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A B S T R A C T

Evaluation is a crucial aspect of human existence and plays a vital role in each field. However, it is often
approached in an empirical and ad-hoc manner, lacking consensus on universal concepts, terminologies,
theories, and methodologies. This lack of agreement has significant consequences. This article aims to formally
introduce the discipline of evaluatology, which encompasses the science and engineering of evaluation.
The science of evaluation addresses the fundamental question: "Does any evaluation outcome possess a
true value?" The engineering of evaluation tackles the challenge of minimizing costs while satisfying the
evaluation requirements of stakeholders. To address the above challenges, we propose a universal framework
for evaluation, encompassing concepts, terminologies, theories, and methodologies that can be applied across
various disciplines, if not all disciplines.

This is a short summary of Evaluatology (Zhan et al., 2024). The objective of this revised version is to
alleviate the readers’ burden caused by the length of the original text. Compared to the original version
(Zhan et al., 2024), this revised edition clarifies various concepts like evaluation systems and conditions
and streamlines the concept system by eliminating the evaluation model concept. It rectifies errors, rephrases
fundamental evaluation issues, and incorporates a case study on CPU evaluation (Wang et al., 2024). For a
more comprehensive understanding, please refer to the original article (Zhan et al., 2024). If you wish to cite
this work, kindly cite the original article.

Jianfeng Zhan, Lei Wang, Wanling Gao, Hongxiao Li, Chenxi Wang, Yunyou Huang, Yatao Li, Zhengxin Yang,
Guoxin Kang, Chunjie Luo, Hainan Ye, Shaopeng Dai, Zhifei Zhang (2024). Evaluatology: The science and engineering
of evaluation. BenchCouncil Transactions on Benchmarks, Standards and Evaluations, 4(1), 100162.
1. The motivation: why it is essential to establish the science and
engineering of evaluation

Evaluation is a crucial aspect of human existence and plays a vital
role in each field. However, it is often approached in an empirical and
ad-hoc manner, lacking consensus on universal concepts, terminologies,
theories, and methodologies. This lack of agreement has significant
consequences. Even within computer sciences and engineering, it is
not uncommon for evaluators to generate greatly divergent evaluation
outcomes for the same individual or system1 under scrutiny, which
we refer to as the subject. These discrepancies can range from sig-
nificant variations to the extent of yielding contradictory qualitative
conclusions.

∗ Correspondence to: The International Open Benchmark Council, DE, USA.
E-mail address: jianfengzhan.benchcouncil@gmail.com.
URL: https://www.zhanjianfeng.org.

1 This footnote is quoted from [1]. An individual can be defined as an object described by a given data set. A system is an interacting or interdependent group
of individuals, whether of the same or different kinds, forming a unified whole [2,3].

2 The SPEC CPU2017 recommended configuration sets the compiler flag to ‘-O3’ and the number of threads/copies to the maximum number of hardware

An example of this phenomenon can be observed when using the
industry-standard CPU benchmark suite SPEC CPU2017 to assess the
performance of the same processor [4]. Wang et al. [4] used SPEC
CPU2017 to evaluate the same X86 processor, an Intel Xeon Gold
5120T, adhering to SPEC’s procedures and rules. In the rest of this ar-
ticle, we use the same CPU evaluation experiment. Nonetheless, across
various SPEC CPU2017 configurations with alterations in compiler
flags and the number of copies/threads, the best and worst outcomes
exhibit a notable difference of 86 times. Under the SPEC CPU2017
recommended configuration,2 just 12 out of 43 SPEC CPU2017 work-
loads achieved the best performance among the varying configurations.
From a measurement or metrology perspective, each procedure and
threads supported by the CPU.
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Fig. 1. The universal concepts, theories, and methodologies in evaluatology.

the obtained quantity is valid and correct. Nevertheless, the result
under a particular configuration can be misleading if the distribution
of outcomes across different configurations is not taken into account.

In this context, two fundamental questions naturally emerge: ‘‘What
is the distinction between evaluation and measurement? Does any eval-
uation outcome possess a true value?’’ Such circumstances give rise to
valid concerns surrounding these approaches’ reliability, effectiveness,
and efficiency when appraising the subject that is critical to safety,
missions, and businesses.

