
BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100064

A
J
R

A

K
B
B
E
P
I
U
C
B
T
S
E
F
B

1

a
s
t
l
t
t
p
b
b
d
a

J
a
o
e
i
p
f
p
m

h

A
2
B

Contents lists available at ScienceDirect

BenchCouncil Transactions on Benchmarks,
Standards and Evaluations

journal homepage: https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-
benchmarks-standards-and-evaluations/

BenchCouncil view on benchmarking emerging and future computing
ianfeng Zhan
esearch Center for Advanced Computer Systems, Institute of Computing Technology, Chinese Academy of Sciences, China

R T I C L E I N F O

eywords:
enchmark science and engineering
enchmarking challenges
xtrinsic property
rocess entanglement
nstantiation bias
nified benchmark definition
onceptual framework
enchmarking methodology
raceability
upervised learning
merging computing
uture computing
enchCouncil Plan

A B S T R A C T

The measurable properties of the artifacts or objects in the computer, management, or finance disciplines are
extrinsic, not inherent — dependent on their problem definitions and solution instantiations. The processes
of problem definition, solution instantiation, and measurement are entangled. Only after the instantiation can
the solutions to the problem be measured. Definition, instantiation, and measurement have complex mutual
influences. Meanwhile, the technology inertia brings instantiation bias — trapped into a subspace or even a
point at a high-dimension solution space. These daunting challenges, which emerging computing aggravates,
make metrology cannot work for benchmark communities. It is pressing to establish independent benchmark
science and engineering.

This article presents a unifying benchmark definition, a conceptual framework, and a traceable and
supervised learning-based benchmarking methodology, laying the foundation for benchmark science and engi-
neering. I also discuss BenchCouncil’s plans for emerging and future computing. The ongoing projects include
defining the challenges of intelligence, instinct, quantum computers, Metaverse, planet-scale computers, and
reformulating data centers, artificial intelligence for science, and CPU benchmark suites. Also, BenchCouncil
will collaborate with ComputerCouncil on open-source computer systems for planet-scale computing, AI for
science systems, and Metaverse.
. Introduction

Benchmarking is widely practiced in different disciplines without
consensus on a consistent definition. For example, in the computer

cience discipline, the community uses a set of workload implemen-
ations to measure CPU (processor) performances [1,2]. In machine
earning, standardized data sets labeled with ground truths are used
o define a data science problem [3,4]. In the management discipline,
he industry best practices are searched and compared against different
roducts, services, and processes [5,6]. All are called benchmarks or
enchmarking. In the previous work, I concluded five categories of
enchmarks [6]: measurement standards, standardized data sets with
efined properties, representative workloads, representative data sets,
nd industry best practices.

The inconsistency or chaos results from the following fact. Per
CGM 200 definition, metrology is the science of measurement and its
pplication [7,8]. Metrology measures intrinsic properties independent
f an observer, like length, time, and power. There is a true quantity for
ach inherent property, where a probability could state the coverage
nterval containing the true value [7,8]. However, the measurable
roperties of the artifacts or objects in the computer, management, or
inance disciplines are extrinsic, not inherent — dependent on their
roblem definitions and solution instantiations. Unlike the processes in
etrology that are linear and static, the processes of a benchmark have
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complex mutual influence. The problem definition, solution instanti-
ation, and measurement processes are entangled and indivisible, and
only after the instantiation can the solutions to the problem be mea-
sured, which I call process entanglement. Users adhere to existing prod-
ucts, tools, platforms, and services, called technology inertia [9]. The
technology inertia traps the solution to a problem into a specific explo-
ration path — a subspace or even a point at a high-dimension solution
space. The instantiation bias impacts the measurement of the extrinsic
properties.

Our society increasingly relies upon information infrastructure with
daunting complexity that dwarfs the previous systems, making it diffi-
cult to trace the problem definition. Instead, the biased instantiation
of solutions becomes the proxy of the problems, missing the forest
for the trees. As shown in Fig. 1, these daunting challenges: extrinsic
properties, process entanglement, and instantiation bias, result in the
benchmark community’s inability to reuse the metrology knowledge
and the de facto isolation of benchmark communities, like computers,
management, and finance, developing different methodologies, tools,
and practices. It is pressing to establish independent benchmark science
and engineering.

