
BenchCouncil Transactions on Benchmarks, Standards and Evaluations 1 (2021) 100009

L
J
S

A

K
G
I
C
C

1

t
o
b
e
m
a
t
t
h
C

i
c
w
s
m
t
w
p
c
p

h
R
A
2
B

Contents lists available at ScienceDirect

BenchCouncil Transactions on Benchmarks,
Standards and Evaluations

journal homepage: https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-
benchmarks-standards-and-evaluations/

atency-aware automatic CNN channel pruning with GPU runtime analysis
iaqiang Liu, Jingwei Sun ∗, Zhongtian Xu, Guangzhong Sun
chool of Computer Science and Technology, University of Science and Technology of China, Hefei, China

R T I C L E I N F O

eywords:
PU runtime analysis

nference latency
hannel pruning
onvolutional neural network

A B S T R A C T

The huge storage and computation cost of convolutional neural networks (CNN) make them challenging to
meet the real-time inference requirement in many applications. Existing channel pruning methods mainly focus
on removing unimportant channels in a CNN model based on rule-of-thumb designs, using reduced floating-
point operations (FLOPs) and parameter numbers to measure the pruning quality. The inference latency of
pruned models is often overlooked. In this paper, we propose a latency-aware automatic CNN channel pruning
method (LACP), which aims to search low latency and accurate pruned network structure automatically. We
evaluate the inaccuracy of measuring pruning quality by FLOPs and the number of parameters, and use the
model inference latency as the direct optimization metric. To bridge model pruning and inference acceleration,
we analyze the inference latency of convolutional layers on GPU. Results show that the inference latency of
convolutional layers exhibits a staircase pattern along with channel number due to the GPU tail effect. Based
on that observation, we greatly shrink the search space of network structures. Then we apply an evolutionary
procedure to search a computationally efficient pruned network structure, which reduces the inference latency
and maintains the model accuracy. Experiments and comparisons with state-of-the-art methods on three image
classification datasets show that our method can achieve better inference acceleration with less accuracy loss.
. Introduction

Convolutional Neural Networks (CNNs) have demonstrated state-of-
he-art achievements in various tasks, such as image classification [1],
bject detection [2], and image segmentation [3]. Such a success is
uilt upon a large number of model parameters and convolutional op-
rations. As a result, the huge storage and computation cost make these
odels difficult to be deployed on resource-constrained devices, such

s phones and robots. To address this problem, a common approach is
o use model compression techniques, including quantization [4], dis-
illation [5], and pruning [6–9]. Among them, neural network pruning
as been recognized as one of the most effective tools for compressing
NNs.

Neural network pruning methods aim to remove redundant weights
n a dense model. According to the pruning granularity, these methods
an be categorized into either weight pruning or channel pruning. In
eight pruning, individual weights are zeroed out, leaving a sparse

et of weight tensors. Weight pruning can significantly reduce the
odel size, but it also introduces irregular memory access, leading

o very limited or even negative speedups on general-purpose hard-
are (e.g. CPU, GPU) [10]. Differing from weight pruning, channel
runing methods remove entire channels to compress the model. Since
hannel pruning only changes the dimension of weight tensors, the
runed model still adopts a dense format, which is well-suited to

∗ Corresponding author.
E-mail addresses: jqliu42@mail.ustc.edu.cn (J. Liu), sunjw@ustc.edu.cn (J. Sun), xuzt@mail.ustc.edu.cn (Z. Xu), gzsun@ustc.edu.cn (G. Sun).

general-purpose hardware and off-the-shelf libraries. As a result, chan-
nel pruning can achieve better acceleration on inference performance
than weight pruning.

Due to the promising performance improvement in model compres-
sion, channel pruning methods have been widely studied for many
years. Existing methods use the reduced floating-point operations
(FLOPs) and parameter numbers to measure the pruning quality by
default. However, the inference latency of neural network is influenced
by many factors, such as the network architecture, the implementa-
tion of operators, and the hardware property. Therefore, using FLOPs
or the number of parameters as a proxy for inference latency is
insufficient, and may lead the algorithm to sub-optimal result. For
instance, Fig. 1 shows the relationship between FLOPs, model size, and
inference latency of VGG16 network. We randomly prune channels in
convolutional layers, then measure the pruned model’s FLOPs, number
of parameters, and inference latency. Results show that FLOPs or
parameter reduction does not necessarily result in latency reduction.
For example, the pruned model A has smaller FLOPs than model B, but
shows larger inference latency. The same for model C and model D,
the smaller model C shows larger inference latency. This observation
motivates us to investigate a latency-aware channel pruning method,
instead of only focusing on FLOPs or parameter numbers.
ttps://doi.org/10.1016/j.tbench.2021.100009
eceived 6 August 2021; Received in revised form 11 October 2021; Accepted 20 O
vailable online 3 November 2021
772-4859/© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of
Y-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
ctober 2021

KeAi Communications Co. Ltd. This is an open access article under the CC

https://doi.org/10.1016/j.tbench.2021.100009
http://https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tbench.2021.100009&domain=pdf
mailto:jqliu42@mail.ustc.edu.cn
mailto:sunjw@ustc.edu.cn
mailto:xuzt@mail.ustc.edu.cn
mailto:gzsun@ustc.edu.cn
https://doi.org/10.1016/j.tbench.2021.100009
http://creativecommons.org/licenses/by-nc-nd/4.0/


