
BenchCouncil Transactions on Benchmarks, Standards and Evaluations 1 (2021) 100007

A
M
Y
J

A

K
S
P
C
G
M

1

t
s
R
[
d
p
s
t
t
a

i
s
t
k
e
t
a
o

h
d
a
u

P

h
R
A
2
B

Contents lists available at ScienceDirect

BenchCouncil Transactions on Benchmarks,
Standards and Evaluations

journal homepage: https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-
benchmarks-standards-and-evaluations/

parallel sparse approximate inverse preconditioning algorithm based on
PI and CUDA✩

izhou Wang, Wenhao Li, Jiaquan Gao ∗

iangsu Key Laboratory for NSLSCS, School of Computer and Electronic Information, Nanjing Normal University, Nanjing, 210023, China

R T I C L E I N F O

eywords:
parse approximate inverse
reconditioning
UDA
PU
PI

A B S T R A C T

In this study, we present an efficient parallel sparse approximate inverse (SPAI) preconditioning algorithm
based on MPI and CUDA, called HybridSPAI. For HybridSPAI, it optimizes a latest static SPAI preconditioning
algorithm, and is extended from one GPU to multiple GPUs in order to process large-scale matrices. We
make the following significant contributions: (1) a general parallel framework for optimizing the static SPAI
preconditioner based on MPI and CUDA is presented, and (2) for each component of the preconditioner,
a decision tree is established to choose the optimal kernel of computing it. Experimental results show that
HybridSPAI is effective, and outperforms the popular preconditioning algorithms in two public libraries, and
a latest parallel SPAI preconditioning algorithm.
. Introduction

It has proved that sparse approximate inverse (SPAI) precondi-
ioners can effectively accelerate the convergence rate of Krylov sub-
pace methods, such as the generalized minimal residual method (GM-
ES) [1] and the biconjugate gradient stabilized method (BiCGSTAB)
2]. Moreover, compared with the incomplete factorization precon-
itioners [3–6] and the factorized sparse approximate inverse (FSAI)
reconditioners [7–10], SPAI preconditioners neither require exces-
ively sparse matrix–vector multiplication operations nor take care of
he risk of breakdowns that can be encountered by FSAI precondi-
ioners [11]. Consequently, SPAI preconditioners have attracted much
ttention [12–17].

In recent years, graphic processing units (GPUs) have become an
mportant resource for scientific computing because of their many core
tructures and powerful computation efficiency, and have been used as
ools for high-performance computation in a lot of fields [18–21]. As we
now, the cost of constructing SPAI preconditioners is commonly very
xpensive for large-scale matrices, because the memory requirements
o store them, and the computation requirements to calculate them are
pproximately the scale with the square to third power of the number
f nonzeros in each row.

With the emerging of graphic processing units (GPUs), many studies
ave been conducted to accelerate the construction of SPAI precon-
itioners on the GPU architecture, and many parallel preconditioning
lgorithms [11,22–26] are proposed. Based on the degree of freedom
sed, SPAI preconditioner generation is classified as static (a priori)

✩ The research has been supported by the Natural Science Foundation of China under grant number 61872422, and the Natural Science Foundation of Jiangsu
rovince, China under grant number BK20171480.
∗ Corresponding author.
E-mail addresses: 1966224230@qq.com (Y. Wang), 917339495@qq.com (W. Li), springf12@163.com (J. Gao).

or adaptive. In this paper, we focus on optimizing a latest static SPAI
preconditioning algorithm and extend it from one GPU to multiple
GPUs. There has existed some work about static SPAI preconditioners
on GPU [11,27], but the detailed implementations never be given
and the source code is not public. Furthermore, He and Gao et al.
propose two static SPAI preconditioning algorithms on GPU, called
SPAI-Adaptive [28] and GSPAI-Adaptive [29], and give their imple-
mentation details. The two algorithms are verified to be effective for
large-scale matrices. In this study, inspired by Gao’s work, we further
investigate how to highly optimize the static SPAI on multi-GPUs
instead of only single GPU in this paper. We propose an optimized
SPAI preconditioning algorithm based on MPI and CUDA, called Hy-
bridSPAI. Compared to a latest static SPAI preconditioning algorithm,
the proposed algorithm has the following distinct characteristics. First,
a general parallel framework based on MPI and CUDA is presented
to optimize the static SPAI preconditioner, and is extended from one
GPU to multiple GPUs. For each GPU, it operates same procedures as
shown in Section 3.3, such as finding indices I and J, constructing the
local submatrix, decomposing the local submatrix into QR, and solving
the upper triangular linear systems. For MPI, it provides a simple and
easy-to-use parallel controlling capability on multicore CPUs, which
dedicates one thread for controlling one GPU. Second, when a sparsity
pattern of the preconditioner is given, we use the thread-adaptive
allocation strategy to choose the optimized number of threads for
each column of the preconditioner, and construct the decision tree to
choose the optimization kernel to calculate each one of components
ttps://doi.org/10.1016/j.tbench.2021.100007
eceived 6 August 2021; Received in revised form 11 October 2021; Accepted 20 O
vailable online 6 November 2021
772-4859/© 2021 The Authors. Publishing services by Elsevier B.V. on behalf of
Y license (http://creativecommons.org/licenses/by/4.0/).
ctober 2021