Echoing my past call [6], this article further builds up benchmark
science and engineering. I define the benchmark from the perspective
of problems and solutions. A benchmark is an explicit or implicit
ttps://doi.org/10.1016/j.tbench.2022.100064
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Fig. 1. With respect to metrology, the benchmarking challenges – the extrinsic properties, process entanglement, and instantiation bias – explain why metrology cannot work
for the benchmark community. First, the property of a benchmark is not inherent but dependent on its problem definition and solution instantiation. Second, only after the
instantiation can the solutions to the problem be measured. The processes of problem definition, solution instantiation, and measurement are entangled, and they have complex
mutual influences. Third, instantiation introduces many biases.
definition of a problem, an instantiation of a problem, an instanti-
ation of state-of-the-practice solutions as the proxy to the problem,
or a measurement standard that quantitatively measures the solution
space. I propose a concise conceptual framework for the benchmark
science and engineering, at the core of which is the extrinsic properties.
The extrinsic property is a benchmark property that is not inherent
but dependent on a problem definition and solution instantiation. I
propose a traceable and supervised learning-based methodology to
tackle the challenges of extrinsic property, process entanglement, and
instantiation bias. The essence of the methodology has two integrated
parts: manage the traceability of the processes from the problem def-
inition and solution instantiation to measurement; search for the best
solution through supervised learning with reference to a thoroughly-
understood process from the problem definition, solution instantiation
to measurement.

Also, I discuss BenchCouncil’s plan for emerging and future chal-
lenges. The ongoing projects include defining the challenges of in-
telligence, instinct, quantum computers, Metaverse, planet-scale com-
puters, and reformulating data centers, artificial intelligence for sci-
ence, and CPU benchmark suites. Also, BenchCouncil will collabo-
rate with ComputerCouncil [10] on the open-source computer systems
for Planet-scale computing [11], AI for science [12], and Metaverse
[13].

The organization of this article is as follows. Section Two presents
the background and challenges and explains why metrology cannot
work for the benchmark community. Section Three describes why
emerging computing aggravates the benchmark challenges. Section
2

Four lays the foundation for benchmark science and engineering, in-
cluding the unifying definition of benchmarks, the conceptual frame-
work, and the benchmarking methodology. Section Five details Bench-
Council’s plan. Section Six concludes.

2. Background and challenge: why metrology cannot be directly
reused for benchmark science and engineering

In this section, I first introduce the metrology concepts as back-
ground and then present the benchmarking challenges and explain why
metrology cannot work in the benchmark community.

2.1. Background: metrology concepts

As shown in Fig. 2, I provide a simple but systematic metrology
concept framework to clarify why metrology cannot be directly reused
for establishing benchmark science and engineering. I present and
modify most of those concepts from [7,8]. But I define some concepts to
emphasize why metrology cannot work for the benchmark community,
e.g., inherent properties. To keep concise, I only stay with necessary
metrology concepts.

The inherent property is a property of a phenomenon, body, or sub-
stance that is independent of an observer, e.g., length and energy [7].
The inherent property can have various magnitudes. True quantity is
the magnitude of an inherent property of an individual phenomenon,
body, or substance that is independent of an observer, e.g., the radius
of a given circle, the kinetic energy of an identified particle in a
given system [7,8]. Unit of measurement [8] is a definition and its
physical realization, used as a reference to assign a value to a true
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Fig. 2. A simple but systematic metrology conceptual framework is used to clarify
why metrology cannot be directly reused for benchmark science and engineering.
Some concepts are defined by myself, while the other concepts are reused or modified
from [7,8]. Only necessary metrology concepts are reserved to keep concise.

quantity. Measurement standard [8] is a physical realization of a unit of
measurement, with a stated quantity value and associated measurement
uncertainty.

Measurement [8] is a process of comparing a true quantity with a
measurement standard to assign the true quantity one or more quantity
values that are traceable to a unit of measurement. A quantity value
obtained by the measurement is referred to as a measured quantity
value [7]. True quantity value [7] is a quantity value consistent with
the definition of a quantity, which is an unknown measurement tar-
get [7]. A coverage probability [7] is a probability that a specified
coverage interval contains the true quantity value.