J. Liu, J. Sun, Z. Xu et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 1 (2021) 100009

i
c
[
w

d
m
s
n

Fig. 1. The relationship between FLOPs, number of parameters, and inference latency of pruned models.
Another motivation of this work is that conventional channel prun-
ng methods crucially rely on human expert knowledge and hand-
rafted designs, and focus on selecting unimportant channels. Li et al.
9] take 𝑙1-norm as significance criteria to determine which channels
ill be pruned. Luo et al. [11] use the input of (𝑖 + 1)-th layer to

guide the pruning of 𝑖th layer. Lin et al. [12] rank channels with
high rank of feature maps, then prunes the least important channels.
However, Liu et al. [13] find that the pruned network can achieve the
same accuracy no matter it inherits the weights in the original network
or not. This study inspires us that the essence of channel pruning lies
in finding optimal channel numbers in each layer, instead of selecting
unimportant channels based on rule-of-thumb designs. Following that
idea, Lin et al. [14] use artificial bee colony algorithm to search optimal
pruned network structure. However, like many conventional channel
pruning methods, Lin et al. [14] use the reduced FLOPs and parameter
numbers to measure the pruning quality, the latency speedup of pruned
model cannot be guaranteed.

In this paper, we propose a latency-aware automatic channel prun-
ing (LACP) method. Differing from conventional methods, we take
channel pruning in an automatic manner. Our method aims to search
the optimal pruned network structure, i.e., the channel number in
convolutional layers, instead of selecting important channels. An in-
tuitive challenge in finding optimal network structure is that it is
impractical to exhaustively searching all the possible combinations of
pruned network structures. To make the algorithm feasible, effective
shrinkage on search space is necessary. We first analyze the inference
latency of pruned convolutional layers on GPU. Results show that the
inference latency of convolutional layers presents a staircase pattern
with the number of channels, which means the inference latency of
a convolutional layer changes suddenly at certain channel number
intervals. Based on this observation, we greatly shrink the search
space of pruned structures. Then we apply an evolutional procedure
to efficiently search low-latency and accurate network structure. For
each candidate structure, we encode it to a vector 𝐶 =

[

𝑐1, 𝑐2, 𝑐3,… , 𝑐𝑖
]

,
where 𝑐𝑖 represents the channel numbers in 𝑖th convolutional layer.
The fitness of candidate pruned network structure is measured in both
model accuracy and inference latency. At each population, 𝐾 candi-
ates with highest fitness will survive to next population, crossover and
utation will take place in these survived structures to generate new

tructures. Finally, the best candidate is selected as the optimal pruned
etwork structure.

Overall, the main contributions of this paper are as follows:

• We propose a latency-aware automatic channel pruning method
LACP. Compared to conventional methods, LACP does not require
hand-crafted designs on selecting unimportant channels. It focus
on the inference latency speedup, instead of the FLOPs reduction.

• We analyze the inference latency of convolutional layers on GPU.
Based on the analysis results, we greatly shrink the search space
of pruned network structures, which enables efficient search of
low-latency and accurate network structure.

• We conduct a detailed evaluation to compare the proposed
method and existing methods on standard datasets. Results show
that our method can achieve more latency reduction with less
accuracy loss.
2

The rest of this paper is organized as follows. Section 2 reviews
related works. Section 3 presents the proposed latency-aware automatic
channel pruning method in detail. Section 4, show the experimental
results and analysis. Finally, we draw the paper to a conclusion in
Section 5.

2. Related work

Deep neural networks are usually over-parameterized [15,16], lead-
ing to huge storage and computation cost. There are extensive studies
on compressing and accelerating neural networks. We classify current
related research works into two major types: network pruning methods
and neural architecture search (NAS) methods.

Pruning methods reduce the storage and computation cost by re-
moving unimportant weights from the origin network. Existing pruning
algorithms can be categorized into weight pruning and channel prun-
ing. In weight pruning, individual weights are zeroed out. LeCun et al.
[6] present the early work about network pruning using second-order
derivatives as the pruning criterion. Han et al. [7] first propose itera-
tive pruning, which prunes individual weights below a monotonically
increasing threshold. Guo et al. [17] and Mocanu et al. [18] point out
that some previously unimportant weights may tend to be important
later. Inspired by this idea, LIU et al. [19] propose a trainable mask-
based method to dynamically get sparse network during the training
phase. Dettmers and Zettlemoyer [20] propose sparse momentum that
used the exponentially smoothed gradients as the criterion for pruning
and regrowth. A fixed percentage of parameters are pruned at each
pruning step. Weight pruning can significantly reduce the model size.
However, the non-structured random connectivity in DNN introduces
irregular memory access. It adversely affects practical acceleration
in hardware platforms [10]. Differing from weight pruning, channel
pruning methods focus on removing the entire redundant channels.
Li et al. [9] use 𝑙1-norm to determine the importance of channels.
He et al. [8] formulate channel pruning as an optimization problem,
which selects the most representative channels to recover the accuracy
of pruned network with minimal reconstruction error. Luo et al. [11]
use the next layer’s input to guide the pruning of the previous layer. Lin
et al. [12] use the feature map rank as sensitivity metric to prune
the least important channels. Differing from these magnitude-based or
sensitivity-based channel pruning methods, our work performs channel
pruning in an automatic manner.

