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A B S T R A C T

Deep learning (DL) workloads and their performance at scale are becoming important factors to consider as
we design, develop and deploy next-generation high-performance computing systems. Since DL applications
rely heavily on DL frameworks and underlying compute (CPU/GPU) stacks, it is essential to gain a holistic
understanding from compute kernels, models, and frameworks of popular DL stacks, and to assess their
impact on science-driven, mission-critical applications. At Oak Ridge Leadership Computing Facility (OLCF),
we employ a set of micro and macro DL benchmarks established through the Collaboration of Oak Ridge,
Argonne, and Livermore (CORAL) to evaluate the AI readiness of our next-generation supercomputers. In this
paper, we present our early observations and performance benchmark comparisons between the Nvidia V100
based Summit system with its CUDA stack and an AMD MI100 based testbed system with its ROCm stack.
We take a layered perspective on DL benchmarking and point to opportunities for future optimizations in the
technologies that we consider.
. Introduction

The share of deep learning (DL) scientific applications has steadily
ncreased in the allocation portfolio among High-Performance Comput-
ng (HPC) centers. In recent years, it has reached a tipping point that
he procurement of next-generation HPC infrastructures has to take the
erformance of the DL stack into consideration. In the case of DOE
eadership class platforms, a Collaboration of Oak Ridge, Argonne, and
ivermore (CORAL) has established a set of benchmarks to gauge the
ardware/software competitiveness. For the first time in the CORAL-
benchmarks [1] suite, DL workloads are included in the evaluation

or the acquisition of the systems: Frontier at Oak Ridge, Aurora at
rgonne, and El Capitan at Livermore. Ranging from DL kernels to
istributed training, the CORAL-2 DL benchmarks consist of micro-
enchmarks, such as DeepBench [2], and DL suites including both
esNet50 on ImageNet [3] and application benchmarks such as the can-
er distributed learning environment (CANDLE) [4]. Comparing to the
ndustry-led benchmarking effort, MLCommons HPC (also referred to as
LPerf HPC [5]), the CORAL-2 benchmarks focus more on throughput

nd fundamental building blocks.
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Regardless of the increasing complexities of deep neural net (DNN)
models, the compute operations essentially boil down to three types
of mathematical kernels, i.e., general matrix multiply (GEMM), convo-
lution, and recurrent operation. Considering that distributed training
at scale has became a common practice at data centers, the commu-
nication operation has to be taken into account as well. The overall
performance of DL applications is hence mostly determined by the
hardware/software stack for the aforementioned three mathematical
and one communication operations. (While I/O is also an important
determining factor, the benchmarks we consider here do not face an
I/O bottleneck when high-performance node local storage, e.g., SSD, is
used for the data and proper pipelining practices are followed.)

Different from simulation codes that traditionally dominate HPC
workloads, DL applications rely heavily on the underlying frameworks,
e.g., TensorFlow [6] and PyTorch [7], which provide all the building
blocks from model components to training and inference supports. On
the one hand, this ecosystem lowers the barrier for DL application
developers; on the other hand, it requires hardware vendors to provide
an optimized DL software stack to support high-level frameworks.

Currently, Nvidia GPUs are the major platforms for DL workloads,
and the corresponding software stack, i.e. CUDA [8], cuDNN [9], and
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Fig. 1. Comparisons of simulation and learning benchmarks. The overall targets are similar, but facility focus varies due to distinctive development characteristics, e.g. framework
lays a much bigger role in learning.
CCL [10], are the dominant workhorses. As its counterpart, AMD
PUs and the associated ROCm [11], MIopen [12], and RCCL [13]

tack, provide a similar ecosystem for DL applications. Though the
vidia stack is more mature and widely deployed, the AMD stack is en-

irely open-sourced and progressing, and both platforms are supported
y popular DL frameworks such as TensorFlow and PyTorch.

Employing the CORAL-2 DL benchmarks, in this paper we eval-
ate the performance of an early-access testbed for the upcoming
rontier Exascale system. From kernel primitives, model workloads,
o framework and applications, we systematically explore benchmark
erformance differences between the MI100 based testbed with ROCm
tack and the V100 based Summit [14] system with CUDA stack. Our
ontributions are the following,

• From the perspective of HPC facilities, we propose a layered
approach and associated metrics, establish Roofline model, and
FOM (Figure of Merits) to evaluate DL workloads from primitive
kernels, popular models, to frameworks and applications.