2.2. The benchmarking challenges: extrinsic properties, process entangle-
ment, and instantiation bias

In the previous work [6], I have noticed the differences in properties
of the artifacts or objects in the computer, management, or finance
disciplines from those classical ones, like length, time, and power. The
properties of the artifacts or objects in the computer, management, or
finance disciplines are extrinsic, dependent on their problem definitions
and solution instantiations. Instead, the classical properties like time
and length are inherent, independent of the observers. From a concept
perspective, it is easy to say there are three essential processes: problem
definition, solution instantiation, and measurement. However, a prob-
lem definition is abstract; only after the instantiation can the solutions
to the problem be measured. Moreover, the problem definition, solution
instantiation, and measurement processes are entangled and indivisible,
which I call process entanglement. Only by fully understanding the side
effect of the extrinsic properties and process entanglement can we avoid
many traps. I elaborate on this viewpoint from different perspectives.
3

Before proposing the conceptual framework for benchmark science
and engineering (I defer it to Section 4.2), I stay with the metrology
concepts in Section 2.1 to depict the challenges.

A subtle change in the definitions of a problem may lead to wildly
varied solutions and significantly different measured quantity value. I
take the classical matrix multiplication problem [14,15] as an example.
Blalock et al. [15] reformulate the classical matrix multiplication prob-
lem as follows. The following reformulation is cited from [15]. A and
B are two matrices. A is 𝑅𝑁𝑥𝐷 and B is 𝑅𝐷𝑥𝑀 , 𝑁 ≫ 𝐷 >= 𝑀 . Given
a computation time budget 𝜏, the task constructs three functions g(⋅),
h(⋅), and f(⋅), along with constants 𝛼 and 𝛽, such that

‖𝛼𝑓 (𝑔(𝐴), ℎ(𝐵)) + 𝛽 − 𝐴𝐵‖𝐹 < 𝜖(𝜏)‖𝐴𝐵‖𝐹 (1)

for as small an error 𝜖(𝜏) possible. For this reformulated problem,
they introduce a learning-based algorithm that greatly outperforms
existing methods [15]. This is a typical example of a subtle change
in the definitions of a problem leading to wildly varied solutions and
significantly different measured quantity values.

Furthermore, the solutions instantiations at different levels also
interplay with each other and finally impact measured quantity values.
The obvious example is deep learning. Algorithms and neural net-
work architectures play a significant role. The hardware implementa-
tions, like different precision, e.g., single-precision, double-precision, or
mixed precision, impact the learning dynamics. Even for the same sys-
tem with different scales, the interactions among system size and mini-
batch size significantly impact the measured quantity values like time-
to-quality – the training time to achieve the state-of-the-art quality [16–
20].

The processes in metrology are linear and static. However, for a
benchmark, as shown in Fig. 1, the processes of problem definition,
solution instantiation, and measurement are entangled, having complex
mutual influences. The subtle difference in a problem definition will
lead to a wildly varied solution, and its instantiation finally signifi-
cantly impacts the measured quantity value. The solution instantiation
provides the basis for measurement tools, and the latter uses state-
of-the-practice instantiations that update frequently, which affects the
measured quantity value. Also, the measured quantity values provide
hints on searching for the best instantiation in the solution space.

Moreover, the instantiation introduces many biases, which I call
instantiation bias. For example, in the computer system and archi-
tecture disciplines, Wang et al. [21,22] found that merely conduct-
ing microarchitecture-dependent or microarchitecture-independent, or
ISA-independent (ISA is short for instruction set architecture) work-
load characterization (a form of measurement) will lead to misleading
or erroneous conclusions. These significant differences in measured
quantity values resulted from the solution instantiations at different
levels themselves. Before performing microarchitecture-dependent or
microarchitecture-independent, or ISA-independent workload charac-
terization, the necessary step is instantiating a computer workload
benchmark on a specific microarchitecture, a particular instruction set
architecture, or an intermediate representation (very close to the source
code), respectively. The community opts for the widely used ISA, IR
(intermediate representation) for instantiation.

Matsuoka et al. also found the implementation of biases and com-
plexity traps [23] in the instantiation process: on the one hand, any
implementation of a computer workload benchmark entails multiple
implicit biases towards algorithms, programming languages, data lay-
outs, and parallelization approaches; on the other hand, the bench-
marks, abstracted from large or legacy scientific codes and tuned for
previous computer architectures, trap the co-design participants into
considering only similar architectures.

