
BenchCouncil Transactions on Benchmarks, Standards and Evaluations 1 (2021) 100010

F
M
D

A

K
D
D
P
A

1

r
m
i

C
p
t
p
d

t
t
a
a
d
t
g
r
p

a
u
c

(

h
R
A
2
B

Contents lists available at ScienceDirect

BenchCouncil Transactions on Benchmarks,
Standards and Evaluations

journal homepage: https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-
benchmarks-standards-and-evaluations/

allout: Distributed systems testing as a service
att Fleming ∗, Guy Bolton King, Sean McCarthy, Jake Luciani, Pushkala Pattabhiraman

ataStax Inc., United States of America

R T I C L E I N F O

eywords:
istributed systems
atabases
erformance
pache Cassandra, Pulsar

A B S T R A C T

All modern distributed systems list performance and scalability as their core strengths. Given that optimal
performance requires carefully selecting configuration options, and typical cluster sizes can range anywhere
from 2 to 300 nodes, it is rare for any two clusters to be exactly the same. Validating the behavior and
performance of distributed systems in this large configuration space is challenging without automation that
stretches across the software stack. In this paper we present Fallout, an open-source distributed systems testing
service that automatically provisions and configures distributed systems and clients, supports running a variety
of workloads and benchmarks, and generates performance reports based on collected metrics for visual analysis.
We have been running the Fallout service internally at DataStax for over 5 years and have recently open
sourced it to support our work with Apache Cassandra, Pulsar, and other open source projects. We describe
the architecture of Fallout along with the evolution of its design and the lessons we learned operating this
service in a dynamic environment where teams work on different products and favor different benchmarking
tools.
. Introduction

Building databases and distributed systems with high performance
equires thorough testing and benchmarking. The earlier that perfor-
ance testing can be done in the development process, the cheaper

ssues are to fix [1].
Software teams are now expected to use techniques such as

I/CD [2] to deliver frequent releases to users. For many types of
roducts, including distributed systems and databases, users also expect
he systems to be resilient, never lose data, and always achieve high
erformance. Strong automated testing tools are required to reduce
evelopment time and deliver stable products.

Automating the testing of complex distributed systems requires
ightly controlling every aspect of the software: from operating sys-
em configurations to application-level tuning. Fallout evolved into

full-stack orchestration system, enabling us to test and tweak all
spects of the distributed system under test. Fallout is a service that
eploys hardware resources, configures the operating system and dis-
ributed application, runs a workload or benchmark on the cluster and
athers the results for analysis. Through a rich YAML-based configu-
ation, every aspect of the system and application can be detailed and
arameterized.

We use Fallout to run a mixture of manual and automated testing
nd Fallout executes around 200 tests every day. These tests have been
sed to verify the performance of new features and optimizations, un-
over functional and performance regressions before they have shipped

∗ Corresponding author.
E-mail addresses: matt@codeblueprint.co.uk (M. Fleming), guy@waftex.com (G.B. King), sean.mccarthy@datastax.com (S. McCarthy), jake@datastax.com

J. Luciani), pushkala.pattabhiraman@datastax.com (P. Pattabhiraman).

to customers, and reproduce issues that were discovered in the field.
Recently, we have added support for chaos testing too. Automated
testing is driven by Jenkins which is the CI tool of choice for the
majority of our teams. The rest of this paper is organized as follows. In
Section 2 we discuss our rationale for building Fallout along with the
existing tools at the time. In Section 3 we present a high-level overview
of the Fallout design and dive down into the details in Section 4.
Section 5 illustrates how Fallout test run results are displayed for
users. Lessons learned, related work, and conclusions are covered in
Sections 6–8.

2. Background

Five years ago, we had a server-based performance testing and
comparison tool named cstar_perf that could bootstrap Apache Cas-
sandra onto an already provisioned cluster, run a workload against it,
and plot the performance results on a web page. The workload was
composed via a web UI and used cassandra-stress [3] to generate load
on the cluster. cstar_perf gave us some flexibility in that the Cassandra
installation could be configured in a number of ways but it also came
with many limitations. The size of the cluster was fixed and could
not be changed. The workload consisted of a number of linear steps,
each of which could invoke one of a small number of tools. This gave
us neither the modularity we needed to support diverse teams with
ttps://doi.org/10.1016/j.tbench.2021.100010
eceived 6 August 2021; Received in revised form 11 October 2021; Accepted 20 O
vailable online 4 November 2021
772-4859/© 2021 The Authors. Publishing services by Elsevier B.V. on behalf of
Y-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
ctober 2021

KeAi Communications Co. Ltd. This is an open access article under the CC

https://doi.org/10.1016/j.tbench.2021.100010
http://https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tbench.2021.100010&domain=pdf
mailto:matt@codeblueprint.co.uk
mailto:guy@waftex.com
mailto:sean.mccarthy@datastax.com
mailto:jake@datastax.com
mailto:pushkala.pattabhiraman@datastax.com
https://doi.org/10.1016/j.tbench.2021.100010
http://creativecommons.org/licenses/by-nc-nd/4.0/


M. Fleming, G.B. King, S. McCarthy et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 1 (2021) 100010
different preferences for benchmarks, tools, and workloads, nor the
parallelism required to run multiple tests at once.

