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The smartphone hardware and software ecosystems have evolved very rapidly. Multiple innovations in the
system software, including OS, languages, and runtimes have been made in the last decade. Although, per-
formance characterization of microarchitecture has been done, there is little analysis available for application
performance bottlenecks of the system software stack, especially for contemporary applications on mobile
operating systems.

In this work, we perform system utilization analysis from a software perspective, thereby supplementing the
hardware perspective offered by prior work. We focus our analysis on Android powered smartphones, running
newer versions of Android. Using 11 representative apps and regions of interest within them, we carry out
performance analysis of the entire Android software stack to identify system performance bottlenecks.

We observe that for the majority of apps, the most time-consuming system level thread is a frame rendering
thread. However, more surprisingly, our results indicate that all apps spend a significant amount of time
doing Inter Process Communication (IPC), hinting that the Android IPC stack is a ripe target for performance
optimization via software development and a potential target for hardware acceleration.

1. Introduction Many recent efforts have been made to understand the performance
bottlenecks and utilization characteristics of smartphone devices [4-
7]. However, most prior studies focus on bottom-up understanding of
smartphone utilization from an architectural design perspective. For

example, [5] present the distribution of computation amongst ARM’s

Smartphones have become an integral part of our daily lives. People
depend on smartphones for many tasks related to business, finance,
entertainment, and social interactions. Currently, there are more than
2 billion mobile devices in use worldwide [1]. The Ericsson Mobil-
ity Report 2019 states that there are 6.1 billion mobile broadband
subscriptions globally and the number of Long-Term-Evolution (LTE)
subscriptions have grown to 3.9 billion [2]. This widespread adoption
of mobile devices can be largely attributed to increasing device af-

big and little cores. They also study clock frequencies at which one
can perform computations on a mobile device in an energy efficient
manner. These studies are important since mobile SoC architectures
evolve rapidly and characterization of new architectures is important to

fordability, which has been made possible due to numerous hardware
and software innovations. This includes the open-source nature of the
Android Operating System [1], which has allowed smartphone vendors
to customize the software stack for their hardware. As a result, Android
has quickly gained a majority market share for smartphones [3].

Smartphones are very interesting from a system design perspective
since they need to provide a number of functionalities that require
general purpose as well as special purpose compute. As a result, smart-
phone SoCs have evolved rapidly to become complex ecosystems in-
corporating many specialized IP blocks, including DSPs and GPUs in
addition to general purpose CPUs [1]. The number and diversity of
architectures of such units has also increased over time to accommodate
the evolving needs of applications.

understand and alleviate performance bottlenecks of new architectures.

The software stack for smartphones has been evolving even faster
than hardware. Android has been following a yearly release cycle
in recent years, with each iteration adding more functionality and
optimizations [18]. As a result, every release causes major changes
to the software stack which potentially lead to performance bottle-
necks. Knowledge of these bottlenecks is not only useful for optimizing
the next generation apps but also for making decisions about future
architectural innovations. Despite its importance, there is a lack of
understanding of software bottlenecks in both the apps as well as the
system software. Understanding and enumerating performance bottle-
necks of the software stack remains an important endeavor that has not
been taken up in earnest by the systems research community. However,
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Table 1
Applications traced and their Region of Interest.
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Category Application Regions of Interest (ROI)

PDF Viewer Adobe Acrobat [8] Read PDF

Camera Camera Take a picture, Record a video
Game Candy Crush [9] Play one level of the game

Social Network
Mailing app
Virtual Assistant
Browsing app
Location app
Audio Streaming
Messaging app
Video Streaming

Facebook [10]

Gmail [11]

Google Assistant [12]
Google Chrome [13]
Google Maps [14]
Spotify [15]
WhatsApp [16]
YouTube [17]

Scroll through the feed

Send mail

Perform a query

Search, Scroll through a page

Search a location, Zoom into a location

Play a song in background, Play a song in foreground
Send a message

Play a video

Apart from the regions of interest mentioned above, we also trace the launch of each of the apps.

recent announcements from technology companies [19] indicate that
there exists a large room for performance improvement in the Android
software stack.