KeAi Communications Co. Ltd. This is an open access article under the CC

https://doi.org/10.1016/j.tbench.2021.100007
http://https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tbench.2021.100007&domain=pdf
mailto:1966224230@qq.com
mailto:917339495@qq.com
mailto:springf12@163.com
https://doi.org/10.1016/j.tbench.2021.100007
http://creativecommons.org/licenses/by/4.0/

Y. Wang, W. Li and J. Gao BenchCouncil Transactions on Benchmarks, Standards and Evaluations 1 (2021) 100007

m

O
t
s

m

w
c
o

3

o
p
b
P
s

Fig. 1. A CPU–GPU hybrid parallel computing model based on MPI.

of the preconditioner. Experimental results show that HybridSPAI is
effective, and is advantageous over the popular incomplete LU fac-
torization algorithm in the CUSPARSE library [30], the static SPAI
preconditioning algorithm in the ViennaCL library [24], and the latest
GSPAI-Adaptive [29].

The main contributions in this paper are summarized as follows.

∙ A general parallel framework based on MPI and CUDA is pre-
sented for optimizing the static SPAI preconditioner, and is
extended from one GPU to multiple GPUs, also the CPU and GPU
tasks are designated.

∙ A strategy is presented to choose the optimal number of threads
for each column of the preconditioner.

∙ On the basis of the parallel framework and proposed strategy,
an optimization SPAI preconditioning algorithm based on MPI
and CUDA, called HybridSPAI, is presented. In HybridSPAI,
finding indices, constructing local submatrix, decomposing the
local submatrix into QR, and solving the upper triangular linear
system are computed in parallel, and the kernels of calculating
them are selected by the decision tree optimization.

The rest of this paper is organized as follows. Section 2 describes the
SPAI preconditioning algorithm, Section 3 gives the detailed implemen-
tation of HybridSPAI, Section 4 presents the experimental analysis and
evaluation, and Section 5 contains our conclusions and points to our
future research directions.

2. SPAI algorithm

The basic idea of the SPAI procedure [22] is described as follows:
Use a sparse matrix M, known as the preconditioner, to approximate
the inverse of A, and M is computed by the following formula:

in ‖𝐴𝑀 − 𝐸‖

2
𝐹 . (1)

wing to the independence of the columns of M, the equation men-
ioned above can be separated into the following n independent least
quares problems

in
𝑚𝑘

‖

‖

𝐴𝑚𝑘 − 𝑒𝑘‖‖
2
2 , 𝑘 = 1, 2,… , 𝑛 (2)

here 𝑒𝑘 is the kth column of the identity matrix and 𝑚𝑘 represents
olumn k in matrix M. For a description of the implementation details
f SPAI, we refer to the literature [27].

. Optimizing SPAI on GPUs

We present an optimization SPAI preconditioning algorithm based
n CPU–GPU platforms, called HybridSPAI. The hybrid parallel com-
uting model is illustrated in Fig. 1. and the parallel framework of Hy-
ridSPAI is shown in Fig. 2, which includes the following three stages:
re-HybridSPAI stage, Compute-HybridSPAI stage, and Post-HybridSPAI
tage.
2

Fig. 2. Parallel framework of HybridSPAI.

3.1. Hybrid parallel programming based on MPI and CUDA

A hybrid parallel programming model must be designed for the
architectures of GPU and CPU to improve the computing performance,
and has the characteristics of extending to more devices. In our pro-
posed model, as a device in CUDA, GPU can be controlled by each
thread of multicore CPU, also can be controlled by each individual CPU.
In addition, the data is transferred from the host memory to the GPU
device memory, then the CPU launches the calculation process on the
GPU by calling the kernel function.

