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A B S T R A C T

Software patches are made available to fix security vulnerabilities, enhance performance, and usability.
Previous works focused on measuring the performance effect of patches on benchmark runtimes. In this
study, we used the Top-Down microarchitecture analysis method to understand how pipeline bottlenecks were
affected by the application of the Spectre and Meltdown security patches. Bottleneck analysis makes it possible
to better understand how different hardware resources are being utilized, highlighting portions of the pipeline
where possible improvements could be achieved. We complement the Top-Down analysis technique with the
use a normalization technique from the field of economics, purchasing power parity (PPP), to better understand
the relative difference between patched and unpatched runs. In this study, we showed that security patches
had an effect that was reflected on the corresponding Top-Down metrics. We showed that recent compilers are
not as negatively affected as previously reported. Out of the 14 benchmarks that make up the SPEC OMP2012
suite, three had noticeable slowdowns when the patches were applied. We also found that Top-Down metrics
had large relative differences when the security patches were applied, differences that standard techniques
based in absolute, non-normalized, metrics failed to highlight.
. Introduction

Operating systems are complex computer programs that are contin-
ously evolving to accommodate changes and updates to the underlying
ardware it runs on. Like any other piece of software, frequent updates
re released to address security issues, improve usability, enhance
erformance, and fix software bugs. These fixes have the potential of
ffecting performance, and it is essential to gain an understanding on
he effect software patches have on a system. It is through the use of
ell known performance metrics that a proper assessment of security
atches can be made by quantifying their effect, not only on overall
erformance, but on the different subsystems that make up a CPU.

In January 2008, two major vulnerabilities were reported, Spectre
nd Meltdown [1,2]. These vulnerabilities made it possible for attackers
o gain access to data, stored in memory or caches, by bypassing
ecurity mechanisms. The exploits took advantage of CPU features
hat make it possible to use speculative execution to increase CPU
erformance. It was fear that the security fixes would have a major
etrimental effect on performance by possible curtailing the speculation
apabilities of CPUs.

A number of studies on the effects of the Spectre and Meltdown
ecurity patches had on performance were published. In one study,

∗ Corresponding author at: Scientific Computation .
E-mail addresses: yhuerta@umn.edu (Y.A. Huerta), lilja@umn.edu (D.J. Lilja).

a number of Cray supercomputers were used to analyse the effects
patches had on runtime performance. A number of benchmarks were
tested, and it was found that the overall impact of the security patches
was minimal [3]. Another study, showed the effects different patches
had on two computational intensive workflows, pMatlab and Keras with
TensorFlow, on a Intel based cluster [4]. It reported that significant
negative effects, up to 21% for pMatlab and 16% for TensorFlow, once
the CPU microcode update was applied.

To quantify the effect a change on the configuration or code had
on performance, performance metrics such as the ones derived from
the Top-Down bottleneck analysis are used [5]. This approach, the
comparison of metrics after a change, is called differential analysis,
and it makes it possible to associate specific changes on the system or
code with changes on performance metrics [6]. A problem can arise
when absolute rates are compared. The issue is that the comparison
might provide an incomplete picture of changes between rates. Relative
changes, normalized with the purchasing power parity technique [7],
can provide additional information on the metric drift. This technique
has been used to account for differences across GCC compiler suite
releases [8] using the Top-Down bottleneck classification method. PPP
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made it possible to identify significant relative variations in different
Top-Down categories. The Top-Down classification, in conjunction with
PPP normalization, has been similarly applied to the AArch64 architec-
ture [9], where it was used to analyse strong scaling and its resulting
bottlenecks.

In this study, a comprehensive Top-Down and PPP analyses were
made to quantify absolute and relative bottleneck metric changes,
bottleneck drift, of a system when the Meltdown and Spectre security
patches were enabled. Our study makes the following contributions:

• We found little difference in all but one of the benchmarks
between patch settings.

• We showed that bottleneck profiles can differ even when security
patches had little effect on performance.

• We showed that relative rates can vary significantly, while abso-
lute bottleneck can remain relatively similar.

• We highlighted trends and differences in metrics that might have
otherwise gone unnoticed by standard evaluation practices.

Performance analysis and system characterizations is a time con-
uming and complex process. Checking the impact of security patches
equires multiple testing of different programs. Our approach makes it
ossible to compare bottleneck metrics by quantifying their absolute
nd relative changes when patches are applied. This makes it possible
o obtain a more complete picture of the effect security patches had on
ystems.

. Background

.1. Spectre and Meltdown vulnerabilities

The Meltdown vulnerability allows an attacker to gain read access
o all memory, even when lacking the appropriate privileges to do
o [2]. The Spectre exploit allows attackers to gain access to private
nformation through branch mispredictions [1]. For this study, we
ocused on the effect the patches had on pipeline bottlenecks. The
ollowing variant security patches were provided the OS vendor and
pplied to the system: [11,12]:

• Spectre, variant 1: This is a kernel patch fix that is always enabled.
It provides bounds checking during branching to prevent arbitrary
bypassing.

• Spectre, variant 2: This fix includes microcode and kernel patches.
It can be disabled to prevent performance impacts. It prevents
data leakage through indirect branch poisoning.

• Meltdown, variant 3: This is a kernel fix. It can be disabled to pre-
vent performance impacts. It prevents an attacker from reading
memory through speculative cache loading.

In the following subsections, we discuss the methods used to analyse
he performance impact of the security patches for Spectre, variant 2,
nd Meltdown, variant 3, had on the system.

.2. Top-Down classification method

The Top-Down analysis method is a bottleneck classification tech-
ique that identifies dominant bottlenecks of an application. This
ethod tracks CPU pipeline slots — resources needed to process a
icro-operation (uop). Uops are low level hardware operations of
icroarchitectural instructions which were generated to represent the

pplication being executed by the CPU. Pipeline slots are assigned into
our main categories: Frontend Bound, Backend Bound, Retiring and
ad Speculation [5]. A simple classification is applied to pipeline slots
o assign the bottleneck to the right category. If a slot was allocated,
t will be classified as Retiring if the slot is eventually retired. It will
e assigned to the Bad Speculation category if it is not retired. If the
lot cannot be allocated, it will be assigned to the Backend Bound
2

category if it is a back end stall. Otherwise, it will be assigned to the
Frontend Bound category. Back end stalls occur when there are not
enough resources in the back end portion of the pipeline to handle new
slots. Front end stalls take place when the front end cannot supply slots
to the back end portion of the pipeline. Non stalled slots are classified
as Bad Speculation, when a slot will never retire due to an incorrect
speculation, or slots were blocked by the pipeline due to recovery
operations due to an earlier bad speculation. Retired slots are the slots
that successfully completed their operations.