We believe that a top-down analysis of application characteristics
will augment our understanding of mobile devices by supplementing
prior work. Hence, we study the software subsystem of Android based
smartphones by tracing the entire system (application + operating
system) stack at runtime, capturing performance bottlenecks. Prior
works [4,6,7] have measured CPU utilization using Thread Level Par-
allelism (TLP) as a metric to identify the amount of parallelism the
hardware can exploit. While TLP is a useful metric to decide the number
of cores to be placed on the chip, it does not provide information on the
computation being performed by the cores and the functionality sup-
ported by the computations. Knowledge of the functionality for which
the computation is being performed is necessary to optimize software
and to design novel hardware accelerators to be used alongside the
CPU. Generally, in Android smartphones, a particular thread or a group
of threads is responsible for a particular functionality. By identifying
the threads having high execution times, one can identify the function-
ality that consumes higher CPU time and should be optimized. Hence,
we focus this paper on trying to answer the following questions.

» Which are the most time-consuming threads per app?

* Are there any common threads across a cross section of apps that
end up consuming the most time?

» Which threads take up the most time during app launch?

We believe that this type of analysis will help the process of developing
high performance software but and helps identify potential hardware
acceleration opportunities for mobile devices. Since many previous
studies have pointed out the importance of app launch times for user
engagement and experience [20], we also pay special attention to app
launches as a region of interest. Overall, the major contributions of this
work are as follows:

We identify and perform system-level tracing of eleven popular
mobile applications on actual hardware, running Pie version of
Android (Android 9), which helps us analyze time consumed by
application and OS threads.

To better represent performance information, we group threads
into bins based on their functionalities. This helps us increase
interpretablity of results and analyze the time consumed per
functionality.

We identify that for majority of applications, the most time
consuming thread is a system-managed thread named Ren-
derThread or another thread involved in frame rendering.
Using thread bins, we identify that although the most time-
consuming thread is almost always a thread related to frame
rendering, a larger portion of execution time is consumed by the
group of threads responsible for Inter Process Communication
(IPC). This insight makes inter process communication a potential
target for software optimization and hardware acceleration.

Table 2
Smartphone details.

Technical specifications

Device model Nokia 6.1 Plus

Operating System Android Pie

Architecture ARM 64-bit

CPU Qualcomm Snapdragon 636
Cpu Cores 8

GPU Adreno (TM) 509

RAM 6 GB

Resolution 1080 x 2280

Display PPI 431

2. Methodology
2.1. Applications traced

We choose eleven applications for our study, each of which rep-
resents a common use case of a smartphone. For example, we in-
clude Google Chrome [13] as a browsing app, Youtube [17] as video-
streaming app, WhatsApp [16] as a messaging app, and Gmail [11]
as a mailing app. Most of the selected apps come pre-installed in the
majority of Android smartphones. We select the remaining apps based
on their popularity which we measure using their position on Google
Play [21] Store’s Top Charts. The selected apps were at the top of the
Top Charts when we performed our study .

Prior work [1] suggests that one should divide the applications into
regions-of-interest (ROI) to gain deeper insight into the applications. A
region-of-interest (ROI) is a smaller portion of the application’s execu-
tion which performs a particular task. For example, Google Chrome has
multiple regions-of-interest like performing a search, switching a tab,
and scrolling. Each of these ROIs deals with a specific functionality of
Google Chrome. The reason for dividing the applications into ROIs is
that these individual ROIs can directly influence user-experience and
studying them independently of each other reduces the complexity of
analysis that needs to be performed. We provide a comprehensive list
of all applications we trace and their ROIs in Table 1. Apart from the
ROIs mentioned in Table 1, we also trace the app launches for all apps.

