E. van Mulligen, J. Vel-terop,
A. Waagmeester, P. Wittenburg, K. Wolstencroft, J. Zhao, B. Mons, The FAIR
guiding principles for scientific data management and stewardship, Sci. Data 3
(1) 160018. http://dx.doi.org/10.1038/sdata.2016.18. URL https://www.nature.
com/articles/sdata201618.

[19] W. Gao, C. Luo, L. Wang, X. Xiong, J. Chen, T. Hao, Z. Jiang, F. Fan, M. Du,
Y. Huang, F. Zhang, X. Wen, C. Zheng, X. He, J. Dai, H. Ye, Z. Cao, Z. Jia, K.
Zhan, H. Tang, D. Zheng, B. Xie, W. Li, X. Wang, J. Zhan, Aibench: Towards
scalable and comprehensive datacenter AI benchmarking, in: C. Zheng, J. Zhan
(Eds.), Benchmarking, Measuring, and Optimizing, Vol. 11459, in: Lecture Notes
in Computer Science, Springer International Publishing, pp. 3–9, http://dx.doi.
org/10.1007/978-3-030-32813-9_1, URL http://link.springer.com/10.1007/978-
3-030-32813-9 1.

[20] P. Mattson, C. Cheng, C. Coleman, G. Diamos, P. Micikevicius, D. Pat-terson, H.
Tang, G.-Y. Wei, P. Bailis, V. Bittorf, D. Brooks, D. Chen, D. Dutta, U. Gupta, K.
Hazelwood, A. Hock, X. Huang, A. Ike, B. Jia, D. Kang, D. Kanter, N. Kumar,
J. Liao, G. Ma, D. Narayanan, T. Ogun-tebi, G. Pekhimenko, L. Pentecost, V.J.
Reddi, T. Robie, T.S. John, T. Tabaru, C.-J. Wu, L. Xu, M. Yamazaki, C. Young,
M. Zaharia, MLPerf training benchmark 14.

[21] Y.-H. Chang, J. Pu, W.-m. Hwu, J. Xiong, MLHarness: A scalable benchmarking
system for ML Commons, BenchCouncil Trans. Benchmarks, Standards Eval. 1
(1) 100002. http://dx.doi.org/10.1016/j.tbench.2021.100002. URL https://www.
sciencedirect.com/science/article/pii/S2772485921000028.

[22] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A.
Desmaison, L. Antiga, A. Lerer, Automatic differentiation in PyTorch 4.

[23] Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied
to document recognition, Proc. IEEE 86 (11) 2278–2324. http://dx.doi.org/10.
1109/5.726791. URL http://ieeexplore.ieee.org/document/726791/.

[24] J. Thiyagalingam, M. Shankar, G. Fox, T. Hey, Scientific machine learn- ing
benchmarks.URL http://arxiv.org/abs/2110.12773.

[25] R. Haunschild, A. Barth, B. French, A comprehensive analysis of the history
of DFT based on the bibliometric method RPYS, J. Cheminform. 11 (1) 72,
http://dx.doi.org/10.1186/s13321-019-0395-y.

[26] H.G. Kümmel, A biography of the coupled cluster method 17 (28)
5311–5325, http://dx.doi.org/10.1142/S0217979203020442. URL https://www.
worldscientific.com/doi/abs/10.1142/S0217979203020442.

[27] J. Han, L. Zhang, R. Car, W. E, Deep potential: A general representation
of a many-body potential energy surface, Commun. Computat. Phys. 23 (3).
arXiv:1707.01478, http://dx.doi.org/10.4208/cicp.OA-2017-0213. URL http://
arxiv.org/abs/1707.01478.

[28] O.T. Unke, M. Meuwly, PhysNet: A neural network for predicting energies,
forces, dipole moments and partial charges, J. Chem. Theory Computat. 15 (6)
3678–3693. arXiv:1902.08408, http://dx.doi.org/10.1021/acs.jctc.9b00181. URL
http://arxiv.org/abs/1902.08408.

[29] E. Gómez-de Mariscal, M. Maška, A. Kotrbová, V. Pospíchalová, P. Mat-ula,
A. Munõz-Barrutia, Deep-learning-based segmentation of small extracellular
vesicles in transmission electron microscopy images, Sci. Rep. 9 (1) 13211.
http://dx.doi.org/10.1038/s41598-019-49431-3. URL https://www.nature.com/
articles/s41598-019-49431-3.