To apply the Top-Down analysis technique, a user would first com-
pute the main category metrics to identify which classification has the
highest bottleneck rate. Once a category is identified, the user can
narrow down the metrics needed to analyse by just focusing in the
subcategories of the selected main category. The user can continue gen-
erating metrics until the source of the problem is identified. Since our
goal is to provide a comprehensive view of the different components
that make up the processor, our experimental runs included multiple
categories. This made it possible to get a more complete picture of
bottlenecks across the processor, and a better understanding of how
the different processor components were affected by the use of security
patches. Table 1 lists the main Top-Down categories and subcategories
that were used in this paper, along the corresponding formulas needed
to compute the metrics. More in-depth descriptions, definitions and
techniques of the Top-Down metrics, and how to use the Top-Down
analysis method, were made available by the CPU vendor [13].

2.3. Purchasing power parity

Purchasing power parity theory underlies different methods to com-
pare the cost of identical products such as lattes, and iPods between
different countries, each of them with different currencies [7,14,15].
The most famous PPP index is the Big Mac Index (BMI), which was
developed by The Economist magazine [16]. The goal of the BMI is to
compare the strength of the currency by testing how much of the same
product a currency can buy when compared to another currency. A
currency is overvalued – when the product bought using that currency
is more expensive – or undervalued – when the product is cheaper –
when compared to a base currency.

The following is an illustrative example of the purchasing power of
the Chinese yuan versus the US dollar as described in The Economist
magazine. For this example, the dollar to yuan exchange rate is $1 = 6.4
yuan. The quoted Big Mac price was $5 and 20 yuan. Eq. (1) computes
the Big Mac exchange rate which is based on its local price.

20∕5 = 4 (1)

Eq. (1) shows that on the basis of Big Mac burger prices, the
exchange rate should be set at 4 yuans per dollar. Since the actual
exchange rate is 6.4 yuans per dollar, Eq. (2) shows that the yuan is
37.5% undervalued as compared to the US dollar.

(4 − 6.4) ∗ 100∕6.4 = −37.5 (2)

PPP theory can be used to determine the relative difference between
bottlenecks generated by the same benchmark but generated under
different system configurations. The currency used to compare the cost
is the number of cycles it took to run the program to completion. The
product being compared are the Top-Down metrics for each benchmark.
The goal is to show that a metric value can differ, or be similar to
another, as defined by the Top-Down formulas, while its true cost might
be relatively higher or lower, when compared to a baseline run. PPP
normalized rates close to 0% imply parity between the patches disabled
and enabled metrics. It takes about the same number of 𝐶𝑃𝑈 _𝑐𝑙𝑘 cycles
for a similar number of pipeline slots to achieve similar Top-Down
metric rates. For positive PPP rates, it implies that the patches enabled
𝐶𝑃𝑈 _𝑐𝑙𝑘 cycles are overvalued. It requires less cycles to achieve same
metric magnitude when compared to a configuration with the security
patches disabled. Negative PPP rates imply that the 𝐶𝑃𝑈 _𝑐𝑙𝑘 cycles
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Table 1
Top-Down Metric formulas for Intel Skylake processor [5,10].
Metric Formula

CORE_CLKS CPU_CLK_UNHALTED.THREAD_ANY/2
CLKS CPU_CLK_UNHALTED.THREAD
SLOTS 4 * CORE_CLKS
Frontend Bound
Frontend Bound IDQ_UOPS_NOT_DELIVERED.CORE/SLOTS
DSB ( IDQ.ALL_DSB_CYCLES_ANY_UOPS - IDQ.ALL_DSB_CYCLES_4_UOPS )

/CORE_CLKS
Branch Resteers (INT_MISC.CLEAR_RESTEER_CYCLES+BACLEARS.ANY )/CLKS
Bad Speculation
Bad Speculation (UOPS_ISSUED.ANY - UOPS_RETIRED.RETIRE_SLOTS

+ (4*Recovery_Cycles))/SLOTS
Recovery_Cycles INT_MISC.RECOVERY_CYCLES_ANY/2
Branch Mispredicts (BR_MISP_RETIRED.ALL_BRANCHES/(BR_MISP_RETIRED.ALL_BRANCHES

+ MACHINE_CLEARS.COUNT)) * Bad Speculation
Machine Clears Bad Speculation - Branch Mispredicts
Retiring
Retiring UOPS_RETIRED.RETIRE_SLOTS/SLOTS
Microcode Sequencer ((UOPS_RETIRED.RETIRE_SLOTS /UOPS_ISSUED.ANY)* IDQ.MS_UOPS)

/SLOTS
Base Retiring - Microcode Sequencer
Backend Bound
Backend Bound 1 - (Frontend Bound + Bad Speculation + Retiring)
Backend Bound, Memory Bound
Store Bound EXE_ACTIVITY.BOUND_ON_STORES/CLKS
L2_Bound_Ratio (CYCLE_ACTIVITY.STALLS_L1D_MISS-CYCLE_ACTIVITY.STALLS_L2_MISS)

/ CLKS
LOAD_L2_HIT MEM_LOAD_RETIRED.L2_HIT*

(1+MEM_LOAD_RETIRED.FB_HIT/MEM_LOAD_RETIRED.L1_MISS)
L1 Bound (CYCLE_ACTIVITY.STALLS_MEM_ANY-CYCLE_ACTIVITY.STALLS_L1D_MISS)

/CLKS
L2 Bound (LOAD_L2_HIT/( LOAD_L2_HIT + L1D_PEND_MISS.FB_FULL) )

* L2_Bound_Ratio
L3 Bound (CYCLE_ACTIVITY.STALLS_L2_MISS-CYCLE_ACTIVITY.STALLS_L3_MISS)