2.2. Tools and setup

For system-level (app + operating system) tracing, we use the
Systrace [22] tool. Systrace is a tool shipped with Android Studio and
is primarily used for analyzing the performance of an Android device.
It is a wrapper around Atrace [23] and Ftrace [24]. Atrace performs
user space tracing while ftrace traces the Linux kernel. The traces
capture not only the threads spawned by the app, but also background
threads being executed by the Android operating system. From the
traces obtained using Systrace, we find the time for which each thread
executes on the processor core.

To trace the ROIs, we start Systrace tracing and perform the task
related to the ROL. We immediately stop Systrace tracing when the task
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Fig. 1. Effect of Binning. Results for Google Chrome’s scrolling ROI.

of the ROI ends. We perform tracing for each region of interest of each
app at least five times.

We perform our experiments on Nokia 6.1 Plus [25] smartphone.
It runs the stock Android Pie (Android 9) operating system. Further
details about the smartphone are presented in Table 2.

2.3. Binning threads

The Android operating system and the apps spawn a large number
of threads. Since Systrace performs system level tracing the generated
traces have information for a large number of threads. This leads to
the resulting plot being cluttered and difficult to interpret. Hence, to
reduce clutter and improve interpretability, we group threads working
for a common functionality into a single bin. We identify two major
bins which aid our analysis. They are:

» Frame Rendering Bin (FR Bin)
« Inter-Process Communication Bin (IPC Bin)

Fig. 1 shows the effect of thread binning. The pie chart on the
top in Fig. 1 shows the execution time distribution across individual
threads for Google Chrome’s scrolling ROI. After thread binning, the pie
chart on top is transformed to the one on the bottom. The latter shows
execution time distribution among selected bins and the remaining
threads. Observing the bottom pie-chart, we can easily infer that the
major portion of execution time is spent on frame rendering. We were
able to create two classes of thread bins based on the functionality
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Table 3
List of threads within bins.

Frame rendering bin

RenderThread
surfaceflinger
UiThread
Compositor
CrGpuMain
CrRendererMain
android.display
mdss_fb0
DispSync
android.anim

Above list is not exhaustive

Inter Process Communication Bin

Binder

HwBinder
Chrome_IOThread
Chrome_ChildIOT

of individual threads. While binning threads, we ensured that threads
were mapped to correct bins and that no thread was mapped to more
than one bin.

Frame Rendering Bin : The Frame Rendering (FR) bin is a group of
all threads which are responsible for rendering a frame on the mobile
device’s screen. Table 3 provides a list of threads within this bin.
The major threads within this bin are RenderThread, Surface-
Flinger and UiThread.

Inter Process Communication Bin : The Inter Process Communi-
cation (IPC) bin is a group of all threads that are executed to share
information between processes. Table 3 provides a comprehensive list
of all threads within this bin. The major threads within the IPC bin are
Binder and HwBinder.

3. Results and observations

In this section, we discuss the answers to the questions that we
initially set out to answer in Section 1.

3.1. What are the most time-consuming threads/bins per app?

Table 4 shows the most time consuming threads for each re-
gion of interest for all eleven applications. We observe that for most
ROIs across applications, RenderThread is the most time-consuming
thread. RenderThread is a system-managed thread that is primarily
responsible for offloading rendering work to GPU to reduce the burden
on UiThread [26]. By doing so it ensures the animations are smooth
even when the UiThread is delayed, which is essential to maintain
Quality-of-Service (QoS) for the user [26]. RenderThread is the
most time-consuming thread in ROIs like scrolling in Facebook and
Chrome, messaging using WhatsApp and Gmail, recording a video,
or playing a song in foreground on Spotify. All these ROIs involve
frequent modifications to the user display which justify most time being
consumed by RenderThread.

