
BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100038

O
J
R

A

K
I
H
O
C
F
A
A
C
H
E
S

1

e
a
L
1
o
s
c
c
r
t

s
l
d
U
t
e

h

A
2
B

Contents lists available at ScienceDirect

BenchCouncil Transactions on Benchmarks,
Standards and Evaluations

journal homepage: https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-
benchmarks-standards-and-evaluations/

pen-source computer systems initiative: The motivation, essence, challenges, and methodology
ianfeng Zhan
esearch Center for Advanced Computer Systems, Institute of Computing Technology, Chinese Academy of Sciences, China

R T I C L E I N F O

eywords:
nformation technology decoupling
igh-end computer systems
pensource computer systems initiative
hallenges
unclet
bstraction
rchitecture
hiplet
Wlet
nvlet
ervlet

A B S T R A C T

The global community faces many pressing and uncertain challenges like pandemics and global climate
change. Information technology (IT) infrastructure has become the enabler to addressing those challenges.
Unfortunately, IT decoupling has distracted and weakened the international community’s ability to handle
those challenges.

This article initiates an open-source computer system (OSCS) initiative to tackle the challenges of IT
decoupling. The OSCS movement is where open-source software converges with open-source hardware. Its
essential is to utilize the inherent characteristics of a class of representative workloads and propose innovative
abstraction and methodology to co-explore the software and hardware design spaces of high-end computer
systems, attaining peak performance, security, and other fundamental dimensions. I discuss its four challenges,
including the system complexity, the tradeoff between universal and ideal systems, guaranteeing quality of
computation results and performance under different conditions, e.g., best-case, worst-case, or average-case,
and balancing legal, patent, and license issues.

Inspired by the philosophy of building large systems out of smaller functions, I propose the funclet abstrac-
tion and methodology to tackle the first challenge. The funclet abstraction is a well-defined, evolvable, reusable,
independently deployable, and testable functionality with modest complexity. Each funclet interoperates with
other funclets through standard bus interfaces or interconnections. Four funclet building blocks: chiplet, HWlet,
envlet, and servlet at the chip, hardware, environment management, and service layers form the four-layer
funclet architecture. The advantages of the funclet abstraction and architecture are discussed. The project’s
website is publicly available from https://www.opensourcecomputer.org or https://www.computercouncil.org.
. Introduction

The complex interactions between human activities and the earth’s
cosystem lead to two pressing challenges: the COVID-19 pandemic
nd global climate change. The study, published on 10 March in The
ancet [1], says that the actual number of lives lost to the COVID-
9 pandemic by 31 December 2021 was close to 18 million. That far
utstrips the 5.9 million deaths that were reported to various official
ources for the same period [2]. This dire situation poses a heartbroken
hallenge to our seniors and children. On the other hand, due to climate
hange [3], more frequent and intense drought, storms, heatwaves,
ising sea levels, melting glaciers, and warming oceans can directly
hreaten the survival of humans and wild animals.

In addition to the global society’s strong support and action, the
cience and technology society bears the burden of tackling those chal-
enges. Unfortunately, the growing political gaps among people with
eviated viewpoints tear apart the science and technology community.
ndeniably, human societies have undergone disparate political sys-

ems with varying extents of political rights and civil liberties — how-
ver, the trend converges. For example, almost every nation abolished

E-mail address: zhanjianfeng@ict.ac.cn.
URL: http://www.benchcouncil.org/zjf.html.

slavery in favor of human rights; Almost every country acknowledges
the rule of law, though the processes and meaning vary wildly. In the
short term, there may be a spikey political gap. However, the gap has
been closing for a long time. The temporally increasing political gaps do
not justify the technology decoupling. Instead, technology decoupling
will weaken the global community’s capability to handle the pressing
challenges, which adversely shakes the foundation of the worldwide
community. IT is one of the enablers underpinning effective plans and
actions addressing those challenges [4–7]. IT decoupling threatens the
shared IT infrastructure and hence the shared future.

Technology decoupling and export control between nations will
increase costs and lower productivity [8]. The dire IT decoupling
distracts and weakens human beings’ ability to address those pressing
challenges. This calls for our wisdom and actions to unify our science
and technology community. The open science initiatives [9–12,12,13]
partially responded to it.

As shown in Fig. 1, this article initiates an open-source computer
system movement (in short, OSCS) where open-source software con-
verges with open-source hardware. High-end computer systems serve
ttps://doi.org/10.1016/j.tbench.2022.100038

vailable online 25 April 2022
772-4859/© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of
Y-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
KeAi Communications Co. Ltd. This is an open access article under the CC

https://doi.org/10.1016/j.tbench.2022.100038
http://https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tbench.2022.100038&domain=pdf
https://www.opensourcecomputer.org
https://www.computercouncil.org
mailto:zhanjianfeng@ict.ac.cn
http://www.benchcouncil.org/zjf.html
https://doi.org/10.1016/j.tbench.2022.100038
http://creativecommons.org/licenses/by-nc-nd/4.0/


J. Zhan BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100038

a
o
T
t
c
o
s
g
O
t
f
a
i
h
p

l
c
h
e
a
c
T
t
w
d
b
t

m
o
d
f
o
F
t
t
(
r
b
t
f
s
f

b
t
d
S

Fig. 1. The essential of the open-source computer systems (OSCS) initiative.
s the cornerstone of IT infrastructure, and their components like Chips
r Operating Systems are the basis for building the IT infrastructure.
he OSCS initiative chooses high-end computer systems as its target
o relieve the side effect of IT decoupling. To generate a positive
hange force to overcome the ecosystem inertia, I use Zhan’s laws
f technology [8] to guide this project (The laws of technology are
ummarized in Section Two). On the one hand, the OSCS initiative will
enerate a positive change force through the open-source movement.
n the other hand, it proposes an innovative methodology to improve

he efficiency or other fundamental dimensions to generate the change
orce. The OSCS essential is to utilize the inherent characteristics of

class of representative workloads (benchmarks [14]) and propose
nnovative abstraction and methodology to co-explore the software and
ardware design spaces of high-end computer systems, attaining peak
erformance, security, and other fundamental dimensions.