Although network pruning methods have achieved great success,
they crucially rely on human expert knowledge and hand-crafted de-
signs. Automatically optimizing the neural network architecture has
been widely studied in recent years, known as neural architecture
search (NAS). Prior works mainly sample a large number of networks
from search space and train them from scratch to obtain a supervision
signal, e.g. validation accuracy, for optimizing the sampling agent with
reinforcement learning [21–23] or updating the population with an
evolutionary algorithm [24]. Bender et al. [25] and Pham et al. [26]
introduce weight-sharing paradigm in NAS to boost search efficiency,
where all candidate sub-networks share the weights in a single one-shot
model that contains every possible architecture in the search space. Liu
et al. [27] relax the search space to be continuous with architecture



J. Liu, J. Sun, Z. Xu et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 1 (2021) 100009

p
t
p
m
n

3

3

o
f
e
f
c
t
𝑖
n
g
a
k
t
c
n
b
a
t
s
w
t
s

𝐶

𝑆
c
w
s
e
k
e
a
p
e
c
n

Fig. 2. The overall framework of LACP algorithm.
n
p
t
s
o

3

i
t
l

c
d
c
w
l
c
n
m
f
t
w
c
i
o
c
a
t
o
o
d
t
w
n
n
b
T
o
a
a
c
o

t
l

arameters and then efficiently optimized model parameters and archi-
ecture parameters together via gradient descent. Most prior NAS based
runing methods are implemented in a bottom-up and layer-by-layer
anner. In contrast, our work mainly focuses on the optimal channel
umber of each layer.

. Methodology

.1. Overview

Cheng et al. [28] point out that convolutional layers take up most
f the computation cost in convolutional neural networks. Our work
ocuses on reducing the channel number of convolutional layers to
ffectively compress the neural network. Fig. 2 presents the overall
ramework of our LACP algorithm. Consider a CNN model 𝑁 that
ontains L convolutional layers. We refer to 𝐶 = [𝑐1, 𝑐2,… , 𝑐𝐿] as
he network structure of 𝑁 , where 𝑐𝑖 is the channel number of the
th convolutional layer. We regard channel pruning as an optimal
etwork structure search process, rather than manually designed strate-
ies to remove unimportant channels. The algorithm aims to find
thinner network structure than the unpruned model, meanwhile,

eeping a comparable accuracy. We adopt an evolutionary algorithm
o achieve the goal of our search algorithm. A certain number of
andidate network structures make up a population, the candidate
etwork structures are evaluated using fitness. At each population, the
est 𝐾 candidate network structures are survive to the next population,
nd those survival candidates will produce new network structures
hrough crossover and mutation. In the end, the best candidate network
tructure in the whole process is selected to be the optimal pruned net-
ork structure, we then fine-tune it to restore the accuracy. Formally,

he algorithm is equivalent to solve an optimization problem as Eq. (1)
hows.

𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = arg max
𝑆

𝐹 (𝐶,𝑊 ,𝐷𝑡𝑟𝑎𝑖𝑛, 𝐷𝑡𝑒𝑠𝑡) (1)

is the search space of pruned network structures. 𝐶 ∈ 𝑆 is the
andidate network structure. 𝑊 is the weight of pruned network,
hich is assigned from the pre-trained model. 𝐷𝑡𝑟𝑎𝑖𝑛 and 𝐷𝑡𝑒𝑠𝑡 repre-

ent the training data and testing data, respectively. The function 𝐹
valuates the fitness of candidate network structure to decide whether
eeping current candidate in next population. The effectiveness and
fficiency of the search algorithm mostly rely on the fitness evaluation
nd the search space definition. To find a low-latency and accurate
runed model, the fitness function should consider both model infer-
nce latency and test accuracy. For a convolutional neural network that
ontains 𝐿 convolutional layers, the possible combination of pruned
etwork structure can be ∏𝐿 𝑐 , where 𝑐 represents the channel
𝑖=1 𝑖 𝑖

3

umbers of 𝑖th convolutional layer in original dense model. It is im-
ractical to exhaustively searching all the possible network structures,
herefore, effective constraints on the search space are necessary. To
olve these problems, we further describe the detailed implementation
f our method in the following sections.

.2. Search space definition

Exhaustively searching every possible pruned network structure is
mpractical. To make the search algorithm feasible, we need to shrink
he search space. In this section, we conduct analysis on inference
atency of convolutional layers to find an efficient search space design.

Convolutional layers are widely used in modern neural networks. A
onvolutional layer consists of a certain number of channels to extract
ata features. To reduce the computation cost of convolutional layer,
hannel pruning aims to remove a portion of channels. Intuitively,
ith the decrease of the channel number, the FLOPs of a convolutional

ayer will decrease linearly. However, due to the complex nature of
onvolutional layer’s execution environment, its inference latency does
ot vary linearly with the FLOPs. To better understand the execution
echanism convolutional layer, we analyze how channel pruning af-

ects the inference latency of convolutional layer. As Fig. 3 illustrates,
he inference latency of convolutional layers shows a staircase pattern
ith different number of channels, which means with increasing a

ertain number of channels, there will be a significant step increase
n latency. By analyzing the intrinsic mechanism of DNN deployment
n GPU, this phenomenon can be explained. The computation of a
onvolutional layer is parallelized using multiple threads. These threads
re first grouped into different blocks, then loaded to streaming mul-
iprocessors (SMs) on a GPU. The maximum number of blocks loaded
n one SM is determined by GPU’s physical capacity. If the number
f thread blocks in need exceeds the GPU capacity, then GPU will
ivide these thread blocks into multiple consecutive waves, and run
hese waves in sequence. Since the SMs are executed in parallel, one
ave takes the same amount of time, no matter it is fully occupied or
ot. This phenomenon is called ‘‘GPU tail effect’’. For different channel
umber settings of a convolutional layer, their execution time can
e very similar if they need the same amount of waves to compute.
herefore, with the increase of channel number, the computation cost
f convolutional layer will increase. Once a critical point is exceeded,
n extra wave is needed to finish the computation, which leads to
significant step increase in latency. Then, the inference latency of

onvolutional layer will change slowly, until the last wave is fully
ccupied.