Fallout was conceptualized to address these limitations. There was
a clear need to create a system that could seamlessly stitch together
a plethora of tools and systems built by internal teams so they could
be made to work together while remaining tool agnostic. It was also
desired to provide the ability to support any testing environment, be
it public or private cloud. Since Fallout needed to test distributed
systems, it needed to support scenarios involving multiple server/client
clusters and a myriad topology configurations as well as tools that
disrupt normal operation such as throttling the network bandwidth and
deleting cluster data. While cstar_perf gave us the ability to analyze
performance for a single test run we also wanted the ability to generate
better insights into results by gathering artifacts from those clusters.
To encourage adoption from a diverse set of stakeholders, Fallout was
required to be intuitive, simple, and self-documenting. The target user
group ranged from seasoned database engineers to non-developers.
Hence, Fallout needed to use a declarative language that was simple
for non-developers to write tests in. The artifacts involved in Fallout
were required to be persisted and versioned for future reference. All
of the test configurations, results, and artifacts were to be stored in
a single place so that everything could be trivially shared within our
organization.

In summary, Fallout addresses the following engineering challenges:

• Build a testing service that provides a single interface for multiple
teams to run test and benchmarking tools

• Use simple test configuration files to deploy tests into distributed
systems that accurately reflect real-world configurations

• Extract and preserve test run artifacts for later analysis
• Ease of use for both developers and non-developers.

The initial version of Fallout used Jepsen [4] as the workload
execution tool. This was largely a pragmatic choice since Jepsen was
well-known in the original Fallout team and using it avoided the need
to reinvent the wheel by creating a brand new tool. Fallout extended
Jepsen’s correctness testing features by creating operation logs during
test runs and allowing pass/fail checks to be run on test completion.
Over time, Fallout has evolved into a more performance-focussed ser-
vice but still retains a couple of the original Jepsen concepts such as
Checkers and operation logs.

3. Architecture

Fallout runs as a single service and exposes a REST API which
is accessible via a Python client API and command-line application,
and a web UI which users can access using a web browser. Fallout
supports multiple concurrent users while enabling each user to store
and execute tests independently. Read-only access of test configurations
is granted for other user’s test configurations which is especially handy
when multiple engineers are working on the same test since they can
clone the test configuration and collaborate. The Python client API and
command-line application are used by Continuous Integration tools to
submit tests to Fallout’s job queue. Once a job reaches the front of
the queue and hardware resources become available, Fallout deploys
and configures the test’s infrastructure (setup), runs the workload, then
collects test artifacts and tears down the infrastructure once the test is
complete. Results are published to a central server for analysis. Fallout
maintains logs of all the operations involved in each step of a test. An
overview of Fallout’s architecture is given in Fig. 1.

3.1. Cluster deployment

Test jobs are submitted to Fallout which internally schedules them
based on the available hardware resources in the infrastructure. To
provision the cluster in DataStax’s data center (private and public),
2

Fallout relies on a proprietary infrastructure tool, ctool. The open-
source version of Fallout includes support for using Google Kubernetes
Engine (GKE) to manage clusters. ctool is cloud provider agnostic and
abstracts the provisioning and deployment steps of Fallout tests so
that users only need to specify high-level requirements such as cloud
provider, instance type and region in a YAML test config file. Fallout
handles provisioning machines with GKE using the gcloud tool [5] and
includes logic for configuring resources that might be required for the
test. For example, Fallout will automatically add persistent storage to
the Kubernetes cluster so that test run artifacts can be downloaded
from the cluster once the test completes. Users can also specify custom
manifests in their test config files which configure cluster resources.
Fallout monitors all logs from the cluster and can display them in real
time via the Fallout web UI. Once the test completes and the cluster is
torn down, those logs are permanently stored on the Fallout server for
offline analysis.

Running performance tests against clusters requires applying work-
loads and benchmarks. Fallout also handles provisioning and config-
uring client nodes that generate these workloads. Metrics and statistics
are gathered for all the client and server nodes via a dedicated observer
instance that is configured for the test run in exactly the same way as
both client and server: via the test config. In each test, the observer
instance operates for the duration of the test run and allows Fallout
users to monitor metrics from the client and server in real time. Watch-
ing the live observer node is frequently important when re-running
a configuration that is known to exhibit performance issues and the
observer can be used to detect when a cluster has entered a bad state of
performance. At the end of the test, the observer metrics are archived
and saved locally to the Fallout server and available on the test run
web page. This enables analysis after the test execution has completed.
Lastly, Fallout tears down the infrastructure after the test completes
thereby returning the allocated resources to the cloud.

3.2. Application installation, configuration, and execution

The specific method used to install applications such as Apache
Cassandra and Pulsar varies between releases and engineers are often
unaware of the differences. Fallout automatically handles installation
and system configuration no matter which version is specified for the
test. Installation involves extracting tarballs on each node and updating
the cassandra.yaml config file to use the additional larger disks from the
deployment phase — Fallout also needs to handle configuration of each
individual node to work in the cluster. For instance, Apache Cassandra
requires the IP addresses of seed nodes in a cluster to be known and
listed in every node’s config file.