• We provide the first look at an early-access emerging platform
based on AMD MI100 GPUs, and show the performance com-
parisons against a top Nvidia V100 based system in production
today.

• We introduce and leverage machine learning (ML) methods (XG-
Boost [15]) to model the relationship between input parameters
and performance outcomes. It lays the groundwork to identify
dominant factors to consider for further and future optimizations.

• We show an one-on-one comparison of the resource utilization for
our two DL stacks on the same workloads.

The rest of the paper is organized as follows: Section 2 provides
eneral background on differentiating aspects of traditional simulation-
ased HPC workloads versus emerging DL workloads, as well as an
verview of DL benchmarks proposed for the CORAL systems. Section 3
etails a layered approach, methodology, and metrics we will use for
erformance evaluation and comparison. Section 4 presents our results
ased on the proposed methodology covering compute kernel, model
nd workloads, frameworks, and applications, which aims to provide an
nd-to-end perspective on key performance metrics. Section 5 presents
ur conclusions and discusses opportunities for future work.

. Background and overview

With the rise of DL applications and specialized hardware, DL
enchmarking [16] has attracted a lot of attentions recently. Ranging
rom application level benchmarks, such as MLPerf, to kernel and
odel level benchmarks, such as DeepBench and HPL-AI [17], the

cope touches almost every aspect of DL. The areas of focus, however,
re quite different, as shown in Fig. 1. For application developers,
he time-to-solution matters most. But for an emerging field such as
L, where the scientific DL community codes are still maturing in
omparison to well-adopted simulation codes (e.g., LAMMPS [18]),
nderstanding the kernel performance is of greater interest.
2

Table 1
CORAL-2 kernel, model workload, framework, and application benchmarks for
learning.
Type Benchmark Task Distributed

Kernel

DeepBench
GEMM N
CNN N
RNN N

N/RCCL-tests

Allreduce Y
Allgather Y
Reduce Y
ReduceScatter Y

Model Workload Deep Learning Suite

AlexNet N
GoogleNet N
OverFeat N
VGG N
RNN-Net N

Framework TF_CNN_Benchmark ResNet50 Y

Application CANDLE P1B1 N
P3B1 N

At HPC facilities, we make the following observations regarding
traditional simulation and DL applications:

1. Unlike simulation applications, most DL applications strongly
depend on the frameworks, and are implemented in high-level
scripting languages and use pre-compiled framework binaries at
run time.

2. The number of DL frameworks are converging to the two most
popular ones, i.e., TensorFlow and PyTorch, while the adop-
tion of simulation frameworks (e.g., RAJA, Kokkos) is still at a
relative low level.

3. DL frameworks hide most of the complexities in code porting and
optimization from developers, since hardware vendors of GPU,
TPU, etc., generally upstream the optimized DL stack support to
frameworks.

Overall, most DL developers interact mainly with frameworks (e.g.,
TensorFlow and PyTorch) in Python, and are transparent to under-
lying compute kernels and platform. This is one of the major dis-
tinctions from simulation codes, where the programming framework
(e.g., C/C++/Fortran) provides merely basic APIs. In light of the above
observations, we focus more on DL primitives and frameworks in
facility benchmarking instead of application-level benchmarks. Never-
theless, an end-to-end application benchmark (CANDLE) is included to
show the performance of the overall pipeline. A side by side comparison
of key components of the DL and the traditional simulation stack is
shown in Fig. 1.

CORAL-2 DL Benchmarks In Table 1, we list the benchmarks under
study in this work. It covers key DL primitives such as operations for
convolution, recurrent neural network (CNN/RNN), and model work-
loads, frameworks, and applications representative to HPC facilities.
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Fig. 2. The node architecture, DL core stack, and supporting framework for Summit and Spock systems.
i

i
f
f
d

m
v

F

×

t

The kernel benchmarks include DeepBench on a single device and
N/RCCL tests for cross device communication. The model workloads
consist of CNN models such as AlexNet [19], GoogleNet [20], etc., and
an RNN model. The TF_CNN_Benchmarks [21] is used to evaluate Ten-
sorFlow framework for data parallel training. The CANDLE application
is used to benchmark overall time-to-solution. In all, the scope involves
a full spectrum of DL benchmarks corresponding to the application
layer down to the foundational kernels as shown in Fig. 1.

