
BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100031

A
d
L
Q
a

b

A

K
D
B
W

C

r
r

h
R
A
2
B

Contents lists available at ScienceDirect

BenchCouncil Transactions on Benchmarks,
Standards and Evaluations

journal homepage: https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-
benchmarks-standards-and-evaluations/

re current benchmarks adequate to evaluate distributed transactional
atabases?
uyi Qu a, Qingshuai Wang a, Ting Chen a, Keqiang Li a, Rong Zhang a,∗, Xuan Zhou a,
uanqing Xu b, Zhifeng Yang b, Chuanhui Yang b, Weining Qian a, Aoying Zhou a

East China Normal University, China
OceanBase, China

R T I C L E I N F O

eywords:
istributed transactional databases
enchmarks
orkload

A B S T R A C T

With the rapid development of distributed transactional databases in recent years, there is an urgent need
for fair performance evaluation and comparison. Though there are various open-source benchmarks built
for databases, it is lack of a comprehensive study about the applicability for distributed transactional
databases. This paper presents a review of the state-of-art benchmarks with respect to distributed transactional
databases. We first summarize the representative architectures of distributed transactional databases and
then provide an overview about the chock points in distributed transactional databases. Then, we classify
the classic transactional benchmarks based on their characteristics and design purposes. Finally, we review
these benchmarks from schema and data definition, workload generation, and evaluation and metrics to check
whether they are still applicable to distributed transactional databases with respect to the chock points. This
paper exposes a potential research direction to motivate future benchmark designs in the area of distributed
transactional databases.

ontents

1. Introduction .. 2
2. Architecture and choke points of distributed databases ... 3

2.1. Architecture of distributed databases.. 3
2.1.1. Shared-nothing model... 3
2.1.2. Shared-storage model ... 4

2.2. Choke points in distributed transaction processing .. 4
2.2.1. Transaction.. 5
2.2.2. Query.. 5
2.2.3. Scheduler .. 5

2.3. Benchmark overview .. 6
3. Micro benchmarks for transactional databases .. 6

3.1. 𝐴𝑆3𝐴𝑃 .. 6
3.1.1. Schema and data generation ... 6
3.1.2. Workload... 6
3.1.3. Evaluation and performance metrics .. 7

3.2. YCSB+T... 7
3.2.1. Schema and data generation ... 7
3.2.2. Workload... 7
3.2.3. Evaluation and performance metrics .. 7

4. Application-oriented benchmarks for transactional databases ... 7
4.1. Debitcredit and TPC-A .. 7

4.1.1. Schema and data generation ... 7
4.1.2. Workload... 7

∗ Corresponding author.
E-mail addresses: luyiqu@stu.ecnu.edu.cn (L. Qu), qswang@stu.ecnu.edu.cn (Q. Wang), tingc@stu.ecnu.edu.cn (T. Chen), kqli@stu.ecnu.edu.cn (K. Li),

zhang@dase.ecnu.edu.cn (R. Zhang), xzhou@dase.ecnu.edu.cn (X. Zhou), xuquanqing.xqq@oceanbase.com (Q. Xu), zhuweng.yzf@oceanbase.com (Z. Yang),
izhao.ych@oceanbase.com (C. Yang), wnqian@dase.ecnu.edu.cn (W. Qian), ayzhou@dase.ecnu.edu.cn (A. Zhou).
ttps://doi.org/10.1016/j.tbench.2022.100031
eceived 30 September 2021; Received in revised form 15 January 2022; Accepted 15 January 2022
vailable online 10 February 2022
772-4859/© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC
Y-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.tbench.2022.100031
http://https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tbench.2022.100031&domain=pdf
mailto:luyiqu@stu.ecnu.edu.cn
mailto:qswang@stu.ecnu.edu.cn
mailto:tingc@stu.ecnu.edu.cn
mailto:kqli@stu.ecnu.edu.cn
mailto:rzhang@dase.ecnu.edu.cn
mailto:xzhou@dase.ecnu.edu.cn
mailto:xuquanqing.xqq@oceanbase.com
mailto:zhuweng.yzf@oceanbase.com
mailto:rizhao.ych@oceanbase.com
mailto:wnqian@dase.ecnu.edu.cn
mailto:ayzhou@dase.ecnu.edu.cn
https://doi.org/10.1016/j.tbench.2022.100031
http://creativecommons.org/licenses/by-nc-nd/4.0/

L. Qu, Q. Wang, T. Chen et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100031

[

e

4.1.3. Evaluation and metrics ... 7
4.2. TATP... 8

4.2.1. Schema and data generation ... 8
4.2.2. Workload... 8
4.2.3. Evaluation and performance metrics .. 8

4.3. TPC-C.. 8
4.3.1. Schema and data generation ... 8
4.3.2. Workload... 8
4.3.3. Evaluation and performance metrics .. 8

4.4. TPC-E.. 9
4.4.1. Schema and data generation ... 9
4.4.2. Workload... 9
4.4.3. Evaluation and performance metrics .. 9

5. Purpose-oriented benchmarks for transactional databases .. 9
5.1. SmallBank ... 9

5.1.1. Schema and data generation ... 9
5.1.2. Workload... 9
5.1.3. Evaluation and performance metrics .. 10

5.2. PeakBench ... 10
5.2.1. Schema and data generation ... 10
5.2.2. Workload... 10
5.2.3. Evaluation and performance metrics .. 10

6. Experiment.. 10
6.1. Different distributed transaction ratio of TPC-C... 10
6.2. Different data access distribution of TPC-C ... 10

7. Support tools for benchmarking .. 11
8. Conclusion .. 11

Declaration of competing interest .. 11
Acknowledgments .. 11
References... 11
s
t
s
v
i
d
b
c
s
o
p
i

s
o
c
c
l
o
h
n
t
a

d
p

1. Introduction

Though the traditional stand-alone relational database management
system (RDBMS) has attracted great attention, it is still limited in the
scalability of storage and computing for large application scenarios,
e.g., Securities Exchange. Business expansion or new application emerg-
ing with a characteristic of high throughput or large storage promotes
the designing and developing of distributed databases, which have be-
come a hot topic in both academia and industry [1–13]. During the long
exploration process from the stand-alone database to the distributed
one, various solutions are coming up with respect to different applica-
tion requirements. For example, in E-commerce [14], it may separate
𝑅𝑒𝑎𝑑 from 𝑊 𝑟𝑖𝑡𝑒 to improve throughputs ; when meeting hotspots, it
may split data partition or move a part to a free node. All the effort is to
realize database scalability on different implementation modules. The
representative distributed databases are arranged along the timeline
by either the paper published time or the project opensourced time in
github (tagged by 𝑔) in Fig. 1. Notice that, the earliest opensourced
version of OceanBase is published in 2014, but its architecture is quite
different from the current one. Therefore, we put the latest one here.

NoSQL databases [15–17] firstly design many ways to leverage
distributed storages and computational power from multiple machines,
which are widely used for web applications. These businesses have criti-
cal requirements for large storage and concurrent processing. However,
due to the lack of SQL compatibility and ACID assurance, it is not easy
to take place of RDBMS.

Distributed transactional databases, therefore, are built, which not
only meet the strong consistency requirement of transactional
databases, but also support scalability of NoSQL databases. They are
considered as one kind of NewSQL databases [18]. H-Store [1], VoltDB
2], OceanBase [3], and Citus, [4] design a Shared-Nothing model to

achieve a distributed database. Specifically, the model takes predefined
rules to partition data into multiple (distributed) nodes. Each node
covers the functionality modules of Query, Transaction and Storage
ngines, and coordinates the other ones when and only when executing
 d

2

distributed transactions or distributed queries. Generally, it addresses
two key scalability issues, i.e., storage scalability and distributed trans-
action processing scalability. Nevertheless, it lacks of an effective
scheduling mechanism and depends well on pre-defined partitioning
rules, which demands great effort from the business developers, i.e., to
understand the business. Otherwise, it may lead to frequent distributed
transactions, which seriously degrades the overall performance.

Therefore, Spanner [5], TiDB [6] CockroachDB [7] and FoundationDB
[11] extend the Shared-Nothing model by separating compute and
torage to achieve flexibility and scalability at the same time, that is
o separate the query engine and storage engine. The query engine is
tate-less and can run in any number of nodes. The storage engine pro-
ides transactional storage access with multiple replicas. Meanwhile,
nstead of relying on the predefined distribution rules, they divide the
ata into sub-blocks and use a centralized management controller to
alance the storage and workload among all storage nodes. Therefore, a
ompute node can access any storage node with enough flexibility, and
chedule data and workload according to optimized goals, e.g., storage
r performance. However, it produces worse performance under com-
lex distributed transactions because of introducing too many network
nteractions (I/Os).

Aurora [8,9], PolarDB [10], Socrates [13] and Taurus [12] then de-
ign a Shared-Storage model that sacrifices the flexibility and scalability
f write to deal with more complex transactional workloads. Specifi-
ally, they keep the query engine and transaction management on one
ompute node and then use multiple storage nodes to store the data and
ogs. All other compute nodes are read-only nodes, relieving the burden
n the write node by separating reads and writes. This architecture
as full scalability for storage and read workload, but the single write
ode has a high probability to bottleneck DBMS. However, since all
ransactions are executed within a single node, their performance is not
ffected by distributed transactions even with complex transactions.

In summary, different distributed models have been specified and
esigned for different application scenarios, which may expose high
erformance for its target application. It is urgent to benchmark these

istributed databases to make a fair comparison and benchmarking

L. Qu, Q. Wang, T. Chen et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100031

t
w
c
m
S
T
i
a
i
a
t
s
t
t
b
v
g

f
c
n
t
c
d
a
D
a
v
c
T
w
d
t
d
b
c

s
B
D
c
s

Fig. 1. Development of distributed databases and OLTP benchmarks.
a
d
o
t

d
t
t
D
a
p
T
l
r
p
a
s
s
p
a
i
a
a
a

t
t
a
t
b
t

2

t
p

2

d
m
c
t
S
m
o

2

t
𝑉
t
d

among them, and to expose the choke points of different distributed
databases. It will then further promote the development of databases,
which is especially useful for database marketing, engineering and
targeting sales & innovations.