I discuss the four challenges of the OSCS initiative. The first chal-
enge is the daunting system complexity witnessed by the high-end
omputer system and the processor ecosystem. The second challenge is
ow to perform the tradeoff between universal and ideal systems. For
ach class of representative workloads, there should be an ideal system
rchitecture instead of a universal system where the performance,
ost, or energy overhead of universality –‘‘Turing Tax’’, or ‘‘Turing
ariffs’’ – cannot be avoided [15]. The third challenge is to propose
he methodology and tools to aid the community in designing systems
ith guaranteed quality of computation results and performance under
ifferent conditions, e.g., best-case, worst-case, or average-case. Last
ut not least, it is how to balance legal, patent, and license issues of
he OSCS initiative.

To tackle the first challenge, I propose the funclet abstraction and
ethodology. The funclet abstract represents the common proprieties

f basic building blocks at different layers: each funclet is a well-
efined, evolvable, reusable, independently deployable, and testable
unctionality with modest complexity; Each funclet interoperates with
ther funclets through the standard bus interfaces or interconnections.
our basic building blocks are chiplet, HWlet, envlet, and servlet at
he chip, hardware, environment management, and service layers, and
hey form the four-layer funclet architecture. I present a three-tuple
funclet set architecture (FSA), organization, system specifics): the FSA
efers to the actual programmer-visible function set [16], serving as the
oundary between two adjacent layers and among different funclets in
he same layer; The organization includes the high-level aspects of how
unclets in the same layer and adjacent layers collaborate; The system
pecifics describe the design and implementation of the system built
rom funclets.

The structure of this article is as follows. Section Two presents the
ackground knowledge of Zhan’s three laws of technology. Section
hree justifies the motivation for the OSCS initiative. Section Four
iscusses the challenges. Section Five presents the funclet methodology.

ection Six concludes.

2

2. Background

Zhan’s three laws of technology provide a simple theoretical frame-
work to explain and predict the rise or fall of a technology [8]. In
this article, I use Zhan’s three laws of technology [8] as a theoretical
framework to analyze the potential and pitfall of the OSCS initiative.
This section briefly introduces this framework.

The first law is on the obstacle to new technology: technology
inertia. Not only end-users but also industry users stick to the existing
technology, named consumer inertia and ecosystem inertia. The user
size will keep constant unless a non-zero net technology change force
acts on it. The second law reveals where the power of new technol-
ogy comes from. The change in user size is proportional to the net
technology change force. The corollary of measurement of technology
change force is how to measure the net change force. By creating a
brand-new technology or improving an existing technology in terms of
user experience, costs, efficiency, or other fundamental dimensions by
several orders of magnitude can the new technology generate a positive
change force. In improving an existing technology, a new or different
ecosystem will generate a negative change force 𝐹𝐸𝑐𝑜𝑠𝑦𝑠𝑡𝑒𝑚, which is
the side effect of ecosystem inertia. Meanwhile, different use which
results in a learning cost will generate a negative change force 𝐹𝐿𝑒𝑎𝑟𝑛.
According to the Equation in Table 1, the net change force 𝐹𝑡 is the
sum of six components: 𝐹𝐿𝑒𝑎𝑟𝑛, 𝐹𝐸𝑐𝑜𝑠𝑦𝑠𝑡𝑒𝑚, 𝐹𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒, 𝐹𝐶𝑜𝑠𝑡, 𝐹𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦,
𝐹𝑂𝑡ℎ𝑒𝑟. Table 1 summarizes the three laws and five corollaries together.
Table 2 explains the symbols in the formula in Table 1.

Table 3 presents how to use Zhan’s laws of technology to analyze the
rise or fall of a technology, the details of which are available from [8].

3. Motivation

As shown in Fig. 2, this section explains the motivations from two
perspectives: Why is IT decoupling not wise? Why launch the OSCS
initiative?

3.1. Why is IT decoupling not wise?

IT infrastructure is the backbone of human society and the enabler
that copes with the global pandemic and climate change challenges.
For example, the scientific and engineering community heavily relies
upon supercomputers to find the COVID-19 drugs and model climate
change [17–19]. IT decoupling will hinder knowledge sharing and en-
gineering collaboration, weakening our ability to handle pressing chal-
lenges. The decoupled IT communities must address severe challenges
separately and amortize the unaffordable research and development
costs from software and hardware.

The corollary of technology openness of Zhan’s three laws of tech-
nology [8] clearly stated that contrasted with a closed ecosystem
controlled by one entity, allowing the division of labor among con-
tributors who share an open technology ecosystem improves the gross
productivity and lowers the cost amortized on each contributor. Supply

chain decoupling and technology export control between nations will



J. Zhan BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100038
Table 1
The OSCS initiative uses Zhan’s three laws of technology to decide the project’s goal and strategy. The three laws and three
corollaries used in this article are summarized while omitting the other two corollaries. The full details are shown in [8].
Law or Corollary name Formula

Law of technology inertia 𝛥𝑈𝑡 = 𝑈(𝑡+𝛥𝑡) − 𝑈𝑡
𝛥𝑈𝑡 = 0 , 𝑈 𝑖𝑠 𝑎 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟

Law of technology change force 𝛥𝑈𝑡 ∝ 𝐹𝑡 , 𝑈 𝑖𝑠 𝑎 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟

Law of technology change action and reaction 𝐹𝐸𝑚𝑒𝑟𝑔𝑖𝑛𝑔 = −𝐹𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔

Corollary of measurement of technology change force
𝐹𝑡 = 𝐹𝐶𝑟𝑒𝑎𝑡𝑒 + 𝐹𝐿𝑒𝑎𝑟𝑛 + 𝐹𝐸𝑐𝑜𝑠𝑦𝑠𝑡𝑒𝑚
or
𝐹𝑡 = 𝐹𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 + 𝐹𝐶𝑜𝑠𝑡 + 𝐹𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 + 𝐹𝑂𝑡ℎ𝑒𝑟 + 𝐹𝐿𝑒𝑎𝑟𝑛 + 𝐹𝐸𝑐𝑜𝑠𝑦𝑠𝑡𝑒𝑚

Corollary of technology breakthrough 𝐵 = 𝐹∕𝑈 , 𝑈 𝑖𝑠 𝑎 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟

Corollary of technology openness
𝑃 = 𝑝 ∗ 𝑈𝑖, 𝑐 = 𝐶∕𝑈𝑖
𝑃 = 𝑝 ∗ 𝑈𝑖∕𝑀 , 𝑐 = 𝐶 ∗ 𝑀∕𝑈𝑖
𝑃 = 𝑝 ∗ 𝑈𝑖∕𝑁 , 𝑐 = 𝐶 ∗ 𝑁∕𝑈𝑖
Fig. 2. The motivation for launching the open-source computer systems (OSCS) initiative.
o
t
c
u
𝐹

Table 2
The explanations of symbols in Table 1 [8].

