
BenchCouncil Transactions on Benchmarks, Standards and Evaluations 1 (2021) 100004

B
l
F
a

b

c

A

K
F
G
D
H

1

n
m
m
I
t
c
i
m

(
a
s
t
a
b
a
i

p

h
R
A
2
B

Contents lists available at ScienceDirect

BenchCouncil Transactions on Benchmarks,
Standards and Evaluations

journal homepage: https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-
benchmarks-standards-and-evaluations/

enchmarking feature selection methods with different prediction models on
arge-scale healthcare event data
an Zhang a, Chunjie Luo a,b,c, Chuanxin Lan a, Jianfeng Zhan a,b,c,∗

Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
International Open Benchmark Council (BenchCouncil)

R T I C L E I N F O

eywords:
eature selection
enetic algorithm
eep neural networks
ealthcare prediction

A B S T R A C T

With the development of the Electronic Health Record (EHR) technique, vast volumes of digital clinical data are
generated. Based on the data, many methods are developed to improve the performance of clinical predictions.
Among those methods, Deep Neural Networks (DNN) have been proven outstanding with respect to accuracy by
employing many patient instances and events (features). However, each patient-specific event requires time and
money. Collecting too many features before making a decision is insufferable, especially for time-critical tasks
such as mortality prediction. So it is essential to predict with high accuracy using as minimal clinical events as
possible, which makes feature selection a critical question. This paper presents detailed benchmarking results
of various feature selection methods, applying different classification and regression algorithms for clinical
prediction tasks, including mortality prediction, length of stay prediction, and ICD-9 code group prediction.
We use the publicly available dataset, Medical Information Mart for Intensive Care III (MIMIC-III), in our
experiments. Our results show that Genetic Algorithm (GA) based methods perform well with only a few
features and outperform others. Besides, for the mortality prediction task, the feature subset selected by GA
for one classifier can also be used to others while achieving good performance.
. Introduction

Over the past decades, the Electronic Health Record (EHR) tech-
ique is developed; vast volumes of digital clinical data are generated,
aking it possible for Clinical Decision Support Systems (CDSSs) to
ake better decisions. For example, public databases such as MIMIC-

II [1] have promoted the research in clinical predictions. Based on
hose databases, different severity scoring systems, traditional ma-
hine learning algorithms, and DNNs are developed and continuously
mproved to achieve better clinical prediction tasks such as patient
ortality, disease classification, and length of hospital stay.

Traditional severity scores like Simplified Acute Physiology Score
SAPS-II) [2], the Sepsis-related Organ Failure Assessment (SOFA) [3],
nd Acute Physiology and Chronic Health Evaluation (APACHE) [4] are
tandard for mortality prediction in practice. Clinicians usually choose
he patient-specific events they used based on their experience. Then
standard process is implemented. First, a severity score is calculated

ased on the relative events, usually measured within the first 24 h
fter ICU admission. Second, a simple model such as logistic regression
s applied to the score to predict the final death probability.

Recent work shows that DNN and Super Learner (SL) algorithms
erform better than single traditional classifiers and severity scoring
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systems [5–8]. To improve the predictive performance, many DNN
models are developed. Purushotham et al. [6] proposed a Multimodal
Deep Learning Model (MMDL) to process an extensive feature set,
which consists of 141 features, and got very good predicting results.
Harutyunyan et al. [7] proposed a multitask LSTM-based method to
predict four clinical prediction tasks. In addition to DNN, SL is also
studied extensively and shows promising results. Pirracchio et al. [5]
provided and assessed the performance of the Super ICU Learner Algo-
rithm (SICULA). Lee et al. [8] trained case-specific Random Forests (RF)
to make mortality prediction and exhibited the best AUROC compared
with other single models such as death counting, logistic regression,
and decision tree.