For the game Candy Crush, GLThread is the most time-consuming
thread. GLThread is also a rendering thread and is responsible for
performing OpenGL graphics rendering operations [27]. Similarly, for
Google Maps’ “Zoom into a location” ROI, GLViewThreadImp is the
most time consuming thread. GLViewThreadImp is responsible for
managing Views, which are basic building blocks of user-interface com-
ponents, of the OpenGL graphics library [28,29]. For Google Chrome
Search ROI, we observe that CrRendererMain is the most time-
consuming thread. CrRendererMain is the renderer thread for a
webpage. As per Chromium’s documentation, CrRendererMain runs
the javascript, html and css code which is displayed on the screen [30].
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Table 4
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Most time-consuming thread and bin per ROI. Numbers within parenthesis indicate percentage execution time.

Application Region of Interest Most time consuming thread Most time consuming bin
Adobe Read PDF om.adobe.reade (13.6%) FR (26.7%)
Camera Take a picture PostProcessinglmag (14.5%) IPC (30.3%)
Camera Record Video RenderThread (11.0%) IPC (22.1%)
Candy Crush Play 1 level GLThread (45.2%) FR (54.2%)
Facebook Scroll RenderThread (17.2%) IPC (23.1%)
Gmail Send Mail RenderThread (17.3%) IPC (29.8%)
Google Assistant Query RenderThread (11.2%) IPC (25.4%)
Google Chrome Scroll RenderThread (19.4%) FR (43.4%)

Search
Search Location
Zoom into Location

Google Chrome
Google Maps
Google Maps

Spotify Play Music in Background
Spotify Play Music in Foreground
Whatsapp Send Message

YouTube Play Video

CrRendererMain (13.4%)
Jit thread pool (11.6%)
GlViewThreadImp (17.1%)
AndroidOut_1D (6.2%)
RenderThread (27.4%)
RenderThread (19.4%)
ExoPlayerImplIn (8.8%)

IPC (33.8%)
IPC (26.4%)
FR (26.6%)
IPC (20.6%)
FR (39.2%)
IPC (35.8%)
IPC (38.6%)

Overall, the most time-consuming threads for these ROIs are involved
in rendering the frame on user display.

For YouTube’s “Play a Video” ROI we observe that ExoPlayerIm-
plIn is the most time-consuming thread. This thread runs ExoPlayer
that is an alternative media player for Android [31,32]. For Cam-
era’s “Take a Picture” ROI, PostProcessinglImag thread is the
highest time-consumer. From the thread’s name, we hypothesize that
this thread might be involved in an image’s post-processing which
involves tasks like setting the exposure, white balance, and applying
selected filters. Unfortunately, we do not find any documentation on
om.adobe.reade and AndroidOut_1D threads and hence cannot
comment on their functionality.

Overall, for 7 out of 15 ROIs concerning the eleven applications
involved in our study, RenderThread is the most time-consuming
thread. Further, the highest time-consuming threads in 10 of 15 ROIs
are working on the appropriate rendering of the frame. One should
also note that the execution time of RenderThread is not contiguous.
Execution times of multiple instances of RenderThread are added
together to obtain the total execution time. We find that each individual
instance of RenderThread is short-lived, on average it takes 0.73 ms
to execute, and there exists thousands (1000-2000) of such instances
within each region of interest.

The above results may lead one to conclude that frame rendering
is the major time consumer for the applications since the most time
consuming thread for majority of applications is related to frame-
rendering. However, we find that this is not the case when we analyze
the results for thread bins. Table 4 shows that the most time consuming
bin is the Inter Process Communication (IPC) bin. The IPC bin is the
highest time consumer for 10 out of 15 ROIs across the applications.
This indicates that even though the major time-consuming thread is
related to frame rendering, as a whole, threads used to communicate
between processes are the larger time-consumer than threads involved
in frame rendering. This observation indicates that inter process com-
munication might be a bigger bottleneck for mobile applications than
frame rendering.