Symbol Explanation

𝛥 Difference operator
∝ Proportional operator
𝛴 Summation operator
𝑈𝑡 User size varying with time
𝑈𝑖 Size of industry users
𝐹𝑡 Net technology change force varying with time
𝐹𝐸𝑚𝑒𝑟𝑔𝑖𝑛𝑔 Change force acting on emerging technology
𝐹𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔 Change force acting on existing technology
𝐹𝐶𝑟𝑒𝑎𝑡𝑒 Change force resulted from creating a brand-new technology
𝐹𝐿𝑒𝑎𝑟𝑛 Change force resulted from learning cost
𝐹𝐸𝑐𝑜𝑠𝑦𝑠𝑡𝑒𝑚 Change force resulted from ecosystem deviation
𝐹𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 Technology change force resulted from user experience
𝐹𝐶𝑜𝑠𝑡 Change force resulted from cost
𝐹𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 Change force resulted from efficiency
𝐹𝑂𝑡ℎ𝑒𝑟 Change force resulted from other fundamental dimensions
𝐵 Technology breakthrough
𝑃 Gross productivity
𝐶 Total cost
𝑀 Number of decoupled supply chains
𝑁 Number of nations
𝑐 Cost
𝑝 Productivity of each contributor (industry user)

increase costs and lower productivity. The dire IT decoupling will
distract and weaken human beings’ ability to handle those pressing
challenges. This calls for our wisdom and actions to unify our science
and technology community. The open science initiatives [9–12,12,13]
partially responded to it.

3.2. Why launch the OSCS initiative?

The open-source software movement has become mainstream, like
closed-source ones. The open-source software outspring includes Linux,
Android, and many other software stacks. Opensource hardware is
3

sporadic with a handy of hardware components that attain the per-
formance and reliability that amount to the commodity components.
However, it is far from ready to handle IT decoupling challenges.

First, as demonstrated in Table 4, IT infrastructure like high-end
computer systems kept closed even open-source movement makes ex-
cellent progress. As shown in Fig. 2, high-end computer systems not
only serve as the cornerstone of the IT infrastructure, but its compo-
nents, like chips, hardware, OS, toolchain, and middleware, are also
the basis for building IT infrastructure. So high-end computer systems
are vital to addressing the challenges of IT decoupling.

The Open Compute Project Foundation (OCP) [30] was initiated in
2011 with a mission to open-source datacenter hardware (warehouse-
scale computing) in mind; it still makes little progress in essential
components. RISC-V [31] is an open standard instruction set architec-
ture (ISA) following reduced instruction set computer (RISC) principles.
The open-source chip project like RISC-V is promising as it is provided
under open source licenses that do not require fees to use, unlike most
other ISA designs [31]. For example, Institute of Computing Technology
at Chinese Academy of Sciences has showcased progress on a fully
open-source RISC-V processor, XiangShan, or ‘‘Fragrant Hills’’ [32],
which is promising in competing Arm counterparts.

Second, fundamental changes in technology favor domain-specific
hardware and software co-design, e.g. end of Dennard scaling, ending of
Moore’s Law, Amdahl’s Law and its implications for ending ‘easy’ multi-
core era [33,34]. In the new golden age of computer architecture,
it is essential to consider software and hardware together. So it is
time for opensource software movements to converge with opensource
hardware movements.

Third, merely repeating the methodology and process and replicat-
ing the closed-source counterpart will not succeed directly. According
to the law of technology change force [8], the open-source initiative
will make 𝐹𝐶𝑜𝑠𝑡 > 0. Improving the closed-source counterpart in terms
f user experience, costs, efficiency, or other fundamental dimensions,
he open-source one can generate other positive components of the
hange force, e.g., 𝐹𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 – technology change force resulted from
ser experience, 𝐹𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 – change force resulted from efficiency,

– change force resulted from other fundamental dimensions.
𝑂𝑡ℎ𝑒𝑟



J. Zhan BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100038

p
t
s
h
t
i

h
t
i
c
d
c

t
s
a
o
t
s
r
w
o

f
t
a
c
c
p
o
c
a
t
c

Table 3
The analysis of thirteen successful IT using Zhan’s three laws of technology [8]. The essential of using those laws is to measure the components of change force. The net change forces
decide each technology’s rise or fall. Contrasted with a closed ecosystem controlled by one entity, allowing the division of labor among contributors sharing an open technology
ecosystem improves the gross productivity and lowers the costs amortized on each contributor [8]. Decoupling the supply chain will increase costs and lower productivity [8].

Technology Rivals 𝐹𝐿𝑒𝑎𝑟𝑛 𝐹𝐸𝑐𝑜𝑠𝑦𝑠𝑡𝑒𝑚 𝐹𝐶𝑟𝑒𝑎𝑡𝑒 𝐹𝐶𝑜𝑠𝑡 𝐹𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝐹𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 𝐹𝑂𝑡ℎ𝑒𝑟 Closed/Open Supply Chain

Deep learning Shallow neutral networks 0 <0 / <0 / / ≫0 (accuracy) Open Coupling
WWW No <0 <0 ≫0 / / / / Open Coupling
Google No <0 <0 ≫0 / / / / Closed Decoupling
Facebook No <0 <0 ≫0 / / / / Closed Decoupling
Internet No <0 <0 ≫0 / / / / Open Coupling
RAID Single large expensive disk 0 0 / >0 >0 / / Open Coupling
Android Windows Mobile, Symbian, iOS, Linux <0 0 / >0 / >0 >0 (Google ecosystem) Open Coupling
iOS Windows Mobile, Symbian <0 <0 / <0 / ≫0 >0 (AppStore) Closed Coupling
Windows DOS <0 0 / / / >0 / Closed Coupling
Linux UNIX 0 0 / >0 / / / Open Coupling
UNIX Multics <0 <0 / / >0 / >0 (standard) Closed Coupling
ARM X86, RISC 0 0 / / >0 / >0 (energy efficiency) Closed Decoupling
RISC CISC 0 0 / / >0 / / Closed Decoupling
Table 4
Eight categories of high-end computer systems.