No matter which method we use, feature selection is an important
part. First, medical databases store vast amounts of clinical events and
not all of them are related to the target task. Second, minimal clinical
events enable doctors to make timely decisions. For severity scoring
systems, a set of alternated related events is chosen based on clinicians’
experience. A simple subset of those events is selected according to
correlation coefficient or other index associated with the target concept
of the prediction task [2–4,10]. Traditional machine learning and deep
learning algorithms usually take the same features directly used in
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Table 1
Comparison of benchmarking works.

[7] [6] [9] This work

Number of features Smaller feature set ✓ ✓ ✓ ✓

Larger feature set ✓ ✓ ✓

Feature type Non-time series ✓ ✓ ✓

Time-series ✓ ✓ ✓ ✓

Feature selection methods
Severity score ✓ ✓ ✓ ✓

Machine learning ✓ ✓

Evolutionary computing GA ✓ ✓

Classifications methods Traditional machine learning ✓ ✓ ✓ ✓

DNN ✓ ✓ ✓

Prediction tasks

Mortality ✓ ✓ ✓ ✓

Length of stay ✓ ✓ ✓

Phenotyping ✓

ICD-9 code group ✓ ✓ ✓
severity scores [6,7] or take a similar method to select features [9]. In
this paper, we do an exhaustive evaluation of various feature selection
methods, and our main contributions are listed below.

(1) Benchmarking feature selection methods including traditional
severity scores, machine learning-based feature selection meth-
ods, and evolutionary computing GA for three clinical prediction
tasks.

(2) Compare feature subsets selected by GA for different classifiers.
The results show that for the mortality prediction task, the
features chosen by GA are universal for different classifiers.

The rest of this paper is organized as follows: in Section 2, we provide
an overview of the related work; in Section 3, we describe the dataset
and methods we employed; in Section 4, the benchmarking experiments
and results are reported and discussed in detail; in Section 5, we
summarize the paper.

2. Related work

First, we summarize the feature selection algorithms that are ap-
plied in the medical field. Then we discuss the existing benchmarks
on healthcare datasets, especially for MIMIC-III. The comparison of
benchmarks is listed in Table 1.

The first severity scores proposed such as APACHE [4], APACHE-
II [11], and SAPS [12] selected features based on experience of medical
experts. Further work usually used statistical methods to calculate
correlation coefficient associated with target prediction task, such as [2,
13,14]. Since publication, all of the methods have been continuously
modified to improve the predictive performance [15]. A lot of work
employed GA to select risk factors and predict in-hospital mortality [9,
10,16–19]. In this work, we report an exhaustive set of benchmarking
results of feature selection methods, including GA.

Public datasets such as MIMIC-III have promoted the benchmarking
of models for clinical prediction tasks. Purushotham et al. [6] bench-
marked deep learning models based on an extensive feature set and get
high Area Under the Receiver Operating Characteristic Curve (AUROC)
and Area under Precision–Recall Curve (AUPRC). The complete feature
set we used is the same as the feature set C in [6], which contains
136 time-series features and five non-time series features. Harutyunyan
et al. [7] first benchmarked four clinical prediction tasks and presented
a multitask classifier. The most significant difference between us and
previous works is that we benchmark feature selection algorithms, es-
pecially GA, instead of classification or regression algorithms. Krishnan
et al. [9] proposed a GA-based model to make mortality prediction. We
extend the benchmark to the other two prediction tasks and combine
GA with DNN models to get higher AUROC and AUPRC. Johnson
et al. [20] reproduced 28 published works for mortality prediction, and
the results showed that it is a big challenge to reproduce other people’s
work without public code.
2

Table 2
Summary statics of cohort selection.
Data Total

Admissions in the MIMIC-III (V1.4) 58,976
The first admissions 46,520
First admissions of adult patients 38,424
Patients died 24 h after the admissions 35,643

3. Materials and methods

3.1. Dataset preprocessing

MIMIC-III is developed by the Massachusetts Institute of Technology
(MIT)’s Laboratory for Computational Physiology and contains around
60,000 intensive care unit admissions. MIMIC-III (v1.4) consists of
46,520 distinct patients and 58,976 admissions, from where we select
35,643 admissions for our experiments. We extracted data from 5
commonly used tables, namely inputevents, outputevents, chartevents,
labevents, prescriptions tables. The statistics of cohort selection are
tabulated in Table 2. We selected the patient cohort based on the
following criteria:

• Only adult patients, whose age was >15 years at the time of ICU
admission, were selected.