MPI provides a simple and convenient parallel computing capability
of multi-threads on multicore CPUs [31]. The hybrid parallel computing
model is illustrated in Fig. 1, where 𝐴1, 𝐴2, . . . , 𝐴𝑖3, 𝐴𝑖4,are submatrices
which are stored in the host memory, and Thread are multi-threads
which are assigned to cores of CPUs.

Note that when using this model, a computing matrix will be di-
vided into multiple submatrices which corresponding with the number
of calling threads of CPUs, so that these submatrices are assigned to

each GPU to perform respectively.

Y. Wang, W. Li and J. Gao BenchCouncil Transactions on Benchmarks, Standards and Evaluations 1 (2021) 100007

|

i
d

c
d
d
a
a
a

m
i

𝑧

I
t
l
t
t
o

3

g
o
d
i

u
i
o
i
J

s

g
i
m
k
i

o

Table 1
Arrays in HybridSPAI.

Array Size Type

AData nonzeros Double
AIndex nonzeros Integer
APtr n Integer
I ns × n1max Integer
atmoic n Integer
J ns × n2max Integer
jPTR ns Integer
𝑚̂ ns × n2max Double
𝐴̂ ns × n1max × n2max Double
R ns × n1max × n2max Double
iPTR ns Integer

3.2. Pre-HybridSPAI Stage

In this paper, we summarize the sparsity of M in advance with the
main method in [25]. M(i,j) is considered a nonzero if

𝐴(𝑖, 𝑗)| > (1 − 𝜏) max
𝑗

|𝐴(𝑖, 𝑗)|, 0 ⩽ 𝜏 ⩽ 1 (3)

s satisfied, where 𝜏 is a user defined tolerance parameter (the main
iagonal is always included).

Next, A is stored in host memory using the compressed sparse
olumn(CSC) storage format, and M is also stored in columns. The
imensions of local submatrices (𝑛1𝑘, 𝑛2𝑘) are usually distinct for
ifferent k, (k = 1, 2, . . . ,n). To simplify the accesses of data in memory
nd increasing the coalescence, the dimensions of all local submatrices
re uniformly defined as (𝑛1𝑚𝑎𝑥, 𝑛2𝑚𝑎𝑥), where 𝑛1𝑚𝑎𝑥 = max𝑘{𝑛1𝑘}
nd 𝑛2𝑚𝑎𝑥 = max𝑘{𝑛2𝑘}.

Finally, the thread-adaptive allocation strategy is proposed. For any
atrix, the number of threads 𝑧 for each column of the preconditioner

s calculated by the following formulas:

= min
(

2𝑙 , 𝑛𝑡
)

(4)

s.t. 2𝑙−1 < 𝑛2 𝑚𝑎𝑥 ⩽ 2𝑙 . (5)

n Eqs. (4), 𝑛𝑡 is a fixed thread block size. 𝑧 threads are grouped into a
hread group, which is assigned to compute the kth column of M. The
owercase ‘‘L’’ in the Eqs. (4) was required to compute the suitable 𝑧
hreads. Note that we used a 1D array of the thread blocks to organize
he compute grid in this paper, and used a 1D array of threads to
rganize the thread block as well.

.3. Compute-HybridSPAI Stage

In the Compute-HybridSPAI stage, the allocations of every GPU
lobal memory are shown in Table 1. Based on the characteristics
f message interface, MPI is very convenient to scatter and gather
ata between the multiple threads of CPU. The following steps are
mplemented to compute M.
Finding 𝐽 and 𝐼 : In all blocks, each thread-group block size that is

sed to find J and I is same, and each thread group (warpSize threads)
s assigned to find one subset of J and I, which making many subsets
f J and I can be simultaneously obtained. Furthermore, parallelism
s also exploited inside each thread group. For the kernel that finds
, the threads inside each warp (thread group) read one column of M

in parallel, and store them to shared memory using atomic operation.
For the kernel that finds I, a decision tree is established and for any
given 𝑛2𝑚𝑎𝑥 and 𝑛1𝑚𝑎𝑥, this optimized kernel can be effective. Fig. 3
hows a segment of the decision tree for finding I. When 4 < n2max ≤

8, cuFindIBySharedMemory kernel with shared memory of sharedSize
size or cuFindI kernel with global memory will be selected according
to different the 𝑛1𝑚𝑎𝑥. Here sharedSize = number of computing columns
of the preconditioner ×upper boundary closest to 𝑛1𝑚𝑎𝑥. Fig. 4 shows

the main procedure of cuFindIBySharedMemory kernel. Each thread s

3

Fig. 3. A segment of the decision tree of find 𝐼 .