For the first time, this article aims to formally introduce the disci-
pline of evaluatology, which encompasses the science and engineering
of evaluation. The science of evaluation addresses the fundamental
question: ‘‘Does any evaluation outcome possess a true value?’’ The en-
gineering of evaluation tackles the challenge of minimizing costs while
satisfying the evaluation requirements of stakeholders. To address the
2

Fig. 2. In the context of CPU evaluation, a well-defined EC possesses huge configura-
tions built on the basis of SPEC CPU2017, an industry-standard CPU benchmark suite.
With the permissions of the authors of [4].

above challenges, we propose a universal framework for evaluation,
encompassing concepts, terminologies, theories, and methodologies
that can be applied across various disciplines, if not all disciplines.
Fig. 1 presents the universal concepts, theories, and methodologies in
Evaluatology.

2. The science of evaluation

2.1. The essence of evaluation

The challenge in evaluation arises from the inherent fact that eval-
uating a subject in isolation falls short of meeting the expectations of
stakeholders. Instead, it is crucial to create a minimal and well-defined
evaluation system (ES) that satisfies the evaluation requirements of
stakeholders. Providing the context to evaluate the subject, an ES is
a minimum system consisting of the subject and other individuals or
systems that are crucial in guaranteeing independent operation and
addressing the concerns or interests of the subject’s stakeholders.

In other words, evaluation can be seen as an experiment that delib-
erately applies a well-defined evaluation condition (EC) to a subject to
create an ES. Building on the previous discussion, literally, an EC can
be understood as the ES with the subject removed. We formally define
EC as the minimal context that is crucial in guaranteeing independent
operation and addressing the concerns or interests of the subject’s
stakeholders for evaluating the subject.
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Fig. 3. The hierarchical definition of an EC.
A well-defined EC possesses huge EC configurations. For example,
Fig. 2 presents an EC example built on the basis of SPEC CPU2017, an
industry-standard CPU benchmark suite.

In one word, evaluation is the process of inferring the impact of subjects
indirectly within ES that cater to the requirements of stakeholders, relying
on objective measurements and/or testing of the latter.

2.2. Five evaluation axioms

Derived from the essence of evaluation, we propose five axioms
focusing on key aspects of evaluation outcomes as the foundational
evaluation theory. These axioms serve as the bedrock upon which we
build universal evaluation theories and methodologies.

The Axiom of the Essence of Composite Metrics declares that
the essence of the composite metric either carries inherent physical
significance or is solely dictated by the value function.

The Axiom of True Evaluation Outcomes states that when a well-
defined EC is applied to a well-defined subject, the evaluation outcomes
possess true values, representing a distribution of value across different
EC configurations.

The Axiom of Evaluation Traceability declares that for the same
subject, the divergence in the evaluation outcomes can be attributed to
disparities in ECs, thereby establishing evaluation traceability.

The Axiom of Comparable Evaluation Outcomes declares when
each well-defined subject is equipped with equivalent ECs, their eval-
uation outcomes are comparable.

The Axiom of Consistent Evaluation Outcomes asserts that when
a well-defined subject is evaluated under different configuration sam-
ples of a well-defined EC, their evaluation outcomes consistently con-
verge towards the true evaluation outcomes.

2.3. Basic evaluation theory

Based on the five evaluation axioms, we present the universal
evaluation theories.
3

2.3.1. The hierarchical definition of an EC
A well-defined EC serves as a prerequisite for meaningful compar-

isons and analyses of the subjects. As shown in Fig. 3, we propose
a universal hierarchical definition of an EC and identify five primary
components of an EC from the top to the bottom.

We start defining an EC from the problems or tasks that these
stakeholders face and need to address with the following two reasons.
First, the relevant stakeholders’ concerns and interests are at the eval-
uation’s core. These concerns and interests are best reflected through
the problems or tasks they must face and resolve, which provide a
reliable means to define an EC. Secondly, employing the same problem
or task provides the necessary but not sufficient method to ensure the
comparability of evaluation outcomes. While the problem or task serves
as the foundation for the evaluation process, it cannot solely serve as
the evaluation itself because it is often abstract and requires further
instantiation to determine its specific parameters.