Domain Benchmark [14] Metrics Status OSCS target

Planet-scale computers (Distributed IoTs,
Edges, and datacenter systems) [20]

ScenarioBench [21] Undefined Not yet mature Yes

AI for science SAIBench [22] Undefined Not yet mature Yes
Deep learning AIBench [23] or MLPerf [24,25] State-of-the-quality Mature No
Metaverse MetaverseBench [26] N/A Not yet mature Yes
High performance computing HPCC [27] FLOPS Mature No
Warehouse-scale computing N/A Throughput, Tail latency Mature No
Big Data BigDataBench [28] or BigBench [29], Throughput, Quality of services, turnaround Mature No
Cloud computing N/A System utilization, Quality of services Mature NO
(
(
(

4

i

h

o
t
h
i
N
p
T
b
a

R
t
a
s
c
S
c
e
c

f

s

It is necessary to take other actions to generate other positive com-
onents of the change force. On the one hand, it is essential to leverage
he inherent characteristics of a class of representative workloads (The
econd category of benchmarks in [14]) to co-explore the software and
ardware architecture space [33,34]. On the other hand, it is necesary
o develop new abstraction, methodology, and architecture in the OSCS
nitiative.

Fourth, being compatible with the ecosystem and users’ learning
abits is essential. Not only end-users but also industry users stick
o the existing technology, which is consumer inertia and ecosystem
nertia [8]. According to the corollary of measurement of technology
hange Force of Zhan’s laws of technology, A new ecosystem or the
eviation from existing technology ecosystems will generate a negative
hange force 𝐹𝐸𝑐𝑜𝑠𝑦𝑠𝑡𝑒𝑚; Different use, which results in an end-user

learning cost, will generate a negative change force 𝐹𝐿𝑒𝑎𝑟𝑛.
I conclude the essence of the OSCS initiative. The OSCS initia-

ive has four implications. (1) It is an open-source movement where
oftware converges with hardware. (2) It is to utilize the inherent char-
cteristics of a class of representative workloads (The second category
f benchmarks in [14]). (3) Instead of re-inventing the wheel, it is
o propose innovative abstraction and methodology to co-explore the
oftware and hardware design space to attain peak performance, secu-
ity, and other fundamental dimensions. (4) it emphasizes compatibility
ith the ecosystem and users’ learning habits. Fig. 1 reveals the essence
f the OSCS initiative visually.

According to the Corollary of measurement of technology change
orce, the goal of the strategy is to maximize the positive value of
he net change force. High-performance computing, cloud computing,
nd warehouse-scale computing are mature. Hence, generating a net
hange force that breaks through the technology inertia is much more
hallenging, i.e., improving an existing technology in terms of user ex-
erience, costs, efficiency, or other fundamental dimensions by several
rders of magnitude. So I choose three emerging areas: planet-scale
omputers, which redesign the IoTs, edges, data centers and networks
s a computer [20], AI for sciences, and Metaverse as the initial three
argets of the OSCS initiative. I enforce the following strategies for each
lass of systems to maximize the net change force. (1) open-source
4

initiative, which makes 𝐹𝐶𝑜𝑠𝑡 > 0; (2) sharpen the edges like efficiency
𝐹𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 > 0, and the other fundamental dimension 𝐹𝑂𝑡ℎ𝑒𝑟 > 0;
3) provide the compatible ecosystem and lower the learning cost.
𝐹𝐿𝑒𝑎𝑟𝑛 = 0, 𝐹𝐸𝑐𝑜𝑠𝑦𝑠𝑡𝑒𝑚 = 0).

. The challenges

This subsection will present the high-level challenges of the OSCS
nitiative. Low-level challenges are thoroughly discussed in [20,22,26].

(1) The challenge of system complexity.
I demonstrate the system complexity from two dimensions: the

igh-end computer systems and the processor ecosystem.
As shown in Fig. 2, high-end computer systems are the cornerstone

f IT infrastructure with daunting complexity. As a case study, I review
he state-of-the-art supercomputers on the Top 500 list [35]. Fugaku
eld the No. 1 position that it first earned in June 2020. Fugaku
s based on Fujitsu’s custom ARM A64FX processor, each with four
UMA nodes. With each NUMA node having 12 compute cores, each
rocessor has 48 cores. Fugaku has 7,630,848 cores – using Fujitsu’s
ofu-D interconnect to transfer data between nodes– achieving an HPL
enchmark score of 442 Pflop/s [35]. High-end computer systems are
vivid demonstration of system engineering and art.

As I earlier analyzed in [8], an entire ecosystem of X86, ARM, or
ISC-V processors consists of SoC (a system on a chip), ISA (Instruc-

ion Set Architecture), OS (operating system), toolchain, middleware,
nd applications. It is far beyond the reach of state-of-the-art and
tate-of-the-practice open-source projects. Even considering only the
omponents, modern systems like Systems on Chips (SoCs) or Operating
ystems have growing complexity that leads to a design productivity
risis [36]. For the SoC, the chipmaker shrinks different functions at
ach node and packs them onto a monolithic die, which becomes more
omplex and expensive at each node [37].

The high-end computer systems in Table 4 require aggressive, tact-
ul, and coordinated plans for open-source computer systems.

(2) The tradeoff challenges between universal and ideal systems.
Turing [38] proposed the idea of a ‘‘universal’’ computing device – a

ingle device that can implement any computable function. However, it



J. Zhan BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100038

c
t

b

will introduce ‘‘Turing Tax’’, or ‘‘Turing Tariffs’’ [15]: the performance,
cost, or energy overhead of universality — the difference between a
special-purpose device and a general-purpose one. Because industrial
users adhere to existing products, tools, platforms, and services for
investment protection — so-called ecosystem inertia [8], the user tends
to opt for the universal systems or much narrow-scope general-purpose
systems like GPGPUs. Modern systems, e.g., Systems on chip (SoCs)
or Operating Systems, have growing complexity that leads to a design
productivity crisis [36], and the communities cannot afford the cost of
building new systems. That is another reason users prefer the universal
or much narrower-scope general-purpose systems.

However, the new technology trends have gained momentum. The
agile software and hardware process and methodology [36,39] enables
small-team to build competitive high-performance microprocessors and
software systems quickly. For each class of representative workloads,
there should be an ideal system architecture instead of a universal
system. Single-purpose system is not preferred; however, it is reason-
able to tradeoff between the universal and ideal systems. Specifically,
it motivates each class of workloads to explore the ideal architecture
space.

(3) The challenges of guaranteeing the quality of computation re-
sults and performance under best-case, worst-case, or average-case.

Modern systems care about performance and value the quality of
their computation results. For example, the deep learning community
has come to terms with accepting the time of training an AI model to
achieve a state-of-the-art quality as the primary metrics [23,25,40] in
evaluating the system, which values both systems and algorithms.