DL Stack To evaluate the AMD and Nvidia DL stack, we execute the
CORAL-2 benchmarks on both the Summit supercomputer and a testbed
system for Frontier called Spock [22]. The node configurations of these
two systems are shown in Fig. 2. Each Summit node is equipped with
6 Nvidia Volta GPUs (V100) and 2 IBM Power9 (P9) CPUs. Pairs of 3
V100s are fully connected with NVLink fabrics of 50 GB/s bandwidth,
and nodes are then connected via EDR InfiniBand with a capability of
25 GB/s. Spock is an early-access system with an architecture similar to
Frontier’s but is a generation earlier in accelerator technology (MI100)
compared to Frontier (MI200). Each Spock node is equipped with
4 AMD Instinct MI100 GPUs and 1 EPYC 7662 Rome CPU. All 4
MI100s are connected with each other using 92 GB/s Infinity Fabric,
and nodes are connected via Slingshot-10. The node local storage are
not illustrated because this study focuses on accelerator devices and
associated software stack.

For DL frameworks, the support of different accelerator hardware
(e.g. GPU, TPU, ARM) requires the corresponding linear algebra soft-
ware for the devices. As shown in Fig. 2, for Nvidia GPUs, DL primitives
of the CNN/RNN etc., are provided via cuDNN on top of the CUDA
platform. Depending on the implementations (e.g., CNN can be based
on matrix multiplication, Fourier transform, etc.), cuBLAS or cuFFT
can be invoked. Similarly, MIOpen is the core DL primitive library for
AMD GPUs on top of the ROCm platform, and works with rocBLAS,
rocFFT, etc., to support upper level frameworks. In terms of the support
for scaling up DL operations, both Nvidia and AMD provide a GPU
direct communication library, i.e., NCCL and RCCL, respectively. The
following studies are performed with CUDA v10.2, ROCm v4.1, and
TensorFlow v2.3.

3. Methodology and metrics

Depending on the category and purpose (See Fig. 1 and Table 1) of
the benchmarks, different metrics are utilized. Typically, for through-
put benchmarks, floating point operations per second (FLOPS) is used
and a similar metric in DL is the processed data samples per sec-
ond (e.g., images/s [21]). For distributed DL in framework scalability
benchmarks, we measure the scaling efficiency in terms of through-
put. Application benchmarks usually resort to the end-to-end time-to-
solution. To calculate the FLOPS for the GEMM operation, the formula
3

Fig. 3. The illustration of the key parameters in the GEMM.

Fig. 4. The illustration of the key parameters in the convolution. It can be converted
into matrix multiplication via ‘‘im2col’’ [9].

is defined as:

FLOPSGEMM ∼ 2 × 𝑚 × 𝑛 × 𝑘∕𝑡, (1)

where (𝑚, 𝑘) and (𝑘, 𝑛) are matrix dimensions as shown in Fig. 3, and 𝑡
s the measured run time.

Since key compute operations in both CNN and RNN can be broken
nto matrix multiplications (See Figs. 4 and 5), the FLOPS formulas
ollow a similar scheme. (There are other types of implementations
or convolution, e.g., Winograd and FFT [23] - for the simplicity of
iscussion, we focus on the GEMM based implementation.)

For the 2D Convolution operation (GEMM based) on input di-
ension of height ℎ, width 𝑤, and channel 𝑐, FLOPS is calculated

ia,

LOPSConv2D ∼ 2 ×
(

ℎ𝑜 ×𝑤𝑜
)

× 𝑘𝑓
(

𝑐 × 𝑓𝑤 × 𝑓ℎ
)

∕𝑡 (2)

ℎ𝑜 =

(

ℎ + 2 × padℎ − 𝑓ℎ
)

strideℎ
+ 1 (3)

𝑤𝑜 =

(

𝑤 + 2 × pad𝑤 − 𝑓𝑤
)

stride𝑤
+ 1 (4)

where 𝑘𝑓 is the number of filters each of dimension (𝑓ℎ, 𝑓𝑤) with
padding (pad) and stride specified in h and w dimension, respec-
ively, and ℎ𝑜 and 𝑤𝑜 [9] are the effective height and width after

applying a filter.
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Fig. 5. The illustration of the key parameters in the RNN operation. The basic building
lock is also matrix multiplication.