The second component is the set of problem or task instances, each
of which is instantiated from a problem or task. Different from the first
component, a problem or task instance is specific and could serve as the
evaluation directly. After a problem or task is proposed, it is necessary
to figure out a solution. The third component consists of the algorithms
or algorithm-like mechanisms, each of which provides the solution to
a problem or task. An algorithm-like mechanism refers to a process
or abstract that operates in a manner similar to an algorithm. The
fourth component encompasses the implementation of an algorithm or
instantiation of an algorithm-like mechanism, which tackles problem
or task instances. The fifth component is support systems that provide
necessary resources and environments.

2.3.2. The establishment of EECs
In the process of evaluating subjects, it is of utmost importance to

prioritize the use of the equivalent ECs (EECs) across diverse subjects.
This means that in order to establish two EECs, it is crucial to ensure
that the corresponding components within the same layer of the two
ECs are equivalent. By maintaining equivalency at each layer, we can
guarantee that evaluation results are not influenced by confounding
variables in ECs, allowing for meaningful comparisons and assessments
across different subjects.
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Fig. 4. Universal evaluation methodology in complex scenarios.

We take the same CPU evaluation example to demonstrate why
it is essential to guarantee EECs. In the SPEC CPU2017 workloads,
the outcomes vary significantly, ranging from 1.95 to 242.06, across
different configurations of SPEC CPU2017. For instance, the workload
named 541.leela_r shows a 242.06-fold difference in outcomes for the
Intel Xeon Gold 5120T between a configuration with the ‘-O3’ compiler
flag and 56 copies versus another configuration with the ‘-O0’ compiler
flag and 1 copy. These significant disparities in evaluation outcomes for
the same processor highlight the importance and necessity of EECs.

2.3.3. The establishment of a reference ES
We apply ECs to diverse subjects to constitute ESes. An ES con-

figuration refers to a specific point within the ES configuration space,
and each ES configuration has many independent variables. There is a
subtle difference between an EC configuration and an ES configuration,
as the subject itself also may possess many independent variables.

We propose a new concept named a reference ES (RES) to address
confounding variables. An RES mandates that each ES configuration
changes only one independent variable at a time, maintaining the other
variables as controls. Subsequently, we utilize the measurement and/or
testing to gauge the functioning of the RES. Finally, from the amassed
measurement and testing data of the ESes, we deduce the cause–effect
impacts of the independent variable that we modify.

Similarly, we can define the concept of reference EC (REC). An REC
mandates that each EC configuration changes only one independent
variable at a time, maintaining the other variables as controls.
4

Fig. 5. A perfect ES resembles a real-world ES.

2.4. Universal evaluation methodology in complex scenarios

Addressing the complexities that arise in more intricate scenarios,
we reveal that the key to effective and efficient evaluations in various
complex scenarios lies in the establishment of a series of ESes that
maintain transitivity (see Fig. 4). In the full original version [1], we
have formally defined what transitivity is in a mathematical form.

In real-world settings, we refer to the minimal real-world systems
that are used to evaluate specific subjects as the real-world ES. Assum-
ing no safety concerns are present, the real-world ES serves as a prime
candidate for creating an optimal evaluation environment, enabling
the assessment of diverse subjects. However, there are several signif-
icant obstacles to consider, i.e., the presence of numerous confounding
variables, the challenges of establishing an RES, prohibitive evaluation
costs resulting from the huge configuration spaces, multiple irrelevant
concurrent problems or tasks taking place, and the inclination to exhibit
bias towards certain clusters within the ES configuration space.