Inspired by the ‘‘GPU tail effect’’ phenomenon, we can greatly shrink
he search space of pruned network structure. Since the inference
atency shows a staircase pattern, which means under a certain range



J. Liu, J. Sun, Z. Xu et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 1 (2021) 100009

o
W
t
l

O

1
1
1
1

t
s
t
p
m
o
o
c
n
p
[
i

Fig. 3. Inference latency of convolutional layers with varying number of channels.
w
A
s

𝑓

l

f channel number settings, the inference latency changes very slowly.
ithin a staircase step, set the channel number to the right endpoint,

hen we can maximize the representational capacity of network with a
ittle latency cost.

Algorithm 1 Latency-aware Automatic Channel Pruning Algorithm
Input: Search Cycles: 𝑆, Population Size: 𝑁 , Number of Mutation: 𝑀 ,

Number of Crossover: 𝐶, Target latency: 𝑇
utput: Optimal pruned network structure 𝐶∗

1: 𝐺0 = Random(N)
2: 𝐺𝑡𝑜𝑝𝐾 = ∅
3: for 𝑖 = 0;𝑖 < 𝑆;𝑖 + + do
4: 𝐺𝑏𝑒𝑠𝑡 = Top1(𝐺𝑖)
5: if 𝐺𝑏𝑒𝑠𝑡 better than 𝐶∗ then
6: 𝐶∗ = 𝐺𝑏𝑒𝑠𝑡
7: end if
8: 𝐺𝑡𝑜𝑝𝐾 = TopK(𝐺𝑖)
9: 𝐺𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 = Mutation(𝐺𝑡𝑜𝑝𝐾 ,M)
0: 𝐺𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 = Crossover(𝐺𝑡𝑜𝑝𝐾 ,C)
1: 𝐺𝑖+1 = 𝐺𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 + 𝐺𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟
2: end for
3: return 𝐶∗

We analyze the inference latency variation of different convolu-
ional layers in VGG and ResNet. Results show that the width of the
taircase step is a multiple of 32. For the first few convolutional layers,
he width of the staircase step is 32. As the layers deepen, the max-
ooling operation or the down-sampling operation makes the feature
ap smaller, thus a single GPU wave can compute more convolution

peration. As a result, in the subsequent convolutional layers, the width
f the staircase step can increase to 64 or 128. Heuristically, for each
onvolutional layer, we set its possible channel number in pruned
etwork structure to a multiple of 32. Taking VGG16 as an exam-
le, the possible channel number in the sixth convolutional layer is
32, 64, 96, 128, 160, 192, 224, 256], where the initial number of channels
s 256. The other convolutional layers are also set up in the same way.
 t

4

3.3. Optimal network structure search

In this section, we describe the detailed implementation of our LACP
method. As Algorithm 1 shows, our method adopts evolutionary search
as the overall framework. In the beginning, the initial population is ran-
domly generated from the search space. Each sample in the population
represents a pruned network structure, formalized as 𝐶 = [𝑐1, 𝑐2,… , 𝑐𝐿],

here 𝑐𝑖 represents the channel number in 𝑖th convolutional layer.
t each population, the fitness of every candidate pruned network
tructure is evaluated as below:

𝑖𝑡𝑛𝑒𝑠𝑠(𝐶) = 𝐴𝑐𝑐(𝐶) ×
[

𝐿𝑎𝑡𝑒𝑛𝑐𝑦(𝐶)
𝑇

]𝑤
(2)

𝑤 =

{

0, 𝑖𝑓 𝐿𝑎𝑡𝑒𝑛𝑐𝑦(𝐶) < 𝑇 ,

−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
(3)

As Eq. (2) shows, both accuracy and inference latency are con-
sidered in the fitness evaluation, where 𝐴𝑐𝑐(𝐶) represents the test
accuracy of the pruned network. 𝐿𝑎𝑡𝑒𝑛𝑐𝑦(𝐶) is the inference latency
of the pruned network and 𝑇 is the target latency, which is specified
before running the algorithm. To measure the test accuracy of a net-
work structure, it is very time-consuming to completely train and test
the pruned model. In our implementation, we initialize the candidate
pruned network with the pre-trained model, for a pruned network
𝐶 = [𝑐1, 𝑐2,… , 𝑐𝐿], the 𝑖th convolutional layer is initialized with 𝑐𝑖
channels in the corresponding 𝑖th convolutional layer in the pre-trained
model, which have larger 𝑙1-norm value. Then we train the pruned
model with 2 epochs and evaluate its test accuracy. Besides, we add a
latency constraint in the fitness function. Given a target latency, if the
inference latency of pruned network is less than the target latency 𝑇 , we
simply use the test accuracy as the fitness value, otherwise, we penalize
the fitness value with a coefficient less than 1. In such a mechanism, the
algorithm will tend to select the model whose inference latency reaches
the target latency constraint.