The commonly used benchmarks for transactional databases (OLTP
benchmarks) are presented in Fig. 1, ranging from 1983 to 2020. OLTP
benchmarks can be divided into three categories. The first type is 𝑚𝑖𝑐𝑟𝑜-
benchmarks, which consist of simple CRUD operations (Create, Retrieve,
Update, Delete) and do not represent any application or business. These
benchmarks, hence, are able to compare the performance of trans-
actional databases with respect to the basic operations. Specifically,
university of Wisconsin formulates a benchmark for 𝐷𝐵𝑀𝑆 (also called
Wisconsin benchmark) [19], which is the first one to define a set of
𝑆𝑄𝐿 statements to compare the database performance by collecting
heir total execution time. It, however, has several serious limitations,
hich are lack of data type supports, no batch update or concurrency

ontrol. To deal with these problems, two designers of Wisconsin bench-
ark, i.e., Turbyfill and Bitton, together with Orji introduce ANSI Sql

tandard Scalable and Portable benchmark, i.e., AS3AP benchmark [20].
he improvements include not only adding more tables, data types,

ndex types, data distributions and the number of SQL statements, but
lso increasing the volume of data. Furthermore, isolation levels are
ntroduced to evaluate concurrency control. Both Wisconsin benchmark
nd AS3AP benchmark, however, do not wrap SQL statements into
ransactions. In addition, when data size continues to increase, the
calability of databases attracts more attention. YCSB+T [21], an ex-
ension of YCSB [22] designed to evaluate 𝑁𝑜𝑆𝑄𝐿 databases, covers
he standard read, write, update, delete and scan operations in YCSB,
ased on which it composes transactions. YCSB+T has an additional
alidation stage to check the consistency of a distributed database to
uarantee the correctness of execution.

The second type is the benchmark focusing on evaluating database
or different applications. These benchmarks are constructed from the
haracteristics of the specific applications, which may reflect the busi-
ess logics. TATP [23], proposed by IBM, abstracts the operations in a
elecommunication business application. It introduces physical resource
onsumption as one of its metrics. Besides, Jim Gray together with Tan-
em Company simulates a Debit Credit application of the bank, named
s DebitCredit [24]. TPC-A [25] benchmark by TPC Council is built upon
ebitCredit benchmark, and it is the first time to formalize the evalu-
tion rules including specifying 𝐴𝐶𝐼𝐷 properties, which all database
endors are required to obey. TPC-A is rarely used in recent years be-
ause it is too simple to satisfy the needs of current applications. Later,
PC Council proposes a more complicated benchmark, TPC-C [26],
hich simulates a warehouse and order management application. Most
atabase vendors have participated in TPC-C evaluation to demonstrate
he performance of their databases, including distributed transaction
atabases, such as OceanBase. TPC-E is the most complex transactional
enchmark, which simulates the typical behaviors in a stock brokerage
ompany.

The third type of the benchmark is designed for exploring and
imulating the specific characteristics of applications, such as Small-
ank [27] and PeakBench [28]. SmallBank is designed to evaluate
BMS for the workload with the characteristics of the read–write
onflict(called anti-dependency). It can be used to evaluate different
erializable protocols under snapshot isolation. It contains simple read
 n

3

nd write operations involving a small number of tuples. PeakBench is
esigned to evaluate 𝐷𝐵𝑀𝑆 for the workload with the characteristics
f sharp dynamics, terrific skewness, high contention, and high concurrency,
hat is to simulate a second kill application in Alibaba.

We arrange the mentioned classic distributed transactional
atabases and existing transactional benchmarks in Fig. 1 according
o the chronological order when the databases/benchmarks are ei-
her open sourced in github(labeled as (g)) or published officially.
ifferent shapes and colors represent the different types of databases
nd benchmarks. It is obvious that most of OLTP benchmarks are
roposed before 2010, along with the growth of centralized 𝐷𝐵𝑀𝑆s.
he prosperity of distributed databases starts from H-Store, the popu-

ar distributed database around 2008. Though PeakBench is the most
ecently proposed benchmark transactional databases, it focuses on the
erformance comparison with the write intensive workload rather than
nalyzing or benchmarking distributed databases. Besides, the existing
urveys cover the fields including 𝑁𝑜𝑆𝑄𝐿 benchmark [29,30], Big Data
ystem benchmark [31–33], decision support benchmark [32], graph
rocessing system benchmark [34], etc. However, no work conducts
benchmark survey for distributed transaction databases. Therefore,

t is imperative to answer whether the existing benchmarks are still
pplicable to evaluating distributed transactional databases. And if they
re not suitable for distributed transactional database evaluation, what
re the disadvantages?

The contributions of this paper are: (i) we summarize the represen-
ative architectures of distributed transactional databases and expose
he potential choke points in their design; (ii) we discuss and an-
lyze the deficiency of the state-of-art benchmarks with respect to
hese choke points; (iii) we provide a guideline to revise the existing
enchmarks or design a new benchmark for benchmarking distributed
ransactional databases.

. Architecture and choke points of distributed databases

In this section, we will discuss about the components with respect
o the scalability of distributed databases, and then explore the choke
oints of transaction processing of distributed databases.

.1. Architecture of distributed databases

Shared-Nothing model and Shared-Storage model are two popular
istributed database models with various implementations and opti-
izations. Specifically, the Shared-Storage model is proposed for the

loud-oriented databases recently. For Shared-Nothing, we introduce
wo classic kinds of databases, i.e., Bundle/Separation of Compute and
torage. For Shared-Storage, we mainly introduce Aurora, which uses the
odel in the cloud firstly and then presents the optimization made by

thers.

.1.1. Shared-nothing model
Bundle of Compute and Storage As far as we know, H-Store [1] is

he first distributed DBMS with 𝑆𝑄𝐿 compatibility and 𝐴𝐶𝐼𝐷 support.
𝑜𝑙𝑡𝐷𝐵 [2] is a business implementation of H-Store with the architec-

ure shown in Fig. 2. It divides all data into the main memory of a
istributed cluster and uses K-Safety mechanism to tolerate errors. Each

ode in H-Store has an Execution Engine and Partition Data, which are

L. Qu, Q. Wang, T. Chen et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100031

t
c
n
p
t
f
t

t
d
w
s
t

2

Fig. 2. H-store architecture [1].

Fig. 3. Spanner architecture [5].

ied together. H-Store proposes a novel partitioned-based concurrency
ontrol to execute distributed transactions. Specifically, Txn Coordi-
ator divides a stored procedure-based transaction into one or more
artitions. If and only if all the partitions execute successfully, the
ransaction can be successfully committed. Otherwise, the transaction
ails. Therefore, if the workload on different partitions is unbalanced,
he throughput lows down. Additionally, K-Safety requires the same

replica to be equal, so the existence of replica nodes can be used to
relieve read pressure.

Citus [4], as a distributed database plugin for 𝑃𝑜𝑠𝑡𝑔𝑟𝑒𝑆𝑄𝐿, or-
ganizes multiple PostgreSQLs into a distributed database cluster. The
data is distributed across multiple machines according to the pre-
defined rules, which is synchronized using master–slave replication.
Citus uses a coordinator node to distribute and coordinate transactions,
and launches distributed transactions based on MVCC+2PL protocol.
However, Citus cannot support globally consistent snapshots due to the
lack of timestamp synchronization among multiple nodes, which makes
it weak in transaction execution.

OceanBase [3] is a commercial distributed database. The data is
distributed similarly to Citus and achieves consistency among replicas
by its self-developed Paxos algorithm. OBProxy is a stateless con-
nector to clients, which routes 𝑆𝑄𝐿 statements by the proxy table.
There can be multiple OBProxies for OceanBase. When dealing with
a distributed transaction, the coordinator is chosen among the nodes
involved. Therefore, OceanBase no longer distributes and coordinates
transactions through a centralized node, which significantly improves
the stability and scalability of the distributed DBMS.

However, the predefined rules for data partitioning make databases
a weak scheduling capability. None of the above databases has adaptive
hot data splitting capability. Moreover, the computational resource is
tied with data, which lowers the computing elasticity because it is not
until the data is moved to the computational node that the computation
node works.

Separation of Compute and Storage Spanner [5] is published by
Google, which extends the Shared-Nothing model with the separation
of compute and storage. Its query engine is defined as the compute
 i

4

Fig. 4. Aurora architecture [8].

layer, where each node is stateless and uncoordinated; its transactional
storage engine is the storage layer, where each node is stateful. Spanner
uses a sharding approach to organize data as multiple tablets and ap-
plies 𝑃𝑎𝑥𝑜𝑠 protocol to synchronize tablets among data centers shown in
Fig. 3. Colossus, a distributed file system, is used to persist data within
data centers. Spanner takes the TrueTime API based on the atomic clock
to limit the time deviation of individual data shards around the world,
by which it guarantees strict serializability and executes distributed
transactions globally. In the compute layer, Spanner proposes an MPP-
enabled query engine [35] that can execute distributed queries through
TrueTime API.

However, TrueTime API is not available in most databases. There-
fore, CockroachDB [7] supports Geo-Partitioning like Spanner by lever-
aging Hybrid Logical Clocks. TiDB [6] and FoundationDB [11] provide
the strictly increasing and globally unique timestamps by the central
controllers. In addition to the difference in TSO (Timestamp Oracle),
CockroachDB and TiDB also offer better compatibility with traditional
databases by providing interfaces to PostgreSQL/MySQL. FoundationDB
further decouples the transaction management from the storage layer,
which allows the transaction management to scale independently.

2.1.2. Shared-storage model
Aurora [8,9] is a Shared-Storage distributed DBMS by separating

computing and storage. However, its compute layer contains the query
engine and transaction manager, i.e., Primary Instance, and the storage
layer is only responsible for maintaining multiple replicas of data.
Therefore, when extending the compute layer with Replica Instance,
they can only do read access as there is no transaction manager in
the node. For a read node, it is incredibly time-consuming to read all
the data from the storage layer, so the read node caches a portion
of hot data for subsequent access. However, this cache mechanism
is undesirable with multiple writers, because maintaining the cache
consistency is more difficult in a distributed system. To ensure that
read is from a same global snapshot, Aurora requires that the read
version from the storage layer should be the same as the version of
data in the cache, while read nodes synchronize redo logs from write
nodes to update the cache. However, this approach cannot guarantee
linearizability. In the storage layer, Aurora uses Quorum to secure data
and separates the log and data (see Fig. 4).