• Only the first admission was included for each patient. This
decision uses the earliest available data to predict and ensure
similar data selection compared to other related works.

• We only include the patients who died 24 h after the first admis-
sion.

Because the original data from MIMIC-III has erroneous records
such as missing values, inconsistent units, etc., we clean data according
to [6], which includes the following procedures: (a) Unify the units. (b)
Select one valid record. For multiple records simultaneously, take the
average values for numerical data and bring the first for categorical
data. (c) Re-sample and fill-in the data. Time-series data is divided
into hours and a forward–backward imputation is done to impute the
missing values.

3.2. Prediction tasks

For benchmark, we select three clinical prediction tasks which
are important in critical care research and are commonly studied by
machine learning researchers. The first is in-hospital mortality which
is important for doctors to take effective actions for patient care in
Intensive Care Units (ICUs) [9]. The second is ICD-9 code group predic-
tion, where we divide the ICD-9 codes into 20 groups according to [6]
and treat it as a multi-classification problem. The third is length of stay

prediction, which is to predict the hospital stay after admission.
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Table 3
Genetic algorithm.

Genetic Algorithm

Input: Dataset D(X, Y) , classifier C and target number of features N
Output: Optimal N features X′ for C
1. Randomly generate N features from X as X0
2. Calculate fitness for X0, which is AUC for D(X0, Y) and C.
3. Set X′ =X0
4. while i ≤ 10000 do
5. Generate a new feature set X𝑖

by randomly replacing one feature in X′

6. Calculate fitness for X𝑖
7. if X𝑖.fitness > X′ .fitness:
8. X′ =X𝑖
9. if X′ .fitness ⩾ 1
10. return X′

11. return X′

3.3. Feature selection/extraction methods

We extract 136 time-series features and five non-time series features
as our full feature set according to [6]. Those features are selected
based on clinical significance and missing rate while containing all fea-
tures used in severity scoring systems such as SAPS-II and SOFA. Based
on this feature set, different feature selection methods are evaluated
including GA based methods, scoring methods and machine learning
methods.

GA is a metaheuristic inspired by the process of natural selection.
It can be used to generate high-quality solutions to optimization and
search problems by the process of mutation, crossover, and selec-
tion [21]. It is proved to be useful in feature selection as a wrapper
feature selection technique [9]. Table 3 lists the GA procedure we used.

For scoring methods, we choose two popularly used severity scores,
namely SAPS-II and SOFA. SAPS-II [2] is designed to predict the prob-
ability of hospital mortality. It can be calculated based on 17 variables
which can be expand into 20 raw features of our complete feature set.
SOFA [3] score can be calculated based on 6 variables which can be
expand into 17 raw features of our complete feature set.

For machine learning methods, Principal Component Analysis
(PCA) [22] and Recursive Feature Elimination (RFE) are chosen.

PCA is a widely used filter feature extraction technique, which
projects the data to a new orthogonal space and then chooses a few
of the essential features to achieve dimensionality reduction. RFE is a
wrapper feature selection technique that selects features based on the
accuracy of the subsequent classifiers.

3.4. Classification/regression methods

For machine learning we use three common commonly used algo-
rithms: decision tree, Bayesian ridge regression, and logistic regres-
sion. For DNN we use three types of deep models, namely Feedfor-
ward Neural Networks (FNN), Recurrent Neural Networks (RNN), and
Multimodal Deep Learning Model (MMDL) according to [6].