Similarly, for the RNN operation (See Fig. 5), the FLOPS calculation
ollows,

LOPSRNN ∼ 2 ×𝐻 ×𝐻 × 𝑠∕𝑡, (5)

Where 𝐻 and 𝑠 are the hidden size and time steps, respectively. For
the data input with 𝑁 samples (i.e., batch size 𝑁), the FLOPS for the
operation will be simply multiplied by a factor of 𝑁 .
Roofline Model In addition to FLOPS, another important metric to
gauge the compute and memory performance is the so called Roofline
model, which can visually demonstrate the bottleneck of the bench-
mark and hardware, i.e., whether it is compute or memory bound. To
that end, the arithmetic intensity I, i.e., floating operations per memory
load, needs to be calculated. For single-precision GEMM, this is given
by,

𝐼 = 𝐹𝐿𝑂𝑃𝑠
4(𝑚 ∗ 𝑘 + 𝑘 ∗ 𝑛 + 2𝑛 ∗ 𝑚)

(6)

assuming the ideal data re-use of the two input matrices of element size
𝑚 ∗ 𝑘 and 𝑘 ∗ 𝑛. The Roofline model is then obtained by plotting the
erformance (FLOPS) versus the arithmetic intensity (FLOPs/bytes).
igure of Merit Regardless of the types of the benchmarks, a relative
etric, i.e., figure of merit (FOM), is often used in procurement. In this

tudy, it is defined as follow,

OM =
𝑁
∏

𝑖

(

metric𝑖

metric𝑖b

)1∕𝑁

(7)

where the 𝑚𝑒𝑡𝑟𝑖𝑐𝑖𝑏 is for the performance metric of 𝑖th task on the
baseline system. To account for a balanced performance, the geomet-
ric mean is taken over either 𝑁 sub-tasks within the benchmark or
cross 𝑁 benchmarks. The metric for each sub-task or benchmark
an be aforementioned FLOPS, images/s, scaling efficiency, or time-to-
olution.
L modeling The performance of DL kernels depends on many factors

ncluding algorithm, implementation, input shape, etc. It is hard to pre-
ict kernel runtime especially when there are multiple algorithms for
he same operation (e.g., convolution) and built-in heuristics (e.g., in
uDNN, FFT-based convolution is used when 𝑓ℎ or 𝑓𝑤 is bigger than 5)

to select the algorithm at runtime. For the closed-source library such
as cuDNN, it becomes even more challenging.

To identify the important parameters on kernel performance, we use
XGBoost [15] to model the relationship between input parameters and
performance outcome, and then rank the parameter based on its feature
importance. Because the features are well-structured (in contrast to
text and image) and limited in size, the traditional ML method such
as XGBoost is well suited for the task.
Resource Utilization Another important way of understanding the
performance of deep learning applications is by tracking resource uti-
lization. This is typically used to find bottlenecks of the workload
and identify operations that need optimization. In this work we use
the nvidia-smi for the V100 GPUs on Summit and the rocm-
smi for the MI100 GPUs on Spock to monitor the memory used and
the GPU utilization for the framework and application benchmarks.
Specifically the memory.used and the utilization.gpu flags
were used for the nvidia-smi, and the showuse and showmemuse

for the rocm-smi.

4

Even though those low level tools may not have been configured
the same way, it is important to show early their default behavior on
deep learning workloads, so that further optimization strategies can be
made as more realistic HPC/DL workloads are applied. For example
one noticeable difference from the documentation provided for those
tools is that nvidia-smi sample period may be between 1 s and
1/6 s depending on the product, where rocm-smi samples every
millisecond. Also higher level custom profilers usually use directly
those low level tools, and by showing those results we hope to give
a better understanding for the future developers on the current status.

The strategy is to request data from those tools on each batch/epoch
iteration on the training stage, rather than monitoring the bench-
mark application itself. This way we can better focus on compar-
ison between training steps, and eliminate differences between job
schedulers or initial environment/system conditions between Spock
and Summit, which might change over time. In all cases the flag
TF_FORCE_GPU_ALLOW_GROWTH was used as true for better com-
parison between the two.

4. Evaluation results

Following the approach described in Section 3, we perform system-
atic evaluations of the DL stack on Summit and Spock system in terms
of kernel, model, framework, and application benchmarks.

4.1. Kernel benchmarks

As previously discussed, we focus on the performance characteristics
of kernel and model workloads (listed in Table 1) because they serve
as common denominators across DL applications. For example, in Deep-
Bench, the inputs for GEMM, CNN, and RNN kernels are selected from
representative real DL workloads.