Benchmarking tools including profilers and metrics collection agents
are installed on the client nodes by Fallout. Fallout supports a wide
variety of tools though only a few of them are currently available in
the open source version. We plan on contributing more in the future.
Each benchmark can be configured using the same YAML interface
and individual options contained in the config will be specific to
each benchmark. As Fallout has gained popularity, more and more
benchmarks have been added since it is common for different teams
to favor different benchmarks. For example, YCSB is a popular open
source benchmark often used to compare relative performance of
NoSQL database management systems. The DataStax Stargate team use
YCSB to benchmark Stargate’s Document API performance for every
release.

Fallout was designed to accommodate this heterogeneity while still
providing the same interface to users. This has an added benefit —
because the complexity of supporting multiple benchmarks is primarily
hidden inside of Fallout, external services that use Fallout can automati-
cally work with any benchmark, reducing the effort required to support
new teams and new tools.



M. Fleming, G.B. King, S. McCarthy et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 1 (2021) 100010
Fig. 1. Fallout architecture.
3.3. Artifact collection and analysis

To aid with post-run analysis, Fallout saves a range of logs and other
artifacts locally on the central server so that they can be inspected
after the test run has finished. This is the most common situation for
analyzing metrics and other benchmark data collected as part of a
manual test run. For automated test analysis, Fallout will push the
archived metrics to a central Grafana server where other tools run
further analysis on them, including Hunter, our statistical significance
detection tool that uses change point detection [6]. Fallout uses artifact
checkers to inspect the logs for specific error or warning messages and
allows the test run to be marked as failed if any are present. Other
artifact checkers are used to post-process files. For example, the hdrtool
artifact checker merges HDR files [7] retrieved from multiple clients
and produces aggregated metrics.

Even when a performance regression is automatically detected by
Hunter, engineers might need to look at the metrics that were collected
during the test run to understand the cause of the performance issue.
When a user needs to check the observer metrics they can simply
download the archived artifact from Fallout, extract it to their machine
and use a docker image containing Grafana to display the metrics.

3.4. Integration with CI

Automated testing with Fallout is primarily driven via Jenkins.
Jenkins uses the Fallout API to launch test runs whenever a pull request

from GitHub is successfully built. We have configured Jenkins so that

3

it links directly to the Fallout test run for a given job (GitHub pull
request). Being able to navigate from the Jenkins job to the Fallout test
run acts as a breadcrumb trail and simplifies post-test run analysis.

We also run nightly and weekly performance tests that are sched-
uled outside of the GitHub PR-merge workflow but still rely on Jenkins
to call the Fallout REST APIs. Haxx is a git repository that acts as
a central location for storing Fallout test configs since Fallout itself
does not provide any kind of version control other than A) storing a
read-only copy of the YAML file from previous test runs and B) the
most recent version. Haxx also provides templating for Fallout YAML
files where common configuration snippets, such as optimal Apache
Cassandra configuration options, can be stored in template files and
reused across test configs. This allows us to significantly cut down on
the boiler plate code required to support a large number of tests where
only the machine size, version of Apache Cassandra, or benchmark
config is different. Better still, templates allow users to take advantage
of known-good performance options which ensures that they do not
waste their time analyzing performance issues that were the results of
poorly configured tests.

4. Implementation

Since Fallout was originally created as a wrapper around Clojure,
Fallout had to be written in another JVM language to make devel-
opment easier and Java was selected as the target language. Despite
Fallout development primarily being the responsibility of a very small

team, Fallout has benefited from a large number of contributors and



M. Fleming, G.B. King, S. McCarthy et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 1 (2021) 100010

s
l

f
t
h
p
m

4

h
r
o
a
o
N
t

u
a
a
t

4

w

Fig. 2. Example Fallout test configuration.
T
N
s
m
h
o
o
F
U
N
d
a
t

l
i

4

a
p
s
h

ince Java is widely used inside of DataStax the choice of programming
anguage is no doubt a contributing factor.

A similar desire to make the configuration interface as welcoming
or users as possible led to the decision to use YAML for the configura-
ion files. YAML syntax is easy to learn for new users and YAML syntax
ighlighting is readily available in IDEs and editors. Fallout’s web UI
rovides a built-in YAML editor with syntax checker for creating and
odifying test configurations.

.1. Test configuration files

Fallout test runs are driven by a single YAML configuration file that
as a number of required entries. Tests describe machines and services
unning on those machines. A node is a resource with services running
n it. An example of a node is a single Apache Cassandra node within
multi-node cluster. NodeGroups are collections of nodes. An example
f a NodeGroup is an Apache Cassandra cluster. An ensemble is a set of
odeGroups with a specified role and test run configuration files expose

his concept to the user. The list of ensemble roles is:

• Server: A distributed server or cluster such as Apache Cassandra
• Client: A benchmark or workload
• Observer: A monitoring server such as graphite
• Controller: An external controller such as Jepsen.

Fig. 2 shows an example of a Fallout test configuration file.
Workloads are built from one or more phases which are the basic

nit of concurrency in Fallout. Each phase can run one or more modules
nd specifying more than one module executes them in parallel. Phases
re always run sequentially and a phase will not start executing until
he previous phase completes.