4. Benchmarking results

Based on the MIMIC-III dataset, we report the experimental results
for three prediction tasks, which answer the following questions: (a)
Can DNN models use relatively small feature subsets to perform as well
as the full feature set? (b) Whether the subset of features selected by
GA is universal for different classifiers of the same task?
3

4.1. Mortality prediction task evaluation

Tables 4, 5 show the results of mortality prediction task. Because
PCA cannot handle time-series data, it is blank for RNN and MMDL
results. We can observe that: (a) Deep learning-based prediction mod-
els perform better than traditional machine learning-based models
and obtain around 2%–20% and 10%–30% improvement for AUROC
and AUPRC, respectively. (b) GA performs better and obtains around
6%–18% and 10%–40% improvement over other methods for AUROC
and AUPRC, respectively. (c) Compared with using all features (141
features), GA gets similar or even better results with only 20 features.

Fig. 1 shows the result of applying the features selected by GA-
MMDL to other classifiers. We can observe that: (a) Although GA is a
wrapper feature selection method, the features that GA-MMD chooses
can also be used to other classifiers and achieve almost as good results
as the GA combined with the specific classifier.

4.2. ICD-9 code prediction task evaluation

We divided the dataset into 20 classes according to [6] and treated
it as a multi-classification task. However, because Bayes and LR in
the package of scikit-learn do not support multi-classification tasks,
we perform binary classification for these two algorithms and then
calculate the average AUROC and AUPRC as the final results.

Tables 6, 7 show the results of icd-9 code group prediction task. We
can observe that: (a) Deep learning prediction models perform better
than traditional machine learning models and obtain around 9%–25%
and 20%–35% improvement for AUROC and AUPRC, respectively. (b)
GA performs better and obtains around 1%–10% improvement over
other methods for both AUROC and AUPRC. (c) Compared with using
all features (141 features), GA gets similar or even better results with
only 20 features.

Fig. 2 shows the result of applying the features selected by GA-
MMDL to other classifiers. We can observe that: (a) Only for deep
learning models, the features that GA-MMDL chooses achieve similar
results with the GA combined with the specific classifier. For machine
learning classifiers, the features that GA-MMDL chooses do not perform
well.

4.3. Length of stay prediction task evaluation

Table 8 shows the results of the length of the stay prediction task.
We remove the LR algorithm since it is not capable of processing
regression problems. We can observe that: (a) GA performs better than
others and obtains around 6%–30% improvement over other methods
in terms of MSE (in hours). (b) Compared with using all features (141
features), GA gets similar or even better MSE with only 20 features,
save time and money.

Fig. 3 shows the result of applying the features selected by GA-
MMDL to other regressors. We can observe that: (a) Only for the RNN
model, the features GA-MMDL selects have good performance. For the
other classifiers, the features that GA-MMDL chooses do not perform
well.

4.4. Statistical significance tests of GA

From the above results, we can see that GA always performs better
than other feature selection methods. We think this is because as
the number of iterations (epochs) increases, GA can reach the local
optimum. If there are enough iterations, GA can even reach the global
optimum. The price of high precision is time overhead. However, this
feature selection method only need to be trained once offline and in
actual application doctors can quickly make a diagnosis with a few
features.

To further check whether GA’s improved performance is statistically
significant compared with others we conducted statistical tests. The
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Table 4
AUROC of in-hospital mortality prediction task.
Algorithm Score method (Features) Feature extraction/selection (Features) All features (141)

SAPS-II (20) SOFA (17) PCA (20) RFE (20) GA (20)

ML
DT 0.6055 ± 0.0171 0.6780 ± 0.0052 0.5856 ± 0.0119 0.7009 ± 0.0066 0.7657 ± 0.0085 0.7631 ± 0.0119
Bayes 0.8002 ± 0.0046 0.8018 ± 0.0011 0.7672 ± 0.0057 0.8166 ± 0.0085 0.9158 ± 0.0058 0.9177 ± 0.0047
LR 0.5448 ± 0.0042 0.5570 ± 0.0043 0.5824 ± 0.0691 0.5581 ± 0.0044 0.7206 ± 0.0090 0.7348 ± 0.0053