[30] L. von Chamier, R.F. Laine, J. Jukkala, C. Spahn, D. Krentzel, E. Nehme, M.
Lerche, S. Hernández-Pérez, P.K. Mattila, E. Karinou, S. Holden, A.C. Solak,
A. Krull, T.-O. Buchholz, M.L. Jones, L.A. Royer, C. Leterrier, Y. Shecht-
man, F. Jug, M. Heilemann, G. Jacquemet, R. Henriques, Democratising deep
learning for microscopy with ZeroCostDL4Mic, Nature Commu. 12 (1) 2276.
http://dx.doi.org/10.1038/s41467-021-22518-0. URL https://www.nature.com/
articles/s41467-021-22518-0.

[31] J.M. Ede, Deep learning in electron microscopy, Mach. Learning: Sci. Technol.
2 (1) 011004. http://dx.doi.org/10.1088/2632-2153/abd614.

[32] S.M. Plaza, J. Funke, Analyzing image segmentation for connectomics, Front.
Neural Circ. 12, 102. DOI: http://dx.doi.org/10.3389/fncir.2018.00102. URL
https://www.frontiersin.org/article/10.3389/fncir.2018.00102/full.

[33] J.W. Lichtman, H. Pfister, N. Shavit, The big data challenges of connectomics,
Nature Neurosci. 17 (11) 1448–1454. http://dx.doi.org/10.1038/nn.3837. URL
http://www.nature.com/articles/nn.3837.

[34] R. Conrad, K. Narayan, CEM500K, a large-scale heterogeneous unlabeled cellular
electron microscopy image dataset for deep learning, eLife 10 e65894, eLife
Sciences Publications, Ltd. DOI: http://dx.doi.org/10.7554/eLife.65894.

[35] M. Innes, A. Edelman, K. Fischer, C. Rackauckas, E. Saba, V.B. Shah, W. Tebbutt,
A differentiable programming system to bridge machine learning and scientific

computing. URL http://arxiv.org/abs/1907.07587.