Other observations are from the data sets, which many communities
like machine learning use to explicitly or implicitly define a problem.
It is prohibitively costly to build a representative and fidelity data set
that can capture real-world characteristics. Hence, in reality, the goal
often degrades to a workable data set. For example, for ImageNet [3],
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it is easy to collect familiar animal and plant pictures, while the rare
ones are difficult to obtain. Considering the data set is the cornerstone
of many challenges like auto-driving and automatic medical diagnosis,
this far-fetched methodology has many hidden flaws and risks.

3. Emerging computing aggravates the challenges1

Modern society is digitized, increasingly relying upon information
nfrastructure. The information infrastructure consists of massive Inter-
et of Things (IoT), edge devices, data centers, and high-performance
omputers. Those systems collaborate to handle big data, train AI
odels and provide Internet services augmented by AI inference for
uge end-users with guaranteed quality of services. From a bench-
arking perspective, emerging computing like Big Data, AI, and In-

ernet Services are significantly different from the traditional work-
oads characterized by SPECCPU (desktop workloads) [1], TPC-C [25],
PC-Web (Traditional web services) [26], and HPL (high-performance
omputing) [27] benchmarks, raising serious challenges.

The first challenge is fragmentation. There are substantial frag-
ented application scenarios, a marked departure from the past [24].

or example, hundreds or even thousands of ad-hoc big data solutions,
ermed NoSQL or NewSQL, are proposed to handle different application
cenarios. For AI, the same observation holds. There are tens or even
undreds of organizations that are developing AI training or infer-
nce chips to tackle their challenges in different application scenarios,
espectively [19,28].

The second challenge is de facto isolation. Internet service provider
iants own and treat real-world data sets and workloads or even AI
odels as first-class confidential issues. The treasure is hidden in data

enters and isolated between academia and industry, or even among
ifferent providers [29]. The dire situation poses a huge obstacle for
ur communities towards developing an open and mature research
ield [29].

The third challenge is the complexity of collaboration: HPC sys-
ems, data centers, edge, and IoT devices collaboratively handle the
hallenges; In the collaborations, different distributions of data sets,
orkloads, machine learning, or AI models may substantially affect the

ystem’s behaviors; the interaction patterns among IoT, edge, and data
enters changes fast, embodying different architecture.

The fourth challenge originates from service-based architecture.
n the one hand, the software-as-a-service (SaaS) development and
eploy model makes the workloads change very fast (so-called work-
oad churn) [30], and it is not scalable or even impossible to create

new benchmark or proxy for every possible workload [31]. On
he other hand, modern Internet services adopt a microservice-based
rchitecture, often consisting of various modules with long and com-
lex execution paths across different data centers. As the worst-case
erformance (tail latency) [32] does matter, the micro-service-based
rchitecture also poses a severe challenge to benchmarking [29,33].

The final but not least challenge is the stochastic nature of AI. AI
echniques are widely used to augment modern products or Internet
ervices. The nature of AI is stochastic, allowing multiple different but
qually valid solutions [19]. Many factors manifest the uncertainties
f AI, e.g., the adverse effect of lower-precision optimization on the
uality of the final model, the impact of scaling training on time-to-
uality, and run-to-run variation in terms of epochs-to-quality [19].
owever, the measurement process mandates being repeatable (the

ame team) and reproducible (different teams). This conflict raises
erious challenges.

Emerging computing aggravates the benchmarking challenges dis-
ussed in Section 2.2. First, it is difficult to trace the original problem
efinition, that is, the target to be achieved. Second, taking the in-
tantiation of solutions as the proxy for the problem aggravates the
nstantiation bias and makes the community further trapped in the
pecific solutions.

1 This section is written based on an unpublished technique report [24], of
hich I am the lead author.
4

4. Building up benchmark science and engineering

This section proposes the unifying definitions of benchmarks, the
conceptual framework, and the benchmarking methodology, which lays
the foundation for benchmark science and engineering.

4.1. The unifying definition of benchmarks

Previously, I concluded five categories of benchmarks [6]: mea-
surement standards, standardized data sets with defined properties,
representative workloads, representative data sets, and industry best
practices. In this section, I give a simple and unifying definition to cover
five categories of benchmarks and reveal their essence. A benchmark
is an explicit or implicit definition of a problem, an instantiation of
a problem, an instantiation of state-of-the-practice solutions as the
proxy to the problem, or a measurement standard that quantitatively
measures the solution space.