PolarDB [10], Socrates [13], and Taurus [12] follow the design of
Aurora and propose some approaches for the storage layer optimization.
PolarDB designs PolarFS based Remote Direct Memory Access (RDMA)
hat is a shared distributed file system with POSIX interfaces. This
esign allows fewer changes with the traditional 𝐷𝐵𝑀𝑆 but introduces
rite amplification. Socrates and Taurus design the log system and data

ystem to replace the storage layer in Aurora, which are optimized for
he characteristics of logs and data, respectively.

.2. Choke points in distributed transaction processing

In this section, we depict the choke points of distributed databases

n respect of transactions, queries and task schedulers.

L. Qu, Q. Wang, T. Chen et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100031

t
t
u
F
a
a
o
m
m

c
F
(
l

i
a
a
b
t
o

Table 1
Comparison of distributed databases on supporting transaction processing.

Model Database Storage Transaction Query Schedule

Replica
consistency

Global
snapshot

Distributed
ratio

Concurrency
control

Strong
Consistency
read on
replicas

Elasticity
computing

Adaptive
splitting

Online
storage
movement

Shared-Nothing
H-Store/VoltDB K-Safety T Sharding

Relative
Partition-based / T F T

Citus Master–slave F Sharding
Relative

MVCC+2PL F T F T

OceanBase Paxos T Sharding
Relative

MVCC+2PL F T F T

Shared-Nothing
with separating
compute and
storage

Spanner Paxos T High MVCC+2PL T T T T
TiDB Raft T High Percolator T T T T
CockroachDB Raft T High Percolator T T T T
FoundationDB K-Safety T No MVCC+OCC T T T T

Shared-Storage Aurora Quorum T No MVCC+2PL F Read-only T T
PolarDB Raft T No MVCC+2PL T Read-only T T
2

w
s
T
s

a
t
d
T
c
t
F
a
p

2

c

v
s
s
i
t
t

a
t
t
a
H

2.2.1. Transaction
To achieve scalability, data is usually partitioned to multiple

database nodes which may lead to distributed transactions. Databases
have to face three difficulties when transactions scaled to multiple
nodes.

Firstly, for the sake of isolation property, Concurrency Control among
ransactions is a core issue. MVCC, OCC and 2PL [36,37] are proposed
o ensure the correctness of transaction processing. They are usually
sed together to guarantee the correctness of concurrent execution.
or example, five distributed databases [3–5,9,10] in Table 1 utilize
combination of 𝑀𝑉 𝐶𝐶 and 2𝑃𝐿. Besides, 𝑃𝑒𝑟𝑐𝑜𝑙𝑎𝑡𝑜𝑟 is used in TiDB

nd CockroachDB, which is a variant of 𝑂𝐶𝐶. Due to the complexity
f distributed transactions, we need to take into consideration two
ore factors, i.e., the context of distributed transactions and timestamp
anagement.

• In order to maintain the context of distributed transactions, dis-
tributed 2PL is taken to deal with lock assignment and release
among all participators. How to distribute the version information
among all participators is vital in MVCC, and how to complete
verification atomically among all participators is indispensable in
OCC.

• A global timestamp management is imperative. There are two so-
lutions proposed. One is to provide the strictly increasing unique
timestamps by the central timestamp distributor. The other is
to maintain a global timestamp service. For example, a True-
Time API is used in Spanner and Hybrid Logical Clock is used in
CockroachDB. When a distributed database is unable to provide
a global snapshot, Read Committed is the highest isolation level
which it can support. Specifically, there is a time gap between
the commits from different nodes because each node uses its
own timestamp. For this time gap, a transaction may access the
inconsistent versions of data from different nodes and repeatable
reads are not guaranteed.

Secondly, to ensure correctness of transaction execution and data
onsistency, commit management is necessary among different nodes.
or this purpose, Two Phase Commit (2PC) and Three Phase Commit
3PC) are the choices for almost all distributed databases, which usually
ead to an obvious increase of Latencies.

Lastly, it is widely accepted that the ratio of distributed transactions
s highly dependent on data distribution. To reduce distributed trans-
ctions, Tablegroup is introduced in Spanner (𝑎𝑘𝑎. interleaved table)
nd OceanBase. Tablegroup describes locality relationships that exist
etween multiple tables, namely, putting data that is often accessed
ogether. Due to the lack of such an optimization, the distributed ratio
f TiDB and CockroachDB is usually high.
5

.2.2. Query
Distributed query processing is popular in a distributed cluster,

hich meets two main challenges. The first is to provide a global
napshot to guarantee data consistency among different nodes. As in
able 1, all distributed databases provide users with a global snap-
hot, except Citus. But the global snapshot is non-trivial in process-

ing distributed queries [38,39]. The second one is some pivotal fea-
tures of the distributed databases ought to be taken into account
in the phase of query optimization [40]. Then the query optimizer
should be adapted to the distributed environment, which shall consider
distributed features, e.g., data locality.

A representative processing architecture is to route all client re-
quests to the leader replica, such as in Citus. The slave replicas take
responsibility of providing availability in case the master node fails. As
the explosive increasing of client requests, the salve replicas have been
used to handle read requests to alleviate the pressure of the primary
replicas and the master node is responsible for write operations. For
high performance, all distributed databases in Table 1 prefer to use this
strategy. Unfortunately, to achieve the strong consistency among the
master and the salves will have a negative impact on the availability
based on CAP theorem [41]. So most current distributed databases
use Quorum/Paxos/Raft protocols to guarantee the eventual consistency
nd allow the existence of soft states, which are designed around
he BASE philosophy [42]. Based on it, although several distributed
atabases support a strong consistent read on replicas, as shown in
able 1, they have to wait for synchronizing slaves before responding to
lients and hence cause lower performance. Besides, K-Safety represents
he number of 𝐾 replicas of the data in the distributed database.
or example, in H-Store and VoltDB, duplicating database partitions
s members of full functions, that is all the partitions are equal in
roviding services, i.e., supporting both read and write operations.

.2.3. Scheduler
Scheduler covers the functionalities of adaptive splitting, elasticity

omputing and storage movement.
Adaptive Splitting The purpose of the adaptive splitting is to alle-

iate the pressure from clients on some nodes. When hotspots exist in
hards, it takes adaptive sharding to split these shards and then moves
ome shards to the other nodes. Due to the complexity in maintenance,
t is implemented in some databases as shown in Table 1. Specifically,
hese distributed databases split the hot shards based on the analysis of
he historical statistics on workloads and resource consumption.
Elasticity Computing It is designed for managing physical resource

djustment, i.e., increasing or decreasing resources. Usually, when
here are not enough resources, it is preferred to flexibly allocate
asks from the busy nodes to the newly-added nodes. From Table 1,
ll distributed databases present the ability of elasticity computing.
owever, Aurora and PolarDB scale read-only nodes because they have

L. Qu, Q. Wang, T. Chen et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100031
Table 2
Comparison of benchmarks in benchmarking distributed transactional databases.

Choke points Transaction Query Scheduler

Contention Distributed
transaction

Consistency
testing

Distributed query Read–write
separation

Adaptive
splitting

Computing
elasticity

Storage
movement

Micro
benchmark

YCSB+T Yes doTransaction-
ReadModifyWrite

Yes doTransactionScan,
doTransactionRead

Yes Yes / /

Application-
oriented
benchmark

DebitCredit / Yes / / / / / /
TPC-A / Yes Yes / / / / /
TPC-C / NewOrder Yes / Yes / / /
TATP Yes / / / Yes Yes / /
TPC-E / Market-feed,

Trade-cleanup,
Trade-result,
Trade-update

Yes Trade-cleanup Yes / / /

Purpose-oriented
benchmark

SmallBank Yes Amalgamate / / Yes Yes / /
PeakBench Yes Submit order,

Pay order,
Cancel order,
Overdue order

/ Q2-Q5 Yes Yes Yes /
a
d
u

T

3

S
C
u
D
l
i
d
d
t

a single node for write. There is a relatively lower scaling cost in Shared-
Nothing architecture with separating computation and storage than the
one without resource separation, because the latter has to scale both
of the resources, i.e., compute and storage, and meets more complex
maintenance.

Storage Movement Storage movement aims to distribute the shards
evenly across nodes, alleviating the storage pressure and avoiding disk
explosion on a single node. To enable an even distribution, it moves
shards until it reaches an even number of shards across nodes. For
distributed databases in Table 1, all of them realize this functionality
but through different strategies. For example, a shard rebalancer is
provided in Citus. The second responsibility of storage movement is
to put the shards frequently accessed together from clients into the
same nodes. The rebalancer moves these shards into one node by
analyzing historical statistics. This feature has been extensively stud-
ied [43,44]. Due to its high implementation cost, it is not supported by
all distributed databases.

2.3. Benchmark overview

Many benchmarks have been designed to evaluate databases [27,
28,45–48]. We classify them into Micro Benchmark, Application-oriented
Benchmark, and Purpose-Oriented Benchmark. A Micro Benchmark is ei-
ther a program or routine to measure and test the performance of a
single component or task in a (huge) system or program [49]. It cares
more about the performance of a sub-component. Both Application-
oriented Benchmarks and Purpose-Oriented Benchmarks are macro bench-
marks [50], which expect to simulate the representative workloads
(business logic) of an application and are used to evaluate the overall
performance of a system. Purpose-Oriented Benchmark is a special case
of Application-oriented Benchmark, which focuses more on a specific
characteristics of applications, such as terrific contention and skewness
in PeakBench for SecKill application and SI isolation level testing in
SmallBank.

Then there is a question that whether these benchmarks are still
applicable to distributed databases. Considering data placement rules,
e.g., 𝐻𝑎𝑠ℎ or 𝑅𝑎𝑛𝑔𝑒, we suppose that tables with dependencies are
divided according to primary keys of the referenced table, i.e., partition
keys. Based on this, a distributed transaction is defined if a transaction
has different partition IDs on its modification operations, i.e., insert,
deletes and updates; a distributed query accesses data from different
partition IDs. Adaptive Splitting may be triggered and storage movement
may happen for balancing workload. Supporting for both scale factors
in data and workloads has a requirement for elasticity computing.