.2. Test provisioning lifecycle

Each NodeGroup in a test transitions through a number of states

hen the test executes. There are three types of states: Unknown,

4

ransitional, and Runlevel. Transitional states are entered when a
odeGroup moves from one state to another. Runlevel states represent

teady states where a NodeGroup is not currently transitioning and are
odeled on the UNIX runlevel concept — NodeGroups progress to
igher levels where each level has more capabilities than the previous
ne. State transitions perform provisioning and configuration actions
n the NodeGroup and the current state of a NodeGroup is used by
allout to guarantee only legal transitions between states can occur.
sing the state machine, it is impossible for Fallout to configure a
odeGroup before it is provisioned. If any errors are encountered
uring a transition, for example if Fallout fails to install the distributed
pplication, the NodeGroup will enter the FAILED state and the entire
est run will fail.

A transition diagram is presented in Fig. 3. The oval states on the
eft and right represent Transitional states, and the rectangular states
n the center represent runlevel states.

.3. Modules, providers, and configuration managers

Adding support for a new benchmark or tool to Fallout requires
dding 3 new components to the Fallout code base: a module, a
rovider, and a configuration manager. Providers allow access to a
ervice or tool via an API and these are invoked by the Fallout test
arness to run commands on the node. For example, the NoSqlBench-
PodProvider is responsible for executing the nosqlbench [8] benchmark
on a Kubernetes pod. Providers can also have dependencies on other
Providers which makes it possible to express that a benchmark should
only be available when running on a Kubernetes cluster, for example.
Fallout supports Chaos Mesh [9], a tool for running chaos experiments
on a cluster, however since it is only available on Kubernetes Fallout
will refuse to deploy it into any environment that does not meet the
Kubernetes Provider dependency.

Configuration Managers are responsible for configuring and uncon-
figuring software running on nodes as well as starting and stopping

services. Additionally, Configuration Managers register Providers with



M. Fleming, G.B. King, S. McCarthy et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 1 (2021) 100010

n
w

M
p
v
i
b
m

Fig. 3. NodeGroup transition diagram.

odes, making the associated services available to Modules in a test
orkload.

Finally, Modules are the user-facing component of benchmarks.
odules define the supported keywords and parameters that can be

assed to the benchmark via YAML configuration files. Since this pro-
ides a layer of indirection between the test config and the benchmark
tself, it is common for only a subset of the parameters supported
y the benchmark to be supported in Fallout, though if users want
aximum flexibility there is usually an args parameter that passes

through parameters without any kind of filtering.
While Fallout supports a number of different benchmarks, one les-

son we have learned is that users need some kind of back-stop module
that allows them to manually run benchmarks for which no support
currently exists. A bash module is provided to fill the gap where users
need to run a simple script or download a benchmark to a node and run
it manually. Extended use of the bash module is frowned upon because
we have seen it lead to difficult to understand shell scripts that are
copied between test configs.

4.4. Checkers and artifact checkers

Once a test has completed, Fallout needs a way to validate that
the system under test behaved correctly for the duration of the test.
Checkers are the component in Fallout responsible for ensuring that
no errors occurred during the test that might invalidate the results.
This is important for performance tests even though the checkers do
not perform any kind of performance analysis themselves — any per-
formance results from tests that fail basic checks are likely to be invalid
because the test was not run under real-world conditions. NoFailChecker
is an example of a very basic checker that simply checks that none
5

Fig. 4. Average daily test runs by month.

Table 1
Test run statistics.
Year Total Mean Min Max

2016 759 8 0 44
2017 5512 15 0 101
2018 58625 160 0 562
2019 64633 177 0 361
2020 62616 171 0 421
2021 39945 197 34 349

of the Fallout operations that ran during a test failed. The history of
operations is passed to checkers as an argument so that they can run
arbitrary checks against it. There is no limit to the number of checkers
that can be included in a Fallout test and a test will only pass if all
checkers pass.

A related concept is the artifact checker which performs the same
kind of validation process on artifacts that are collected after the test
run completes. A frequently used artifact checker for Apache Cassandra
tests is SystemLogChecker which checks Cassandra’s system.log for the
presence of user-specified patterns such as log messages containing
‘‘ERROR’’ or ‘‘WARN’’.

4.5. Test queue

When Fallout was first launched, test runs were executed as soon as
they were submitted. As Fallout grew in popularity, contention for VMs
on our internal infrastructure resulted in tests failing. A simple queue-
ing mechanism was added to fix this that checked for VM availability
before attempting to submit a claim for resources. It has been tweaked
over time to become more robust and fair. For example, it now favors
users with fewer running test runs to prevent anyone monopolizing the
system. With this in place, Fallout now handles over 200 test runs a day.
Fig. 4 shows the mean number of daily test runs per month. Table 1
shows additional yearly statistics for this time period.

4.6. REST API

The Fallout command-line client is built using a Python library for
accessing the Fallout REST API. Making this API available instead of
only providing access to Fallout via the web UI has helped many other
services leverage Fallout’s test running capabilities and has no doubt
led to Fallout’s rise in popularity at DataStax. Recently, we have used
Fallout’s API and Python library to drive Fallout tests using pytest [10]
for a new project.

5. Results

Once one or more benchmarks have been run on a cluster, we use
multiple tools to display benchmark and OS metrics. Fallout includes a
built-in way to display client-side benchmark metrics as part of the web
UI but we usually collect many more metrics for runs such as Apache
Cassandra and OS metrics. We use a central Grafana server, known
as the history server, to display all of the historical metrics that are
accumulated during test runs.