/ CLKS
DRAM Bound (CYCLE_ACTIVITY.STALLS_L3_MISS/CLKS) + L2_Bound_Ratio - L2_Bound
Backend Bound, Core Bound
Divider ARITH.DIVIDER_ACTIVE /CLKS
UPC UOPS_RETIRED.RETIRE_SLOTS/CLKS
Few_Uops_Executed
_Threshold

EXE_ACTIVITY.2_PORTS_UTIL * UPC/5

Core_Bound_Cycles EXE_ACTIVITY.EXE_BOUND_0_PORTS + EXE_ACTIVITY.1_PORTS_UTIL
+ Few_Uops_Executed_Threshold

Ports Utilization if ARITH.DIVIDER_ACTIVE < EXE_ACTIVITY.EXE_BOUND_0_PORTS
then Ports Utilization = Core_Bound_Cycles/CLKS
else Ports Utilization = (Core_Bound_Cycles -
EXE_ACTIVITY.EXE_BOUND_0_PORTS)/CLKS
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for a configuration with patches enabled are undervalued. It requires
more cycles to achieve the same metric value when compared to a
configuration with security patches disabled.

Top-Down metrics were computed using the formulas described in
Table 1. The use of CPU_CLK_UNHALTED. THREAD, or
PU_CLK_UNHALTED.THREAD_ANY to compute the PPP Exchange
ate, Eq. (3), was based on which PMU event the Top-Down metric

ormula used in its computation. Some metrics use CLKS while others
se the CORE_CLKS performance metric. The baseline 𝐶𝑃𝑈 _𝑐𝑙𝑘 values
sed for comparison were obtained from runs with the security patches
isabled.

𝑃𝑃 _𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒_𝑅𝑎𝑡𝑒 = 𝐶𝑃𝑈 _𝑐𝑙𝑘∕𝐶𝑃𝑈 _𝑐𝑙𝑘𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 (3)

Eq. (4) computes the PPP index. The baseline, represented by the
ariable 𝑀𝑒𝑡𝑟𝑖𝑐𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒, was the resulting Top-Down metric value with
he security patches disabled.

𝑃𝑃𝑃 = 100 ∗ ((𝑀𝑒𝑡𝑟𝑖𝑐∕𝑀𝑒𝑡𝑟𝑖𝑐𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)

−𝑃𝑃𝑃 _𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒_𝑅𝑎𝑡𝑒)∕𝑃𝑃𝑃 _𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒_𝑅𝑎𝑡𝑒
(4)

The following is an example of how to compute the drift in terms of
elative difference of the Retiring metric for the 370.mgrid331 bench-
ark. The Retiring metric was computed using the formulas provided

y the Top-Down method as shown in Table 1, and the results were
ound to be 0.06789046 when patches were enabled, and 0.09773369
 p

3

hen patches were disabled. The PPP exchange rate was computed
sing the PMU event, CPU_CLK_UNHALTED. THREAD_ANY with a re-
ulting value of 1.46, Eq. (5). The drift between security patch set-
ings was found to be −52.42%, Eq. (6). When patches were enabled,
he CPU_CLK_UNHALTED.THREAD_ANY were overvalued. The system
sed more CPU_CLK_UNHALTED.THREAD_ANY cycles to retire a similar
umber of uops when patches were disabled.

1671652350125∕55924600475776 = 1.46 (5)

00 ∗ ((0.06789046∕0.09773369) − 1.46)∕1.46 = −52.42 (6)

In this paper, we use the relative change between metrics, the
ifference in Top-Down metrics between patch settings divided by the
etric value when patches were disabled, as an additional indicator

f the changes between patch settings. For the example just described,
70.mgrid331 had a relative change in its Retiring metric of −30.54%.
he relative change and PPP normalized rates give us a sense of the
elative change of the Top-Down metric between patch settings, not the
hange of its effect on the system. Additionally, PPP normalized rates
ive us information on the relative change when taking into account the
umber of core cycles that were used to compute the metrics, which
s useful when putting large percentage values in relative changes in
erspective.
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Table 2
SPEC OMP2012 Benchmark description [17].
Benchmark name Programming language Description

350.md Fortran Physics: Molecular dynamics
351.bwaves Fortran Physics: Computational Fluid Dynamics (CFD)
352.nab C Molecular Modelling
357.bt331 Fortran Physics: Computational Fluid Dynamics (CFD)
358.botsalgn C Protein Alignment
359.botsspar C Sparse LU
360.ilbdc Fortran Lattice Boltzmann
362.fma3d Fortran Mechanical Response Simulation
363.swim Fortran Weather Prediction
367.imagick C Image Processing
370.mgrid331 Fortran Physics: Computational Fluid Dynamics (CFD)
371.applu331 Fortran Physics: Computational Fluid Dynamics (CFD)
372.smithwa C Optimal Pattern Matching
376.kdtree C++ Sorting and Searching
3. Experimental setup

We used the Top-Down method in combination with the SPEC
OMP2012 benchmarks [17,18] to measure the effects of Spectre and
Meltdown patches have on the Intel 2021.1 compiler suite. The fol-
lowing compiler options were used as the default to compile most
benchmarks: -fopenmp -O3 -march=skylake-avx512 -g -pg. Some of the
benchmarks required additional or different options. The 371.applu331
benchmark used -fopenmp -O2 -march=skylake-avx512 -g -pg. 367.imag-
ck required the compiler option -std=c99 to be added to the default
ptions. Additionally, the option -FR was added to 350.md, while -
cmodel=medium needed to be added to the 363.swim and 357.bt331
enchmarks. The SPEC OMP2012 benchmarks are described in Table 2.
MP2012 results that followed the SPEC reporting guidelines can be

ubmitted for publication [19]. A two socket Intel(R) Xeon(R) Silver
110 CPU @ 2.10 GHz with 8 cores per socket, 2 threads per core was
sed running the CentOS 7.6.1810 Linux version installed. perf record
ollected the data from eight performance counters per experimental
un. There were at least five data points per performance counter for
oth patch settings. To compute Top-Down metric rates, the average of
he performance counter values was used.