I think the community should consider the quality of computation
results and performance under different cases like best-case, worst-case,
or average-case as first-class constraints in system design, implementa-
tion, verification,1 and validation.2 For example, how does a system
achieve state-of-the-art quality with the 99th tail latency of fewer than
100 milliseconds? How to estimate or guarantee the performance and
quality that satisfy a threshold in the best case (1 out of 1000) –
consider the case of searching for alien civilizations? How about the
average case? The design, implementation, verification, and validation
costs vary wildly in different cases. The designers need to propose a
new methodology to design, implement, verify and validate the systems
with guaranteed confidence in quality and performance. Proposing the
appropriate metrics is the first step in any-case system challenges. It
is pressing to propose a new design, implementation, verification, and
validation methodology and tool to address any-case system challenges.

I do not mean that these issues were totally overlooked in the
past. HPC communities have much expertise in the tradeoff between
performance and accuracy. Langou et al. [41] exploit single-precision
operations whenever possible and resort to double-precision at critical
stages while attempting to provide the full double precision results.
The real-time system community [42] considered the hard and soft
deadlines as first-class design constraints. In warehouse-scale comput-
ing [43], the tail latency of large-scale internet service – worst-case
latency expressed in a percentile term, e.g., 98th, 99th – becomes
the primary metric that outweighs the average latency. Lu et al. [44]
claimed the modern data center operating system should gracefully
achieve disparate performance goals in terms of both average and
worst-case performance.

(4) The challenges of balancing legal, patent, and license issues.
In the past several decades, many different software models have

become mainstream, such as the proprietary software product vendor
model, the custom software developer model, advertising-supported
software, and web-delivered software as a service [45]. How the OSCS

1 Verification determines whether each component and the assembly of
omponents correctly meets its specification through testing(‘‘Are we building
he thing right?’’) [36].

2 Validation ensures that the product serves its intended purposes (‘‘Are we
uilding the right thing?’’) [36].
5

initiative interacts and impacts those models? The license and patent
policy may significantly impact that process. The situation becomes
much more complex, especially considering the potential issues that
may come to courts with the commercial project that hybridizes pro-
prietary and open-source mechanisms [45]. Legal issues like long-arm
jurisdiction in export control further complicate these situations.

The OSCS initiative is not a perfect plan. Also, it has several side ef-
fects. The most prominent one is how to prevent extremists or terrorism
from leveraging open-source high-end computer systems.

5. The funclet methodology

This section presents the methodology for tackling the first chal-
lenge. I left the other challenges in the future work.

When the IT pioneer Gordon Moore [46] envisioned the future,
he concluded ‘‘it might prove to be more economical to build large
systems out of smaller functions, which are separately packaged and
interconnected’’. Inspired by this philosophy of building large systems
out of smaller functions, I propose the funclet methodology. First, I
present the funclet abstraction, then the funclet architecture.

The funclet abstract represents the common proprieties of basic
building blocks at different layers. Each funclet has the following
characteristics. (1) each contains a well-defined and evolvable func-
tionality with modest complexity (2) each can be reusable in different
contexts. (3) each can be independently tested and verified before
integrating. (4) each can be independently deployable. (5) each can
interoperate with other funclets through a well-defined bus interface
or interconnection.

As shown in Fig. 3, I propose a four-layer funclet architecture. As
a start, I reuse two emerging concepts to describe funclet at the first
and fourth layers, and then I elaborate on the other layers. The first-
layer funclet is a chiplet, which is an integrated circuit (IC) with modest
complexity, providing well-defined functionality [37,47]; it is designed
to be susceptible to integration with other chiplets, connected with a
die-to-die interconnect scheme [37,47]. A chiplet differs from the tradi-
tional, monolithic system on chip (SoC) in the following way [37,47]: a
chipmaker can mix and match chiplets to reduce product development
times and costs by integrating pre-developed die in an IC package [37,
47].

The fourth-layer funclet is a servlet, an independently deployable
and evolvable component that severs users with a well-defined and
modest-complexity functionality. A servlet supports interoperability
through standardized software bus [48]. Microservice [48] is a form
of a servlet. Another related concept is cloud functions [49]. Cloud
functions package as Function as a Service (FaaS) offerings [49], which
represents the core of serverless computing. Cloud functions are the
general-purpose elements in serverless computing, leading to a simpli-
fied and general-purpose cloud programming model [49].

The second-layer funclet is an HWlet, an independently deployable,
replaceable, and accessible hardware component, e.g., CPU, memory,
storage. An HWlet could be aggregated into a resource pool with low la-
tency and high bandwidth interconnection. I explain the HWlet concept
in the context of an aggregated architecture [50–52]. For example, an
HWlet could be a commodity memory module in a disaggregated mem-
ory design. Multiple compute blades can access an array of commodity
memory modules that are encapsulated in a separate shared memory
blade via a shared blade interconnect [52].

The third-layer funclet is an envlet, which is an independently
deployable and evolvable environment component with well-defined
functionality that supports the management of servlets. Envlets can
interoperate through interconnections to form a management infras-
tructure. In the context of serverless computing, BaaS (Backend as a
Service) [49] is a form of envlet. BasS provides the management ser-
vices for cloud functions, responsible for the latter’s automatic scaling
with no need for explicit provisioning and usage-based billing [49].



J. Zhan BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100038

n
m
e

(
d
t
s
T
s
o
s
p

s
a
f
e
i
a
a

(
s
f
c
a
s
t
t
c
h
s

l
s

Fig. 3. An instance of the four-layer funclet architecture.
I use a methodology inspired by the computer architecture commu-
ity to explicitly specify how funclets work together. I first present the
ethodology from the computer architecture community [16]. Then I

laborate on my proposed methodology.
In computer architecture, the terms instruction set architecture

ISA), organization or microarchitecture, and hardware are used to
escribe the architecture — the computer’s design and implementa-
ion [16]. The ISA refers to the actual programmer-visible instruction
et, serving as the boundary between the software and hardware [16].
he organization includes the high-level aspects of a computer’s design,
uch as the memory system, the memory interconnects, and the design
f the internal processor or CPU [16]. The hardware refers to the
pecifics of a computer, including the detailed logic design and the
ackaging technology of the computer [16].

I use a three-tuple {funclet set architecture (FSA), organization,
ystem specifics} methodology to describe the funclet architecture,
s shown in Fig. 3. The FSA refers to the actual programmer-visible
unction set [16], serving as the boundary between two adjacent lay-
rs and among different funclets in the same layer. The organization
ncludes the high-level aspects of how funclets in the same layer and
djacent layers collaborate. The system specifics describe the design
nd implementation of a system built from funclets.