Fig. 4. Main procedure of cuFindIBySharedMemory kernel.

group finds one subset of I, e.g., 𝐼𝑘. First, the row indices of the first
column referenced in one subset of J, e.g., 𝐽𝑘 are loaded to shared
memory 𝑠𝐼 with the threads in the thread group. Then the index vectors
of successive columns referenced by 𝐽𝑘 are compared in parallel with
values in 𝑠𝐼 and new indices are appended to 𝑠𝐼 by utilizing the atomic
operations. Second, inside the thread group, the indices of 𝑠𝐼 are sorted
in ascending order in parallel. Finally, the indices of 𝑠𝐼 are copied to
𝐼𝑘. When n1max > 256, cuFindI kernel is executed on global memory
instead of shared memory, which is similar to cuFindIBySharedMemory
kernel.

Constructing the local submatrix:Using J and I obtained above,
the local matrix set 𝐴̂, is computed by kernel with shared memory or
kernel with global memory according to the established decision tree.
Fig. 5 shows a segment of the decision tree for constructing 𝐴̂. When 4
< n2max ≤ 8, cuComputeTildeABySharedMemory kernel with shared
memory of sharedSize size or cuComputeTildeA kernel with global
memory will be selected according to different 𝑛1𝑚𝑎𝑥. Fig. 6 shows the
main procedure of cuComputeTildeABySharedMemory kernel. For the
thread group on each GPU that calculates 𝐴𝑘, all threads in the thread
roup first read values in 𝐼𝑘 into shared memory 𝑠𝐼 in parallel, and 𝐴𝑘
s constructed on global memory by loading columns indexed in 𝐽𝑘 and
atching them to 𝐼𝑘 in parallel. When n1max > 256, cuComputeTildeA

ernel is executed on global memory instead of shared memory, which
s similar to cuComputeTildeABySharedMemory kernel.
Decomposing the Local Submatrix into QR:The thread-group size

f decomposing the local submatrix into QR is same in all blocks. Being
imilar with above two steps, the constructed decision tree is used again

Y. Wang, W. Li and J. Gao BenchCouncil Transactions on Benchmarks, Standards and Evaluations 1 (2021) 100007
Fig. 5. A segment of the decision tree to construct 𝐴̂.

Fig. 6. Main procedure of cuComputeTildeABySharedMemory kernel.

Fig. 7. A segment of the decision tree to decompose the local submatrix into QR.

to decompose local submatrix. Fig. 7 shows a segment of the decision
tree for decomposing the local submatrix into QR. When 4 < n2max ≤
8, cuQRByQRSharedMemory kernel with shared memory of sharedSize
size and sharedQ size or cuQRByRSharedMemory kernel with shared
memory of sharedR size will be selected according to different n1max.
Fig. 8 shows the main procedure of cuQRByQRSharedMemory kernel.
In addition, Eeach thread group is responsible for one QR decomposi-
tion. For a description of its detailed implementation, please refer to
the literature [25]. In a thread group, the local submatrix, e.g., 𝐴𝑘, is
decomposed into QR by the following four steps at each iteration i. In
 s

4

Fig. 8. Main procedure of cuQRByQRSharedMemory kernel.

Fig. 9. A segment of the decision tree to solve the upper triangular linear system.

the first step, the ith column of 𝑄𝑘 are read into shared memory sQ in
parallel. In the second step, the threads computed the ith row of the
upper triangle matrix 𝑅𝑘 in parallel and put into shared memory sR. In
the third step, the column i of 𝑄𝑘 and sQ are concurrently normalized,
and the projection factors 𝑅𝑘 and sR are calculated. In the fourth step,
the values of all columns of 𝑄𝑘 are updated by using shared memory sQ
and sR in parallel. When n1max > 128. cuQRByRSharedMemory kernel
is executed by utilizing shared memory sR instead of shared memory
sQ, which is similar to cuQRByQRSharedMemory kernel.