3.2. What are the time-consuming threads which are common across apps?

We isolate the common time-consuming threads across applica-
tions. We believe optimizing these threads would result in higher
performance benefits across applications. We observe the following
time-consuming threads to be common across apps:

RenderThread: It is the most time consuming thread for 7 out of
15 ROIs under consideration and it is one of the top three most time
consuming threads for 11 out of 15 ROIs. It offloads the rendering tasks
to GPU from the UiThread, to maintain the smoothness of animations
by avoiding frame drops [26].

surfaceflinger: It is the dominant time-consuming thread after
RenderThread within the Frame Rendering bin. It is one of the

Table 5
Most time-consuming thread and bins on app launch. Numbers within parenthesis
indicate the percentage of execution time occupied by the thread/bin.

Application Most time consuming thread Most time consuming bin
Adobe om.adobe.reade (12.6%) FR (23.5%)
Camera RenderThread (14.9%) IPC (35.2%)
Candy Crush GLThread (44.6%) FR (57.9%)
Facebook Jit thread pool (11.6%) IPC (12.6%)

Gmail Jit thread pool (10.2%)
Google Assistant RenderThread (11.6%)
Google Chrome RenderThread (11.6%)
Google Maps Jit thread pool (14.0%)

IPC (32.1%)
IPC (39.7%)
IPC (36.6%)
IPC (23.2%)

Spotify m.spotify.musi (13.9%) FR (18.0%)
Whatsapp RenderThread (19.4%) IPC (36.0%)
YouTube RenderThread (12.5%) IPC (25.1%)

top three most time consuming threads for 5 out of the 15 ROIs.
The surfaceflinger thread takes in multiple items from various
graphics buffers and composes them into a single buffer which is then
sent to the user display [33].

Binder: The Binder threads are a major time consumer for the
Inter Process Communication bin. They are used for communication
within application processes and within framework and application
processes [34]. The framework processes are managed by the Android
framework and are device-independent.

HwBinder: Similar to Binder threads, HwBinder threads are
also a major time consumer for the Inter Process Communication bin.
They are used for communication between framework and vendor
processes [34]. The vendor processes are processes spawned by the
code that the vendors add to Android framework and are generally
device-dependent.

3.3. What are the time-consuming threads during an app launch?

App launches are crucial regions of interest in the context of smart-
phones. One might think that reducing app launch time results in fewer
benefits than reducing the app’s running time. Although this statement
is true and intuitive, app launches are important because of the usage
pattern of smartphones. Many users have a large number of short-lived
sessions on their smartphones. These short sessions last for less than
10 seconds [20]. During these short sessions, a long app launch time
significantly degrades user experience, which is the reason why several
efforts have been made to optimize app launch time. For example,
Android preserves an apps memory even after it is closed, so the time
taken by an app launch in the future can be reduced [35].

We trace the app launches of each of the apps listed in Table 1.
Table 5 shows the most time-consuming thread and bin during the
launch of the applications. We observe that RenderThread con-
sumes a large percentage of execution time for the majority of the



V. Gohil, N. Ujjainkar, J. Mekie et al.

applications. During an app launch, RenderThread is the most time-
consuming thread for 5 out of the 11 apps, while it is in the top 2 most
time-consuming threads for 9 out of the 11 apps. This is expected since
when a new application is launched, new views corresponding to the
launched application need to be rendered on the screen.

Similar to other ROIs, the Inter Process Communication bin is the
highest time consumer during an app launch. This indicates that opti-
mizing Inter process communication would also optimize app launches
which would directly improve Quality of Service (QoS).