We try to study these benchmarks from data schema, workload,
performance metrics and execution rules to explore the ability to evalu-
ate distributed transactional databases with respect to the chock points
6

in the layers of storage, query and schedule and fill the results in Ta-
ble 2. Specifically, ‘‘/’’ means this benchmark misses the corresponding
test requirement; ‘‘Yes’’ means that this benchmark meet the require-
ment. Two items, i.e., Distributed Transaction and Distributed Query,
demonstrate the specific transactions which cover the requirement.

3. Micro benchmarks for transactional databases

Micro Benchmarks are proposed for proving the success of a design or
n algorithm in some database components [51–53]. Since they are not
esigned to test databases in a whole, we only mention two popularly
sed micro benchmarks here. One is AS3AP for the early databases [19,

20] and the other is YCSB+T for the NoSQL databases [21]. For
traditional databases, usually the single-node one, it is tough to scale
due to the lack of distributed consistency algorithms and distributed
concurrency control protocols. So the benchmark is not suitable for test-
ing the critical features of distributed transactional databases. For the
benchmark evolving from NoSQL databases, it provides transactional
operations and supports scaling out, but it does not take computing
elasticity and storage movement into account, which is preferred for
load balance in distributed databases.

3.1. 𝐴𝑆3𝐴𝑃

𝐴𝑆3𝐴𝑃 [20] is designed to make up for the shortcomings of Wis-
consin Benchmark, by covering multi-user test, more data types, data
distributions, etc.

3.1.1. Schema and data generation
𝐴𝑆3𝐴𝑃 involves five tables, i.e., Uniques, Hundred, Tenpct, Tiny and

Updates, covering eleven common data types. Tiny is used to measure
overhead during benchmarking, while the other four are the common
data tables. Only Hundred and Updates have reference relationship.

hese four tables can scale from 1 MB to 100 GB.

.1.2. Workload
𝐴𝑆3𝐴𝑃 test has two modules, i.e., single-user test and multi-user test.

ingle-user test covers running context preparation and user queries.
ontext preparation includes load, backup, building indices, etc., while
ser queries include retrievals, single-tuple updates, and bulk updates.
uring test, the system will be penalized if it does not use paral-

el distributed algorithms as the data volume increases. Therefore, it
s suitable to evaluate the ability of query processing in distributed
atabases to some extent. 𝐴𝑆3𝐴𝑃 takes isolation into account when
efining multi-user test, but it still sends operations as queries rather
han wrapping CRUD operations into transactions. Therefore, it is not

L. Qu, Q. Wang, T. Chen et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100031

T

3

e
o
b
u
u

d
t

w
h
o
h
(
t
a

4

o
w
A
i
m

suitable to test the atomicity of transactions, which is especially im-
portant for distributed transactional databases because it involves core
modules for parallel transaction processing, e.g., Distributed Transaction
Manager or Distributed Commit Protocol. So we do not list it in the

able 2.

.1.3. Evaluation and performance metrics
There are two key evaluation metrics proposed by 𝐴𝑆3𝐴𝑃 , i.e.,

quivalent database ratio and cost per megabyte. Both of them are based
n equivalent database size, i.e., the maximum size of database generated
y performing the designated set of single-user and multi-user tests
nder 12 h. Equivalent database ratio is designed to compare two systems
nder test by a division operation between their equivalent database

sizes. Cost per megabyte is the total cost (execution time) of the database
divided by the equivalent database size.

3.2. YCSB+T

YCSB+T [21] is an extension of YCSB [22], which aims to evaluate
the transactional capability of NoSQL databases. Since there is no a
widely accepted declarative language like 𝑆𝑄𝐿 on the interface of
NoSQL, YCSB+T and YCSB just have simple read/write operations.

3.2.1. Schema and data generation
NoSQL database defines a table structure instead of relational mod-

els to support various types of NoSQL applications, such as Key–Value,
Document, etc. YCSB+T has a table with two columns. One column is
the primary key and the other is a field called money with default value
$1000. Money in YCSB+T simply simulates a closed economy business,
in which money does not enter or exit the system during the evaluation
period.

3.2.2. Workload
YCSB+T provides six types of transactions by wrapping CRUD

operations. They are insert, random-scan, range-scan, update, delete and
read–modify–write. Specifically, insert, update and delete transactions
cover only a single statement accessing one row, and all of which
are local transactions. Random-scan and range-scan transactions require
to get a consistency snapshot of the distributed storage, which are
distributed queries in a high probability. Read–modify–write transaction
reads and writes two rows each time, which may be distributed trans-
actions. YCSB+T follows the design of YCSB in setting the data access
distribution of read/write by a configuration file, which may create
hotspots in writing when a large number of transaction happens.

3.2.3. Evaluation and performance metrics
YCSB+T and YCSB both use 𝑜𝑝𝑠∕𝑠 (the number of operations that

can be performed per second) as a metric for performance. Meanwhile,
with the closed economy scenario, YCSB+T can determine whether the
consistency constraint is satisfied by counting the total amount of all
accounts before and after business execution. If it cannot guarantee
strict consistency, the exception score of the database is measured by
the deviation value before and after business execution divided by the
data volume.

4. Application-oriented benchmarks for transactional databases

In this section, we introduce five popularly used classic benchmarks
designed for specific applications, i.e., DebitCredit [24], TPC-A [25],
TATP, [23], TPC-C, [26] and TPC-E [54]. We declare their support for
benchmarking distributed transaction databases.

4.1. Debitcredit and TPC-A

DebitCredit, first introduced in 1985 by Jim Gray, is an online trans-
action processing benchmark, simulating a virtual multi-branch bank

transaction system. Compared to Wisconsin benchmark [55], DebitCredit

7

Fig. 5. Data model of DebitCredit and TPC-A.

proposes a benchmark much closer to the real database system with
various performance metrics. TPC Council adds some new features and
standardizes this benchmark, formalized as TPC-A.

4.1.1. Schema and data generation
The database model for DebitCredit is quite simple, which contains

four tables as shown in Fig. 5. If the performance goal of TPS is 𝑇 ,
DebitCredit specifies that the database should have at least 𝑇 records in
Branch, 𝑇 ∗ 10 records in Teller, 𝑇 ∗ 10𝑘 records in Account, and a 90-
ay history record in History. TPC-A has different scale ratio compared
o DebitCredit. The number of rows of Account and History in TPC-A are
𝑇 ∗ 100𝑘 and 𝑇 ∗ 2592𝑘, respectively.

DebitCredit does not demonstrate the partition strategy in detail,
hile TPC-A stipulates the specific partitioning rules. For TPC-A, it is
orizontally partitionable, that is to shard data to different nodes based
n primary key in Branch. Therefore, as the volume of data increases, it
as a good property to be linear scale-up. Data generation in DebitCredit
TPC-A) is based on a specific distribution. They pay more attention
o the generation of primary keys, while rarely delve into any details
bout the non-key columns.

.1.2. Workload
DebitCredit (TPC-A) has only one transaction with simple write

perations. Currently all isolation levels of most databases can avoid
rite conflicts, including distributed databases, so DebitCredit (TPC-
) can be used to evaluate the ability of distributed databases in all

solation levels. Specifically, this transaction portrays that a customer
akes a withdrawal or deposit at a bank by updating his Account, while

updating Teller and Branch simultaneously to maintain data consis-
tency [56]. An account is randomly selected from a remote branch with
a probability of 15%, which causes distributed transactions spanning
across two nodes. Then, it keeps appending the modifications to table
History sequentially. Due to the fact that no query operation involved
in this transaction, distributed queries do not exist.

4.1.3. Evaluation and metrics
DebitCredit is not designed for testing 𝐴𝐶𝐼𝐷 properties, while TPC-

A requires the database to meet 𝐴𝐶𝐼𝐷 properties and puts forward a
series of tests which must be launched by vendors. Concretely, atomic
tests verify that for any randomly selected account, the records in the
related table will change synchronously (or remain the same) after
committing (or aborting). It requires database to conform to additional
three predefined conditions in consistency tests. Moreover, isolation
and durability tests are also strictly defined in TPC-A. Hence, TPC-A
can be used to evaluate whether the distributed databases meet ACID
properties.

The primary metrics in DebitCredit (TPC-A) include Elapsed time, TPS
and Cost. Elapsed time indicates the time duration to do one standard
batch of transactions on a database. TPS reports maximum transac-
tions per second a database can achieve before system is saturated.
Considering the cost of maintaining hardware/software components
utilized, Cost (price/TPS) is provided. Lower cost means that adding
extra resources can obtain larger TPS.

Unfortunately, due to the fact that TPS is strictly bound with data
size, it fails in making data hotspots with respect to workloads. So the
processing ability with intensive contention situation and scalability of
transaction processing in distributed databases cannot be well evalu-
ated. In addition, scheduling evaluation has not been mentioned by

DebitCredit (TPC-A) due to its low throughput.

L. Qu, Q. Wang, T. Chen et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100031

a
s
a

m
d
s
S

t
r
i
d
n
v
t
d

b
e
i
a
a
p
n

o
w
o
d
a
n

4

Fig. 6. Data model of TATP.

4.2. TATP

TATP benchmark simulates a typical Home Location Register (HLR)
scenario used by a mobile carrier. The special application scenario
makes it a perfect example of a demanding high-throughput environ-
ment.

4.2.1. Schema and data generation
TATP consists of four tables as shown in Fig. 6. Specifically, the

number of rows of other tables depend on the number of rows of table
Subscriber, i.e., 𝑆, and scale out according to the defined rules. For
instance, each subscriber owns one to four records in table Access-Info.
The dependencies indicate that the schema provides a convenient way
to scale to distributed databases by partitioning on Subscriber ID.

The primary keys are generated sequentially, while the non-key
columns are randomly generated except sub_nbr. Sub_nbr is a string-
typed column generated from primary key in table Subscriber, and it
is also used to retrieve the related primary key in certain transactions.

4.2.2. Workload
There are seven transactions in TATP, including Get-Subscriber-Data,

Get-New-Destination, Get-Access-Data, Update-Subscriber-Data, Update-
Location, Insert-Call-Forwarding and Delete-Call-Forwarding. The first
three transactions require Read Committed isolation level, while the last
four transactions need Repeatable Read isolation level. Therefore, TATP
is not suitable for distributed databases that cannot provide isolation
level of Repeatable Read or the one stricter than Repeatable Read, which
requires a global snapshot, e.g., Citus [4].