For kernel benchmarks, we employ DeepBench and N/RCCL tests for
computing and communication primitives, respectively. These kernels
usually account for a single tensor/layer operation of a neural network.
Moving one level up, the workload benchmarks put together the kernel
operations for popular DL models. Considering DL frameworks operate
in single precision by default, we evaluate the kernels and model
workloads in the same single precision.
Compute Kernels In Fig. 6, the generated FLOPS (See Eqs. (1), (3)) of
a single device on Summit and Spock are plotted for a list of GEMM,
CNN, and RNN operations, respectively. For GEMM, MI100 performs
better for more computationally expensive operations, while for less
expensive ones, the performance differences between MI100 and V100
are generally small. Of the predefined inputs (see examples in Table 4)
in DeepBench, the best performance of 17.7 (77% of peak) and 14.7
(93% of peak) TFLOPS are achieved for MI100 and V100, respectively.
The corresponding input parameters are annotated in Fig. 6 (GEMM),
i.e., (𝑚 = 6144, 𝑛 = 48000, 𝑘 = 2048) for MI100 and (𝑚 = 4096, 𝑛 =
7000, 𝑘 = 4096) for V100. For ill-shaped inputs, e.g., (𝑚 = 512, 𝑛 = 8, 𝑘 =
500000), the kernels become memory bound. For CNN, specifically
the GEMM based (so called ‘‘im2col’’ implementation, see Fig. 4) 2D
convolution, the MI100 outperforms V100 in most of cases, and a
similar 79% of peak is obtained while 50% for V100 for the best case.
On the other hand, V100 seems to perform better for RNN kernels,
especially for larger inputs, but because RNN is more memory intensive,
both devices are far below the peak compute performance.

To provide an overall comparison, in Fig. 7, we plot the FOM for
all three kernel types combining performances for various inputs. With
Summit as the baseline (FOM=1), Spock performs similarly for GEMM
and RNN, and shows an edge over CNN. Considering the run time of a
model usually dominated by the most expensive layer, we also calculate
the FOM for the top 10 most expensive kernel operations. Spock shows
a 20% and 10% advantage for GEMM and CNN, respectively.

According to the Roofline model, as shown in Fig. 8, the boundary

for the memory and compute capability is 17.4 and 19.2 for V100
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Fig. 6. The FLOPS of the GEMM, CNN, and RNN primitive operations for identified
representative inputs in DeepBench. The parameters are annotated for the best and
worst performance, respectively.

Fig. 7. The aggregated FOM of DeepBench benchmark for all and top 10 most
expensive tasks, respectively.

on Summit and MI100 on Spock, respectively. In both regions (left

and right of the dashed boundary line), data points for Summit is

closer to the upper limit, i.e. maximum bandwidth and theoretical peak
 3

5

Fig. 8. The Roofline model for DeepBench GEMM benchmark (FP32).

Fig. 9. The bandwidth of typical DL communication kernels up to four nodes on
Summit and Spock.

(annotated in the plot) than those of Spock, indicating that there are
still room for optimization in ROCm DL stack.
Communication Kernels Given that distributed training has became
common practice to manage ever-growing data and model sizes, the
communication kernels play increasingly important roles. For the pop-
ular data parallel training (each device has a model replica working
on different data batch, and the gradient information is exchanged
periodically), allreduce is the dominant communication pattern that
s executed each (synchronized) or a few (stale or asynchronized)
atch steps. Depending on the implementation, the allreduce can
e realized via a single API or a combination of allgather and
educescatter, or reduce and broadcast. The performance
epends on device communication libraries (e.g., N/RCCL) and the
pecific network topology of the platform.

In Fig. 9, we plot the bus bandwidth (GB/s) up to four nodes on
ummit and Spock for four commonly used communication APIs in
/RCCL. The message size ranges from small (1 MB) to large (1 GB),
overing the gradient size for popular DL models (e.g., 100 MB for
esNet50). For the intra-node communication, Spock shows an up to

x lead across the board, thanks to high-bandwidth Infinity Fabric (see
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Fig. 10. The feature importance of XGBoost modeling of GEMM and CNN benchmarks
in DeepBench. The ratio of explained variance (𝑟2) is listed.