http://dx.doi.org/10.1038/s41597-020-0473-z
http://dx.doi.org/10.1038/s41597-020-0473-z
http://dx.doi.org/10.1038/s41597-020-0473-z
http://www.nature.com/articles/s41597-020-0473-z
http://www.nature.com/articles/s41597-020-0473-z
http://www.nature.com/articles/s41597-020-0473-z
http://dx.doi.org/10.1021/ci300415d
https://pubs.acs.org/doi/10.1021/ci300415d
http://dx.doi.org/10.1162/jocn.2007.19.9.1498
http://dx.doi.org/10.1162/jocn.2007.19.9.1498
http://dx.doi.org/10.1162/jocn.2007.19.9.1498
https://direct.mit.edu/jocn/article/19/9/1498/4427/Open-Access-Series-of-Imaging-Studies-OASIS-Cross
https://direct.mit.edu/jocn/article/19/9/1498/4427/Open-Access-Series-of-Imaging-Studies-OASIS-Cross
https://direct.mit.edu/jocn/article/19/9/1498/4427/Open-Access-Series-of-Imaging-Studies-OASIS-Cross
http://dx.doi.org/10.1007/s40304-017-0117-6
https://collaborate.princeton.edu/en/publications/deep-learning-based-numerical-methods-for-high-dimensional-parabo
https://collaborate.princeton.edu/en/publications/deep-learning-based-numerical-methods-for-high-dimensional-parabo
https://collaborate.princeton.edu/en/publications/deep-learning-based-numerical-methods-for-high-dimensional-parabo
https://collaborate.princeton.edu/en/publications/deep-learning-based-numerical-methods-for-high-dimensional-parabo
https://collaborate.princeton.edu/en/publications/deep-learning-based-numerical-methods-for-high-dimensional-parabo
http://dx.doi.org/10.1016/j.jcp.2018.10.045
http://dx.doi.org/10.1016/j.jcp.2018.10.045
http://dx.doi.org/10.1016/j.jcp.2018.10.045
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125
http://dx.doi.org/10.1007/978-3-030-40245-7_16
http://dx.doi.org/10.1038/s41467-017-02388-1
http://dx.doi.org/10.1038/s41467-017-02388-1
http://dx.doi.org/10.1038/s41467-017-02388-1
https://www.nature.com/articles/s41467-017-02388-1
http://arxiv.org/abs/2005.00223
http://arxiv.org/abs/2005.00223
http://arxiv.org/abs/2005.00223
http://arxiv.org/abs/2005.00223
http://dx.doi.org/10.1145/2807591.2807644
http://dx.doi.org/10.1145/2807591.2807644
http://dx.doi.org/10.1145/2807591.2807644
https://dl.acm.org/doi/10.1145/2807591.2807644
http://dx.doi.org/10.1063/5.0004997
http://aip.scitation.org/doi/10.1063/5.0004997
https://papers.nips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://papers.nips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://papers.nips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://brehm-research.de/sanscript.php
https://brehm-research.de/sanscript.php
https://brehm-research.de/sanscript.php
http://dx.doi.org/10.1038/sdata.2016.18
https://www.nature.com/articles/sdata201618
https://www.nature.com/articles/sdata201618
https://www.nature.com/articles/sdata201618
http://dx.doi.org/10.1007/978-3-030-32813-9_1
http://dx.doi.org/10.1007/978-3-030-32813-9_1
http://dx.doi.org/10.1007/978-3-030-32813-9_1
http://link.springer.com/10.1007/978-3-030-32813-9
http://link.springer.com/10.1007/978-3-030-32813-9
http://link.springer.com/10.1007/978-3-030-32813-9
http://dx.doi.org/10.1016/j.tbench.2021.100002
https://www.sciencedirect.com/science/article/pii/S2772485921000028
https://www.sciencedirect.com/science/article/pii/S2772485921000028
https://www.sciencedirect.com/science/article/pii/S2772485921000028
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/5.726791
http://ieeexplore.ieee.org/document/726791/
http://arxiv.org/abs/2110.12773
http://dx.doi.org/10.1186/s13321-019-0395-y
http://dx.doi.org/10.1142/S0217979203020442
https://www.worldscientific.com/doi/abs/10.1142/S0217979203020442
https://www.worldscientific.com/doi/abs/10.1142/S0217979203020442
https://www.worldscientific.com/doi/abs/10.1142/S0217979203020442
http://arxiv.org/abs/1707.01478
http://dx.doi.org/10.4208/cicp.OA-2017-0213
http://arxiv.org/abs/1707.01478
http://arxiv.org/abs/1707.01478
http://arxiv.org/abs/1707.01478
http://arxiv.org/abs/1902.08408
http://dx.doi.org/10.1021/acs.jctc.9b00181
http://arxiv.org/abs/1902.08408
http://dx.doi.org/10.1038/s41598-019-49431-3
https://www.nature.com/articles/s41598-019-49431-3
https://www.nature.com/articles/s41598-019-49431-3
https://www.nature.com/articles/s41598-019-49431-3
http://dx.doi.org/10.1038/s41467-021-22518-0
https://www.nature.com/articles/s41467-021-22518-0
https://www.nature.com/articles/s41467-021-22518-0
https://www.nature.com/articles/s41467-021-22518-0
http://dx.doi.org/10.1088/2632-2153/abd614
http://dx.doi.org/10.3389/fncir.2018.00102
https://www.frontiersin.org/article/10.3389/fncir.2018.00102/full
http://dx.doi.org/10.1038/nn.3837
http://www.nature.com/articles/nn.3837
http://dx.doi.org/10.7554/eLife.65894
http://arxiv.org/abs/1907.07587


Y. Li and J. Zhan BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100063
[36] S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco, C. Clement, D.
Drain, D. Jiang, D. Tang, G. Li, L. Zhou, L. Shou, L. Zhou, M. Tu-fano, M.
Gong, M. Zhou, N. Duan, N. Sundaresan, S.K. Deng, S. Fu, S. Liu, CodeXGLUE:
A machine learning benchmark dataset for code understanding and generation.
URL http://arxiv.org/abs/2102.04664.
10
[37] D. Peng, S. Zheng, Y. Li, G. Ke, D. He, T.-Y. Liu, How could neural networks
understand programs? in: Proceedings of the 38th International Conference on
Machine Learning, PMLR, pp. 8476–8486, URL https://proceedings.mlr.press/
v139/peng21b.html.

http://arxiv.org/abs/2102.04664
https://proceedings.mlr.press/v139/peng21b.html
https://proceedings.mlr.press/v139/peng21b.html
https://proceedings.mlr.press/v139/peng21b.html

	SAIBench: Benchmarking AI for Science
	Introduction
	Problem Definition
	Methodology
	System Design
	SAIL: Scientific AI domain-specific Language 
	Automatic Benchmarking Task Discovery 
	Experiment Orchestration 

	Case Study
	Comparison to Other Benchmarking Systems

	Discussion
	Conclusion
	Declaration of Competing Interest
	References