A benchmark has three essential processes, some of which often be
omitted or implicitly stated in practice: definition, instantiation, and
measurement. I explain the process of definition and instantiation from
various perspectives in the rest paragraphs of Section 4.1. I leave the
discussion of the process of measurement in Sections 4.2, 4.3.

4.1.1. Definition
The first process is the definition. Defining a problem explicitly

or implicitly is the fundamental role that a benchmark could play
in almost all disciplines. Only after clearly defining a problem can
we figure out the solutions and compare them against the others.
For example, Alan Turing, in 1950 [34] formulated the problem of
what intelligence is as an imitation game: the game tests whether an
interrogator can distinguish a machine’s ability from a human. Turing’s
problem definition inspires several generations to explore the solutions
to achieve intelligence.

There are many ways to define a problem, e.g., using a natural lan-
guage or mathematics. From an accuracy perspective, mathematically
defining the problem is a better choice. Unfortunately, many problems
cannot be accurately depicted in this way.

The NAS parallel benchmarks [35] claimed that the common re-
quirements should be specified in a paper-and-pencil approach [24].
A paper-and-pencil approach is a vague description — It can be mathe-
matical, textual, or even visually. In the computer science discipline,
this approach is well-practiced in the database community but not
adopted in the computer architecture community.

Shun et al. [36] advocated a methodology to build benchmarks
using problem definitions, and they created the problem-based bench-
mark suite (PBBS). PBBS is a set of benchmarks for comparing parallel
algorithmic approaches, parallel programming language styles, and
machine architectures across a broad set of problems. Specifically,
a problem-based benchmark mandates a problem specification and
a set of input distributions while not detailing the requirements in
terms of algorithmic approach, programming language, or machine
architecture [36].

4.1.2. Instantiation
The second process is instantiating a problem or instantiating state-

of-the-practice solutions as the proxy to the problem or challenge. As
a replacement or complement, these are two different ways. First, an
instantiation of the problem is used. For example, a data set is often
used to instantiate a problem in the machine learning community.
Li et al. [12] further classified the problem definitions into problem
class, problem settings, and problem cases. Second, an instantiation
of state-of-the-practice solutions is used as the proxy for the problem.
For example, the computer architecture community provides state-of-
the-practice implementations of a group of computer workloads like
SPECCPU [2,37]. SPECCPU is a proxy to the problems.
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Fig. 3. The conceptual framework of benchmark science and engineering.

There are two reasons for this replacement or complement. First,
as a replacement, it serves as the proxy for the problem that is too
difficult to define. Second, as a complement, the instantiation brings
enriched and necessary details that set more specific problem settings.
Each instantiation is a subspace or point – which is often state-of-the-
practice – in the solution space to the problem, e.g., using source code
or binary code, which brings instantiation bias.

4.2. The conceptual framework of benchmark science and engineering

As shown in Fig. 3, I propose the conceptual framework of bench-
mark science and engineering. The extrinsic property is a benchmark
property that depends on a problem definition and its solution instan-
tiation. The extrinsic property can have various magnitudes. Measure-
ment metrics are the magnitude of a benchmark’s extrinsic property,
which depends on a problem definition and solution instantiations.
Unit of measurement [8] is a definition and its realization, used as
a reference to assign a value to a measurement metric. Measure-
ment standard [8] is a realization of a unit of measurement, with a
stated metric value, associated measurement uncertainty, and a repeat-
able (the same team) and reproducible (different teams) measurement
methodology. The measurement tool implements a measurement stan-
dard that can be calibrated and traceable. Traceability [7] is a property
of a measurement result whereby the result can be related to a reference
through a documented unbroken chain of calibrations, each contribut-
ing to the measurement uncertainty. The measurement tools should be
open-sourced and can be replicated by different teams.

Measurement [8] is a process of comparing a measurement metric
with a measurement standard to assign one or more measured values
5

to a measurement metric that are traceable to a unit of measurement. A
value obtained by the measurement is referred to as a measured metric
value [7]. True metric value [7] is a value consistent with the definition
of a measurement metric that is specific to the extrinsic properties of a
concrete problem definition and solution instantiation. The true metric
value is an unknown measurement target [7]. A coverage probabil-
ity [7] is a probability that the true metric value is contained within a
specified coverage interval.