4. Related work

Several prior publications have focused on evaluating performance
and energy of smartphones by characterizing the hardware. For exam-
ple, Gao et al. [6,7] demonstrated that mobile applications had low
Thread-Level Parallelism (TLP) leading to under utilization of allocated
cores. A recent work by [5] studied the core utilization in smartphone
architectures which have both big and little cores. They report that
standalone applications rarely utilize all big cores during execution,
however during application launches or updates all big cores are uti-
lized to meet latency targets and avoid degradation in user experience.
Most of these works primarily try to answer the question, “For what
percentage of execution time is the core being utilized?””. While answering
the above question is crucial to identify performance inefficiencies, it
does not provide insights into the system software stack that may help
alleviate these bottlenecks. Our work supplements the prior work by
identifying the functionalities (IPC and RenderThread) which have the
highest execution time, which on optimization would lead to significant
performance benefits.

There have been some research that takes a software-first approach
for performance analysis of smartphone applications. [36] use static
code analysis to identify frequently occurring performance bug pat-
terns in applications. Further, [37] develop a tool that can automat-
ically detect performance bottlenecks on Android smartphones. How-
ever given the nature of the Android ecosystem and the frequent
major release cycles require constant performance bottleneck analysis
of the system software stack as well. Our work complements such
works which perform a software-focused performance analysis. Instead
of using any form of static analysis, we identify the time consuming
threads of smartphone applications by actually running the applica-
tions on a real-world smartphone and provide targets for performance
optimization.

5. Limitations and future work

Our current study is limited to Android Version 9. Because of the
quick moving nature of the Android ecosystem, owing to yearly release
cycles, new versions of Android had been released while we were
undertaking this study.

In addition, there is a lack of performance analysis tools for the
Android ecosystem, unlike x86/x64, where a large number of open
source, well maintained performance analysis tools exist, this is not
the case for Android on ARM. Lack of performance analysis tools
severely hampers the types of analyses that can be carried out. The
analysis done in this paper was carried out using Systrace [22], which
is supported for Android version 9. However, more recent Android
versions provide a tool called Perfetto [38] for system-level tracing.
Further, Perfetto on Android 9 requires the system tracing service to be
turned on, which was not possible due to the fact that we performed
our experiments on stock android [39]. These factors compelled us to
limit out study to Android 9. However, we believe a study similar to
this work across Android versions could potentially reveal important
performance optimization trends. We also believe future work would
be a more comprehensive study by using more smartphone models and
different Android versions on each model.

The scope of this work is limited to answering the question “Which
functionality or subsystem of the Android system stack takes up highest
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portion of execution time?”. Although extremely important, this work
does not reveal what part within the subsystem needs to be optimized
and what kind of optimizations would be beneficial. For example, our
work indicates that the IPC bin consumes higher portion of execution
time but it does not point out which exact components of the IPC
subsystem should be optimized to reduce this time. As we have alluded
to before, this is primarily due to the of lack of tools which can be used
for such analysis. Tools like Systrace do not provide such information.

The presented analysis is limited to an Android smartphone. We
could not perform similar analysis on smartphones with other operating
systems because there do not exist any open-source tools that may act
as alternatives/equivalents of Systrace for those operating systems.

Finally, the work focuses on Regions of Interest (ROIs) for analyzing
the execution time breakdown. The authors have tried to select the
most relevant ROIs for each application, which is similar to studies
done in the past, which are based on the most common user behavioral
patterns, and whose performance determined user engagement [1,20].
However, we acknowledge that the set of ROIs for each application is
not necessarily the most representative nor is it necessarily exhaustive.
Future work will focus on identifying a much more representative and
exhaustive set of regions-of-interest for the application.

6. Conclusion

In this work, we performed a system level performance bottlenecks
analysis for an Android smartphone for eleven popular applications.
Our results demonstrate that for all applications, the highest time con-
suming thread is either RenderThread or another thread related to
frame rendering. Further, on grouping threads into bins based on their
functionality, we find that the highest time consuming functionality
is Inter Process Communication. We find similar distribution in time
consumption for both app executions and app launches. Our results
identify that software optimization and hardware acceleration should
target Inter Process Communication to maximize performance and
improve user experience.
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