Read-only transaction exists in TATP, i.e., Get-Subscriber-Data, Get-
New-Destination, Get-Access-Data. For example, Get-Subscriber-Data re-
trieves one row from table Subscriber. Applications with read–write sep-
aration architecture can take these transactions for performance eval-
uation. What is more, write transactions are all single-point operations
and no distributed transaction processing exists. For all transactions,
Subscriber ID is generated randomly using non-uniform distribution by
default. This generation mechanism may create some hotspots on data
when scaling to a distributed environment under a large number of
transactions. As a consequence, intensive contentions are likely to occur
on nodes with heavy loads. Besides, it can be used to evaluate the
feature of adaptive sharding based on the distribution of primary keys.

4.2.3. Evaluation and performance metrics
TATP collects two types of results when benchmarking, i.e., MQTh

(Mean Qualified Throughput) and transaction response time distributions.
MQTh is the number of successful transactions per time unit. The
response time is measured for each individual transaction and reported
for each type of transaction.

4.3. TPC-C

TPC-C, introduced in 1992, is an on-line transaction processing
benchmark, simulating a warehouse-centric order processing applica-
tion, which is one of the most popular benchmarks and widely used to

demonstrate the performance of databases a

8

Fig. 7. Data model of TPC-C.

4.3.1. Schema and data generation
TPC-C consists nine tables and the reference relationships among

them are shown in Fig. 7. The number of rows in each table, except
Item, are dependent on the number of Warehouse, i.e., W, and scale out
ccording to a specific rule. For example, each warehouse provides the
ervices for 10 districts. All tables except Item can partition their data
ccording to Warehouse ID. Therefore, it has the good property to be

scaled (increasing the number of 𝑊) to distributed nodes by splitting
Warehouse ID when increasing the volume of TPC-C workloads.

Data generation in TPC-C is based on a specific distribution. The
primary keys are generated sequentially, while the non-key columns
are randomly generated except Customer Last Name (𝐶𝐿𝑎𝑠𝑡). CLast is
generated according to a specific rule for subsequent queries. Based on
the running statistics, the data size of a warehouse and its relative table
is 70 MB without compression, which needs to increase the number of
warehouses in order to test current advanced database systems.

4.3.2. Workload
There are five transactions in TPC-C, including New-Order, Payment,

Order-Status, Delivery and Stock-Level. All transactions except Stock-Level
require to run in Repeatable Read isolation level, while Stock-Level need

eet Read Committed isolation level. Based on this, databases which
o not support a global timestamp cannot pass the isolation level test,
uch as Citus [4]. There are four transactions, i.e., NewOrder, Payment,
tock-Level, Order-Status, which are related to distributed processing.

New-Order describes that a customer creates an order and inserts
he order and item information into 4 involved tables. It represents a
ead–write transaction with a high frequency of execution. When the
tem is supplied from a remote warehouse (1%), it is likely to cause a
istributed transaction. Unfortunately, it does not take the number of
odes spanning across database into consideration, namely, unable to
aluate 2𝑃𝐶, 3𝑃𝐶 and their optimized versions. Besides, all but one
ables are dependent on Warehouse, so 𝑡𝑎𝑏𝑙𝑒𝑔𝑟𝑜𝑢𝑝 can be created to
ecrease the distributed transaction ratio.

Payment portrays that a customer pays for the order by updating his
alance, sale statistics in District and Warehouse. Distributed queries may
xist in TPC-C, because they involve non-key column read. However,
f the row number of customers under a warehouse can be put into

partition (which is normal), distributed queries disappear. Besides,
customer is randomly selected from remote warehouses in 15%

robability, which causes distributed transactions spanning across 2
odes.

Stock-Level is a read-heavy transaction depicting the total number
f recently sold items whose stock level is below a certain threshold,
hile Order-Status is a read-only transaction which queries the status
f a customer’s last order. Both transactions are suitable for evaluating
atabases which support a read–write separation architecture. Besides,
lthough they are read-heavy transactions, both of them access a single
ode. So distributed query still does not exist in these two transactions.

.3.3. Evaluation and performance metrics
TPC-C requires the database to meet ACID properties and specifies

series of tests which must be performed by database vendors just like

L. Qu, Q. Wang, T. Chen et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100031

≥
t

TPC-A. Therefore, it can be used to evaluate whether the distributed
databases meet 𝐴𝐶𝐼𝐷 properties.

Think time and keying time are used to simulate the trading in real-
life operations. Keying time means the time that a terminal keys the
keyboard, and think time is the time to decide which product to choose.
Both of them allow a certain interval of execution between transactions.
Therefore, they decide the upper limitation of throughput defined by
TPC-C, i.e., 12.86 tpmC per warehouse. Unfortunately, it cannot create
any hotspots on data, which cannot be used to evaluate the ability in
intensive contention processing and scalability of transaction process-
ing of distributed databases. Besides, the scheduling which includes
automatic data splitting and storage movement, is not involved in
TPC-C due to low throughput.

The primary metrics in TPC-C include tpmC, price/tpmC, availability
date and watts/KtpmC. TpmC reports the number of orders processed
per minute. In order to consider the cost of maintaining the hard-
ware/software components on which the database is running, price
per tpmC is calculated, i.e., price/tmpC, which is able to evaluate the
scalability of the distributed databases. That is, when adding a new
node, a smaller price/tpmC means the better scalability of database.
Availability date defines how much time it takes to reach a stable state.
Finally, watts/KtpmC exposes the electricity consumption per 𝑡𝑝𝑚𝐶.

4.4. TPC-E

TPC-E, introduced in 2007, is an online transaction processing
benchmark, simulating the activity of a stock brokerage firm. The
complex business semantics make it difficult be applied to evaluate
database performance.

4.4.1. Schema and data generation
TPC-E consists of 33 tables, which can be organized into four types,

i.e. Customer Tables, Broker Tables, Market Tables and Dimension Tables.
The number of rows in each table is dependent on the number of
customers, and scales out according to a predefined scale factor. For
example, the number of trades equals to 17280 × 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠.

The schema of TPC-E provides a way to scale to distributed
databases. Tables can partition data by Customer ID, except Industry,
Sector, Status_Type, Broker, Trade_Type, Charge, New_Item and Taxrate,
while most of these tables are small. Therefore, it has a good property
to be scaled to distributed nodes by splitting on Customer ID while
increasing the number of customers. On the basis of statistics, when
the number of rows in table 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 is 5000, its relative table is more
than 50 GB without compression [57], which is much bigger than data
generated by TPC-C. Data generation in TPC-E is based on a pseudo-real
data distribution [58], which demonstrates a higher degree of skewness
than a totally random way.

4.4.2. Workload
TPC-E has 12 types of transactions. Though some of these transac-

tions are likely to cause distributed transactions or queries, e.g., Market-
Feed, it is hardly to quantify the ability of distributed transactions
processing of databases, for it has no strict definition (control) to
distributed transactions in both ratio and distribution scale on nodes.

Market-Feed first updates the prices for securities and then updates
trades associated with pending limit orders. These trades in table
Trade may be stored in different nodes, which is likely to cause a
distributed transaction. Customer-Position is a read-only transaction,
which is suitable for evaluating the processing ability of databases
supporting a read write separation architecture. However, Customer-
Position only accesses a single node, distributed queries do not exist.
Trade-Cleanup is used to cancel any pending or submitted trades from a
database. This transaction may update many rows in table Trade, which
may locate in different nodes due to different 𝐶_𝐼𝐷, i.e., distributed
transactions occurs. Besides, in order to detect submitted trades, it
executes a distributed query, e.g., select T_ID from TRADE where T_ID
9

Fig. 8. Data model of SmallBank.

trade_id and T_ST_ID = st_submitted_id, which may read trades related
o different 𝐶_𝐼𝐷. Trade-Update is designed to emulate the process

of making mirror corrections or updates to a set of trades. In this
transaction, 𝑇 𝑟𝑎𝑑𝑒_𝐼𝐷 is updated non-uniformly, so hotspots may be
caused when a large number of transactions happen. Based on this,
intensive contention and adaptive splitting will happen.

4.4.3. Evaluation and performance metrics
TPC-E requires the database to meet ACID properties and launches

the same testings as in TPC-A and TPC-C. The primary metrics in TPC-E
include 𝑡𝑝𝑠𝐸, 𝑝𝑟𝑖𝑐𝑒∕𝑡𝑝𝑠𝐸, availability date and 𝑤𝑎𝑡𝑡𝑠∕𝑡𝑝𝑠𝐸. 𝑡𝑝𝑠𝐸 reports
the number of transactions processed per second. 𝑝𝑟𝑖𝑐𝑒∕𝑡𝑝𝑠𝐸 is calcu-
lated to measure the cost of maintaining the hardware/software com-
ponents while running the database, which is able to evaluate the scal-
ability of the distributed databases. When adding a new node, a smaller
𝑝𝑟𝑖𝑐𝑒∕𝑡𝑝𝑠𝐸 means the better scalability of a database. Availability date
and watts/tpsE are also the same as TPC-C.

5. Purpose-oriented benchmarks for transactional databases

Some benchmarks are designed for a specific purpose with respect
to applications. Here, two benchmarks are studied, i.e., Smallbank [27]
and Peakbench,zhang2020benchmarking. Smallbank verifies the perfor-
mance of different serializable protocols under a snapshot isolation, and
PeakBench provides a way to generate the expected contentions among
transactions. Besides the normal business logic defined by Application-
Oriented Benchmarks, it emphasizes the specific characteristics inside
the applications (workload), e.g., high concurrency, high contention or
high dynamics in PeakBench [28].

5.1. SmallBank

SmallBank, introduced in 2008, is a benchmark that evaluates dif-
ferent serializable protocols under a snapshot isolation (𝑆𝐼). SmallBank
is based on the example of the anomaly under 𝑆𝐼 , and abstracts some
functionalities simulating a small banking system, where each customer
has a pair of accounts, one for savings and the other for checking.