M. Fleming, G.B. King, S. McCarthy et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 1 (2021) 100010
5.1. Performance reports

Fallout can generate performance reports which visualizes the met-
rics gathered from a single test run. Performance reports are built on
top of HdrHistogram datasets [7]. The HdrHistogram format is a de
facto standard for histogram data and implementations are available for
many benchmarking tools. A feature that we use heavily is the ability
to merge HdrHistogram data across multiple clients which makes it
possible to split load across nodes, collect individual HDR files, and
combine them to summarize the total load on the cluster. Finally, HDR
files capture both throughput and latency in a single file format. Fig. 5
shows an example of a performance report.

Metrics are displayed using time series data which is invaluable for
database workloads where the workload does not have a consistent
behavior, e.g. where it changes as memory-resident data structures fill
up and are flushed to disk. Being able to see metrics for the entire test
run duration makes it easier for users to spot situations where the test
hits an unexpected state. The metric data used to create graphs can be
altered by selecting an item from the drop-down menu on the right of
the page and in this example in Fig. 5 each phase of the test run records
a separate set of metrics. Digesting time-series metrics into a single
number is impossible to do manually, so we also provide summary
metrics that list throughput, mean, median, and percentiles for the test
run though these metrics are missing from Fig. 5 above due to lack of
space.

Performance reports are globally readable for all logged in Fallout
users and we have used this feature to share test runs across teams that
were collaborating on investigating performance issues — having a
single location to refer to for a test run’s performance helped everyone
to agree what work needed to be done next.

Individual performance reports can be grouped together into one re-
port which allows users to look for differences in performance between
test runs. Fig. 6 shows an example of a grouped performance report.

Graphed metrics for each run are displayed in the group report using
different colors and details of the runs are included below the chart in a
key which is not included in Fig. 6 again due to lack of space. The group
performance reports are particularly useful for comparing different ver-
sions of Apache Cassandra or different configuration options on either
the server or client side. When performance reports started appearing
in Jira tickets to illustrate performance improvements and regressions,
we knew that this feature had become successful as a way of quickly
visualizing the performance of benchmarks. Over time, these links to
performance reports have become even more useful as engineers have
been able to refer back to previous benchmarking with ready-to-run
tests they can reuse to troubleshoot new issues.

5.2. History server

Though performance reports offer a helpful way to look at the
performance of a small number of test runs for comparison, the fact that
all of the metrics from a test run are presented in a time-series chart
makes it unsuitable for analyzing historical trends. When we need to
understand how the performance of our automated tests have changed
over the past few days or weeks we use a central Grafana server we call
the history server. This server aggregates OS and application metrics
from both clients and servers for historical analysis and is one of the
ways that release engineers assess the quality of DataStax products.
Aggregated metrics are very coarse grained to reduce disk space usage
and calculate simple summary statistics — each metric is reduced to a
single data point per run regardless of the duration of the test run.

Given that the history server is a central component of quality en-
gineering for releases, it may be surprising that the hardware resources
used to run it are extremely modest. The original version of the history
server ran on a virtual machine with 1 CPU, 4 GB of RAM and a 20 GB
hard disk drive. The current configuration uses 2 CPUs, 4 GB of RAM
and an 80 GB hard disk drive. We believe that the reason the history
6

server has survived for many years without any kind of downtime and
without exhausting its small disk space is due to the aggressive graphite
retention policy we apply to all metrics. The default metric namespace,
temporary, has a retention policy of 1 h:15d which works well for one-
off investigations because metrics can be updated once per hour and
are automatically deleted after 15 days. We use a separate namespace,
performance_regressions, to retain metrics for much longer but with a
reduced frequency: daily metrics are recorded at most once a day,
weekly metrics are recorded once a week, and both are retained for
10 years. Graphite’s design requires that disk space for all configured
metrics be allocated up front and storage for a single metric is 12 bytes,
so we can calculate that storing one metric in performance_regressions
every day for a full year only consumes 4.3 KB of disk space.

Fig. 7 shows one of the Grafana dashboards from the history server
which includes panels for throughput, error count, and percentile met-
rics.

6. Lessons learned

Fallout has evolved over many years of development and we have
found that while some of our initial design choices were correct and
have stood the test of time, others were wrong and needed reassessing.
And some problems we never even anticipated.

6.1. Configuration files should be short and expressive

The more lines a test configuration file has the greater the chance
of introducing a bug. One of the goals for Fallout has been to provide
enough support in the test and benchmark modules that common use
cases only need small test run configuration files which reduces the
probability that a user will make a mistake. This is still an on-going
effort as it takes time for common usages to emerge when support for
new modules is added but the end result is happier users with greater
confidence in Fallout. This goal has served us well in creating a useful
configuration language that is easy to understand.

6.2. Templating for configuration files encourages reuse

As Fallout amassed more users and the number of test run configura-
tions increased, we noticed that many users began copying and pasting
YAML across config files. A common situation where this happens is
when users need to run the same test across multiple versions of an
app, e.g. running the same benchmark against Apache Cassandra 3.11
and 4.0 to compare performance. We added support in Fallout’s YAML
parser for mustache [11] templates which allow users to use templates
in their YAML files and provide specific values either on the Fallout test
run web page or as parameters via the REST API.

Even with mustache templating, we found that users wanted to
separate out common chunks of YAML into different, smaller files and
include them in multiple configuration files. Additionally, users wanted
to be able to store these files in a version control system. Fallout does
not support either of these features so the haxx project was created
which uses Jinja [12] templating to allow composition of test fragments
and to provide version control via a git repository.