ig. 2). In the case of inter-node, Spock seems to perform better for
llgather but lags behind in others, which is due to the slower
CIe connection comparing to Summit’s NvLink between CPU and
PU. It indicates that a combination of inter-node allgather and

ntra-node reducescatter is the best way to realize the gradient
llreduce on this particular system. Note that the network topology
f the Frontier system will be significantly different from that of Spock.
achine Learning on DL To further understand how the input param-

ters affect the kernel performance, we use the ML method to model
he performance data on DL kernels. Because both NCCL and RCCL are
pen sourced and communication optimization typically relies on the
ramework-level libraries (e.g., torch.DDP, TF.distribute, Horovod) to
verlap communication with computation, we mainly focus on the com-
ute kernels. Because the input features are well structured, XGBoost
ethod is used to model the relationship between input parameters

nd kernel performance. As shown in Fig. 10, the feature importance
or GEMM and CNN are quite similar on both Summit and Spock,
espectively, i.e., for GEMM, since in DL operations it is often between
squared matrix and an ill-shaped one (see example input parameters

n Table 4), the run time can be well predicted by the shape of resulted
atrix; for CNN (GEMM based), the filter size and input channel (often

trongly correlated with number of filters) are dominant factors for
un time. We can thus hypothesize that the implementations of GEMM
ased convolution are similar in cuDNN and MIOpen.

.2. Model benchmarks

Putting together the tensor/layer operations, workload benchmarks
n popular DL models show the combined performance of typical DL
orkloads. Because accelerators are of primary interest here, we focus
n compute workloads and isolate them from the noise from I/O and
ommunication.

In Table 2, we list the operation breakdown for the candidate CNN
odels. The model size ranges from 61M (AlexNet [19]) to 146M

OverFeat [24]) parameters with the number of convolution layers
rom 5 to 57. Comparing the earlier AlexNet to VGG [25], and then
o ResNet50 and GoogleNet, the trend in DL modeling favors deeper
odels with relatively thin layers.

The number of parameters in a model is counted by

1. for a convolution layer with input channel c and k filters, each
of size (𝑓𝑤, 𝑓ℎ), the number of parameters is 𝑐 ∗ 𝑘 ∗ 𝑓𝑤 ∗ 𝑓ℎ + 𝑘.

2. for a recurrent layer with input size n and H hidden units,
the number of parameters is the same as a feed-forward neural

network, i.e. 𝐻 ∗ (𝐻 + 𝑛) +𝐻 .

6

able 2
ORAL-2 CNN model workloads.
Model # conv

layers
Filter
size

#
filters

#
weights

#
MACs

%
conv

AlexNet 5 3,5,11 96–384 61M 724M 92
OverFeat 5 3,5,11 96–1024 146M 2.8B 95
VGG 13 3 64–512 138M 15.5B 99
ResNet50 53 1,3,7 64–2048 25.5M 3.9B 99
GoogleNet 57 1,3,5,7 16–384 7M 1.4B ∼100

Fig. 11. The FOM for individual model workload and combined training and inference
benchmarks in CORAL-2 DLS.

The corresponding multiply and accumulation (MAC) operations follow
similar FLOPS counts discussed in Section 3. From Table 2, VGG is the
most computationally expensive model with 15.5B MAC operations.

In Fig. 11, we plot the performance comparisons for DL model
workloads. The FOM numbers are calculated from the processed sam-
ples/s with Summit being the baseline. Spock shows better performance
across the board with the best FOM (∼2.5x) for GoogleNet. To obtain
an overall view for DL training and inference, we further break down
the run time for forward pass (inference) and forward–backward pass
(training), and calculate the FOM across all workload tasks. It is shown
(See Fig. 11) that a speedup of 1.7x and 1.9x is achieved on Spock
for training and inference, respectively. Note this is with the CORAL-2
deep learning suite (DLS) baseline implementation (TensorFlow, single
precision).

4.3. Framework benchmarks

Although model workloads, as discussed in Section 4.1, already
exercise the framework on a single device, there are many other aspects
of the framework that require further examination. To this end, we
use the TF_CNN_Benchmark to perform the distributed training on
ResNet50, which is required by CORAL-2 DLS.
Functionality In terms of the performance functionalities, both Tensor-
Flow and PyTorch support automatic mixed precision, runtime compi-
lation e.g., accelerated linear algebra (XLA), etc. Frameworks operate in
single precision by default because the mixed precision requires special
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Fig. 12. The training images/s per GPU in FP32, FP16, and FP16 with XLA for
F_CNN_Benchmarks.