At each population, 𝐾 candidate pruned network structures with
argest fitness will survive to next population. Crossover and muta-
ion will take place in these 𝐾 candidate structures to generate new



J. Liu, J. Sun, Z. Xu et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 1 (2021) 100009
structures. The objective of the crossover operation is to integrate ex-
cellent information from the parents. For example, given two preserved
network structures:

[𝟑𝟐, 𝟑𝟐, 128, 96, 𝟑𝟐, 𝟏𝟗𝟐, 224, 192], [64, 64, 𝟗𝟔, 𝟔𝟒, 160, 96, 𝟑𝟐𝟎, 𝟐𝟖𝟖]

one new structure will be generated by combining pieces of two parent
structures:

[32, 32, 96, 64, 32, 192, 320, 288]

Mutation operation is used to promote population diversity. For exam-
ple, given a network structure:

[𝟑𝟐, 32, 𝟏𝟐𝟖, 96, 𝟑𝟐, 192, 224, 192]

its fragments are randomly changed, generating a new network struc-
ture:

[64, 32, 160, 96, 128, 192, 224, 192]

The preserved 𝐾 candidate network structures and the structures
generated by crossover and mutation form the next population. The
algorithm will repeat such search iteration for 𝑆 times. In the end, the
best candidate is selected to be the optimal pruned network structure.
We then fine-tune it to restore the accuracy.

4. Evaluation

In this section, we conduct experiments on standard datasets with
different models to evaluate the performance of our algorithm.

4.1. Experimental settings

We implement our algorithm with Pytorch 1.5.0. All the experi-
ments are run on NVIDIA GeForce RTX 2080 Ti GPU, which is made
up of 4352 CUDA Cores and 68 SMs. We choose three standard image
classification datasets (CIFAR-10, CIFAR-100, and Tiny-ImageNet) to
evaluate our method. CIFAR-10 dataset consists of 60,000 colored
images, which are classified into 10 classes. Each class has 5000
training images and 1000 testing images. Similar to CIFAR-10, CIFAR-
100 contains 100 classes of images. Each class has 500 training images
and 100 testing images. Tiny-ImageNet contains 100,000 images of 200
classes (500 for each class) colored images. Each class has 500 training
images, 50 validation images, and 50 test images.

We use two kinds of models in our experiments: VGG and ResNet.
VGG is a single-path network. The 16-layer model is adopted for com-
pression. ResNet consists of a series of blocks, and there is a shortcut
between two adjacent blocks. For dimensional matching in the pruned
network, the last convolutional layer in each block will not be pruned.
Two different depths of ResNet are adopted, including ResNet18 and
ResNet34.

For each group of experiments, we report test accuracy, the reduc-
tion of network inference latency, the reduction of FLOPs, the reduction
of parameter numbers, and the reduction of channel numbers as the
performance metrics. We use the PyTorch expansion package thop
to count the FLOPs and parameter numbers of network. To measure
inference latency of network, we run the model 10 times for GPU warm
up, then run the model 300 times with input batch size 128, and take
the average inference time.

For each pre-trained model used in our experiments, we train it with
200 epochs using Stochastic Gradient Descent with momentum 0.9, and
the batch size is set to 128, the initial learning rate is set to 0.1, which
decays by 10 every 50 epochs. The weight decay is set to 1e-4.
5

4.2. Comparative methods

We compare our method with three representative algorithms to
show its effectiveness.

• PFEC [9] is a representative traditional magnitude-based channel
pruning method. PFEC calculates and sorts the 𝑙1-norm value of
channels. Channels with smaller 𝑙1-norm value are less important,
then those channels and corresponding feature maps are pruned.

• Thinet [11] formulates channel pruning as an optimization prob-
lem, and prunes channels of current layer based on statistics
information computed from its next layer.

• ABCPruner [14] is a state-of-the-art automatic channel prun-
ing method. It adopts artificial bee colony algorithm to search
optimal pruned network structures. For 𝑖th convolutional layer
of unpruned model that contains 𝑐𝑖 channels, ABCPruner de-
fines its search scope to

{

10%𝑐𝑖, 20%𝑐𝑖, 30%𝑐𝑖,… , 𝛼%𝑐𝑖
}

, where the
maximum preserve percent 𝛼 is used to restrict the width of
pruned network, so that the FLOPs and parameter numbers can
be reduced.

4.3. Evaluation results

We conduct our experiments on CIFAR-10, CIFAR-100 and Tiny-
ImageNet datasets with VGG and ResNet models. To search for optimal
pruned network structures, we set the number of search cycles to 10
and the population size is 30, so LACP searches 300 pruned network
structures in the whole process. In each population, the numbers of new
pruned network structures that generated from mutation and crossovers
are both set to 15. In the end, we fine-tune the best pruned network
structure for 200 epochs with a learning rate of 0.1, which is divided
by 10 every 50 epochs. The weight decay is set to 1e-4. All algorithms
use the same pre-trained model, and the number of fine-tuning epoch is
set to 200. For a fair comparison with ABCPruner, we set its maximum
searching number of pruned network structures to the same 300.