DL
FNN 0.7945 ± 0.0059 0.7978 ± 0.0036 0.7863 ± 0.0067 0.8034 ± 0.0089 0.9207 ± 0.0026 0.9263 ± 0.0032
RNN 0.8459 ± 0.0017 0.8651 ± 0.0037 – 0.8309 ± 0.0016 0.9326 ± 0.0064 0.9312 ± 0.0023
MMDL 0.8532 ± 0.0033 0.8781 ± 0.0003 – 0.8282 ± 0.0057 0.9376 ± 0.0036 0.9345 ± 0.0029
Table 5
AUPRC of in-hospital mortality prediction task.
Algorithm Score method (Features) Feature extraction/selection (Features) All features (141)

SAPS-II (20) SOFA (17) PCA (20) RFE (20) GA (20)

ML
DT 0.1992 ± 0.0121 0.3196 ± 0.0035 0.1756 ± 0.0080 0.3619 ± 0.0087 0.4652 ± 0.0024 0.4564 ± 0.0141
Bayes 0.3374 ± 0.0158 0.3795 ± 0.0154 0.2706 ± 0.0040 0.3790 ± 0.0183 0.6109 ± 0.0271 0.6333 ± 0.0096
LR 0.1549 ± 0.0041 0.1750 ± 0.0021 0.1498 ± 0.0146 0.1696 ± 0.0087 0.4301 ± 0.0088 0.4320 ± 0.0025

DL
FNN 0.3548 ± 0.0139 0.3871 ± 0.0073 0.2900 ± 0.0196 0.4010 ± 0.0076 0.7050 ± 0.0059 0.7122 ± 0.0119
RNN 0.4299 ± 0.0116 0.5454 ± 0.0077 – 0.4396 ± 0.0101 0.7486 ± 0.0189 0.7283 ± 0.0074
MMDL 0.4410 ± 0.0116 0.5687 ± 0.0070 – 0.4439 ± 0.0153 0.7551 ± 0.0093 0.7389 ± 0.0057
Fig. 1. Apply the features selected by GA-MMDL to other classifiers for the mortality prediction task.
Table 6
AUROC of icd-9 code group prediction task.
Algorithm Score method (Features) Feature extraction/selection (Features) All features (141)

SAPS-II (20) SOFA (17) PCA (20) RFE (20) GA (20)

ML
DT 0.5735 ± 0.0004 0.5746 ± 0.0003 0.5609 ± 0.0005 0.5633 ± 0.0011 0.5875 ± 0.0005 0.5868 ± 0.0011
Bayes 0.6818 ± 0.0010 0.6694 ± 0.0023 0.6523 ± 0.0027 0.6993 ± 0.0052 0.7542 ± 0.0036 0.7505 ± 0.0023
LR 0.5454 ± 0.0004 0.5395 ± 0.0008 0.5438 ± 0.0006 0.5687 ± 0.0024 0.6064 ± 0.0023 0.6032 ± 0.0011

DL
FNN 0.8087 ± 0.0008 0.8034 ± 0.0014 0.8036 ± 0.0014 0.8158 ± 0.0002 0.8383 ± 0.0005 0.8408 ± 0.0007
RNN 0.8147 ± 0.0012 0.8121 ± 0.0001 – 0.8229 ± 0.0003 0.8351 ± 0.0005 0.8427 ± 0.0009
MMDL 0.8197 ± 0.0007 0.8179 ± 0.0003 – 0.8217 ± 0.0007 0.8384 ± 0.0007 0.8440 ± 0.0007
Table 7
AUPRC of icd-9 code group prediction task.
Algorithm Score method (Features) Feature extraction/selection (Features) All features (141)

SAPS-II (20) SOFA (17) PCA (20) RFE (20) GA (20)