Fig. 13. The scaling of distributed training throughput for TF_CNN_Benchmarks.
mages/s∗ is normalized to the number of GPUs per node for Summit (6) and Spock
4), respectively.

are, and by automating the mixed precision support it enables easier
ccess to the full hardware capability. TensorFlow XLA can further
ccelerate the execution by generating optimized tensor operations for
pecific model rather than using the pre-built binary.

In Fig. 12, we plot the single device training performance for
esNet50 (batch size 128) with different accelerations. Consistent with
ig. 11, Spock has an edge at single precision, but lags behind in half
recision. The speedup due to XLA though, are more or less the same.
caling Another important aspect of the framework is its scalabil-
ty. Here we use a popular third-party distributed training library,
.e., Horovod, because it supports multiple frameworks including Ten-
orFlow and PyTorch, and is highly optimized for HPC platforms. As
hown in Fig. 13, the training images/s per GPU gradually decreases on
pock with a scaling efficiency ∼ 89% up to four nodes, while Summit
cales almost perfectly (scaling efficiency ∼ 99%). Given N/RCCL are
sed as communication backends, the results are consistent with Fig. 9.
esource Utilization As described in Section 3, we use NVIDIA and
OCm tools to measure the resource utilization for every training
tep iteration between Summit and Spock. Fig. 14 shows the memory
sed and the GPU utilization for the ResNet50 benchmark (batch size
28) in single precision. The memory used for V100s seems to be
onstant across training steps, while for the MI100s it appears to vary
cross steps. This behavior more likely reflects the different sample
requencies as described in Section 3. The GPU utilization for Spock
eems to be able to keep up more with each iteration compare to
ummit, and that might reflect the fact that we get more number of
mages per second for single precision on Summit, as shown in Fig. 12.

.4. Application benchmarks

Our goal at facilities is to enable leadership-scale scientific discov-
ries, hence the performance of scientific application is of ultimate
nterest. In CORAL-2, there are two sub-tasks enlisted from CANDLE
 G
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Fig. 14. Timeline plots for memory used and GPU utilization for
TF_CNN_Benchmarks.

Table 3
Specification of 2 sub-tasks in CANDLE benchmark.

Task Sample
size

Model Layer
type

#
layers

Hidden layer
size

#
weights

P1B1 4000 Autoencoder Dense 6 2, 600, 1000 183M
P3B1 3000 Multi-task

MLP
Dense 11 400, 1200 10M

benchmark (see Table 3): P1B1 is a regression task that use autoen-
coder to compress the gene expression; P3B1 is a classification task that
use multi-task multilayer perceptron (MLP) for data extraction from
clinic reports. Both models are based on fully connected dense layers,
so the compute is dominated by GEMM kernel operations. The input
data size is rather small (less or around 1 GB), and the impact of I/O
is negligible (no noticeable performance differences in running with or
without local storage).

In Fig. 15, the FOMs of time-to-solution are plotted for both tasks
in CANDLE. Different random seeds are used to obtain the run time to
the target reconstruction mean square error (P1B1) and classification
accuracy (P3B1), but due to using the same baseline implementation
and hyperparameter selection, it requires the same number of training
steps to converge. Spock performs better in P3B1 task while Summit
shows advantage in the other, mainly because of the performance
differences in different shapes of matrices in GEMM (See Fig. 6).

Resource Utilization Fig. 16 shows the memory used and the

PU utilization for P1B1. The GPU utilization is higher for Spock,
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Fig. 15. The FOM of time-to-solution for 2 tasks in the CANDLE benchmarks.

Fig. 16. Timeline plots for memory used and GPU utilization for CANDLE-P1B1
benchmark.

compare to Summit and as expected for the V100s the nvidia-smi
(as mentioned in Section 3) samples less frequently than rocm-smi.
The memory used is higher for Spock compare to Summit. Compare
to ResNet50 results, as shown in Fig. 14, the memory used is higher
for Summit. We note that the model architecture is very different
(dense vs convolution layers), and also that this benchmark uses a Keras
implementation.