5.1.1. Schema and data generation
SmallBank consists of three tables and the reference relationships

among these tables are shown in Fig. 8. The schema of SmallBank
provides a way to scale to a distributed database, that is to shard data
according to 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟_𝐼𝐷 for all these three tables. Besides, the number
of rows of both Saving and Checking are equal to the one of Account,
i.e., 𝐶 in Fig. 8. Therefore, by splitting on 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟_𝐼𝐷, increasing
customers (data) can be well distributed on nodes (clusters).

5.1.2. Workload
There are 5 types of transactions in SmallBank, including Bal-

ance, Deposit-Checking, Transact-Saving, Amalgamate and Write-Check.
All transactions except Amalgamate are related to one customer, which
then cause local transactions.

Amalgamate transfers the total balance in checking and savings of
one customer to the balance of another customer, which may cause
distributed transactions spanning at most two nodes.

Further, since customers in Amalgamate are generated randomly,

the ratio of distributed transactions is uncontrollable. Additionally, in

L. Qu, Q. Wang, T. Chen et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100031

a
p
H
r
p

5

t
h
n
o
w
b

5

t
p
a
a
u
o

5

i
t
R
i
n
t
F
f
d
t
𝑆
p
c
i
t
t
m

s
s
m

5

c
e
d
t
t
d

a

SmallBank, 90% of transactions involve one customer who is selected
from a fixed portion of all customers, which can lead to hotspots.
Therefore, the processing ability of contention and automatic data
splitting or data moving may be evaluated.

5.1.3. Evaluation and performance metrics
To evaluate the ability of different concurrency control protocols

for serializability under 𝑆𝐼 , the metric in SmallBank, i.e., throughput
relative to SI, is the ratio between the throughput under serializability
nd the one under 𝑆𝐼 . The larger throughput relative to SI, the better the
erformance of concurrency control protocols achieving serializability.
owever, the most popular distributed databases barely implement se-

ializable under 𝑆𝐼 , so SmallBank cannot evaluate concurrency control
rotocols in a distributed database at present.

.2. PeakBench

With critical transaction processing requirements of new applica-
ions, innovative database technologies are designed for dealing with
ighly intensive transaction workloads with characteristics of sharp dy-
amics, terrific skewness, high contention, and high concurrency, e.g., sec-
nd kill in Alibaba (𝑆𝑒𝑐𝐾𝑖𝑙𝑙). PeakBench [28] defines a package of
orkloads simulating intensive transactional processing requirements
y designing a fine control in contention generation.

.2.1. Schema and data generation
PeakBench has eight tables which are designed for testing different

ransaction processing architecture. For a normal daily transaction
rocess, it involves five basic tables, i.e., Item, Customer, Supplier, Orders
nd OrderItem; for SecKill with optimized queue structures, SecKillPlan
nd SecKillPay are involved to speed up the processing; for a commonly
sed read–write separation architecture, R_Item is created for read-only
perations.

.2.2. Workload
In SecKill, the activities are divided into two phases. Before the crit-

cal moment in SecKill scenario, i.e., the start time of the 𝑘𝑖𝑙𝑙 activity,
here are 4 types of read transactions and one update-only transaction.
ead transactions dominate user activities while the update transaction

s applied only in read–write separation architecture for data synchro-
izing between RDB (Read Database) and WDB (Write Database). After
he critical moment in 𝑆𝑒𝑐𝐾𝑖𝑙𝑙, there are 5 types of 𝑤𝑟𝑖𝑡𝑒 transactions.
or queries, it has not an obvious splitting dimension to guarantee items
or 𝑄2−5 all located in one node. If data are distributed into clusters,
istributed queries are inevitable. For writes, since it is difficult to find
he co-partitioning columns among tables, transactions of type 𝑃𝑂, 𝐶𝑂,
𝑢𝑂 and 𝑂𝑂 can all be distributed ones on the randomly generated
arameters, among which 𝑆𝑢𝑂 is high intensive during SecKill and
auses hotspots in high probability (for killing hot items). PeakBench
s the first work providing Contention Ratio and Contention Intensity
o define contention status. Since there are hot items, PeakBench can
est the scheduling ability of databases, e.g., adaptive splitting or data
oving.

When the size of workloads increases, more nodes may be added to
upport transaction processing, if it is a distributed database. PeakBench
upports dynamic adjustment of the quantity of workload and it can
easure the ability of database elasticity.

.2.3. Evaluation and performance metrics
The main contribution of 𝑃𝑒𝑎𝑘𝐵𝑒𝑛𝑐ℎ is to provide a fine granularity

ontrol on contention generation, which cannot be well controlled by
xisting work. It does not mention the details of data scaling and
o not declare the way to test ACID properties of databases. Besides
he traditional metrics, PeakBench defines a new metric to evaluate
he performance stability of database, Sys_Stability, when meeting the
ynamic or intensive workload.
10
Fig. 9. Different distributed transaction ratio of TPC-C on OceanBase.

Fig. 10. Different data access distribution of TPC-C on OceanBase.

6. Experiment

We explore the performance under different distributed transaction
ratios and contentions, which attract the most efforts in transactional
database design. We expect to show database performance is sensitive
to these factors, benchmarking on which is urgent and necessary.

Environment.We deploy a distributed database OceanBase (v3.1.1)
on a 10-node cluster with 9 OBSevers and 1 OBproxy. Each OBSever
is deployed in a server node with one 8-Intel-Cascadelake 6248R @
3.0 GHz CPU and 32 GB of RAM. OBproxy is deployed with one 16-
Intel-Cascadelake 6248R @ 3.0 GHz CPU and 16 GB of RAM. Client
is deployed in the same server as OBproxy. All servers are connected
using Gigabit Ethernet.

Workloads. We extend TPC-C [26] by controlling distributed trans-
ction ratios and the intensity of contentions. In the origin TPC-C,

NewOrder updates 5–15 items in table Stock, covering 1% distributed
updates. We expose and parameterize the distributed transaction ratio
to evaluate database performance under different distributed transac-
tion ratios. Previously warehouses have a uniform access distributions,
we extend the data access distribution in choosing WarehouseID to
generate different contentions.

6.1. Different distributed transaction ratio of TPC-C

In Fig. 9, we show the throughput of NewOrder on OceanBase by ad-
justing distributed transaction ratios. The throughput drops drastically
by 21.6% from 1% to 20%. It demonstrates that different distributed
transaction ratios have great influence on performance, which should
be taken seriously in benchmarking distributed transactional databases.

6.2. Different data access distribution of TPC-C

In Fig. 10, we show the throughput of TPC-C on OceanBase by
changing data access distributions of 𝑊 𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒𝐼𝐷. The access distri-
bution covers uniform and Zipfian with parameter 𝑠 set to 0.2, 0.4, 0.6,
0.8 and 1. The throughput drops obviously by 86.6% from 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 to
𝑧𝑖𝑝𝑓𝑖𝑎𝑛 with 𝑠 = 1. It shows that contentions affect performance easily,
which should also be taken into consideration in benchmarking.

L. Qu, Q. Wang, T. Chen et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100031

T
i
c
i
a
m
d
t
i
s
r
t
T
D
s
T
p
i
C
s
o
i

8

a
t
d
w
r
a
t

P
o
t
t
t
o
t
f
t
p
u
s
e
f
a
a

D

c
i

A

o
D
t

7. Support tools for benchmarking

There have been a set of tools developed for benchmarking so as
to simplify the evaluation. OLTP-Bench [59] is a popularly used DBMS
benchmarking testbed, involving 15 kinds of benchmarks. Smallbank,
ATP and TPC-C which we have discussed above are all included
n OLTP-Bench. It supports to connect to multiple DBMSs through a
omponent called SQL-Dialect Manager. Through a configuration file,
t is easy for users to customize their evaluation requirements, such
s controlling request rates or data volume. Unfortunately, the imple-
entation of some benchmarks does not exactly follow the original
efinitions. Let us take TPC-C for example. Delivery transaction intends
o be executed in a deferred mode through a queuing mechanism, but it
s executed interactively as New-Order transactions in OLTP-Bench. Be-
ides, the standard metric, i.e., 𝑡𝑝𝑚𝐶, is not involved in its performance
eport. Most importantly, it does not provide ACID verification during
ransaction executions. Benchmarksql [60] is developed specifically for
PC-C. It takes 𝑡𝑚𝑝𝐶 in its performance report, but still implements
elivery transaction in an iterative way. Compared to two tools above,
ome tools is less common. tpcc-mysql [61], the implementation of
PC-C is specifically used to evaluate databases supporting mysql
rotocol. Besides, tpce-mysql [62], DBT-5 [63] and EGen [64] are the
mplementation of TPC-E. Specifically, EGen is implemented by TPC
ouncil, but it is too complicated to run. In addition, Benchmark Factory
upports the implementation of TPC-C, TPC-E and 𝐴𝑆3𝐴𝑃 , but it is not
pensourced. PeakBench implements its benchmark and is opensourced
n github [28], but it only focuses on contention simulation.

. Conclusion

In this paper we provide a comprehensive review of several trans-
ctional benchmarks about their applicability on evaluating distributed
ransactional databases. We first introduce two popular distributed
atabase architectures, and summarize choke points in these databases
hich attract great effort in database design. After that, the paper

eviews the classic transactional benchmarks. For each benchmark, we
nalyze whether it can evaluate the choke points of the distributed
ransactional databases.

Among the classic benchmarks, YCSB+T, TATP, SmallBank and
eakBench are good choices if we want to measure the performance
f the distributed transactional databases under contentions. Although
he above mentioned benchmarks, except TATP, all involve distributed
ransactions, none of them can control the ratio of distributed transac-
ions and the number of spanning nodes, which have great influence
n database performance [65,66]. Considering the influence of dis-
ributed queries, users can use YCSB+T, TPC-E and PeakBench. As
or computing elasticity, PeakBench is a good choice. Finally, none of
he benchmarks take storage movement into consideration, which is
referred for load balance processing in distributed databases. To sum
p, on one hand, existing benchmarks can be altered for evaluating
ome aspects of the choke points. On the other hand, considering the
volution and maturity of distributed transactional databases in the
uture, a new benchmark exploring all the choke points together with
n easy-use support tool is imperative for promoting both development
nd fair benchmarking.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

cknowledgments

This work is partially supported by National Science Foundation
f China (No. 62072179), ECNU-OceanBase Joint Lab of Distributed
atabase System and 2020 the Key Software Adaptation and Verifica-

ion Project (Database). Rong Zhang is the corresponding author.
11
References

[1] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik, E.P. Jones,
S. Madden, M. Stonebraker, Y. Zhang, J. Hugg, D. J. Abadi, H-store: a high-
performance, distributed main memory transaction processing system, Proc.
VLDB Endow. 1 (2) (2008) 1496–1499.