It is possible to disable the Spectre variant 2 and Meltdown variant
through an interface made available by the Red Hat Linux vendor,
hich is also available to the CentOS distribution. The vendor also
ade available a script to check the state of the security patches, to

ee whether or not the system currently has its patches enabled or
isabled [12]. In this study, version 3.1 of the verification script was
sed. To disable the security patches, a 0 was stored in the following
iles located in /sys/kernel/debug/x86/: ibrs_enabled, retp_enabled and
ti_enabled. Patches were enabled by replacing the 0 with a 1 in the

same files.

4. Analysis of results

Fig. 1 shows the speedup gains or losses when the security patches
were enabled. There were at least 55 runs for each benchmark for
both patch settings, and the averages were taken to compute the
speedups. The plot shows that most benchmarks suffer about a 0.01𝑥
speedup loss. The exception is 360.ilbdc, which experienced a small
gain of 0.02𝑥, and 370.mgrid331, which had a negative effect close to
0.04𝑥. While these are not significant effects on runtime, we further
analysed the effects of the security patches through the use of the Top-
Down classification method to see how bottlenecks were affected on
a subset of benchmarks. We showed that while benchmark runtimes
were similar, their bottleneck profiles were different. With the use of
PPP techniques, we were able to highlight and quantify these relative
differences when compared to the baseline, a system with its security
patches disabled.

Table 3 shows the performance counters of significance that were

used to compute the Top-Down metrics. When the results followed a

4

Fig. 1. Speedup comparison for the Intel 2021.1 compiler suite when patches are
enabled using SPEC OMP2012 benchmarks with 32 threads and SMT enabled. Higher
is better.

normal distribution, the unpaired two-sample t-test was used. When
the results did not follow a normal distribution, the non parametric
two-samples Wilcoxon rank test was used. We had a minimum of five
runs per counter for both settings, patches enabled and disabled. P-
values for the performance counters were identified as significant at
values less than 0.05. For the Retiring category, there were more uops
delivered by the Microcode Sequencer for 358.botsalgn, 359.botsspar,
and 370.mgrid331 when patches were enabled. Additionally, 359.botss-
par had increases in number of uops issued by the resource allocation
table while at the same time the number of retiring slots increased when
patches were enabled. 358.botsalgn had the opposite effect.

For the Frontend Bound metric, 358.botsalgn, 359.botsspar, 360.ilbdc
and 370.mgrid331 had increases in the number of uops not delivered
to the resource allocation table per thread when the patches were
enabled. A higher number in none delivered uops could potentially
translate in the frontend under-supplying the CPU’s backend portion
of the pipeline. Similarly, the 358.botsalgn, 359.botsspar, 360.ilbdc,
370.mgrid331 and 371.applul331 reported an increase in the number
of times frontend resources are resteered when encountering branch
instructions in a fetch line with patches enabled. 358.botsalgn and
359.botsspar had decreases in the number of uops and 4 uops cycles that
were delivered to the instruction decode queue unit. These decreases
occurred when patches were enabled.
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Table 3
Performance counters of significance.
Performance counter Benchmark Category

BACLEARS.ANY 358.botsalgn, 359.botsspar, 360.ilbdc, 370.mgrid331, 371.applu331 Branch Resteers
BR_MISP_RETIRED.ALL_BRANCHES 358.botsalgn, 359.botsspar, 360.ilbdc, 370.mgrid331, 371.applu331 Branch Mispredicts
CPU_CLK_UNHALTED.THREAD 360.ilbdc CLKS
CPU_CLK_UNHALTED.THREAD_ANY 359.botsspar, 360.ilbdc, 359.botsspar CORE_CLKS
CYCLE_ACTIVITY.STALLS_L1D_MISS 359.botsspar L1, L2 Bound
CYCLE_ACTIVITY.STALLS_L2_MISS 359.botsspar L2, L3 Bound
CYCLE_ACTIVITY.STALLS_L3_MISS 359.botsspar, 370.mgrid331 L3, DRAM Bound
CYCLE_ACTIVITY.STALLS_MEM_ANY 358.botsalgn L1 Bound
EXE_ACTIVITY.2_PORTS_UTIL 359.botsspar Few_Uops_Executed_Threshold
EXE_ACTIVITY.EXE_BOUND_0_PORTS 358.botsalgn, 359.botsspar, 360.ilbdc Ports Utilization
IDQ.ALL_DSB_CYCLES_4_UOPS 358.botsalgn, 359.botsspar DSB
IDQ.ALL_DSB_CYCLES_ANY_UOPS 358.botsalgn, 359.botsspar DSB
IDQ.MS_UOPS 358.botsalgn, 359.botsspar, 370.mgrid331 Microcode Sequencer
IDQ_UOPS_NOT_DELIVERED.CORE 358.botsalgn, 359.botsspar, 360.ilbdc, 370.mgrid331 Frontend
INT_MISC.CLEAR_RESTEER_CYCLES 358.botsalgn, 359.botsspar, 360.ilbdc, 370.mgrid331 Branch Resteers
INT_MISC.RECOVERY_CYCLES_ANY 358.botsalgn, 359.botsspar, 360.ilbdc, 370.mgrid331, 371.applu331 Recovery_Cycles
MACHINE_CLEARS.COUNT 358.botsalgn, 359.botsspar, 360.ilbdc, 370.mgrid331, 371.applu331 Branch Mispredicts
MEM_LOAD_RETIRED.FB_HIT 358.botsalgn, 359.botsspar L2 Bound
MEM_LOAD_RETIRED.L1_MISS 358.botsalgn L2 Bound
UOPS_ISSUED.ANY 358.botsalgn, 359.botsspar Bad Speculation, Microcode Sequencer
UOPS_RETIRED.RETIRE_SLOTS 358.botsalgn, 359.botsspar Bad Speculation, Retiring, Microcode Sequencer
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In the Bad Speculation category, the following benchmarks had
ncreases of statistical significance when patches were enabled. 358.bot-
algn, 359.botsspar, 360.ilbdc, 370.mgrid331 and 371.applu331 had in-
reases in the number of events that require the clearing of the pipeline,
he number of mispredicted retired instructions, and the number of
talls due to recoveries from earlier clear events increased for these
enchmarks. In the core bound category, 358.botsalgn, 359.botsspar and
60.ilbdc had statistically significant increases of cycles with where
o uops were executed on all ports. 359.botsspar had an increase
n the number cycles in which 2 uops were executed on all ports.
n the memory bound classification, the number of execution stalls
ue data misses increased for 359.botsspar for L1D, 359.botsspar for
2, 359.botsspar and 370.mgrid331 for L3. Additionally, 359.botsspar
eported statistically significant increases for execution stalls due to
emory subsystem outstanding loads.