6.3. Tests need access to external files

A feature that we failed to anticipate early on was that tests,
benchmarks, and tools would need the ability to access external files,
e.g. configuration files. We initially worked around this limitation by
either extending the test module to fetch the external file from a GitHub
gist or by generating the test config file at runtime based on the keys
and values in the Fallout YAML config. This approach did not scale as
we added new modules and it is now possible to use a unified method
to access external files with the ≪file:filename≫ syntax regardless of the
module used in the test run config.



M. Fleming, G.B. King, S. McCarthy et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 1 (2021) 100010
Fig. 5. Example performance report.
Fig. 6. Example grouped performance report.
Fig. 7. Grafana dashboard.
6.4. Long-running tests benefit from semantic checks and idempotency

It is very straightforward to check YAML files for syntactic errors
and there are numerous Java libraries available to do that, such as
7

SnakeYaml [13] which is the library that Fallout uses. However, syn-
tactic errors are only one source of problems afflicting users. Since most
of the YAML values in a test config are consumed by tools other than
Fallout, it is challenging to validate that the semantics of those values



M. Fleming, G.B. King, S. McCarthy et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 1 (2021) 100010
behave as expected. We have encountered situations where a single
mistyped character in a NoSQL table name caused all subsequent test
phases to fail and was only triggered after the test had been running
for an hour.

Additionally, re-running Fallout tests sometimes requires the in-
frastructure to be torn down and brought back up if Fallout cannot
determine the runlevel of the cluster. Other deployment tools, such as
Terraform [14] solve this problem with idempotency which allows the
same deployment steps to be applied repeatedly without causing any
changes to the underlying machine if the corresponding configuration
for those steps has not changed. Fallout does make an attempt to
detect the current cluster runlevel and skip unnecessary configuration
steps but the detection is imperfect. This detection is used in Fallout’s
cluster-reuse mechanism, which is triggered by naming a cluster and
requesting that it be left in a specific runlevel at the end of a test
run; subsequent test runs with the same test definition will find the
named cluster, detect its runlevel, and continue from there. This makes
it possible to iterate on test creation a little bit faster, and—in some
specialized cases – skip slow data loading steps for big-data tests.
However, in our experience most users do not encounter situations
where they need to use these features.

7. Related work

Automated testing, which includes running benchmarks, is a vital
part of ensuring quality for software projects [15]. Integrating bench-
marking into a continuous deployment pipeline is discussed in [16]
which focuses on using performance metrics with thresholds to decide
whether changes should be allowed into production. Since we use
Fallout to test software that will ultimately be deployed to a variety
of environments, ranging from the cloud to on-premise, there is no
built-in functionality for gating deployments based on performance
change thresholds. Instead, statistically significant changes are detected
using change point detection and a developer is required to make the
deployment decision. Automating deployments with Fallout is one of
our future goals.

MockFog 2.0 [17] enables fog applications experiments by emu-
lating fog infrastructure in the cloud and has a very similar design
to Fallout. Both MockFog and Fallout provision infrastructure, con-
figure and deploy applications, run tests and benchmarks, and even
use states (Action states and NodeGroup states, respectively) to define
legal transitions for the internal state machine. However, MockFog
uses Docker to manage applications whereas Fallout supports both
native and Kubernetes-based applications which more closely aligns
with typical deployments of Apache Cassandra and Apache Pulsar.
MockFog also uses Ansible to configure infrastructure which provides
the idempotent state updates that are partly missing from Fallout’s
implementation.

Adelphi [18] is an open-source QA tool that runs on top of Ku-
bernetes and allows users to run data integrity and performance tests
against Apache Cassandra. It is packaged as a helm chart and includes
a limited number of benchmarks and testing tools so that users can
compare two clusters against one another. Adelphi takes care of exe-
cuting the tests but does not provide facilities to create and terminate
the underlying Kubernetes clusters or present the benchmark and test
results for analysis.

MongoDB’s Distributed Systems Infrastructure (DSI) [19] was devel-
oped at approximately the same time as Fallout though the two projects
were not known to each other. DSI shares many things in common with
Fallout including components to provision virtual machines, configure
database servers and benchmarks, collect results for automated and
visual inspection, and finally teardown the infrastructure when the
test completes. Both Fallout and DSI use YAML configuration files to
control test runs. However, Fallout differs from DSI in a number of
ways. Fallout is written in Java and DSI is written in Python. While

DSI primarily targets Amazon EC2, Fallout can currently launch tests

8

on Google Cloud Platform, Amazon EC2, Microsoft Azure, as well as our
internal OpenStack-based private cloud. Because ctool already existed
when Fallout was created, Fallout has a very modular architecture and
relies on other tools and components to do certain tasks whereas most
of the corresponding functionality for DSI is built into the service.
Lastly, as far as the authors are aware, DSI does not expose an API
for other tools to call.

Work on reducing the cost of testing very large distributed systems
by running many virtual machines on top of fewer physical servers is
discussed in [20]. This work targets network services with thousands of
nodes which are much larger than typical Apache Cassandra or Pulsar
clusters.

RocksDB includes tools for running benchmarks and analyzing the
results but no project exists to handle the setting up and tearing down
of hardware to run the benchmarks [21]. Likewise, SAP has published
work that shows how they integrate performance testing into their
CI process [22] but no details are included on the way that tests are
deployed on their testing infrastructure.