The experimental results are shown in Table 1, compared with
PFEC, Thinet and ABCPruner, our method achieves better model in-
ference acceleration, while maintaining similar or higher accuracy. It is
worth noting that, as we have discussed before, more FLOPs or parame-
ter reduction does not necessarily lead to better inference acceleration.
Take CIFAR-100 dataset experiments as an example, ABCPruner-50%
prunes VGG16 with 87.29% FLOPs reduction and 88.22% param-
eter reduction, while LACP-0.5 prunes 69.03% FLOPs and 81.14%
parameters. However, LACP-0.5 achieves more latency reduction and
a significantly higher accuracy than ABCPruner-50%. Another draw-
back of ABCPruner can be observed from the experimental results.
ABCPruner compresses the model by limiting the maximum preserve
channel number of convolutional layers. As a result, once the max
preserve percent is small, the width of the pruned network is limited
and the representational capacity of the pruned model is thus limited.
To verify that point, we show a case study in Fig. 4. As shown in the
figure, compared with ABCPruner, our method achieves less accuracy
loss, while reducing the same percent of inference latency. As a supple-
mentary analysis, we compare the pruned network structure of LACP
and ABCPruner, result shows that our method preserves more channels
in the first several convolutional layers, which is more important for
neural network to extract feature information. On the contrary, the
pruned network of ABCPruner has a narrower head structure due to
the maximum preserve setting, leading to more accuracy loss.

5. Conclusion

In this paper, we propose a novel latency-aware automatic CNN
channel pruning method. Differing from conventional channel prun-
ing methods, our method get rid of selecting unimportant channels
based on hand-crafted design, and search for optimal pruned network



J. Liu, J. Sun, Z. Xu et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 1 (2021) 100009

s
n
c
a
R
a
o

Table 1
The experiment results on three datasets for different models. We compare LACP with three other methods.

Dataset Model Algorithm Accuracy (%) +/- (%) Latency reduction (%) FLOPs reduction (%) Parameter reduction (%) Channel reduction (%)

CIFAR10

VGG16

dense 93.02 0 0 0 0 0

PFEC 92.52 −0.5 26.18 47.01 44.57 25

LACP-0.7 92.74 −0.28 33.63 46.19 53.88 36.36

Thinet 91.51 −1.51 39.18 61.06 57.88 33.55

ABCPruner-90% 92.41 −0.61 46.59 68.82 78.39 51.23

LACP-0.5 92.62 −0.4 48.97 70.08 72.42 50

ABCPruner-50% 90.11 −2.91 59.18 87.55 87.81 67.57

LACP-0.4 91.62 −1.4 59.56 85.04 94.46 72.73

ResNet18

dense 94.28 0 0 0 0 0

PFEC 92.01 −2.27 17.56 35.26 48.51 18.67

ABCPruner-90% 94.02 −0.26 0.19 25.44 30.39 12.48

ABCPruner-50% 93.59 −0.69 18.61 60.27 60.07 24.98

LACP-0.5 94.34 +0.06 22.29 44.96 69.14 22.33

Thinet 94.36 +0.08 17.98 37.84 37.51 15.29

LACP-0.7 94.37 +0.09 21.3 41.15 61.71 20.67

CIFAR100

VGG16

dense 69.78 0 0 0 0 0

PFEC 69.45 −0.33 26.14 47 44.43 25

LACP-0.7 70.54 +0.76 30.23 50.72 63.17 39.39

Thinet 69.32 −0.46 40.63 63.42 60.01 35.27

ABCPruner-90% 69.06 −0.72 28.82 54.11 72.41 41.5

ABCPruner-50% 65.95 −3.93 39.14 87.29 88.22 66.17

LACP-0.5 69.42 −0.36 49.4 69.03 81.14 55.3

ResNet34

dense 74.86 0 0 0 0 0

PFEC 69.52 −5.34 20.91 39.63 48.93 21.05

Thinet 74.59 −0.27 19.94 38.09 37.75 16.96

ABCPruner-90% 74.58 −0.28 25.05 63.65 61.15 27.1

ABCPruner-50% 74.18 −0.68 23.56 67.92 68.33 30.06

LACP-0.5 74.59 −0.27 27.91 56.91 69.94 29.32

Tiny-ImageNet

ResNet18

dense 57.87 0 0 0 0 0

PFEC 56.49 −1.38 17.68 35.26 48.09 18.67

Thinet 56.53 −1.34 17.81 37.45 37.19 15.29

ABCPruner-90% 56.55 −1.32 2.69 38.9 34.37 15.27

ABCPruner-50% 55.23 −2.64 22.35 67.94 71.77 28.08

LACP-0.7 56.87 −1 22.15 50.16 68.08 24.67

ResNet34

dense 59.19 0 0 0 0 0

PFEC 58.98 −0.21 21.24 39.64 48.81 21.05

Thinet 59.05 −0.14 18.57 37.91 37.66 16.96

LACP-0.7 59.02 −0.17 24.45 52.28 67.1 27.07

ABCPruner-90% 58.58 −0.61 10.44 42.21 52.34 20.84

ABCPruner-50% 57.96 −1.23 24.17 68.09 73.76 31.58

LACP-0.5 58.64 −0.55 27.12 61.89 76.58 31.58

Note: LACP-𝛼 means we set the target latency to 𝛼 × 𝐿, where 𝐿 is the unpruned model’s inference latency. ABCPruner-𝛽 means the maximal preserved channel number in each
convolutional layer is 𝛽 × 𝐶, where 𝐶 is the original channel number in that layer.
tructure automatically. By analyzing the inference latency of pruned
etworks, we indicate that neither FLOPs nor the number of parameters
an accurately represent the real inference acceleration. Besides, we
nalyze the execution mechanism of convolutional layers on GPU.
esults show that the inference latency of convolutional layers presents
staircase pattern with different number of channels. Based on this

bservation, we greatly shrink the combinations of network structure,
6

enabling efficient search of low-latency and accurate pruned network.
We conduct extensive evaluations to compare our method with ex-
isting studies on public datasets, and report the real latency metric.
Experimental results show that our method can achieve better inference
acceleration, while maintaining higher accuracy.