We posit the existence of a perfect ES that replicates the real-world
ES with utmost fidelity (see Fig. 5). A perfect ES eliminates irrelevant
problems or tasks, has the capability to thoroughly explore and com-
prehend the entire spectrum of possibilities of an ES, and facilitates the
establishment of an RES. However, the perfect ES possesses huge con-
figuration space, entails a vast number of independent variables, and
hence results in prohibitive evaluation costs. To address this challenge,
it is crucial to propose a pragmatic ES that simplifies the perfect ES
in two ways: reducing the number of independent variables that have
negligible effect and sampling from the extensive configuration space.
A pragmatic ES provides a means to estimate the parameters of the
real-world ES.

Literally, a real-world, perfect, or pragmatic EC can be understood
as the corresponding ES without the subject included.

2.5. Four fundamental issues in evaluatology

We put forth four fundamental issues in the discipline of evaluatol-
ogy.
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Fig. 6. A benchmark comprises three essential constituents.
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First and foremost, establishing the EC that can yield true and
consistent evaluation outcomes for the same subject stands as the
cornerstone of evaluatology. Moreover, ensuring the transitivity of ECs
is equally crucial in complex scenarios, transitioning from a real-world
EC to perfect and pragmatic ECs.

Secondly, ensuring the evaluation outcomes are comparable for
different subjects stands as another cornerstone of evaluatology. Given
the formidable task of ensuring EECs and the potential multitude
of independent variables within an EC and a subject, mitigating the
adverse impacts of confounding variables poses a significant challenge.

Thirdly, the critical engineering challenge in implementing evalua-
tion processes is determining how to conduct a cost-effective evaluation
while maintaining controlled outcome discrepancies. That is how to
strike a balance between ensuring the discrepancy threshold of the
evaluation outcomes and managing the associated costs.

Fourthly, how to ensure evaluation traceability is a multifaceted
issue that requires the application of both scientific and engineer-
ing principles. It involves attributing any discrepancy in evaluation
outcomes to disparities in the underlying ECs and subjects, thereby
establishing clear and transparent traceability.

3. The engineering of evaluation

Benchmarks are extensively employed across various disciplines,
albeit lacking a formal definition. Based on the science of evaluation,
we propose a precise delineation of a benchmark as an EC. In reality,
t could be a simplified and sampled EC, specifically a pragmatic EC, that
nsures different levels of equivalency. Based on this concept, we propose
benchmark-based universal engineering of evaluation across different
isciplines.

Within the framework of this definition, a benchmark comprises
hree essential constituents. The first constituent is the stakeholder’s
valuation requirements, which encompass various factors. These include
he risk function, which evaluates the potential risks associated with the
enchmark. Additionally, the discrepancy threshold, which determines
he acceptable level of deviation from the true evaluation outcomes, is
onsidered. The evaluation confidence level and evaluation confidence
nterval play a crucial role in predicting the parameter of a perfect
S. Lastly, the evaluation cost is taken into account, and the resources
5

required for conducting the evaluation are assessed. By considering
these elements, the benchmark can effectively address the evaluation
requirements of stakeholders.

The second constituent of the benchmark framework is the EC
onfiguration and mechanisms. This includes several elements crucial for
he benchmark’s effectiveness. Firstly, it involves defining the set of
roblems or tasks the stakeholders face when addressing. Additionally,
t encompasses the set of problem or task instances, which helps ensure
pecificity in the evaluation process. The benchmark also considers
lgorithms or algorithm-like mechanisms, which play a significant role
n solving the defined problems or tasks, and includes their instanti-
tions. The support systems, which provide necessary resources and
nvironments, are also taken into account.

Moreover, the benchmark provides the means to configure crucial
ndependent variables while eliminating confounding variables that
ould potentially impact the evaluation outcomes. Also, the benchmark
rovides the mechanism to address the diverse evaluation requirements
f stakeholders. For example, it ensures different levels of EC equiva-
ency, determining the extent to which different benchmark instances
an be considered equivalent.

By considering these EC configurations and mechanisms, the bench-
ark can provide a comprehensive and standardized approach to dif-

erent evaluation issues.
The third constituent is the metrics and reference, including the

efinitions of quantities, the value function, composite metrics, the
eference subject, and the reference evaluation outcomes.

In the subsequent sections of this article, we will refer to these three
onstituents as the complete constituents of a benchmark. Fig. 6 shows
he three essential constituents of a benchmark.