Fig. 17 shows the memory used and the GPU utilization for P3B1.
This benchmark implementation is a mix of Keras and TF. It shows
higher but more sparse GPU utilization for Spock, compare to Summit.
Also the memory usage appears to be higher on Summit compare to
Spock. If the nvidia-smi and rocm-smi are one-to-one comparable
we could argue that larger models, or larger input size vectors can fit
8

Fig. 17. Timeline plots for memory used and GPU utilization for CANDLE-P3B1
benchmark.

on the MI100s with this implementation, but because of the differences
in the tools, further investigation is needed.

5. Conclusion

We have presented a layered methodology and metrics to bench-
mark DL workloads at scale, involving kernels, models, frameworks,
and applications. From the perspective of HPC facilities, we argue that
understanding kernel and model level performance, and framework
level scalability are more important than application FLOP counts given
current scientific DL use cases and patterns. Using the CORAL-2 DL
benchmarks, we evaluated the performance of Spock, an early-access
testbed system for Frontier. Compared to the V100 based Summit
system with CUDA DL stack, the MI100 based Spock with ROCm DL
stack shows an edge in single precision performance for most kernel
and model benchmarking tasks. However, there is currently a gap in
its half precision performance, specifically for TensorFlow. Roofline
modeling also indicates rooms for improvement in the ROCm stack,
which is still maturing.

We also explored and demonstrated using machine learning an
approach to model the relationship between input parameters and
benchmark performance outcomes. And through a one-on-one compar-
ison of the resource utilization for the two DL stacks on the same DL
workloads, we are able to comment on the sources of performance dif-
ferences. Although these two ways of gaining insight into performance
comparisons are not conclusive in deducing underlying implementa-
tions or bottlenecks, our data does shed light on the direction for future
optimizations in the DL stacks.
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Table 4
The kernel input parameters in DeepBench [2]. RNN (vanilla) input parameters and first 20 of GEMM and Conv2D input parameters
are listed.
Index GEMM Conv2D RNN

m n k w h c N 𝑘𝑓 𝑓𝑤 𝑓ℎ 𝑝𝑎𝑑𝑤 𝑝𝑎𝑑ℎ 𝑠𝑡𝑟𝑖𝑑𝑒𝑤 𝑠𝑡𝑟𝑖𝑑𝑒ℎ H N s

0 1760 16 1760 700 161 1 4 32 20 5 0 0 2 2 1760 16 50
1 1760 32 1760 700 161 1 8 32 20 5 0 0 2 2 1760 32 50
2 1760 64 1760 700 161 1 16 32 20 5 0 0 2 2 1760 64 50
3 1760 128 1760 700 161 1 32 32 20 5 0 0 2 2 1760 128 50
4 1760 7000 1760 341 79 32 4 32 10 5 0 0 2 2 2048 16 50
5 2048 16 2048 341 79 32 8 32 10 5 0 0 2 2 2048 32 50
6 2048 32 2048 341 79 32 16 32 10 5 0 0 2 2 2048 64 50
7 2048 64 2048 341 79 32 32 32 10 5 0 0 2 2 2048 128 50
8 2048 128 2048 480 48 1 16 16 3 3 1 1 1 1 2560 16 50
9 2048 7000 2048 240 24 16 16 32 3 3 1 1 1 1 2560 32 50
10 2560 16 2560 120 12 32 16 64 3 3 1 1 1 1
11 2560 32 2560 60 6 64 16 128 3 3 1 1 1 1
12 2560 64 2560 108 108 3 8 64 3 3 1 1 2 2
13 2560 128 2560 54 54 64 8 64 3 3 1 1 1 1
14 2560 7000 2560 27 27 128 8 128 3 3 1 1 1 1
15 4096 16 4096 14 14 128 8 256 3 3 1 1 1 1
16 4096 32 4096 7 7 256 8 512 3 3 1 1 1 1
17 4096 64 4096 224 224 3 8 64 3 3 1 1 1 1
18 4096 128 4096 112 112 64 8 128 3 3 1 1 1 1
19 4096 7000 4096 56 56 128 8 256 3 3 1 1 1 1
Finally, we do note that Spock is a testbed early access system. Our
enchmarking results and comparisons are most useful to concretely
resent our systematic approach to DL benchmarking. The kernels and
rameworks are maturing and will continue to evolve (particularly for
he ROCm ecosystem) and, therefore, specific observations reported in
his paper are likely to change even if it does not affect the overall
ethodology that we have presented.
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ppendix. Kernel parameters

In Table 4, we list the input parameters for GEMM, Conv2D, RNN
vanilla) kernels defined in DeepBench [2].
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