Solving the Upper Triangular Linear System:In this section, one
subset of 𝑚𝑘 = 𝑅−1

𝑘 𝑄𝑇
𝑘 𝑒𝑘 are computed by solving an upper trian-

gular linear system. Fig. 9 shows a segment of the decision tree for
solving an upper triangular linear system. For any given n2max value,
cuSolverBySharedMemory with shared memory of 256 size and thread-
group size of warpSize, is chosen. For example, when 4 < n2max ≤ 8,
cuSolverBySharedMemory kernel with shared memory of 256 size and
thread-group size of 8 is selected. Fig. 10 shows the main procedure
of cuSolverBySharedMemory kernel. For each thread group,T the steps
to compute 𝑚̂, e.g., 𝑚𝑘, include: (1) 𝑄𝑇

𝑘 𝑒𝑘 is calculated in parallel and
aved to the shared memory 𝑥𝐸, and (2) the values of 𝑚 are obtained
𝑘

Y. Wang, W. Li and J. Gao BenchCouncil Transactions on Benchmarks, Standards and Evaluations 1 (2021) 100007
Fig. 10. Main procedure of cuSolverBySharedMemory kernel.

Fig. 11. Assemble M.

Table 2
Descriptions of test matrices.

Name Kind Rows Nonzeros avg max min

venkat01 CFD sequence 62,424 1,717,792 27.52 44 16
imagesensor Semiconductor device 118,758 1,446,396 12.18 21 2
cfd2 CFDproblem 123,440 3,085,406 25.00 30 8
apache2 Structural 715,176 4,817,870 6.74 8 4
t2em Electronmagnetics 921,632 4,590,832 4.98 5 1
thermal2 Thermal 1,228,045 8,580,313 6.99 11 1
G3_circuit Circuitsimulation 1,585,478 7,660,826 4.83 6 2

by solving the upper triangular linear system, 𝑅𝑘𝑚𝑘 = xE, in parallel
using shared memory.

3.4. Post-HybridSPAI Stage

The Post-HybridSPAI Stage is to assemble M in the CSC storage
format from multiple GPUs. Fig. 11 illustrates the procedure of as-
sembling MPtr, MIndex and MData arrays on each GPU. First, MPtr
is assembled utilizing jPTR. Second, 𝑚̂ and J are utilized to assemble
MIndex and MData. Finally, MData arrays on each GPU are transferred
to the respective threads of CPU according to the device ID of GPUs.
On the CPU, each thread utilize the function MPI_Gatherv() of MPI to
gather the MData into a complete array in parallel.

4. Evaluation and analysis

We evaluate the performance of HybridSPAI in this section. The test
matrices in Table 2 are used to evaluate the performance of NVIDIA
GTX 1080 Ti GPUs, which are selected from University of Florida Sparse
Matrix Collection. The source codes are compiled and executed using
the CUDA toolkit 10.1.

4.1. Effectiveness analysis

For each test matrix, GPUPBICGSTAB are called to solve Ax=b on
GTX 1080 Ti, where all values of b are 1 and the produced M is used as
the preconditioner. They stop when the residual error is less than 1𝑒−7,
or the number of iterations exceeds 10,000. Table 3 shows the results,
and the time unit is second (s).

In addition, we take GTX 1080 Ti to investigate the effort of single
GPU and increasing the number of threads on the execution time of Hy-
bridSPAI and GPUPBICGSTAB with HybridSPAI. Table 4 demonstrates
5

Table 3
Iterations and execution time of GPUBICGSTAB on GTX 1080 Ti.

Matrix GPUBICGSTAB GPUPBICGSTAB

Iterations Execution time Iterations Execution time

venkat01 10000 / 35 1.312
imagesensor 10000 / 52 1.036
cfd2 7768 5.167 1613 3.518
apache2 5813 8.061 1106 3.032
t2em 1661 3.122 768 2.338
thermal2 4095 9.771 2584 9.748
G3_circuit 10000 / 475 2.53

Table 4
Execution time of HybridSPAI and GPUPBICGSTAB.

Matrix GPU 1 thread 2 thread 4 thread 8 thread

venkat01
0.506 0.501 0.262 0.151 0.102
0.806 0.771 0.761 0.736 0.715
1.312 1.272 1.023 0.887 0.817

imagesensor
0.228 0.227 0.179 0.103 0.104
0.808 0.785 0.767 0.745 0.713
1.036 1.012 0.946 0.848 0.817

cfd2
1.187 1.191 0.631 0.356 0.224
2.331 2.231 2.294 2.178 2.101
3.518 3.422 2.925 2.534 2.325

apache2
0.226 0.219 0.126 0.101 0.133
2.806 2.761 2.746 2.734 2.838
3.032 2.980 2.872 2.835 2.971

t2em
0.075 0.070 0.060 0.064 0.103
2.263 2.253 2.241 2.231 2.268
2.338 2.323 2.301 2.295 2.371

thermal2
0.332 0.329 0.201 0.165 0.164
9.416 9.443 9.367 9.369 9.187
9.748 9.772 9.568 9.534 9.351