4.3. The traceable and supervised-learning based benchmarking methodol-
ogy

A benchmark has no inherent properties, and its extrinsic property
is dependent on its problem definition and solution instantiation. Mean-
while, the processes of definition, instantiation, and measurement are
entangled, and they have complex mutual influences.

I propose a traceable methodology to tackle the above challenge,
at the core of which is to manage the traceability of the processes
from the problem definition and solution instantiation to measurement.
Fig. 4 shows that problem definition, solution instantiation, extrinsic
properties, measurement standard, measurement tool, and measured
metrics value have complex mutual influence. The problem definition
is the origin of this relationship. No other below entities, like solu-
tion instantiation, can impact the problem definition directly. Still,
solution instantiations may provide clues for the subtle change of
the problem definition, affecting the other entities significantly. At
the top level, I suggest a formal definition of problems and tracing
the relationship among the different subtle definitions of problems.
For many state-of-the-practice benchmarks, the definition process is
omitted. It should regularly keep an eye on revisiting the process from
the problem definition to solution instantiation, or else the outdated
instantiation will be a trap. The solution instantiation provides the basis
for measurement tools. It is mandatory to search for state-of-the-art or
state-of-the-practice solutions and implement them in the measurement
tool.

There is an explosion from the problem definition to solution instan-
tiations. Put in other words, the lower level has more state space [6].
For example, there is increasing state space in a computer workload
benchmark, from a mathematical problem definition, an algorithm, an
intermediate representation, an ISA-specific representation, to a micro-
architectural representation. The technology inertia traps the solution
into a specific exploration path — a subspace or even a point at a high-
dimension solution space, called instantiation bias. The instantiation
bias impacts the measurement of the extrinsic properties. Also, an
unguided exploration may drift away from optimized solutions.

I propose the supervised learning-based methodology to tackle the
challenge of instantiation bias. Supervised learning is a machine learn-
ing branch that trains a predictive model using labeled data with known
outcomes. Fig. 4 shows the thoroughly-understood process from the
problem definition, solution space instantiation, extrinsic properties,
measurement standard, measurement tool, to measured metrics value,
standing as a ground truth. From this ground truth, it is easy to learn
how the change of the top entities impacts the below. For example, if
the problem is reformulated, the solution instantiation changes accord-
ingly. Finally, the measured metrics values are significantly affected.
The benchmark plays the role of connecting the problem with its
solution space. By exploring the solution space and observing the effect
of its change on the measured metrics values, it is possible to search
for the best solution. This search process could leverage state-of-the-art
deep learning techniques. Of course, this learning dynamic will be very
complex. Fig. 5 shows an example on how to use this methodology in

computer architecture.
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Fig. 4. A traceable and supervised learning-based benchmarking methodology to tackle the challenges of extrinsic property, process entanglement, and instantiation bias.
Fig. 5. The application of the traceable and supervision learning-based benchmarking methodology in computer architecture. This figure is cited from [22] with the permission
of the authors.
4.4. Re-interpret five categories of benchmarks

I use the benchmark definition proposed in 4.1 to re-interpret five
categories of benchmarks defined in [6].

The first category of the benchmark is a measurement standard used
to measure the solution space to the problem. I use the Linpack bench-
mark – an example from high-performance computing – to explain this
6

category of benchmarks. The Linpack benchmark [38] is widely used to
report the performance of a high-performance computer. The problem
definition of Linpack is a linear system of equations of an order n:
𝐴𝑥 = 𝑏. The solution uses the LU factorization with partial pivoting.
The measurement metrics are the floating-point operations count of the
solving algorithm, which is (2 ∗ 𝑛3∕3 + 2 ∗ 𝑛2) operations, and the
execution time of running the benchmark. HPL is one of the reference
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Fig. 6. BenchCouncil’s plan on defining the challenges of emerging and future computing and the collaboration with ComputerCouncil on the open-source computer systems.
implementations of the measurement tool used to evaluate against
different high-performance computer implementations (solutions). The
measurement standard also details the reproducible and repeatable
measurement methodology to compare against other solutions: users
must report a residual for the accuracy of the solution with ‖𝐴𝑥 −
𝑏‖∕(‖𝐴‖‖𝑥‖). The TOP500 list reports the measured metrics values.
The measurement metrics highly depends on its problem definition and
solution instantiations.