8. Conclusion

Fallout is a distributed systems testing service capable of auto-
matically provisioning clients and servers, installing, configuring and
executing distributed apps and workloads, and centrally collecting
results for later analysis. We use Fallout internally at DataStax and
it drives the entire performance and testing ecosystem for both our
Apache Cassandra and Apache Pulsar products. Fallout started life with
a very specific purpose and has evolved after years of engineering
effort to be the backbone of performance and quality for us and it
provides our engineering teams with fully-automated end-to-end testing
for distributed systems. Fallout’s REST API has been essential for new
teams to leverage Fallout’s distributed testing and has encouraged the
birth of numerous tools and services that complement Fallout. Our
Fallout server executes around 200 tests every day, and on busy days
runs closer to 400 tests.

Since each of our engineering teams have their own preferences
for the kinds of benchmarks, cluster configurations, and cloud infras-
tructure, all of these components are configurable in Fallout which
has been designed with modularity in mind. We have extended this
modularity to allow tests and benchmarks to load external files and
added templating so that users can reuse test config fragments without
copying and pasting.

We have released Fallout as an open-source project with the hope
that the open-source community can benefit from our investment and
the lessons we have learned running Fallout in production for over 5
years.

Acknowledgments

We would like to thank the anonymous reviewers for their valuable
feedback and suggestions. Fallout was created by Jake Luciani, Joel
Knighton, and Philip Thompson and we are thankful for their decision
to create a new tool to solve the complex problem that is distributed
systems testing. The history server was created by Pierre Laporte and
it is stability is illustrated by the fact that it has been the component
that has required the fewest updates in the whole Fallout ecosystem.
Christopher Lambert was largely responsible for integrating ctool sup-
port to Fallout and James Trevino continues to maintain and improve
Fallout. Ulises Cerviño Beresi created haxx. Shaunak Das contributed
numerous test modules. Many more people have contributed to Fallout
and related testing services and we are grateful for all of their efforts.

The open-source version of Fallout owes a great deal of gratitude to
Jake Luciani and Jonathan Ellis for championing the project internally

at DataStax.



M. Fleming, G.B. King, S. McCarthy et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 1 (2021) 100010
References

[1] B. Boehm, Software engineering, IEEE Trans. Comput. C-25 (1976) 1226–1241.
[2] J. Humble, D. Farley, Continuous Delivery: Reliable Software Releases Through

Build, Test, and Deployment Automation, Addison-Wesley, 2010.
[3] Apache Cassandra, Cassandra stress, 2021, URL https://cassandra.apache.org/

doc/latest/cassandra/tools/cassandra_stress.html, Accessed: 2021-08-05.
[4] K. Kingsbury, Distributed systems safety research, jepsen, 2021, URL https:

//jepsen.io/, Accessed: 2021-07-29.
[5] Google Cloud SDK documentation, Gcloud tool overview, 2021, URL https:

//cloud.google.com/sdk/gcloud, Accessed: 2021-10-07.
[6] D. Daly, W. Brown, H. Ingo, J. O’Leary, D. Bradford, The use of change point

detection to identify software performance regressions in a continuous integra-
tion system, in: Proceedings of the 2020 ACM/SPEC International Conference on
Performance Engineering(ICPE ’20), 2020, http://dx.doi.org/10.1145/3358960.
3375791.

[7] HdrHistogram, High dynamic range histogram, 2021, URL http://hdrhistogram.
org/, Accessed: 2021-08-05.

[8] NoSQLBench, The open source nosql benchmarking suite, 2021, URL https:
//github.com/nosqlbench/nosqlbench, Accessed: 2021-08-05.

[9] Chaos Mesh, A powerful chaos engineering platform for kubernetes, 2021, URL
https://chaos-mesh.org/ Accessed: 2021-10-07.

[10] pytest, Pytest: helps you write better programs, 2021, URL https://docs.pytest.
org/en/6.2.x/, Accessed: 2021-10-07.

[11] Mustache, Logic-less templates, 2021, URL https://mustache.github.io/, Ac-
cessed: 2021-07-28.

[12] Jinja, Template engine for python, 2021, URL https://palletsprojects.com/p/
jinja/, Accessed: 2021-08-04.
9

[13] snakeyaml, Yaml 1.1 parser and emitter for java, 2021, URL https://bitbucket.
org/asomov/snakeyaml/src/master/, Accessed: 2021-08-05.

[14] Y. Brikman, Terraform: Up & Running: Writing Infrastructure As Code, O’Reilly
Media, 2019.

[15] J. Waller, N.C. Ehmke, W. Hasselbring, Including Performance Benchmarks into
Continuous Integration to Enable DevOps, Vol. 40 (2) (2015) 1–4, http://dx.doi.
org/10.1145/2735399.2735416.

[16] M. Grambow, F. Lehmann, D. Bermbach, Continuous benchmarking: Using
system benchmarking in build pipelines, in: 2019 IEEE International Conference
on Cloud Engineering (IC2E), 2019, pp. 241–246, http://dx.doi.org/10.1109/
IC2E.2019.00039.

[17] J. Hasenburg, M. Grambow, D. Bermbach, Mockfog 2.0: Automated execution of
fog application experiments in the cloud, IEEE Trans. Cloud Comput. (2021) 1,
http://dx.doi.org/10.1109/tcc.2021.3074988.