G3_circuit
0.167 0.156 0.113 0.094 0.115
2.363 2.302 2.321 2.329 2.290
2.530 2.458 2.434 2.423 2.405

the execution time of this. For each matrix and given number of threads,
the first row and second row are respectively the computing time of
HybridSPAI and GPUPBICGSTAB, and the third row is the sum of time
of the first two row. GPUPBICGSTAB stops while the residual error is
less than 1𝑒−7. The minimum values of the second and third rows for
each matrix both are marked in the red font. In addition, we observe
that when the time of computing the preconditioner keeps less than
228 ms on single GPU, increasing the number of GPU cannot provide
significant acceleration.

4.2. Performance comparison

We test the HybridSPAI performance by comparing it with a pop-
ular preconditioning algorithms: CSRILU0 in CUSPARSE (denoted by
CSRILU) [32], a static sparse approximate inverse preconditioning
algorithm in ViennaCL (denoted by SSPAI-VCL) [33], and a latest paral-
lel SPAI preconditioning algorithm(denoted by GSPAI-Adaptive) [29].
Table 5 demonstrate the comparison results on GTX 1080 Ti GPUs.
For each matrix and the preconditioner, the first row is the computing
time of these four preconditioning algorithms, and the second row
and the third row are respectively the execution time and the number
of iterations of GPUPBICGSTAB while the residual error is less than
1𝑒−7. Note that ‘‘/’’ represents the number of iterations for HybridSPAI
exceeds 10,000, and all the other rows for each matrix will be denoted
except that the third row is denoted by ‘‘> 10000’’. The minimum value
of the fourth row for each matrix is marked in the red font.

From Table 5, we observe that on GTX 1080 Ti, the total time
of HybridSPAI and GPUPBICGSTAB with HybridSPAI is the smallest
among all algorithms for any matrices. This displays that Hybrid-
SPAI outperforms CSRILU and SSPAI-VCL, and is advantageous over
GSPAI-Adaptive.

Y. Wang, W. Li and J. Gao BenchCouncil Transactions on Benchmarks, Standards and Evaluations 1 (2021) 100007

.

Table 5
Execution time of all preconditioning algorithms and GPUPBICGSTAB on GTX 1080 Ti

Matrix CSRILU SSPAI-VCL GSPAI-Adaptive HybridSPAI

venkat01

1.835 38.856 0.506 0.102
1.574 0.036 0.806 0.715
11 48 35 35
3.427 38.892 1.312 0.817

imagesensor

/ / 0.228 0.104
/ / 0.808 0.713
10000 10000 52 52
/ / 1.036 0.817

cfd2

/ / 1.187 0.224
/ / 2.331 2.101
10000 10000 1613 1613
/ / 3.518 2.325

apache2

3.386 43.532 0.226 0.101
6.776 2.995 2.806 2.734
475 2503 1106 1106
10.162 46.527 3.032 2.835

t2em

19.884 / 0.075 0.064
2998.63 / 2.263 2.231
427 10000 768 768
3018.514 / 2.338 2.295

thermal2

5.502 / 0.332 0.164
45.008 / 9.416 9.187
1619 10000 2584 2584
50.510 / 9.748 9.351

G3_circuit

5.245 / 0.167 0.115
12.475 / 2.363 2.290
257 10000 475 475
17.720 / 2.530 2.405

5. Conclusion

We present an efficient parallel sparse approximate inverse precon-
ditioning algorithm on multi-GPUs in this paper, which is based MPI
and CUDA, called HybridSPAI. In our proposed HybridSPAI, a general
parallel framework is embraced for optimizing the static SPAI on multi-
GPUs, and a decision tree is established to choose the optimal kernel
for computing it. The experimental results demonstrate a noticeable
performance and high effectiveness of our proposed HybridSPAI.

References

[1] Y. Saad, M.H. Schultz, GMRES: a generalized minimal residual algorithm for
solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput. 7 (1986)
856–869.

[2] H.A: Bi-CGSTAB: a fast and smoothly converging variant of BiCG for the solution
of nonsymmetric linear systems, SIAM J. Stat. Comput. 13 (2) (1992) 631.

[3] Y. Saad, Iterative Methods for Sparse Linear Systems, second version, SIAM,
Philadelphia, PA, 2003.