. A case study of CPU evaluation

Three fundamental steps are involved in our examination of CPU
valuation as a case study in evaluatology. The first step is to delineate
he EC and the subject. The second step entails applying the well-
efined EC to the subject to establish the ES. Finally, the third step
ocuses on attaining consistent and comparable evaluation outcomes.

In CPU evaluation, a specific CPU, a well-defined subject, includes
omponents such as decoders, issue queues, arithmetic logic units
ALUs), branch predictors, reorder buffers (ROBs), and caches.
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Fig. 7. A simplified yet systematic conceptual framework for metrology [5,6].

As shown in Fig. 2, a well-defined EC consists of five components. At
the highest level are the problems that are of concern to stakeholders,
such as arithmetic operations. The next level is the problem instances,
which provide data variables and constraints of the problem, such as
the arithmetic operations on two 32-bit unsigned integers 𝑛1 and 𝑛2.
The third level is the algorithms, an abstract representation of the
solution for the given problem, which can be described in natural
language or pseudocode. The next level is algorithm implementations,
which involve coding the algorithms in a specific programming lan-
guage supported by the computer, such as a C or Java program. The
final level is the support systems, which encompass all environments or
configurations required to run a program on a specific CPU, including
but not limited to the compilers, compiler flags, copies/threads, OSes,
OS settings, memories, memory settings, disks, and disk settings.

When a well-defined EC is applied to a specific CPU, the true evalu-
ation outcome emerges as a distribution of outcomes across various EC
configurations. Under a specific EC configuration, the true outcome can
6

Fig. 8. A simplified yet systematic conceptual framework for testing [7,8].

be estimated by taking the mean or median of multiple experiments.
Furthermore, under a sample of configurations of a well-defined EC, the
true evaluation outcomes can be estimated using a confidence interval
at a specified confidence level, with the sample mean serving as the
estimate.

The evaluation outcomes of different CPUs are comparable under
EECs. The EECs consist of identical problems, problem instances, al-
gorithms, algorithm implementation, support systems containing the
same compiler, compiler flag, copies/threads setting, OS, OS setting,
memory, memory setting, disk, and disk setting in CPU evaluation. Any
divergence in ECs will result in incomparable evaluation outcomes for
different CPUs.

5. The differences between evaluation, measurement and testing

We elucidate the marked disparity between evaluation, measure-
ment, and testing.

Metrology is the science of measurement and its applications. The
essence of metrology lies in quantities and their corresponding mea-
surements (see Fig. 7).

A test oracle is a method used to verify whether an individual or
system being tested has performed correctly during a specific execution.
Testing is the process of executing an individual or system to determine
whether it (1) conforms to the specified behavior defined by the test
oracles (the first category) and/or (2) operates correctly within its in-
tended environment as defined by the test oracles (the second category)
(see Fig. 8).

First and foremost, measurement, testing, and evaluation focus on
different issues within the same scenario, e.g., the CPU evaluation
experiment. The primary focus of evaluation lies in defining an EC
that can yield true and consistent evaluation outcomes for the same
subject. Eliminating confounding variables within the EC to ensure
that evaluation outcomes remain comparable across different subjects
is another crucial issue. In this context, measurement and testing is
a micro-level activity that addresses the previously mentioned issue
within a particular EC configuration.

Secondly, measurement, testing, and evaluation serve distinct pur-
poses within the same scenario. Evaluation focuses on the subject, while

measurement or testing targets ES. Measurement or testing is carried



J. Zhan BenchCouncil Transactions on Benchmarks, Standards and Evaluations 4 (2024) 100175 
out directly on the ES, whereas evaluation is derived indirectly within
the ES.

Thirdly, measurement, testing, and evaluation have different out-
comes within the same scenario. The evaluation outcomes appear as
the distribution of outcomes with respect to different EC configurations.
However, testing and measurement outcomes appear as the distribution
of outcomes with respect to the same EC configurations.