[18] Adelphi, Automation tool for testing cassandra OSS, 2021, URL https://github.
com/datastax/adelphi, Accessed: 2021-08-05.

[19] H. Ingo, D. Daly, Automated system performance testing at mongodb, in:
Workshop on Testing Database Systems (DBTest’20), 2020, http://dx.doi.org/
10.1145/3395032.3395323.

[20] D. Gupta, K.V. Vishwanath, M. McNett, A. Vahdat, K. Yocum, A. Snoeren, G.M.
Voelker, Diecast: Testing distributed systems with an accurate scale model, ACM
Trans. Comput. Syst. 29 (2) (2011) 1–48.

[21] Z. Cao, S. Dong, S. Vemuri, D.H. Du, Characterizing, modeling, and benchmark-
ing rocksdb key-value workloads at facebook, in: 18th USENIX Conference on
File and Storage Technologies (FAST 20), 2020, pp. 209–223.

[22] K.-T. Rehmann, C. Seo, D. Hwang, B.T. Truong, A. Böhm, D.H. Lee, Performance
monitoring in SAP HANA’s continuous integration process, in: ACM SIGMETRICS
Performance Evaluation Review, Vol. 43, 2016, pp. 43–52, http://dx.doi.org/10.
1145/2897356.2897362.

http://refhub.elsevier.com/S2772-4859(21)00010-7/sb1
http://refhub.elsevier.com/S2772-4859(21)00010-7/sb2
http://refhub.elsevier.com/S2772-4859(21)00010-7/sb2
http://refhub.elsevier.com/S2772-4859(21)00010-7/sb2
https://cassandra.apache.org/doc/latest/cassandra/tools/cassandra_stress.html
https://cassandra.apache.org/doc/latest/cassandra/tools/cassandra_stress.html
https://cassandra.apache.org/doc/latest/cassandra/tools/cassandra_stress.html
https://jepsen.io/
https://jepsen.io/
https://jepsen.io/
https://cloud.google.com/sdk/gcloud
https://cloud.google.com/sdk/gcloud
https://cloud.google.com/sdk/gcloud
http://dx.doi.org/10.1145/3358960.3375791
http://dx.doi.org/10.1145/3358960.3375791
http://dx.doi.org/10.1145/3358960.3375791
http://hdrhistogram.org/
http://hdrhistogram.org/
http://hdrhistogram.org/
https://github.com/nosqlbench/nosqlbench
https://github.com/nosqlbench/nosqlbench
https://github.com/nosqlbench/nosqlbench
https://chaos-mesh.org/
https://docs.pytest.org/en/6.2.x/
https://docs.pytest.org/en/6.2.x/
https://docs.pytest.org/en/6.2.x/
https://mustache.github.io/
https://palletsprojects.com/p/jinja/
https://palletsprojects.com/p/jinja/
https://palletsprojects.com/p/jinja/
https://bitbucket.org/asomov/snakeyaml/src/master/
https://bitbucket.org/asomov/snakeyaml/src/master/
https://bitbucket.org/asomov/snakeyaml/src/master/
http://refhub.elsevier.com/S2772-4859(21)00010-7/sb14
http://refhub.elsevier.com/S2772-4859(21)00010-7/sb14
http://refhub.elsevier.com/S2772-4859(21)00010-7/sb14
http://dx.doi.org/10.1145/2735399.2735416
http://dx.doi.org/10.1145/2735399.2735416
http://dx.doi.org/10.1145/2735399.2735416
http://dx.doi.org/10.1109/IC2E.2019.00039
http://dx.doi.org/10.1109/IC2E.2019.00039
http://dx.doi.org/10.1109/IC2E.2019.00039
http://dx.doi.org/10.1109/tcc.2021.3074988
https://github.com/datastax/adelphi
https://github.com/datastax/adelphi
https://github.com/datastax/adelphi
http://dx.doi.org/10.1145/3395032.3395323
http://dx.doi.org/10.1145/3395032.3395323
http://dx.doi.org/10.1145/3395032.3395323
http://refhub.elsevier.com/S2772-4859(21)00010-7/sb20
http://refhub.elsevier.com/S2772-4859(21)00010-7/sb20
http://refhub.elsevier.com/S2772-4859(21)00010-7/sb20
http://refhub.elsevier.com/S2772-4859(21)00010-7/sb20
http://refhub.elsevier.com/S2772-4859(21)00010-7/sb20
http://dx.doi.org/10.1145/2897356.2897362
http://dx.doi.org/10.1145/2897356.2897362
http://dx.doi.org/10.1145/2897356.2897362

	Fallout: Distributed systems testing as a service
	Introduction
	Background
	Architecture
	Cluster deployment
	Application installation, configuration, and execution
	Artifact collection and analysis
	Integration with CI

	Implementation
	Test configuration files
	Test provisioning lifecycle
	Modules, providers, and configuration managers
	Checkers and artifact checkers
	Test queue
	REST API

	Results
	Performance reports
	History server

	Lessons learned
	Configuration files should be short and expressive
	Templating for configuration files encourages reuse
	Tests need access to external files
	Long-running tests benefit from semantic checks and idempotency

	Related work
	Conclusion
	Acknowledgments
	References