ML
DT 0.3719 ± 0.0012 0.3740 ± 0.0018 0.3522 ± 0.0013 0.3538 ± 0.0014 0.3825 ± 0.0009 0.3820 ± 0.0008
Bayes 0.4523 ± 0.0006 0.4440 ± 0.0031 0.4096 ± 0.0031 0.4722 ± 0.0052 0.5206 ± 0.0051 0.5201 ± 0.0020
LR 0.3440 ± 0.0004 0.3400 ± 0.0005 0.3414 ± 0.0002 0.3739 ± 0.0035 0.4500 ± 0.0043 0.3896 ± 0.0018

DL
FNN 0.6698 ± 0.0033 0.6602 ± 0.0022 0.6552 ± 0.0047 0.6717 ± 0.0003 0.7148 ± 0.0009 0.7265 ± 0.0007
RNN 0.6820 ± 0.0006 0.6780 ± 0.0005 – 0.6897 ± 0.0008 0.7148 ± 0.0018 0.7311 ± 0.0022
MMDL 0.6911 ± 0.0021 0.6902 ± 0.0004 – 0.6925 ± 0.0029 0.7214 ± 0.0015 0.7340 ± 0.0005
results are tabulated in Table 9. We can see that GA is statistically
significant for mortality and length of stay prediction tasks but not
for ICD-9 code group classification. This may be because it is more
difficult to improve AUROC and AUPRC of multi-classification than
binary-classification tasks.
4

5. Summary

This paper presented comprehensive benchmarking results of dif-
ferent feature selection methods and classification algorithms on three
clinical prediction tasks. We demonstrated that: (a) GA always performs
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Fig. 2. Apply the features selected by GA-MMDL to other classifiers for icd-9 code prediction task.
able 8
SE of length of stay prediction.
Algorithm Score method (Features) Feature extraction/selection (Features) All features (141)

SAPS-II (20) SOFA (17) PCA (20) RFE (20) GA (20)

ML DT 54344.8815 ± 2390.9406 52836.9795 ± 3621.4408 54717.3409 ± 709.7653 48846.0888 ± 3862.0252 43468.6583 ± 2223.4084 45166.0388 ± 2853.9258
Bayes 58715.9520 ± 2012.4531 74876.8679 ± 22148.1398 58784.5393 ± 3291.4266 61219.8744 ± 3515.9883 53172.5127 ± 4091.2336 52564.0560 ± 2409.1296

DL
FNN 60096.6133 ± 4174.1588 61843.7995 ± 6065.2225 57233.4701 ± 6296.6451 60358.6628 ± 4690.3527 53843.4805 ± 3482.8460 60998.5990 ± 9321.8411
RNN 55031.8490 ± 3363.6808 54386.3086 ± 1304.0803 – 52148.4479 ± 1121.8866 43776.1263 ± 1633.5601 42790.0521 ± 1290.5697
MMDL 54876.1159 ± 2560.8740 54138.1146 ± 2704.3223 – 51897.9544 ± 1752.6679 44385.0039 ± 3158.0891 43398.7773 ± 4523.6935
Fig. 3. Apply the features that GA-MMDL selects to other classifiers for the length of
he stay prediction task.

able 9
hether is statistically significant with significance level 0.05.

Task Metric SAPS-II SOFA PCA RFE

Mortality AUROC Yes No Yes Yes
AUPRC Yes Yes Yes Yes

ICD9 AUROC No No No No
AUPRC No No No No

Length of stay MSE Yes Yes Yes Yes

better than other feature selection methods; for mortality and length
of stay tasks, the improved performance is statistically significant.
(b) Compared with using all features, GA gets similar or even better
predictive results with much fewer features, save time and money,
which makes it more advantageous to detect and collect clinical data.
(c) Other classifiers can also use the features that GA-MMDL selects for
the mortality prediction task, achieving good performance.

As part of future work, we plan to make a severity-scoring system
based on the features that GA-MMDL selects for the mortality task. This
system promises doctors to quickly and accurately assess the severity
of a patient’s disease with a few simple variables.
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