.1. Top-Down metrics

Fig. 2(a) shows the effects the security patches had on the main
op-Down categories. With the exception of 360.ilbdc, all Frontend
ound values dropped. This was driven by two factors when patches
ere enabled: the number of CPU_CLK_UNHALTED.THREAD_ANY in-

reased for all benchmarks, and the number of uops not delivered
o the resource allocation table when the backend portion of the
ipeline was not stalled, the IDQ_UOPS_NOT_DELIVERED.CORE perfor-
ance counter, stayed relatively the same. In the case of 360.ilbdc, the

pposite was true, the number of CPU clock cycles stayed relatively
he same while the number of uops not delivered increased by more
han 11%. This resulted in an increase of 7.5% in the Frontend Bound
etric when the security patches were enabled. Fig. 2(b) shows the

orresponding PPP normalized rates. Except for 360.ilbdc, which had a
PP rate of 3.67%, all benchmarks had negative PPP rates that ranged
rom −22% for 358.botsalgn and 359.botsspar, to −49% for 370.mgrid. As
he number of cycles, CPU_CLK_UNHALTED.THREAD_ANY, increased,
he number of uops not delivered increased modestly. Resulting in less
ot delivered uops per cycles, making the cycles undervalued. The runs
ith patches enabled handled relatively the same number of stalls with
ore core cycles.

The Retiring metric values decreased for all benchmarks when the
atches were applied. It had a drop of −30.53% for 370.mgrid331,
hile 350.md and 371.applu331 had drops of about −20%. 360.ilbdc
ad a drop of −2.73%. This is attributed to the increase in core cycles,
PU_CLK_UNHALTED.THREAD_ANY, while the number of retired slots

emained relatively the same when patches were enabled. PPP rates a

5

ecreased for all benchmarks. Expect for 360.ilbdc, all had at least a
24% drop, with 370.mgrid recording a drop of −52%. As the number
f core cycles increased with the security patches enabled, the number
f retired slots remained relatively the same. 370.mgrid had the largest
ncrease in core cycles, 46%, while 360.ilbdc had the smallest increase,
.73%. This explains the difference in magnitude in PPP rates.

The Bad Speculation metric had an increase of 101% for 350.md,
0% for 371.applu331, and 51% for 360.ilbdc when patches were
nabled. This is due to an increase of UOPS_ISSUE_ANY and Recov-
ry_Cycles while the number of UOPS_RETIRED.RETIRED_SLOTS stayed
elatively the same. The other benchmarks, 359.botsspar, 358.botsalgn
nd 370. mgrid331, had less than a −4% decrease in Bad Speculation
ates. Since the number of clock cycles, the denominator in the formula,
lso increased but at a larger rate, the Bad Speculation rate decreased
hen patches were enabled. While regular rates showed a decrease
f −4%, PPP normalized rates were larger in magnitude, 32.23% for
70.mgrid, 16.63% for 359.botsspar and 14.84% for 358.botsalgn. The
ffects of large increases in core cycles, 46% for 370.mgrid331, and
4% for 359.botsspar and 358.botsalgn, resulted in decreases of PPP
ates. There were more core cycles to do the same amount of work
nce the patches were enabled, which resulted in a depreciation in
he value of core cycles. The other benchmarks experienced gains in
PP normalized rates. 350.md had a gain of 57.15%, 371.applu331
ad a gain of 21.06%, and 360.ilbdc had a gain of 46.42%. The
ecovery_Cycles metric increased at a much larger rate for this subset
f benchmarks than the benchmarks with negative PPP rates. 350.md
ad an increase in Recovery_Cycles of 1334%, while 371.applu331 had
n increase of 1446% and 360.ilbdc had an increase of 983%. Positive
PP rates show that core cycles were overvalued, the same amount of
ork is being done with less core cycles relatively to baseline runs.

The 360.ilbdc benchmark saw less than a 1% difference in the
ackend Bound metric between patch settings. For 360.ilbdc, the Bad
peculation, Front End, and Retiring metrics stayed relatively the same,
esulting in a very similar Backend Bound rate. All other benchmarks
ad an increase in the Backend Bound rates because of lower Retiring
ates when patches were enabled. 370.mgrid331 had a 4% increase,
hile 371.applu331 recorded an increase of 6%. Other benchmarks had

arge increases. 359.botsspar had an increase of 19%, 350.md had a
5% increase, and botsalgn had a 76% increase. PPP rates increased
or benchmarks that had large increases in Backend Bound rates. For
nstance, 350.md had a core cycles increase of 28% but its Backend
ound rate had a larger effect when it increased by 54%, resulting in
PP rate of 20%. 370.mgrid331 had a core rate increase of 46% and

Backend Bound rate increase of 3.90%, resulting in a PPP rate of
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Fig. 2. Results of the Top-Down architectural bottleneck classification main categories.

−28%. When patches were enabled, the number of cycles increased for
ome benchmarks at higher rates than there were uops to be processed
esulting in negative PPP rate, while others had proportionally fewer
ycles for an increasing number of uops resulting in overvalued cycles
nd positive PPP rates.

The following subsections describe the effects of the security patches
ad on different Top-Down subcategories.