[2] M. Stonebraker, A. Weisberg, The VoltDB main memory DBMS, IEEE Data Eng.
Bull. 36 (2) (2013) 21–27.

[3] OceanBase, https://www.oceanbase.com/docs/.
[4] U. Cubukcu, O. Erdogan, S. Pathak, S. Sannakkayala, M. Slot, Citus: Dis-

tributed PostgreSQL for data-intensive applications, in: Proceedings Of The 2021
International Conference On Management Of Data, 2021, pp. 2490–2502.

[5] J.C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J.J. Furman, S. Ghemawat,
A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li, A.
Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito,
M. Szymaniak, C. Taylor, R. Wang, D. Woodford, Spanner: Google’s globally
distributed database, ACM Trans. Comput. Syst. (TOCS) 31 (3) (2013) 1–22.

[6] D. Huang, Q. Liu, Q. Cui, Z. Fang, X. Ma, F. Xu, L. Shen, L. Tang, Y. Zhou, M.
Huang, W. Wei, C. Liu, J. Zhang, J. Li, X. Wu, L. Song, R. Sun, S. Yu, L. Zhao,
N. Cameron, L. Pei, X. Tang, TiDB: a Raft-based HTAP database, Proc. VLDB
Endow. 13 (12) (2020) 3072–3084.

[7] R. Taft, I. Sharif, A. Matei, N. VanBenschoten, J. Lewis, T. Grieger, K. Niemi,
A. Woods, A. Birzin, R. Poss, P. Bardea, A. Ranade, B. Darnell, B. Gruneir,
J. Jaffray, L. Zhang, P. Mattis, Cockroachdb: The resilient geo-distributed sql
database, in: Proceedings Of The 2020 ACM SIGMOD International Conference
On Management Of Data, 2020, pp. 1493–1509.

[8] A. Verbitski, A. Gupta, D. Saha, M. Brahmadesam, K. Gupta, R. Mittal, S.
Krishnamurthy, S. Maurice, T. Kharatishvili, X. Bao, Amazon aurora: Design con-
siderations for high throughput cloud-native relational databases, in: Proceedings
Of The 2017 ACM International Conference On Management Of Data, 2017, pp.
1041–1052.

[9] A. Verbitski, A. Gupta, D. Saha, J. Corey, K. Gupta, M. Brahmadesam, R. Mittal,
S. Krishnamurthy, S. Maurice, T. Kharatishvilli, X. Bao, Amazon aurora: On
avoiding distributed consensus for i/os, commits, and membership changes, in:
Proceedings Of The 2018 International Conference On Management Of Data,
2018, pp. 789–796.

[10] W. Cao, Z. Liu, P. Wang, S. Chen, C. Zhu, S. Zheng, Y. Wang, G. Ma, PolarFS: an
ultra-low latency and failure resilient distributed file system for shared storage
cloud database, Proc. VLDB Endow. 11 (12) (2018) 1849–1862.

[11] J. Zhou, M. Xu, A. Shraer, B. Namasivayam, A. Miller, E. Tschannen, S.
Atherton, A.J. Beamon, R. Sears, J. Leach, D. Rosenthal, X. Dong, W. Wilson,
B. Collins, D. Scherer, A. Grieser, Y. Liu, A. Moore, B. Muppana, X. Su, V.
Yadav, Foundationdb: A distributed unbundled transactional key value store, in:
Proceedings Of The 2021 International Conference On Management Of Data,
2021, pp. 2653–2666.

[12] A. Depoutovitch, C. Chen, J. Chen, P. Larson, S. Lin, J. Ng, W. Cui, Q. Liu, W.
Huang, Y. Xiao, Y. He, Taurus database: How to be fast, available, and frugal in
the cloud, in: Proceedings Of The 2020 ACM SIGMOD International Conference
On Management Of Data, 2020, pp. 1463–1478.

[13] P. Antonopoulos, A. Budovski, C. Diaconu, A. Hernandez Saenz, J. Hu, H.
Kodavalla, D. Kossmann, S. Lingam, U.F. Minhas, N. Prakash, V. Purohit, H. Qu,
C.S. Ravellam, K. Reisteter, S. Shrotri, D. Tang, V. Wakade, Socrates: The new
sql server in the cloud, in: Proceedings Of The 2019 International Conference
On Management Of Data, 2019, pp. 1743–1756.

[14] F. Li, Cloud-native database systems at Alibaba: Opportunities and challenges,
Proc. VLDB Endow. 12 (12) (2019) 2263–2272.

[15] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, W. Vogels, Dynamo: Amazon’s highly available
key-value store, Oper. Syst. Rev. 41 (6) (2007) 205–220.

[16] F. Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D.A. Wallach, M. Burrows,
T. Chandra, A. Fikes, R.E. Gruber, Bigtable: A distributed storage system for
structured data, ACM Trans. Comput. Syst. (TOCS) 26 (2) (2008) 1–26.

[17] L. George, HBase: The Definitive Guide: Random Access to Your Planet-Size Data,
" O’Reilly Media, Inc.", 2011.

[18] A. Pavlo, M. Aslett, What’s really new with NewSQL? ACM Sigmod Rec. 45 (2)
(2016) 45–55.

[19] D. Bitton, D.J. DeWitt, C. Turbyfill, Benchmarking database systems-A systematic
approach, Tech. rep., University of Wisconsin-Madison Department of Computer
Sciences, 1983.

[20] C. Turbyfill, C.U. Orji, D. Bitton, AS3AP: An ANSI SQL standard scaleable
and portable benchmark for relational database systems, in: The Benchmark
Handbook 1993, 1993.

[21] A. Dey, A. Fekete, R. Nambiar, U. Röhm, YCSB+ T: Benchmarking web-scale
transactional databases, in: 2014 IEEE 30th International Conference On Data
Engineering Workshops, IEEE, 2014, pp. 223–230.

[22] B.F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, R. Sears, Benchmarking
cloud serving systems with YCSB, in: Proceedings Of The 1st ACM Symposium
On Cloud Computing, 2010, pp. 143–154.

[23] TATP, http://tatpbenchmark.sourceforge.net.

http://refhub.elsevier.com/S2772-4859(22)00018-7/sb1
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb1
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb1
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb1
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb1
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb1
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb1
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb2
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb2
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb2
https://www.oceanbase.com/docs/
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb4
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb4
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb4
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb4
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb4
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb5
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb5
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb5
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb5
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb5
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb5
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb5
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb5
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb5
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb6
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb6
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb6
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb6
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb6
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb6
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb6
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb7
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb7
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb7
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb7
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb7
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb7
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb7
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb7
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb7
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb8
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb8
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb8
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb8
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb8
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb8
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb8
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb8
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb8
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb9
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb9
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb9
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb9
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb9
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb9
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb9
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb9
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb9
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb10
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb10
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb10
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb10
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb10
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb11
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb11
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb11
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb11
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb11
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb11
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb11
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb11
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb11
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb11
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb11
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb12
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb12
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb12
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb12
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb12
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb12
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb12
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb13
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb13
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb13
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb13
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb13
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb13
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb13
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb13
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb13
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb14
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb14
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb14
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb15
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb15
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb15
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb15
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb15
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb16
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb16
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb16
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb16
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb16
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb17
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb17
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb17
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb18
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb18
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb18
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb19
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb19
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb19
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb19
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb19
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb20
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb20
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb20
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb20
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb20
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb21
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb21
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb21
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb21
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb21
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb22
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb22
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb22
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb22
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb22
http://tatpbenchmark.sourceforge.net

L. Qu, Q. Wang, T. Chen et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100031
[24] D. Bitton, M. Brown, R. Catell, S. Ceri, T. Chou, D. DeWitt, D. Gawlick, H.
Garcia-Molina, B. Good, J. Gray, P. Homan, B. Jolls, T. Lukes, E. Lazowska, J.
Nauman, M. Pong, A. Spector, K. Trieber, H. Sammer, O. Serlin, M. Stonebraker,
A. Reuter, P. Weinberger, A measure of transaction processing power, Datamation
31 (7) (1985) 112–118.

[25] TPC-A, http://tpc.org/tpca/default5.asp.
[26] TPC-C, http://tpc.org/tpcc/default5.asp.
[27] M. Alomari, M. Cahill, A. Fekete, U. Rohm, The cost of serializability on plat-

forms that use snapshot isolation, in: 2008 IEEE 24th International Conference
On Data Engineering, IEEE, 2008, pp. 576–585.

[28] C. Zhang, Y. Li, R. Zhang, W. Qian, A. Zhou, Benchmarking on intensive
transaction processing, Front. Comput. Sci. 14 (5) (2020) 1–18.

[29] V. Reniers, D. Van Landuyt, A. Rafique, W. Joosen, On the state of nosql
benchmarks, in: Proceedings Of The 8th ACM/SPEC On International Conference
On Performance Engineering Companion, 2017, pp. 107–112.

[30] S. Friedrich, W. Wingerath, F. Gessert, N. Ritter, E. Pldereder, L. Grunske, E.
Schneider, D. Ull, NoSQL OLTP benchmarking: A survey, in: GI-Jahrestagung,
2014, pp. 693–704.

[31] R. Han, L.K. John, J. Zhan, Benchmarking big data systems: A review, IEEE
Trans. Serv. Comput. 11 (3) (2017) 580–597.

[32] M. Barata, J. Bernardino, P. Furtado, Survey on big data and decision support
benchmarks, in: International Conference On Database And Expert Systems
Applications, Springer, 2014, pp. 174–182.

[33] X. Qin, X. Zhou, A survey on benchmarks for big data and some more
considerations, in: International Conference On Intelligent Data Engineering And
Automated Learning, Springer, 2013, pp. 619–627.