By virtue of the aforementioned reasons, we can assert that metrol-
ogy or testing serves as but one foundational aspect in the realm of
evaluations.
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A B S T R A C T

The binary code similarity detection (BCSD) technique can quantitatively measure the differences between two
given binaries and give matching results at predefined granularity (e.g., function), and has been widely used
in multiple scenarios including software vulnerability search, security patch analysis, malware detection, code
clone detection, etc. With the help of deep learning, the BCSD techniques have achieved high accuracy in their
evaluation. However, on the one hand, their high accuracy has become indistinguishable due to the lack of a
standard dataset, thus being unable to reveal their abilities. On the other hand, since binary code can be easily
changed, it is essential to gain a holistic understanding of the underlying transformations including default
optimization options, non-default optimization options, and commonly used code obfuscations, thus assessing
their impact on the accuracy and adaptability of the BCSD technique. This paper presents our observations
regarding the diversity of BCSD datasets and proposes a comprehensive dataset for the BCSD technique. We
employ and present detailed evaluation results of various BCSD works, applying different classifications for
different types of BCSD tasks, including pure function pairing and vulnerable code detection. Our results show
that most BCSD works are capable of adopting default compiler options but are unsatisfactory when facing
non-default compiler options and code obfuscation. We take a layered perspective on the BCSD task and point
to opportunities for future optimizations in the technologies we consider.
1. Introduction

The widespread presence of binary code across diverse domains, in-
cluding traditional PC software, emerging IoT device firmware [1], and
malicious software, highlights the criticality of conducting research ex-
clusively focused on binary code to effectively address software security
concerns. In recent years, the binary code similarity detection (BCSD)
technique [2–28] has garnered substantial attention and proven its
versatility across diverse fields, including vulnerability discovery, mal-
ware detection, software plagiarism detection, patch analysis, software
supply chain analysis, etc.

With the continuous advancements in machine learning, especially
deep learning, learning-based methods have emerged as a prominent
approach in mainstream BCSD tools [9,10,12,14,18,26,28,29]. These
methods harness the power of neural network architectures and tech-
niques to extract intricate patterns and representations from binary
code, resulting in significant improvements in accuracy. By leveraging

∗ Corresponding author at: SKLP, Institute of Computing Technology, China.
E-mail address: wangzhe12@ict.ac.cn (Z. Wang).

1

large-scale training datasets and sophisticated neural network architec-
tures, learning-based BCSD techniques have achieved state-of-the-art
accuracy in various tasks.

However, recent BCSD works have faced a challenge in distinguish-
ing their capabilities and accuracy due to the absence of a standard
dataset. Our study (detailed in Section 2.3) reveals that 22 BCSD works,
which were conducted in the past decade and published on top venues,
utilized different datasets. Consequently, it has become difficult to
assess the true effectiveness of these methods, hindering the ability to
make informed decisions and impeding progress in the field. Given the
broad range of applications and the growing number of works in the
BCSD field, the establishment of a standardized dataset is crucial.

To address this issue, we propose a standardized BCSD dataset
dubbed as BinCodex.1 This dataset aims to evaluate BCSD works in
diverse scenarios, enabling researchers to compare and assess different
techniques more effectively. Additionally, a standardized dataset would
facilitate the validation of new methods, foster collaboration among
researchers, and contribute to the overall progress of BCSD.
‘‘Bin’’ signifies the focus on analyzing binary code, while ‘‘Codex’’ conveys the
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idea of a comprehensive collection of code samples.
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We first thoroughly inspected all possible change points of the bi-
nary code and divided them into 4 groups: different platforms (e.g., x86
and arm), different compilers (e.g., GCC and Clang), different com-
piler options (including default and non-default), and different code
obfuscation techniques.

Among them, compiler optimization options play a vital role in
shaping the structure of binary code, resulting in noticeable differences.
Previous studies have identified default options (e.g., O0/1/2/3) as a
critical challenge in binary diffing [28,30]. Additionally, apart from
default optimization levels, non-default options can also change binary
code significantly [31] but are challenging to exhaustively analyze due
to their large combination space, which encourages BinCodex to explore.
Lastly, code obfuscation techniques [32–38] can alter code to modify
binary characteristics, posing potential challenges to BCSD techniques.
Recent work [39] has identified the impact of inter-procedural obfus-
cation on BCSD techniques, but its comprehensive evaluation is yet to
be fully explored, which also motivates the BinCodex.