.1.1. Frontend bound
Frontend Stalls track the fraction of slots that were affected when

he frontend of the pipeline undersupplies the pipeline’s backend. Two
ubcategories were examined in this paper: DSB and Branch Resteers.
he DSB metric tracts the fraction of CPU cycles that were affected by
he decoded uop cache, DSB, fetch pipeline. Branch Resteers account
or the CPU stalls due to branch resteers, delays from a corrected path,
fter a mispredicted branch. Fig. 3(a) shows that the Branch Resteers
etric increased when the security patches were enabled. This is due to

ncreases in the number of cycles the issue stage had to wait to recover
rom bad speculation events, while at the same time, the number of
PU_CLK_UNHALTED.THREAD decreased or stayed the same. For ex-
mple, 350.md had a Branch Resteers rate increase of 329% due mostly
6

Fig. 3. Frontend Bound subcategories.

in part to an increase of 234% in INT_MISC.CLEAR_RESTEER_CYCLES,
and a slight decrease of −2.58% for CPU_CLK_UNHALTED.THREAD.
360.ilbdc had a increase of 117.93% for Branch Resteers resulting
from an increase of 61.81% in INT_MISC.CLEAR_RESTEER_CYCLES,
and a decrease of −19.65% in CPU_CLK_UNHALTED.THREAD. Nor-
malized PPP rates for the Branch Resteers metric were all positive,
Fig. 3(b). While CPU core cycles increased, Branch Resteers increased
at higher rates. The largest percentage increases in PPP rates reflect
large increases in Branch Resteers while lower increasing rates for
core cycles. That is the case for 350.md, which had a PPP rate of
340.42%. Its core cycles rate increased by 28.16% while its Branch
Resteers rate increased by 329.04%. Similarly, 360.ilbdc had a PPP
rate of 171.25%, because of an increase of 3.73% in core cycles and
a 117.94% increase in Branch Resteers when patches were enabled.
Core cycles were overvalued, when compared to their baseline, because
fewer core cycles had to do relatively less work.
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The DSB metric decreased when patches were enabled. While the
number of uops that were delivered to the instruction decode queue
remained the same or had a slight decrease, there were increases
in CPU_CLK_UNHALTED.THREAD_ANY, the divisor. This resulted in
more CPU cycles for the same number of delivered uops for all the
benchmarks. For instance, 370.mgrid331 and 350.md had increases of
6% and 28.16% for CPU_CLK_UNHALTED.THREAD_ANY, resulting in
SB decreases of −35.54% and −23.05% respectively while the uops
elivered stayed relatively the same. DSB PPP rates were negative for
ll benchmarks. The number of core cycles increased while DSB rates
ecreased when patches were enabled. The benchmarks with the high-
st rates reflect the large increases in core clocks and decreases in the
SB rate. That is the case for 370.mgrid. It had a PPP rate of −55.87%,
n increase of 46.04% for its CPU_CLK_UNHALTED.THREAD_ANY value
nd a decrease of −35.55% for its DSB rate. The lowest PPP rate was
eported by 360.ilbdc. It had a small increase in core cycles, 3.73%,
nd a decrease in DSB rate of −9.29%.

.1.2. Retiring
The Retiring category represents the fraction of pipeline slots of

seful work, the uops that were eventually retired. The Microcode
equencer metrics is a retiring subcategory that accounts for pipeline
lots of uops that were retired and were fetched by the microcode
equencer ROM. The Base metric tracks retired uops that did not
riginate from the microcode sequencer. Fig. 4(a) shows that Base rates
cross all benchmarks decreased when patches were enabled. This was
ue to lower Retiring rates. PPP rates for the Base metric rates were
egative, reflecting the increasing number of core cycles as the Base
ates decreased, Fig. 4(b).

When the security patches were enabled, 370.mgrid331 and 371.ap-
lu331 had lower Microcode Sequencer rates, −21.54% and −18.56% re-
pectively. This resulted from an increase in core cycles,
PU_CLK_UNHALTED.THREAD _ANY, the divisor in the metric for-
ula, while the other performance counters remained the same. The

ther benchmarks had similar or slightly higher Microcode Sequencer
ates because the number of uops delivered by the microcode se-
uencer, IDQ.MS_UOPS, increased at a similar or higher rate than
PU_CLK_UNHALTED.THREAD_ANY. 360.ilbdc was the only bench-
ark with a positive PPP rate, 7.51%. This was due to an increase of
1.52% in the Microcode Sequence rate when patches were enabled
hile the number of core cycles increased modestly, 3.73%. All other
enchmarks had negative PPP rates, up to −46.28% for 370.mgrid331

because of the large increase of core cycles and a decrease in the
Microcode Sequencer rate when the security patches were enabled.

4.1.3. Backend bound
The Backend Bound metric measures the fraction of slots where

no uops were delivered to the backend portion of the pipeline due to
bottlenecks in the computational or memory subsystems. This metric
is further divided into Memory and Core Bound subcategories. In this
study, the following memory subsystem stalls due to load accesses were
tracked through their corresponding Top-Down metrics: L1, L2, L3 and
DRAM. Additionally, the Store Bound metric tracks stalls due to store
memory accesses.

The numerator of the L1 Bound metric is the difference between
the number of execution stalls due to outstanding loads in the mem-
ory subsystem, CYCLE_ACTIVITY.STALLS_MEM_ANY, minus the num-
ber of stalls due to outstanding L1 cache miss demand load, CY-
CLE_ACTIVITY.STALLS_L1D_MISS. When the security patches were ap-
plied, both type of stalls increased, Fig. 5(a). Some of the benchmarks
had negative values because the CYCLE_ACTIVITY.STALLS_L1D_MISS
values were larger in magnitude. This was the case for 359.botsspar,
360.ilbdc and 370.mgrid331, which had a negative L1 Bound rate only
when patches were enabled. 350.md, 358.botsalgn and 371.applu331
ad all positive L1 Bound rates. 350.md had an increase of 31.39%
7

Fig. 4. Retiring subcategory.

and 358.botsalgn an increase of 30.67% with patches enabled due to in-
reases in stalls and a decrease in core cycles,
PU_CLK_UNHALTED.THREAD. 371.applu331 had a decrease in the

L1 Bound rate of −40.83%. It had a small decrease in the core cy-
cles, and a higher increase in stalls due to L1 cache miss activity,
CYCLE_ACTIVITY.STALLS_L1D_MISS, than stalls due to the memory
subsystem, CYCLE_ACTIVITY.STALLS_MEM_ANY.