Although we have achieved desired pruning effect on our experi-
ments, our method can be further improved. As we discussed before,



J. Liu, J. Sun, Z. Xu et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 1 (2021) 100009
Fig. 4. The pruning results of LACP and ABCPruner for VGG16 on CIFAR-10 dataset.
we shrink the search space of pruned network structure through the
analysis of the GPU tail effect. However, our analysis is based on
empirical profiling. A more thorough and general investigation of the
GPU tail effect could be helpful. Besides, how to generalize our method
to different hardware platforms is also worth studying in future work.

Acknowledgments

This work is supported by National Natural Science Foundation of
China (No. 61772485). It is also funded by Youth Innovation Promotion
Association of Chinese Academy of Sciences (CAS) and JD AI research.
Experiments in this study were conducted on the supercomputer system
in the Supercomputing Center of University of Science and Technology
of China.

References

[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep residual learning for
image recognition, in: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 770–778.

[2] Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik, Rich feature hierar-
chies for accurate object detection and semantic segmentation, in: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp.
580–587.

[3] Jonathan Long, Evan Shelhamer, Trevor Darrell, Fully convolutional networks
for semantic segmentation, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2015, pp. 3431–3440.

[4] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, Yoshua Bengio,
Quantized neural networks: Training neural networks with low precision weights
and activations, J. Mach. Learn. Res. 18 (1) (2017) 6869–6898.

[5] Chenglin Yang, Lingxi Xie, Chi Su, Alan L. Yuille, Snapshot distillation: Teacher-
student optimization in one generation, in: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019, pp. 2859–2868.

[6] Yann LeCun, John S Denker, Sara A Solla, Richard E Howard, Lawrence D Jackel,
Optimal brain damage, in: NIPs, Vol. 2, Citeseer, 1989, pp. 598–605.

[7] Song Han, Jeff Pool, John Tran, William Dally, Learning both weights and
connections for efficient neural network, in: C. Cortes, N. Lawrence, D. Lee, M.
Sugiyama, R. Garnett (Eds.), Advances in Neural Information Processing Systems,
Vol. 28, Curran Associates, Inc., 2015.

[8] Yihui He, Xiangyu Zhang, Jian Sun, Channel pruning for accelerating very
deep neural networks, in: Proceedings of the IEEE International Conference on
Computer Vision, 2017, pp. 1389–1397.

[9] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, Hans Peter Graf, Pruning
filters for efficient convnets, 2016, arXiv preprint arXiv:1608.08710.

[10] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, Hai Li, Learning structured
sparsity in deep neural networks, in: Proceedings of the 30th International
Conference on Neural Information Processing Systems, 2016, pp. 2082–2090.

[11] Jian-Hao Luo, Jianxin Wu, Weiyao Lin, Thinet: A filter level pruning method
for deep neural network compression, in: Proceedings of the IEEE International
Conference on Computer Vision, 2017, pp. 5058–5066.
7

[12] Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang, Baochang Zhang, Yonghong
Tian, Ling Shao, Hrank: Filter pruning using high-rank feature map, in: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 1529–1538.

[13] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, Trevor Darrell, Rethink-
ing the Value of Network Pruning, in: International Conference on Learning
Representations, 2018.

[14] Mingbao Lin, Rongrong Ji, Yuxin Zhang, Baochang Zhang, Yongjian Wu,
Yonghong Tian, Channel Pruning via Automatic Structure Search, in: Proceedings
of the International Joint Conference on Artificial Intelligence, IJCAI, 2020, pp.
673–679.

[15] Emily Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, Rob Fergus, Ex-
ploiting linear structure within convolutional networks for efficient evaluation,
in: Proceedings of the 27th International Conference on Neural Information
Processing Systems-Volume 1, 2014, pp. 1269–1277.

[16] Jimmy Ba, Rich Caruana, Do deep nets really need to be deep? in: NIPS, 2014.
[17] Yiwen Guo, Anbang Yao, Yurong Chen, Dynamic network surgery for efficient

DNNs, in: NIPS, 2016.
[18] Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen,

Madeleine Gibescu, Antonio Liotta, Scalable training of artificial neural networks
with adaptive sparse connectivity inspired by network science, Nature Commun.
9 (1) (2018) 1–12.

[19] Junjie LIU, Zhe XU, Runbin SHI, Ray C. C. Cheung, Hayden K.H. So, Dynamic
sparse training: Find efficient sparse network from scratch with trainable masked
layers, in: International Conference on Learning Representations, 2020.

[20] Tim Dettmers, Luke Zettlemoyer, Sparse networks from scratch: Faster training
without losing performance, 2019, arXiv preprint arXiv:1907.04840.

[21] Bowen Baker, Otkrist Gupta, Nikhil Naik, Ramesh Raskar, Designing neural
network architectures using reinforcement learning, in: International Conference
on Learning Representations, 2018.