It is non-trivial to construct a comprehensive dataset for the BCSD
technique due to the challenges posed by program diversity, efficiency,
and measurement diversity. For example, (1) To balance the dataset
size with the program diversity, choosing which programs is a problem;
(2) Since the binary can be easily changed from several aspects, the
enumeration of all possible change point combinations is impossible
because of the large searching space. (3) BCSD tools differ in the
granularity of their features and the representation of those features.
How to normalize these disparities without deducing their accuracy is
challenging.

To address the first challenge, we create the dataset with careful
consideration of several factors, including a large amount of code
(over 10 million lines of code), the representation of different binary
code types (e.g., system software, compiler, interpreters, commonly
used libraries, firmware, and typical vulnerable code), the diversity of
code samples, varying levels of similarity, and different granularity of
similarity detection tasks (e.g., function level and basic block level).

To tackle the second challenge, we aim to reduce the searching
space in several directions. Firstly, we select default options among
different compilers, which helps eliminate unnecessary variations. Sec-
ondly, we utilize a search-based compiler tool to explore the non-
default options within a single compiler, avoiding redundant evalu-
ations. Lastly, we choose a commonly used optimization level as a
baseline to evaluate code obfuscation techniques, which reduces the
number of obfuscated binaries while still capturing their impact.

To overcome disparities in evaluation metrics, we addressed the
third challenge by normalizing features and using a standardized dis-
tance measurement: precision ratio. By abandoning different metrics
from various BCSD tools, we ensure consistency in the evaluation
process, enabling fair comparisons and a more reliable assessment of
effectiveness.

To achieve a more precise evaluation of BCSD tools, we developed
BinCodex as a multi-level dataset incorporating various code trans-
formation levels instead of merging all binaries into a single pool.
This granular evaluation enables a more detailed understanding of the
effectiveness of BCSD tools in different scenarios.

BinCodex is implemented and evaluated on the Linux system. Eight
state-of-the-art binary diffing tools (Diemph [29], OPTango [40], jTrans
[28], Asm2Vec [12], Safe [41], DeepBinDiff [10], VulSeeker [14], and
BinDiff [42]) are evaluated. The results cover various BCSD tasks,
including pure function pairing and vulnerable code detection, and
employ different classifications for different types of tasks. The results
highlight that most BCSD works perform well when default compiler
options are used but face challenges with non-default options. Addi-
tionally, while many BCSD tools demonstrate adaptability to intra-
procedural code obfuscation, they struggle with inter-procedural obfus-
cation techniques. The evaluation provides a deep understanding of the
current state of BCSD works, identifies the necessity of a standardized
BCSD dataset, and points to opportunities for future optimizations in
the field.
9

Fig. 1. The overall process of binary code similarity detection.

Our contributions can be summarized as follows:

• A deep understanding of current BCSD works. The paper is the
first to provide a comprehensive summary of BCSD works based
on their dataset characteristics. This understanding highlights the
need for a standardized BCSD dataset.

• A comprehensive BCSD dataset. We present a BCSD dataset and
propose three methods to enhance its comprehensiveness. These
methods include dataset selection, searching space reduction,
and metrics normalization. They ensure that the dataset includes
representative programs, diverse features, and standardized met-
rics. We also perform multi-level evaluations to gain a detailed
understanding of BCSD tools in different scenarios.

• New insights from implementation and evaluation. We eval-
uate BinCodex using eight state-of-the-art BCSD works, demon-
strating its effectiveness in accurately assessing and comparing
different methods. The insights gained from the evaluation con-
tribute to fair evaluations, foster innovation, and advance the
overall development of the BCSD field.