L2 Bound rates were higher when the security patches were enabled.
This was attributed to large increases in the L2_Bound_Ratio rates,
higher execution stalls for L1 cache misses,
CYCLE_ACTIVITY.STALLS_L1D_MISS, and a decrease in
CPU_CLK_UNHALTED.THREAD. 370.mgrid 331 had an increase of
32.11% while 359.botsspar and 371.applu331 had increases in the low
20s. L3 Bound rates increased with patches enabled. This was due
mostly by increases in execution stalls for L2 cache misses,
CYCLE_ACTIVITY.STALLS_L2_MISS, and a decrease in core cycles,
CPU_CLK_UNHALTED.THREAD. 370.mgrid331 had an increase of
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Fig. 5. Memory Bound subcategories which are part of the Backend Bound
classification.

66.46%, while 371.applu331 had an increase of 40% and 359.botsspar
an increase of 29.27%.

DRAM Bound rates increased when patches were enabled due
mainly to increases in stalls while L3 cache miss load demands were
waiting, CYCLE_ACTIVITY.STALLS_L3_MISS, and decreases in core cy-
cles, CPU_CLK_UNHALTED.THREAD. The L2_Bound_Ratio also
increased but had a smaller effect on the DRAM Bound results.
370.mgrid331 had a DRAM Bound rate increase of 45.08%, while others
had increases of 37.41% 360.ilbc, 31.32% for 359.botsspar, and 21.42%
for 371.applu331. Store Bound rates also increased when patches were
applied. This was the result of increases in the number of cycles when
the store buffer was full, EXE_ACTIVITY.BOUND_ON_STORES, and a
decrease in the number of core cycles, CPU_CLK_UNHALTED.THREAD.
Two benchmarks, 360.ilbdc and 371.applu331, recorded gains of 39.25%
and 17.06% respectively.
 a
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PPP rates for DRAM, L2, L3 and Store Bound metrics were consis-
tently positive across all benchmarks, Fig. 5(b). This was the result of
increasing stall rates across these metrics while the number of cycles
decreased. There were fewer cycles to handle the increasing number
of stalls, so the cycles became overvalued when the security patches
were enabled. PPP rates also showed that while not all the benchmarks
had significant stall rates in some of the categories, the impact of the
patches was significant across all of them. That is the case of the Store
Bound metric. For this category, 371.applu331, and 360.ilbdc had the
argest Store Bound rates of at least 0.14, but the effects the patches
ad on all benchmarks were found to be of at least 19%, which was
he case for 371.applu331 and as much as 53.46% for 359.botsspar.

Large relative changes, as reported by PPP rates, of a metric that is
small in magnitude will not have a big effect on the overall Top-Down
classification results, it does gives us information on the relative effect
the security patches are having on the metric.

The L1 Bound PPP rates for 359.botsspar, 360.ilbdc and 370.mgrid331
were not computed because they provided no useful information since
the regular rates were negative. The regular rates were negative be-
cause of the large increases in the execution stalls due to L1 cache
misses, CYCLE_ACTIVITY.STALLS_L1D_MISS, when the security patches
were enabled. Not all benchmarks reported negative L1 Bound rates.
350.md and 358.botsalgn followed the premise previously stated that an
increasing number of stalls in combination with a decreasing number of
core cycles resulted in positive PPP rates. The PPP rates were 34.87%
for 350.md and 48.35% for 358.botsalgn. 371.applu331 had a negative
PPP rate of −39.96% because its drop in the L1 Bound rate when the
patches were applied.

Core Bound is the second set of subcategories of the Backend
Bound classification. They represent all non-memory related bottle-
necks. The Divider metric tracks the fraction of cycles in which di-
vide and square root operations used the DIV unit. When patches
were enabled, the number of cycles when the divide unit was busy,
ARITH.DIVIDER_ACTIVE, increased, while the number of
CPU_CLK_UNHALTED.THREAD remained the same or decreased.
Fig. 6(a) shows that the 360.ilbdc benchmark had an increase of
cycles that required root or division operations of 47.67% while the
number of core cycles decreased by −19.65%. For benchmarks that had
smaller increases in the Divider metric, the increase of cycles used in
division and root operations was smaller, while the number of core
cycles remained relatively the same. That is the case for 370.mgrid,
where CPU_CLK_UNHALTED.THREAD had an increase of 1.15% and
an increase in ARITH.DIVIDER_ACTIVE of 13.63%.

The Ports Utilization metric tracks the fraction of CPU cycles af-
fected by limitations in computational resources that do not involve
the DIV unit. For benchmarks 350.md and 371.applu331, the perfor-

ance counter ARITH.DIVIDER_ACTIVE was smaller in magnitude than
XE_ACTIVITY.EXE_BOUND_0_PORTS, as a result, the Ports Utilization
etric depended only on the Core Bound metric and
PU_CLK_UNHALTED.THREAD. Both of these benchmarks reported in-
reases in the Ports Utilization metric when patches were enabled. This
as attributed to increases in the Core Bound rates while the number of

ore cycles decreased slightly. The other four benchmarks had higher
XE_ACTIVITY.EXE_BOUND_0_PORTS rates, so the formula used to
ompute Ports Utilization had to include the
XE_ACTIVITY.EXE_BOUND_0_PORTS performance counter in the com-
utation of Ports Utilization. 358.botsalgn, 359.botsspar, and 360.ilbdc
ad increases of 34.64%, 33.75% and 44.63% respectively when patches
ere enabled. This was the result of increases in Core Bound rates, and
decrease in core cycles. 370.mgrid experienced only a 7.31% increase

ate because there was a small increase in core cycles and a smaller
ncrease in its Core Bound rate.

Ports Utilization and Divider PPP normalized rates followed the
ame patterns, Fig. 6(b). The rates were all positive, due to a decreasing
umber of CPU_CLK_UNHALTED.THREAD, while the Ports Utilization

nd Divider regular rates increased as the patches were enabled. The
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Fig. 6. Core Bound subcategories, which are part of the Backend Bound classification.

ighest PPP rates occurred when the Ports utilization had the largest
ncrease while the core cycles decreased the most. This is the case for
60.ilbdc. It had a PPP rate of 80.01%, because of an increase in the
orts Utilization rate of 44.63% and a drop in the core cycle count of
19.65%. The same benchmark had the highest Divider rate, 83.79%
hich resulted from a Divider rate increase of 47.67%.