[4] J. Gao, R. Liang, J. Wang, Research on the conjugate gradient algorithm with a
modified incomplete cholesky preconditioner on GPU, J. Parallel Distr. Com. 74
(2) (2014) 2088–2098.

[5] S.C. Rennich, D. Stosic, T.A. Davis, Accelerating sparse Cholesky factorization on
GPUs, Parallel Comput. 59 (2016) 140–150.

[6] H. Anzt, M. Gates, J. Dongarra, M. Kreutzer, G. Wellein, M. Kohler,
Preconditioned Krylov solvers on GPUs, Parallel Comput. 68 (2017) 32–44.
6

[7] L.Y. Kolotilina, A.Y. Yeremin, Factorized sparse approximate inverse precondi-
tioning I. theory, SIAM J. Matrix Anal. Appl. 14 (1) (1993) 45–58.

[8] M. Benzi, C.D. Meyer, M. Tuma, A sparse approximate inverse preconditioner for
the conjugate gradient method, SIAM J. Sci. Comput. 17 (5) (1996) 1135–1149.

[9] M. Ferronato, C. Janna, G. Pini, A generalized block FSAI preconditioner for
nonsymmetric linear systems, J. Comput. Appl. Math. 256 (2014) 230–241.

[10] V.A.P. Magri, A. Franceschini, M. Ferronato, C. Janna, Multilevel approaches for
FSAI preconditioning, Numer. Linear Algebr. (2018) e2183, http://dx.doi.org/
10.1002/nla.2183.

[11] M.M. Dehnavi, D.M. Fern´andez, J.L. Gaudiot, D.D. Giannacopoulos, Parallel
sparse approximate inverse preconditioning on graphic processing units, IEEE
T. Parall. Distr. 24 (9) (2013) 1852–1861.

[12] Z. Jia, B. Zhu, A power sparse approximate inverse preconditioning procedure
for large sparse linear systems, Numer. Linear Algebr. 16 (4) (2009) 259–299.

[13] J.D.F. Cosgrove, J.C. Diaz, A. Griewank, Approximate inverse preconditioning
for sparse linear systems, Int. J. Comput. Math. 44 (1–2) (1992) 91–110.

[14] M. Grote, T. Huckle, Parallel preconditioning with sparse approximate inverses,
SIAM J. Sci. Comput. 18 (3) (1997) 838–853.

[15] E. Chow, Y. Saad, Approximate inverse preconditioners via sparse-sparse
iterations, SIAM J. Sci. Comput. 19 (3) (1998) 995–1023.

[16] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse
preconditioners, SIAM J. Sci. Comput. 21 (5) (2000) 1804–1822.

[17] E. Chow, A. Patel, Fine-grained parallel incomplete LU factorization, SIAM J.
Sci. Comput. 37 (2) (2015) C169–C193.

[18] J. Gao, Z. Li, R. Liang, G. He, Adaptive optimization l1-minimization solvers on
GPU, Int. J. Parallel Program. 45 (3) (2017) 508–529.

[19] K. Li, W. Yang, K. Li, A hybrid parallel solving algorithm on GPU for quasitridi-
agonal system of linear equations, IEEE Trans. Parallel Distrib. Syst. 27 (10)
(2016) 2795–2808.

[20] J. Gao, Y. Zhou, G. He, Y. Xia, A multi-GPU parallel optimization model for the
preconditioned conjugate gradient algorithm, Parallel Comput. 63 (2017) 1–16.

[21] G. He, J. Gao, J. Wang, Efficient dense matrix–vector multiplication on GPU,
Concurr. Comput. Pract. Exp. 30 (19) (2018) e4705, http://dx.doi.org/10.1002/
cpe.4705.

[22] J. Gao, K. Wu, Y. Wang, P. Qi, G. He, GPU-accelerated preconditioned GMRES
method for two-dimensional Maxwell’s equations, Int. J. Comput. Math. 94 (10)
(2017) 2122–2144.

[23] M. Lukash, K. Rupp, S. Selberherr, Sparse approximate inverse preconditioners
for iterative solvers on GPUs, in: Proceedings of the 2012 Symposium on High
Performance Computing, Society for Computer Simulation, San Diego, CA, USA,
2012, pp. 1–8.

[24] K. Rupp, R. Tillet, F. Rudolf, J. Weinbub, A. Morhammer, T. Grasser, A. Jungel, S.
Selberher, ViennaCL-linear algebra library for multi-and many-core architectures,
SIAM J. Sci. Comput. 38 (5) (2016) S412–S439.