The funclet methodology specifies the architecture space in terms of
FSA, organization, system specifics). There is an explosive architecture
pace when searching for the optimal design. There is a pressing need
or tools aiding the exploration of the funclet architecture. As each
hiplet, HWlet, envlet, and servlet provide narrow-scoped function-
lity, it is essential to align the functions of the funclets that have
imilar resource-consumption characteristics for whole-stack optimiza-
ion and resource management. In this context, the implication of
he open-source computer systems initiative is to utilize the inherent
haracteristics of a class of representative workloads to co-explore the
ardware and software design space in terms of (FSA, organization,
ystem specifics) to attain peak performance and security.

I call the traditional system architecture, which consists of a mono-
ithic chip, hardware, management environment, and application or

ervices — the monolithic architecture. Meanwhile, some architectures

6

have partially used the chiplet, microservice, or cloud functions, which
I call hybrid architecture.

The advantage of the funclet architecture is four-fold. (1) it in-
creases technology openness, improves productivity, and lowers cost.
The funclet philosophy and methodology facilitate the contributors to
focus on each funclet, allowing the efficient division of labor among
contributors sharing an open technology ecosystem [8]. It finally im-
proves the gross productivity and lowers the cost amortized on each
contributor [8]. (2) it can help tackle the challenge of the complexity
of computer systems from the horizontal and vertical dimensions. The
system is divided among chiplet, HWlet, Envlet, and servlet from the
vertical dimension. The system is described from FSA, organization,
and system specifics from the horizontal and vertical dimensions. (3)
it can help optimize the whole-stack system. With the close alignment
of the functions of a servlet, Envlet, HWlet, and chiplet, the system
can be optimized across the whole stack for narrow-scoped workloads
with similar characteristics, e.g., resource requirements. (4) it can
improve the reusability. Each funclet can be independently designed,
implemented, and tested. Finally, the users can assemble the funclets
into a complex system. (5) it can improve reliability. Before assembling,
each funclet can be independently deployed and tested, enhancing the
whole system’s reliability.

Here, I emphasize the goal of the funclet architecture is not to
replace all the monolithic or hybrid architectures. Instead, the former
complements the latter. Similarly, Zhan’s three laws of technology [8]
will govern how they compete in the future.

6. Conclusion

This article initiates an open-source computer system (OSCS) move-
ment. The OSCS initiative is an open-source movement where software
converges with hardware. It is to utilize the inherent characteristics of
a class of representative workloads and propose innovative abstraction
and methodology to co-explore the software and hardware design
space to attain peak performance, security, and other fundamental
dimensions. I discuss four OSCS challenges: the daunting system com-
plexity, the tradeoff between universal and ideal systems, guaranteeing



J. Zhan BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100038
best-case, worst-case, or average-case quality and performance, and
balancing legal, patent, and license issues.

I propose the funclet abstraction and architecture to tackle the
system complexity challenges. The funclet abstraction is a well-defined,
evolvable, reusable, independently deployable, and testable functional-
ity with modest complexity. Each funclet interoperates with other fun-
clets through standard bus interfaces or interconnections. Four funclet
building blocks: chiplet, HWlet, envlet, and servlet at the chip, hard-
ware, environment management, and service layers form the four-layer
funclet architecture.

Acknowledgments

I am very grateful to Mr. Shaopeng Dai and Mr. Qian He for
drawing Figs. 1, 2, and 3, Dr. Lei Wang for contributing to Fig. 3 and
proofreading the article, Dr. Wanling Gao for proofreading this article.

References

[1] C.-.E.M. Collaborators, Estimating excess mortality due to the COVID-19 pan-
demic: a systematic analysis of COVID-19-related mortality, 2020–21, Lancet 21
(6) (2022) 691–708.

[2] D. Adam, Covid’s true death toll: much higher than official records, 2022,
https://www.nature.com/articles/d41586-022-00708-0.

[3] WWF, IMPACTS of Global Climate Change.
[4] Engineering, and Medicine and others National Academies of Sciences, Infor-

mation Technology Innovation: Resurgence, Confluence, and Continuing Impact,
National Academies Press, 2020.

[5] National Research Council and others, Continuing Innovation in Information
Technology, The National Academies Press, 2012.

[6] National Research Council, Innovation in Information Technology, The National
Academies Press, 2003.

[7] National Research Council and others, Funding a Revolution: Government
Support for Computing Research, National Academies Press, 1999.

[8] J. Zhan, Three laws of technology rise or fall, BenchCouncil Trans. Benchmarks
Stand. Eval. (2022) 100034.

[9] S. Friesike, T. Schildhauer, Open science: many good resolutions, very few
incentives, yet, in: Incentives and Performance, Springer, 2015, pp. 277–289.

[10] A.B. Powell, Open culture and innovation: integrating knowledge across
boundaries, Media, Culture Soc. 37 (3) (2015) 376–393.

[11] J.M. Pearce, Open-Source Lab: How To Build Your Own Hardware and Reduce
Research Costs, Newnes, 2013.

[12] A. Katz, Towards a functional license for open hardware, IFOSS L. Rev. 4 (2012)
41.

[13] P.A. David, Towards a cyberinfrastructure for enhanced scientific collaboration:
providing its’ soft’foundations may be the hardest part, 2004.

[14] J. Zhan, Call for establishing benchmark science and engineering, BenchCouncil
Trans. Benchmarks Stand. Eval. 1 (1) (2021) 100012.

[15] P.H.J. Kelly, ‘‘Turing tariff’’ reduction: architectures, compilers and lan-
guages to break the universality barrier, 2020, https://www.doc.ic.ac.uk/~phjk/
Presentations/2020-06-24-DoCLunch-PaulKelly-TuringTaxV04.pdf.

[16] J.L. Hennessy, D.A. Patterson, Computer Architecture: A Quantitative Approach,
Elsevier, 2019.

[17] Z. Shervani, I. Khan, T. Khan, U.Y. Qazi, et al., World’s fastest supercomputer
picks COVID-19 drug, Adv. Infect. Dis. 10 (03) (2020) 211.

[18] D. Adam, Simulating the pandemic: What COVID forecasters can learn from
climate models, Nature 587 (7835) (2020) 533–535.

[19] H. Fu, J. Liao, J. Yang, L. Wang, Z. Song, X. Huang, C. Yang, W. Xue, F. Liu,
F. Qiao, et al., The sunway TaihuLight supercomputer: system and applications,
Sci. China Inf. Sci. 59 (7) (2016) 1–16.