.1.4. Bad speculation
The Bad Speculation metric is used to account for the slots that

ere wasted due to incorrect speculation. These uops will never get
etired. In this study, we analysed one additional subcategory, Branch
ispredicts, which had relevance due to its rates. The Branch Mis-

redicts metric tracks slots that were affected by wasted uops that
ere fetched from an incorrectly speculated path, or stalls that occur
hen the out-of-order portion of the machine needs to recover its state

rom a speculative path. With patches enabled, 350.md had an increase
 i
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Fig. 7. Bad Speculation subcategories.

in the Branch Misprediction rate of 103.74% due to an increase in
the Bad Speculation metric, Fig. 7(a). In this case, the branch mis-
prediction machine clear fraction, BR_MISP_RETIRED.ALL_BRANCHES
divided by difference between BR_MISP_RETIRED.ALL_BRANCHES and
Machine_CLEARS.COUNT, rate stayed relatively the same while the
number of bad speculation events increased. 360.ilbdc and 371.ap-
plu331 had increases of 96.57% and 104.25% in their Branch Mispre-
diction rates respectively, due to increases in the Bad Speculation rate
and the misprediction machine clears fraction. These increases resulted
from both, an increase of bad speculation events and the branch mis-
predictions machine clears fraction. 358.botsalgn and 359.botsspar had
mall Branch Misprediction decreases, less than −4% due to a decrease
n the Bad Speculation rate, while the misprediction machine clears
raction remained the same. For these two benchmarks, the effect of
he patches was a decrease in the number of bad speculation events
esulting in a lower Branch Mispredicts rate. 370.mgrid had a 6.82%
ncrease due to an increase in the misprediction machine clears ratio.
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PPP rates were affected by variations in the Branch Misprediction
rates, since all benchmarks had increased in CPU core cycles Fig. 7(b).
When patches were enabled, 350.md had a PPP rate of 58.98%, 371.ap-
plu331 had a rate of 64.15%, and 360.ilbdc had a rate of 89.50%.
More work for relatively less number of core cycles resulted in the
core cycles being overvalued when the security patches were enabled.
The opposite is true for 358.boltsalgn that a PPP rate of −14.92%,
359.botsspar which had a rate of −16.15%, and 370.mgrid331 that had a
PPP rate of −26.86%. For these benchmarks, the Branch Misprediction
rates either dropped or they stayed relatively at the same levels, while
the number of CPU core cycles increased. This resulted in less work for
an increasing number of cycles making the core cycles undervalued.

5. Conclusion

In this study, we analysed the effects that the Spectre and Meltdown
security patches had on CPU pipeline bottlenecks. Previous studies
reported the effects patches had on performance, by focusing on two
computationally intensive workflows [4] on an Intel based cluster,
and on a diverse set of multiple benchmarks on different Cray based
clusters [3]. The first study ran different tests under different condi-
tions: before patches were applied, and with patches applied one at
a time. This strategy was very comprehensive because some of the
security patches, the BIOS and microcode fixes, could not be disabled
once they were applied. The authors found that there was a negative
effect when patches were applied and even when they disabled some of
the patches via the vendor provided tunable feature, the performance
degradation on their workflows was significant. The microcode and
BIOS fixes had a major impact on performance. The second study
reported minimal effect on their results. The systems used in their
experiments were compared before and after all of the recommended
patches were applied.

Our work compares the effects patches had on the CPU’s pipeline
by comparing Top-Down bottleneck metrics. We did not run experi-
ments before all patches, including the microcode and BIOS fixes, were
applied so the performance baseline included the Spectre, variant 1
fix. We compared the effects of the Spectre variant 2 and Meltdown
variant 3 had on the test system. This comparison was possible because
the OS vendor added tunable features that can enable or disable the
two security patches, variant 2 and variant 3, to prevent a decrease in
performance. To quantify relative changes of the metrics between the
patch settings, we modified the Big Mac Index, a PPP theory based tech-
nique. This made it possible to compare Top-Down metric rates against
a baseline performance counter, either CPU_CLK_UNHALTED.THREAD,
or CPU_CLK_UNHALTED.THREAD_ANY. The goal was to determine if
the number of cycles used for a given operation, stalls for instance, was
relatively higher, lower or similar when compared to the same metric
when the patches were disabled. This relative difference can be used to
identify situations like the ones observed in the Backend Bound rates,
Figs. 2(a) and 2(b), where the rates dropped or stayed the same for
the regular rates, but the PPP normalized rates fell. This is the case
for 371.applu331, which had an increase in the Backend Bound rate of
5.70% but a decrease in the PPP rate of −15.05%. This drop was due
to an increase of 24.43% in core cycles. Similarly for 370.mgrid331,
its regular Backend Bound rates stayed relative little change between
patch settings, 3.90%. Its PPP normalized rate was found to be 28.86%,
because its cycle count increased by 46.04% between patch settings.
For both benchmarks, there were more cycles for the amount of stalls
as compared to the baseline, so the cycles became overvalued.

Other techniques, such as the Roofline model [20], can give users an
idea of how their code is performing relative to memory and floating-
point peak performance. Another approach is to use statistical methods
to model performance based on metrics such as cache hit rates and
memory latencies [21]. These tools can provide information on how
performance is affected when changes to the system settings or the

code base are made. But they have some limitations. Statistical models

10
provide information specific to the parameters that were used to create
the model. These parameters were selected after being found to be of
significance to the model. The Roofline model provides information
of the changes made to the system configuration, or code changes in
terms of memory and floating-point performance. Our study uses a
more general technique that was applied to different metrics, including
different categories of the Top-Down classification method.

We showed that Top-Down classification metrics varied when the
security patches were enabled. We were able to quantify the relative
changes when compared to a baseline run. Additionally, the use of
PPP normalized rates made it possible to put into context the large
percentage changes reported by the relative difference between metrics.
The next step is to understand the effects these relative changes, which
are not reflected in regular metrics, have on power efficiency. Our
goal is to identify relationships between CPU pipeline bottlenecks and
power efficiency before and after patches are applied. Other works
have focused on the effect Spectre and Meltdown patches had on
power efficiency by focusing in models based on performance metrics,
for instance instructions-per-cycle, and branches-per-cycle, to develop
models [22]. Our future work will focus in understanding the relation
between PPP rates and power efficiency.
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