[22] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, Quoc V Le, Learning transfer-
able architectures for scalable image recognition, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp. 8697–8710.

[23] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew
Howard, Quoc V Le, Mnasnet: Platform-aware neural architecture search for
mobile, in: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 2820–2828.

[24] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon
Suematsu, Jie Tan, Quoc V Le, Alexey Kurakin, Large-scale evolution of image
classifiers, in: International Conference on Machine Learning, PMLR, 2017, pp.
2902–2911.

[25] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, Quoc Le,
Understanding and simplifying one-shot architecture search, in: International
Conference on Machine Learning, PMLR, 2018, pp. 550–559.

[26] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, Jeff Dean, Efficient neural
architecture search via parameters sharing, in: International Conference on
Machine Learning, PMLR, 2018, pp. 4095–4104.

[27] Hanxiao Liu, Karen Simonyan, Yiming Yang, Darts: Differentiable architecture
search, in: International Conference on Learning Representations, 2018.

[28] Jian Cheng, Pei-song Wang, Gang Li, Qing-hao Hu, Han-qing Lu, Recent advances
in efficient computation of deep convolutional neural networks, Front. Inf.
Technol. Electron. Eng. 19 (1) (2018) 64–77.

http://refhub.elsevier.com/S2772-4859(21)00009-0/sb4
http://refhub.elsevier.com/S2772-4859(21)00009-0/sb4
http://refhub.elsevier.com/S2772-4859(21)00009-0/sb4
http://refhub.elsevier.com/S2772-4859(21)00009-0/sb4
http://refhub.elsevier.com/S2772-4859(21)00009-0/sb4
http://refhub.elsevier.com/S2772-4859(21)00009-0/sb6
http://refhub.elsevier.com/S2772-4859(21)00009-0/sb6
http://refhub.elsevier.com/S2772-4859(21)00009-0/sb6
http://refhub.elsevier.com/S2772-4859(21)00009-0/sb7
http://refhub.elsevier.com/S2772-4859(21)00009-0/sb7
http://refhub.elsevier.com/S2772-4859(21)00009-0/sb7
http://refhub.elsevier.com/S2772-4859(21)00009-0/sb7
http://refhub.elsevier.com/S2772-4859(21)00009-0/sb7
http://refhub.elsevier.com/S2772-4859(21)00009-0/sb7
http://refhub.elsevier.com/S2772-4859(21)00009-0/sb7
http://arxiv.org/abs/1608.08710
http://refhub.elsevier.com/S2772-4859(21)00009-0/sb16
http://refhub.elsevier.com/S2772-4859(21)00009-0/sb17
http://refhub.elsevier.com/S2772-4859(21)00009-0/sb17
http://refhub.elsevier.com/S2772-4859(21)00009-0/sb17
http://refhub.elsevier.com/S2772-4859(21)00009-0/sb18
http://refhub.elsevier.com/S2772-4859(21)00009-0/sb18
http://refhub.elsevier.com/S2772-4859(21)00009-0/sb18
http://refhub.elsevier.com/S2772-4859(21)00009-0/sb18
http://refhub.elsevier.com/S2772-4859(21)00009-0/sb18
http://refhub.elsevier.com/S2772-4859(21)00009-0/sb18
http://refhub.elsevier.com/S2772-4859(21)00009-0/sb18
http://arxiv.org/abs/1907.04840
http://refhub.elsevier.com/S2772-4859(21)00009-0/sb24
http://refhub.elsevier.com/S2772-4859(21)00009-0/sb24
http://refhub.elsevier.com/S2772-4859(21)00009-0/sb24
http://refhub.elsevier.com/S2772-4859(21)00009-0/sb24
http://refhub.elsevier.com/S2772-4859(21)00009-0/sb24
http://refhub.elsevier.com/S2772-4859(21)00009-0/sb24
http://refhub.elsevier.com/S2772-4859(21)00009-0/sb24
http://refhub.elsevier.com/S2772-4859(21)00009-0/sb25
http://refhub.elsevier.com/S2772-4859(21)00009-0/sb25
http://refhub.elsevier.com/S2772-4859(21)00009-0/sb25
http://refhub.elsevier.com/S2772-4859(21)00009-0/sb25
http://refhub.elsevier.com/S2772-4859(21)00009-0/sb25
http://refhub.elsevier.com/S2772-4859(21)00009-0/sb26
http://refhub.elsevier.com/S2772-4859(21)00009-0/sb26
http://refhub.elsevier.com/S2772-4859(21)00009-0/sb26
http://refhub.elsevier.com/S2772-4859(21)00009-0/sb26
http://refhub.elsevier.com/S2772-4859(21)00009-0/sb26
http://refhub.elsevier.com/S2772-4859(21)00009-0/sb28
http://refhub.elsevier.com/S2772-4859(21)00009-0/sb28
http://refhub.elsevier.com/S2772-4859(21)00009-0/sb28
http://refhub.elsevier.com/S2772-4859(21)00009-0/sb28
http://refhub.elsevier.com/S2772-4859(21)00009-0/sb28

	Latency-aware automatic CNN channel pruning with GPU runtime analysis
	Introduction
	Related work
	Methodology
	Overview
	Search space definition
	Optimal network structure search

	Evaluation
	Experimental settings
	Comparative methods
	Evaluation results

	Conclusion
	Acknowledgments
	References