The second category of benchmarks is the representative workloads
that run on the systems under measurement [6]. The representative
workloads are the definition of the problem or an instantiation of state-
of-the-practice solutions as the proxy to the problem. The problem-
based benchmark suite (PBBS) [36], TPC-C [25], TPC-Web (Traditional
web services) [26] are typical problem definition examples. They also
provide the instantiation of state-of-the-practice solutions as the mea-
surement tool. Without explicit problem definition, SPECCPU (desktop
workloads) [1], BigDataBench [39], BigBench [40], AIBench [20,33]
and MLPerf [19] are the instantiations of state-of-the-practice solutions
and they serves as the proxy to the problem.

The third category of the benchmarks is the implicit definition of
the problem using a standardized data set. The standardized data set
represents a real-world data science problem with defined properties,
some of which have ground truth [6,41]. ImageNet [3] (deep learning
benchmark) and MIMIC-III [4] (critical care benchmark) are typical
examples.

The fourth category of benchmarks is a representative data set, used
as a Ref. [6]. This category of benchmarks is an instantiation of a
problem. For example, an index (statistical measure) calculated from
a representative set of underlying data and used as a reference for
financial instruments or contracts [42] is a benchmark in finance. The
London Interbank Offered Rate (Libor) and the Euro Interbank Offered
Rate are well-known financial benchmarks [6,42].

The fifth category of benchmarks is the industry best practices
in diverse domains [6]. Benchmarking is continuously searching the
industry best practices with superior performance and measuring prod-
ucts, services, and processes against them [5,6]. The industry best
practices are instantiations of the state-of-the-practice solutions to the
problem or grand challenge.
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5. BenchCouncil’s plan on emerging and future computing

Fig. 6 presents BenchCouncil’s plan for defining the challenges
of emerging and future computing and collaborating with Comput-
erCouncil on the open-source computer systems. First, I introduce
BenchCouncil’s plan for emerging and future challenges.

First, what is intelligence? What is instinct? What is the distinction
between intelligence and instinct? The pre-trained language models,
such as BERT and GPT-3, seem to outperform the capability beyond
the Turing test [43]. Many previous works have reformulated the
problem of what intelligence is [44,45]. It is necessary to revisit the
processes from the intelligence problem definition, solution instantia-
tions to measurement. For example, there are many ways to solve these
challenges to somewhat extent, including traditional machine learning,
deep learning, and brain-inspired computing. Letting them compete in
the same arena is essential. According to [46], instinct is an inborn
impulse or motivation to action typically performed in response to
specific external stimuli. But how do we distinguish intelligence from
instinct? What are the differences between the octopus, birds, apes, and
ants’ behaviors? Are they intelligence or instinct?

Second, quantum computers emerge as a new computational
paradigm with unprecedented capability [47]; what are the problems
or grand challenges which the quantum computers do the best? How
do state-of-the-practice computers compete against quantum computers
in handling different or overlapping domains of problems or grand
challenges? The community must ponder this fundamental issue before
delving into different levels of instantiations of solutions.

Third, computer algorithms almost govern the running of our soci-
ety. It is pressing to think, specify, verify and test what fundamental
properties an algorithm must have before being embedded in our
society. Think about Twitter and Facebook’s impact on the election in
many vote-based democratic societies. It is vital to propose benchmarks
against those algorithms before putting them into practice.

Fourth, information infrastructure becomes the cornerstone of our
society [10], and many fundamental applications like medical emer-
gency management and smart cities applications rely upon planet-scale
distributed systems consisting of massive Internet of Things (IoT) de-
vices, edges and data centers, which I call planet-scale computers [11].
Different distributions of data sets, workloads, or AI models may sub-
stantially affect the system’s behaviors, and the system architectures are
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undergoing fast evolution regarding the interactions among IoT, edge,
and data centers [24]. How can the community propose benchmarks
for those ultra-scale emerging and future applications [33]?

Metaverse is an umbrella term. It is predicted to be a brand-new
way for people to immersively access the Internet, interact with each
other or digital avatars in the cyberworld, and manage digital assets.
Though many industry giants are pushing towards those goals, the
process itself is in a Cambrian explosion of different things in the forms
of concepts, prototypes, products, or services. It is pressing to propose a
benchmark suite to define the Metaverse problem or challenge, explore
and evaluate state-of-the-art and state-of-the-practice solutions [13].