[20] ComputerCouncil, The IoTs, edges, datacenter and networks as a computer:
Building open-source planet-scale computers (PSC) for emerging and future
computing, 2022, https://www.computercouncil.org/PSC.

[21] W. Gao, F. Tang, J. Zhan, X. Wen, L. Wang, Z. Cao, C. Lan, C. Luo, X. Liu,
Z. Jiang, Aibench scenario: Scenario-distilling ai benchmarking, in: 2021 30th
International Conference on Parallel Architectures and Compilation Techniques
(PACT), IEEE, 2021, pp. 142–158.

[22] Y. Li, J. Zhan, SAIBench: Benchmarking AI for science, BenchCouncil Trans.
Benchmarks Stand. Eval. (2022) 100034.

[23] F. Tang, W. Gao, J. Zhan, C. Lan, X. Wen, L. Wang, C. Luo, Z. Cao, X.
Xiong, Z. Jiang, et al., Aibench training: balanced industry-standard ai training
benchmarking, in: 2021 IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS), IEEE, 2021, pp. 24–35.

[24] P. Mattson, C. Cheng, G. Diamos, C. Coleman, P. Micikevicius, D. Patterson, H.
Tang, G.-Y. Wei, P. Bailis, V. Bittorf, et al., Mlperf training benchmark, Proc.
Mach. Learn. Syst. 2 (2020) 336–349.
7

[25] Y.-H. Chang, J. Pu, W.-m. Hwu, J. Xiong, Mlharness: A scalable benchmarking
system for mlcommons, BenchCouncil Trans. Benchmarks, Stand. Eval. 1 (1)
(2021) 100002.

[26] ComputerCouncil, Metaversebench: Instantiating and quantifying metaverse prob-
lems, benchmarks, and challenges, 2022, https://www.computercouncil.org/
MetaverseBench.

[27] P.R. Luszczek, D.H. Bailey, J.J. Dongarra, J. Kepner, R.F. Lucas, R. Rabenseifner,
D. Takahashi, The HPC Challenge (HPCC) benchmark suite, in: Proceedings of
the 2006 ACM/IEEE Conference on Supercomputing, Vol. 213, 10.1145, pp.
1188455–1188677.

[28] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia, Y. Shi, S.
Zhang, et al., Bigdatabench: A big data benchmark suite from internet services,
in: 2014 IEEE 20th International Symposium on High Performance Computer
Architecture (HPCA), IEEE, 2014, pp. 488–499.

[29] A. Ghazal, T. Rabl, M. Hu, F. Raab, M. Poess, A. Crolotte, H.-A. Jacobsen,
Bigbench: Towards an industry standard benchmark for big data analytics, in:
Proceedings of the 2013 ACM SIGMOD International Conference on Management
of Data, 2013, pp. 1197–1208.

[30] The Open Compute Project Foundation, The open compute project, 2022, https:
//www.opencompute.org/.

[31] A. Waterman, Y. Lee, D.A. Patterson, K. Asanovi, The risc-v instruction set
manual. volume 1: User-level isa, version 2.0, Technical Report, California Univ
Berkeley Dept of Electrical Engineering and Computer Sciences, 2014.

[32] Gareth Halfacree, Chinese chip designers hope to topple arm’s cortex-a76
with XiangShan RISC-v design, 2021, https://www.theregister.com/2021/07/06/
xiangshan_risc_v/.

[33] J.L. Hennessy, D.A. Patterson, A new golden age for computer architecture,
Commun. ACM 62 (2) (2019) 48–60.

[34] W. Gao, J. Zhan, L. Wang, C. Luo, D. Zheng, F. Tang, B. Xie, C. Zheng, X.
Wen, X. He, et al., Data motifs: A lens towards fully understanding big data and
ai workloads, in: Proceedings of the 27th International Conference on Parallel
Architectures and Compilation Techniques, 2018, pp. 1–14.

[35] P.H.J. Kelly, Still waiting for exascale: Japan’s fugaku outperforms all com-
petition once again, 2021, https://www.top500.org/news/still-waiting-exascale-
japans-fugaku-outperforms-all-competition-once-again/.

[36] Y. Lee, A. Waterman, H. Cook, B. Zimmer, B. Keller, A. Puggelli, J. Kwak, R.
Jevtic, S. Bailey, M. Blagojevic, et al., An agile approach to building RISC-V
microprocessors, Ieee Micro 36 (2) (2016) 8–20.

[37] Mark Lapedus, The good and bad of chiplets, 2020, https://semiengineering.
com/the-good-and-bad-of-chiplets/.

[38] R. Herken, The Universal Turing Machine a Half-Century Survey, Springer-Verlag,
1995.

[39] M. Fowler, J. Highsmith, et al., The agile manifesto, Softw. Develop. 9 (8) (2001)
28–35.

[40] C. Coleman, D. Narayanan, D. Kang, T. Zhao, J. Zhang, L. Nardi, P. Bailis,
K. Olukotun, C. Ré, M. Zaharia, Dawnbench: An end-to-end deep learning
benchmark and competition, Training 100 (101) (2017) 102.

[41] J. Langou, J. Langou, P. Luszczek, J. Kurzak, A. Buttari, J. Dongarra, Exploiting
the performance of 32 bit floating point arithmetic in obtaining 64 bit accuracy
(revisiting iterative refinement for linear systems), in: SC’06: Proceedings of the
2006 ACM/IEEE Conference on Supercomputing, IEEE, 2006, p. 50.

[42] P.A. Laplante, et al., Real-Time Systems Design and Analysis, Wiley New York,
2004.

[43] L.A. Barroso, U. Hölzle, The datacenter as a computer: An introduction to the
design of warehouse-scale machines, Synthesis Lect. Comput. Arch. 4 (1) (2009)
1–108.

[44] G. Lu, J. Zhan, C. Tan, X. Lin, D. Kong, C. Zheng, F. Tang, C. Huang, L. Wang,
T. Hao, Isolate first, then share: a new os architecture for datacenter computing,
2016, arXiv preprint arXiv:1604.01378.

[45] G.R. Vetter, Commercial free and open source software: knowledge production,
hybrid appropriability, and patents, Fordham L. Rev. 77 (2008) 2087.