[34] A. Bonifati, G. Fletcher, J. Hidders, A. Iosup, A survey of benchmarks for
graph-processing systems, in: Graph Data Management, Springer, 2018, pp.
163–186.

[35] D.F. Bacon, N. Bales, N. Bruno, B.F. Cooper, A. Dickinson, A. Fikes, C. Fraser, A.
Gubarev, M. Joshi, E. Kogan, A. Lloyd, S. Melnik, R. Rao, D. Shue, C. Taylor, M.
van der Holst, D. Woodford, Spanner: Becoming a SQL system, in: Proc. SIGMOD
2017, 2017, pp. 331–343.

[36] H.-T. Kung, J.T. Robinson, On optimistic methods for concurrency control, ACM
Trans. Database Syst. (TODS) 6 (2) (1981) 213–226.

[37] P.A. Bernstein, V. Hadzilacos, N. Goodman, Concurrency Control And Recovery
In Database Systems, Vol. 370, Addison-wesley Reading, 1987.

[38] S.S. Kulkarni, M. Demirbas, D. Madappa, B. Avva, M. Leone, Logical physi-
cal clocks, in: International Conference On Principles Of Distributed Systems,
Springer, 2014, pp. 17–32.

[39] M. Raynal, M. Singhal, Logical time: Capturing causality in distributed systems,
Computer 29 (2) (1996) 49–56.

[40] H. Lan, Z. Bao, Y. Peng, A survey on advancing the dbms query optimizer:
Cardinality estimation, cost model, and plan enumeration, Data Sci. Eng. 6 (1)
(2021) 86–101.

[41] S. Gilbert, N. Lynch, Perspectives on the CAP theorem, Computer 45 (2) (2012)
30–36.

[42] K.P. Birman, D.A. Freedman, Q. Huang, P. Dowell, Overcoming cap with
consistent soft-state replication, Computer 45 (2) (2012) 50–58.

[43] A. Quamar, K.A. Kumar, A. Deshpande, SWORD: scalable workload-aware data
placement for transactional workloads, in: Proceedings Of The 16th International
Conference On Extending Database Technology, 2013, pp. 430–441.

[44] E. Zamanian, C. Binnig, A. Salama, Locality-aware partitioning in parallel
database systems, in: Proceedings Of The 2015 ACM SIGMOD International
Conference On Management Of Data, 2015, pp. 17–30.
12
[45] Y. Cheng, P. Ding, T. Wang, W. Lu, X. Du, Which category is better: Bench-
marking relational and graph database management systems, Data Sci. Eng. 4
(4) (2019) 309–322.

[46] P. Gupta, M.J. Carey, S. Mehrotra, o. Yus, Smartbench: A benchmark for data
management in smart spaces, Proc. VLDB Endow. 13 (12) (2020) 1807–1820.

[47] J. Kuhlenkamp, M. Klems, O. Röss, Benchmarking scalability and elasticity of
distributed database systems, Proc. VLDB Endow. 7 (12) (2014) 1219–1230.

[48] J. Moeller, Z. Ye, K. Lin, W. Lang, Toto–benchmarking the efficiency of a cloud
service, in: Proceedings Of The 2021 International Conference On Management
Of Data, 2021, pp. 2543–2556.

[49] Micro Benchmark, https://hpc-wiki.info/hpc/Micro_benchmarking.
[50] Macro Benchmark, https://www.informit.com/articles/article.aspx?p=2144597&

seqNum=2.
[51] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao, D.J. Abadi, Calvin: fast

distributed transactions for partitioned database systems, in: Proceedings Of The
2012 ACM SIGMOD International Conference On Management Of Data, 2012,
pp. 1–12.

[52] J.M. Faleiro, A. Thomson, D.J. Abadi, Lazy evaluation of transactions in database
systems, in: Proceedings Of The 2014 ACM SIGMOD International Conference On
Management Of Data, 2014, pp. 15–26.

[53] C. Xie, C. Su, M. Kapritsos, Y. Wang, N. Yaghmazadeh, L. Alvisi, P. Mahajan, Salt:
Combining {𝐴𝐶𝐼𝐷} and {𝐵𝐴𝑆𝐸} in a distributed database, in: 11th {𝑈𝑆𝐸𝑁𝐼𝑋}
Symposium On Operating Systems Design And Implementation ({𝑂𝑆𝐷𝐼} 14),
2014, pp. 495–509.

[54] TPC-E, http://tpc.org/tpce/default5.asp.
[55] D.J. DeWitt, The wisconsin benchmark: Past, present, and future, in: The

Benchmark Handbook, J. Gray, Ed, 1993.
[56] D.J. DeWitt, C. Levine, Not just correct, but correct and fast: a look at one of

Jim Gray’s contributions to database system performance, ACM SIGMOD Rec. 37
(2) (2008) 45–49.

[57] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic, C.
Kaynak, A.D. Popescu, A. Ailamaki, B. Falsafi, Clearing the clouds: a study of
emerging scale-out workloads on modern hardware, Acm Sigplan Notices 47 (4)
(2012) 37–48.

[58] P. Tözün, I. Pandis, C. Kaynak, D. Jevdjic, A. Ailamaki, From A to E: ana-
lyzing TPC’s OLTP benchmarks: the obsolete, the ubiquitous, the unexplored,
in: Proceedings Of The 16th International Conference On Extending Database
Technology, 2013, pp. 17–28.

[59] D.E. Difallah, A. Pavlo, C. Curino, P. Cudre-Mauroux, Oltp-bench: An extensible
testbed for benchmarking relational databases, Proc. VLDB Endow. 7 (4) (2013)
277–288.

[60] BenchmarkSQL, https://sourceforge.net/projects/benchmarksql.
[61] tpcc-mysql, https://github.com/Percona-Lab/tpcc-mysql.
[62] tpce-mysql, https://github.com/Percona-Lab/tpce-mysql.
[63] R.O. Nascimento, P.R. Maciel, Dbt-5: An open-source tpc-e implementation for

global performance measurement of computer systems, Comput. Inf. 29 (5)
(2010) 719–740.

[64] EGen, http://tpc.org/tpc_documents_current_versions/current_specifications5.asp.
[65] A. Pavlo, C. Curino, S. Zdonik, Skew-aware automatic database partitioning

in shared-nothing, parallel OLTP systems, in: Proceedings Of The 2012 ACM
SIGMOD International Conference On Management Of Data, 2012, pp. 61–72.

[66] C. Curino, E.P.C. Jones, Y. Zhang, S.R. Madden, Schism: a workload-driven
approach to database replication and partitioning, Proc. VLDB Endow. (2010)
48–57.

http://refhub.elsevier.com/S2772-4859(22)00018-7/sb24
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb24
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb24
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb24
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb24
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb24
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb24
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb24
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb24
http://tpc.org/tpca/default5.asp
http://tpc.org/tpcc/default5.asp
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb27
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb27
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb27
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb27
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb27
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb28
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb28
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb28
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb29
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb29
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb29
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb29
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb29
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb30
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb30
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb30
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb30
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb30
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb31
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb31
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb31
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb32
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb32
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb32
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb32
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb32
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb33
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb33
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb33
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb33
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb33
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb34
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb34
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb34
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb34
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb34
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb35
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb35
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb35
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb35
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb35
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb35
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb35
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb36
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb36
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb36
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb37
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb37
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb37
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb38
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb38
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb38
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb38
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb38
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb39
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb39
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb39
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb40
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb40
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb40
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb40
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb40
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb41
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb41
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb41
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb42
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb42
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb42
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb43
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb43
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb43
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb43
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb43
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb44
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb44
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb44
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb44
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb44
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb45
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb45
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb45
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb45
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb45
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb46
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb46
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb46
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb47
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb47
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb47
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb48
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb48
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb48
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb48
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb48
https://hpc-wiki.info/hpc/Micro_benchmarking
https://www.informit.com/articles/article.aspx?p=2144597&seqNum=2
https://www.informit.com/articles/article.aspx?p=2144597&seqNum=2
https://www.informit.com/articles/article.aspx?p=2144597&seqNum=2
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb51
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb51
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb51
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb51
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb51
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb51
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb51
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb52
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb52
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb52
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb52
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb52
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb53
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb53
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb53
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb53
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb53
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb53
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb53
http://tpc.org/tpce/default5.asp
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb55
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb55
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb55
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb56
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb56
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb56
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb56
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb56
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb57
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb57
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb57
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb57
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb57
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb57
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb57
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb58
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb58
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb58
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb58
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb58
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb58
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb58
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb59
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb59
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb59
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb59
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb59
https://sourceforge.net/projects/benchmarksql
https://github.com/Percona-Lab/tpcc-mysql
https://github.com/Percona-Lab/tpce-mysql
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb63
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb63
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb63
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb63
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb63
http://tpc.org/tpc_documents_current_versions/current_specifications5.asp
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb65
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb65
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb65
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb65
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb65
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb66
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb66
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb66
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb66
http://refhub.elsevier.com/S2772-4859(22)00018-7/sb66

	Are current benchmarks adequate to evaluate distributed transactional databases?
	Introduction
	Architecture and choke points of distributed databases
	Architecture of distributed databases
	Shared-nothing model
	Shared-storage model

	Choke points in distributed transaction processing
	Transaction
	Query
	Scheduler

	Benchmark overview

	Micro benchmarks for transactional databases
	AS3AP
	Schema and data generation
	Workload
	Evaluation and performance metrics

	YCSB+T
	Schema and data generation
	Workload
	Evaluation and performance metrics

	Application-oriented benchmarks for transactional databases
	Debitcredit and TPC-A
	Schema and data generation
	Workload
	Evaluation and metrics

	TATP
	Schema and data generation
	Workload
	Evaluation and performance metrics

	TPC-C
	Schema and data generation
	Workload
	Evaluation and performance metrics

	TPC-E
	Schema and data generation
	Workload
	Evaluation and performance metrics

	Purpose-oriented benchmarks for transactional databases
	SmallBank
	Schema and data generation
	Workload
	Evaluation and performance metrics

	PeakBench
	Schema and data generation
	Workload
	Evaluation and performance metrics

	Experiment
	Different distributed transaction ratio of TPC-C
	Different data access distribution of TPC-C

	Support tools for benchmarking
	Conclusion
	Declaration of competing interest
	Acknowledgments
	References