Many old problems need reformulation. For example, the Berkeley
multidisciplinary groups proposed to use thirteen ‘‘Dwarfs’’ [48] – A
dwarf is an algorithmic method that captures a pattern of computation
and communication – to design and evaluate parallel programming
models and architectures. When AI has seen as a new dawn in the
traditional and emerging scientific area, how to reformulate those
problems [12]?

Datacenters have become the fundamental infrastructure of modern
society. There are substantial fragmented application scenarios in big
data, AI, and Internet service areas, a marked departure from the
past [24]. Virtualization technologies like containers are widely used
as resource management and performance isolation facilities. However,
the current BenchCouncil benchmark suites like BigDataBench [39] and
AIBench [20,33] are fragmented without providing a full-picture defi-
nition of the problems or challenges in data centers. Moreover, a lack of
simple but elegant abstractions prevents achieving both efficiency and
general purpose [24]. For example, hundreds or even thousands of ad-
hoc NoSQL or NewSQL solutions are proposed to handle different big
data application scenarios [24]. Contrasted, the relation algebra is gen-
eralized for the database theory and practice, and any complex query
can be written using five primitives like select, project, product, union,
and difference [49]. Though domain-specific software and hardware co-
design is promising [50], the lack of simple but unified abstractions
has two side effects [24]: it is prohibitively costly to build an ad-
hoc solution; single-purpose systems and architectures are structural
obstacles to resource sharing. Proposing simple but elegant abstractions
is an integrated part of managing the traceability of the process from
the problem definition to solution instantiation.

The CPU benchmark suite like SPECCPU [2,37] advanced the evo-
lution of different processor architectures. However, the SPEC CPU is
an instantiation of state-of-the-practice solutions as the proxy to the
problem, severely biased towards market-dominant CPU architecture,
high-performance languages like C, and high-performance computing
and desktop workloads. The BENCHCPU project [51] will propose a
new CPU benchmark suite.

5.1. The collaboration with ComputerCouncil

As a non-profit international organization, the International Open-
source Computer Council (ComputerCouncil) mission is to unite the
science and technology community to tackle the challenges of in-
formation technology decoupling [52]. ComputerCouncil initiates the
open-source computer system (OSCS) initiative to tackle the challenges
of IT decoupling.

ComputerCouncil will choose three emerging areas: planet-scale
computers — planet-scale distributed systems and applications built
on IoTs, edges, and datacenters [11], AI for science [12], and Meta-
verse [13] as the initial targets of the OSCS initiative. BenchCouncil
will cooperate with ComputerCouncil: the former focuses on the bench-
marks, while the latter concentrates on the open-source computer
systems for the three emerging areas.
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6. Conclusion

This article concluded benchmarking challenges as extrinsic prop-
erties, process entanglement, and instantiation bias. The measurable
properties of a benchmark are not inherent but dependent on their
problem definitions and solution instantiations. The processes of prob-
lem definition, solution instantiation, and measurement are entangled
and have complex mutual influences. The technology inertia leads to
a specific exploration path –a subspace or even a point at a high-
dimension design space. Those challenges make metrology cannot work
for benchmark communities and call for independent benchmark sci-
ence and engineering.

I proposed a unified benchmark definition, a conceptual frame-
work, and a traceable and supervised learning-based benchmarking
methodology, laying the foundation for benchmark science and engi-
neering. A benchmark is an explicit or implicit definition of a problem,
an instantiation of a problem, an instantiation of state-of-the-practice
solutions as the proxy to the problem, or a measurement standard
that quantitatively measures the solution space. At the core of the
conceptual framework, the extrinsic property is a benchmark property
that depends on a problem definition and its solution instantiation. The
essence of the proposed benchmarking methodology has two integrated
parts: manage the traceability of the processes from the problem def-
inition and solution instantiation to measurement; search for the best
solution through supervised learning with reference to the thoroughly-
understood processes from the problem definitions and solution instan-
tiations to measurements. Also, I elaborated BenchCouncil’s plan to
define emerging and future computing challenges and collaborate with
ComputerCouncil on open-source computer systems.
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