[46] G.E. Moore, et al., Cramming more components onto integrated circuits, 1965.
[47] T. Li, J. Hou, J. Yan, R. Liu, H. Yang, Z. Sun, Chiplet heterogeneous integration

technology—Status and challenges, Electronics 9 (4) (2020) 670.
[48] I. Nadareishvili, R. Mitra, M. McLarty, M. Amundsen, Microservice architecture:

aligning principles, practices, and culture, " O’Reilly Media, Inc.", 2016.
[49] E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khandelwal, Q. Pu,

V. Shankar, J. Carreira, K. Krauth, N. Yadwadkar, et al., Cloud programming
simplified: A berkeley view on serverless computing, 2019, arXiv preprint arXiv:
1902.03383.

[50] J. Fan, M. Chen, Dynamic self-organized computer architecture based on
grid-components(DSAG), J. Comput. Res. Develop. 40 (12) (2003) 1737–1742.

[51] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S.K. Reinhardt, T.F. Wenisch, Dis-
aggregated memory for expansion and sharing in blade servers, ACM SIGARCH
Comput. Archit. News 37 (3) (2009) 267–278.

[52] K. Lim, Y. Turner, J.R. Santos, A. AuYoung, J. Chang, P. Ranganathan, T.F.
Wenisch, System-level implications of disaggregated memory, in: IEEE Inter-
national Symposium on High-Performance Comp Architecture, IEEE, 2012, pp.
1–12.

http://refhub.elsevier.com/S2772-4859(22)00025-4/sb1
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb1
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb1
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb1
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb1
https://www.nature.com/articles/d41586-022-00708-0
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb4
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb4
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb4
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb4
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb4
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb5
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb5
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb5
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb6
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb6
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb6
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb7
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb7
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb7
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb8
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb8
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb8
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb9
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb9
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb9
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb10
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb10
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb10
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb11
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb11
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb11
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb12
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb12
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb12
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb13
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb13
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb13
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb14
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb14
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb14
https://www.doc.ic.ac.uk/~phjk/Presentations/2020-06-24-DoCLunch-PaulKelly-TuringTaxV04.pdf
https://www.doc.ic.ac.uk/~phjk/Presentations/2020-06-24-DoCLunch-PaulKelly-TuringTaxV04.pdf
https://www.doc.ic.ac.uk/~phjk/Presentations/2020-06-24-DoCLunch-PaulKelly-TuringTaxV04.pdf
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb16
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb16
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb16
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb17
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb17
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb17
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb18
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb18
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb18
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb19
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb19
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb19
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb19
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb19
https://www.computercouncil.org/PSC
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb21
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb21
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb21
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb21
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb21
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb21
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb21
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb22
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb22
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb22
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb23
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb23
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb23
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb23
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb23
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb23
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb23
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb24
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb24
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb24
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb24
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb24
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb25
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb25
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb25
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb25
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb25
https://www.computercouncil.org/MetaverseBench
https://www.computercouncil.org/MetaverseBench
https://www.computercouncil.org/MetaverseBench
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb28
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb28
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb28
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb28
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb28
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb28
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb28
https://www.opencompute.org/
https://www.opencompute.org/
https://www.opencompute.org/
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb31
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb31
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb31
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb31
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb31
https://www.theregister.com/2021/07/06/xiangshan_risc_v/
https://www.theregister.com/2021/07/06/xiangshan_risc_v/
https://www.theregister.com/2021/07/06/xiangshan_risc_v/
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb33
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb33
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb33
https://www.top500.org/news/still-waiting-exascale-japans-fugaku-outperforms-all-competition-once-again/
https://www.top500.org/news/still-waiting-exascale-japans-fugaku-outperforms-all-competition-once-again/
https://www.top500.org/news/still-waiting-exascale-japans-fugaku-outperforms-all-competition-once-again/
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb36
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb36
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb36
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb36
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb36
https://semiengineering.com/the-good-and-bad-of-chiplets/
https://semiengineering.com/the-good-and-bad-of-chiplets/
https://semiengineering.com/the-good-and-bad-of-chiplets/
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb38
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb38
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb38
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb39
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb39
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb39
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb40
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb40
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb40
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb40
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb40
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb41
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb41
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb41
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb41
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb41
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb41
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb41
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb42
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb42
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb42
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb43
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb43
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb43
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb43
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb43
http://arxiv.org/abs/1604.01378
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb45
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb45
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb45
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb46
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb47
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb47
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb47
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb48
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb48
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb48
http://arxiv.org/abs/1902.03383
http://arxiv.org/abs/1902.03383
http://arxiv.org/abs/1902.03383
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb50
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb50
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb50
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb51
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb51
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb51
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb51
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb51
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb52
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb52
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb52
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb52
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb52
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb52
http://refhub.elsevier.com/S2772-4859(22)00025-4/sb52


J. Zhan BenchCouncil Transactions on Benchmarks, Standards and Evaluations 2 (2022) 100038
Dr. Jianfeng Zhan is a Full Professor at Institute of Comput-
ing Technology (ICT), Chinese Academy of Sciences (CAS),
and University of Chinese Academy of Sciences (UCAS),
the director of Research Center for Advanced Computer
Systems, ICT, CAS. He received his B.E. in Civil Engineer-
ing and MSc in Solid Mechanics from Southwest Jiaotong
University in 1996 and 1999, and his Ph.D. in Computer
Science from Institute of Software, CAS, and UCAS in 2002.
His research areas span from Chips, Systems to Benchmarks.
A common thread is benchmarking, designing, implement-
ing, and optimizing a diversity of systems. He has made
substantial and effective efforts to transfer his academic re-
search into advanced technology to impact general-purpose
production systems. Several technical innovations and re-
8

search results, including 35 patents, from his team, have
been adopted in benchmarks, operating systems, and cluster
and cloud system software with direct contributions to
advancing the parallel and distributed systems in China or
even in the world. He has supervised over ninety gradu-
ate students, post-doctors, and engineers in the past two
decades. Dr. Jianfeng Zhan founds and chairs BenchCouncil
and serves as the Co-EIC of TBench with Prof. Tony Hey.
He has served as IEEE TPDS Associate Editor since 2018.
He received the second-class Chinese National Technology
Promotion Prize in 2006, the Distinguished Achievement
Award of the Chinese Academy of Sciences in 2005, and
the IISWC Best paper award in 2013, respectively.


	Open-source computer systems initiative: The motivation, essence, challenges, and methodology
	Introduction
	Background
	Motivation
	Why is IT decoupling not wise?
	Why launch the OSCS initiative?

	The challenges
	The funclet methodology
	Conclusion
	Acknowledgments
	References