[25] G. He, R. Yin, J. Gao, An efficient sparse approximate inverse preconditioning
algorithm on GPU, Concurr. Comput.-Pract. Exp. 32 (7) (2020) e5598.

[26] J. Gao, Q. Chen, G. He, A thread-adaptive sparse approximate inverse pre-
conditioning algorithm on multi-GPUs, Parallel Comput. 101 (2021) 102724,
http://dx.doi.org/10.1016/j.parco.2020.102724.

[27] J. Gao, K. Wu, Y. Wang, P. Qi, G. He, GPU-accelerated preconditioned GMRES
method for two-dimensional Maxwell’s equations, Int. J. Comput. Math. 94 (10)
(2017) 2122–2144.

[28] G. He, R. Yin, J. Gao, An efficient sparse approximate inverse preconditioning
algorithm on GPU, Concurr. Comput.-Pract. Exp. 32 (7) (2020) e5598, http:
//dx.doi.org/10.1002/cpe.5598.

[29] J. Gao, Q. Chen, G. He, A thread-adaptive sparse approximate inverse pre-
conditioning algorithm on multi-GPUs, Parallel Comput. 101 (2021) 102724,
http://dx.doi.org/10.1016/j.parco.2020.102724.

[30] NVIDIA, Cusparse library, 2019, v10.1, https://docs.nvidia.com/cuda/cusparse/
index.html.

[31] Yang. C.T., Huang. C.L., Lin. C.F., Hybrid CUDA, OpenMP, and MPI parallel
programming on multicore GPU clusters, Comp. Phys. Commun. 182 (1) (2011)
266–269, http://dx.doi.org/10.1016/j.cpc.2010.06.035.

[32] Cusparse library, v10.1. https://docs.nvidia.com/cuda/cusparse/index.html.
[33] K. Rupp, et al., ViennaCl–linear algebra library for multi-and many-core

architectures, SIAM J. Sci. Comput. 38 (5) (2016) S412–S439.

http://refhub.elsevier.com/S2772-4859(21)00007-7/sb1
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb1
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb1
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb1
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb1
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb2
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb2
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb2
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb3
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb3
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb3
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb4
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb4
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb4
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb4
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb4
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb5
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb5
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb5
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb6
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb6
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb6
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb7
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb7
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb7
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb8
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb8
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb8
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb9
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb9
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb9
http://dx.doi.org/10.1002/nla.2183
http://dx.doi.org/10.1002/nla.2183
http://dx.doi.org/10.1002/nla.2183
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb11
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb11
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb11
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb11
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb11
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb12
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb12
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb12
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb13
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb13
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb13
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb14
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb14
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb14
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb15
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb15
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb15
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb16
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb16
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb16
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb17
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb17
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb17
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb18
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb18
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb18
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb19
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb19
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb19
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb19
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb19
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb20
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb20
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb20
http://dx.doi.org/10.1002/cpe.4705
http://dx.doi.org/10.1002/cpe.4705
http://dx.doi.org/10.1002/cpe.4705
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb22
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb22
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb22
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb22
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb22
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb23
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb23
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb23
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb23
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb23
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb23
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb23
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb24
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb24
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb24
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb24
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb24
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb25
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb25
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb25
http://dx.doi.org/10.1016/j.parco.2020.102724
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb27
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb27
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb27
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb27
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb27
http://dx.doi.org/10.1002/cpe.5598
http://dx.doi.org/10.1002/cpe.5598
http://dx.doi.org/10.1002/cpe.5598
http://dx.doi.org/10.1016/j.parco.2020.102724
https://docs.nvidia.com/cuda/cusparse/index.html
https://docs.nvidia.com/cuda/cusparse/index.html
https://docs.nvidia.com/cuda/cusparse/index.html
http://dx.doi.org/10.1016/j.cpc.2010.06.035
https://docs.nvidia.com/cuda/cusparse/index.html
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb33
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb33
http://refhub.elsevier.com/S2772-4859(21)00007-7/sb33

	A parallel sparse approximate inverse preconditioning algorithm based on MPI and CUDA
	Introduction
	SPAI algorithm
	Optimizing SPAI on GPUs
	Hybrid parallel programming based on MPI and CUDA
	Pre-HybridSPAI Stage
	Compute-HybridSPAI Stage
	Post-HybridSPAI Stage

	Evaluation and analysis
	Effectiveness analysis
	Performance comparison

	Conclusion
	References