2. Background and motivation

2.1. Binary code similarity detection

Binary Code Similarity Detection (BCSD) is a technique used to
analyze and compare binary code to identify similarities between bi-
naries. It allows for quantitatively measuring differences and providing
matching results at predefined levels of granularity, typically at the
function level. As shown in Fig. 1, the process of BCSD typically begins
with the disassembly of binaries, where the binary code is converted
into assembly code, providing a representation that retains some se-
mantic information of the program. This disassembly step serves as
the foundation for most BCSD techniques. The workflow of BCSD
techniques can be divided into two stages: offline feature extraction
and online code search.

In the offline stage, tools extract features from binaries. Recent
research focuses on determining which features should be extracted
for effective BCSD. Based on the methods of the BCSD works, they
can be classified into two categories [10]: traditional approaches and
learning-based approaches.

• Traditional approaches extract low-level features from the binary
code, such as opcode histograms. For example, Genius [43] and
BinDiff [42] extract the number of string constants, numeric
contacts, and different kinds of instructions as the identity of
basic block and function, respectively. Besides, many works [6,7,
16,25,44–46] have tried to extract semantic-level features as the
identity of binary code, such as using I/O syntax to describe a
basic block [6].

• Learning-based approaches leverage machine learning techniques
to automatically learn discriminative features from the binary
code. Various models have been used to extract features and
learn representations that capture the underlying patterns in the
code. For example, Asm2Vec [12] regards the assembly language
as a special language, abstracts each element (e.g., opcode and
operands) in the instructions as tokens in the natural language,
and generates the representation of each token through training
and clustering.
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Fig. 2. Binary generation process, change points included.

Both traditional and learning-based approaches have their strengths
and limitations. Traditional approaches often struggle with complex
code transformations. Learning-based approaches, on the other hand,
can adapt to diverse code representations and exhibit better robustness
against code variations. However, they require large amounts of labeled
data for training and can be computationally intensive.

In the online stage, tools calculate the similarity between the ex-
tracted features to identify matched pairs. This process can be seen as
a search process, where the scale of the searching space is influenced by
the granularity of the defined features. For instance, if the granularity
is set at the function level, the searching space will be determined by
the number of functions in the binaries. On the other hand, if the gran-
ularity is set at the basic block level, the searching space will be further
expanded, considering the larger number of basic blocks in the code.

Additionally, the representation of the features impacts the method
used for similarity calculation. When dealing with vector-related fea-
tures, distance metrics such as Euclidean distance or cosine similarity
are commonly employed. These metrics quantify the dissimilarity or
similarity between feature vectors. On the other hand, when working
with graph-related features, graph-matching methods come into play.
These methods aim to find correspondences between nodes or sub-
graphs of the extracted features, taking into account both structural and
semantic similarities.

2.2. Code transformation

The BCSD techniques meet challenges due to the ease with which
binary code can be altered. Even instructions with identical semantics
but different registers can have different binary representations. To this
end, we first summarized the binary code generation process in Fig. 2,
emphasizing the various points where changes can occur.

Source code transformations (Fig. 2 ①) primarily involve data ob-
uscation techniques that alter the format of data within a program.
hese transformations aim to prevent direct matching of data, often
sed to conceal sensitive information like private keys. However, in
he BCSD scenario, these transformations are usually excluded as BCSD
ocuses on binary code rather than specific data values. Therefore, data
bfuscation techniques targeting data format are not directly applicable
o BCSD.

Dynamic code rewriting approaches (Fig. 2 ③), inspired by the
oncept of packing [47,48], focus on encoding or encrypting code
s data. However, these techniques are also usually excluded in the
ontext of BCSD due to they can be automatically unpacked [49–51]
r be memory-dumped [52–55], and lose the transformation effect.

In contrast, compile-time transformations (Fig. 2 ②) focus on mod-
fying the code during compilation without any further runtime modi-
ications. These transformations have a significant impact on the struc-
ure of the resulting binary, making them a key area of interest in BCSD
esearch. Compile-time transformations can manifest in several ways:

• Different compilers may implement the same optimization tech-
nique differently, leading to variations in the resulting binary
code.

• Compiler options, including both non-default and default op-
tions, can influence the generated binary code (detailed in Sec-

tion 2.2.1).
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• Code obfuscations, which intentionally introduce complexity and
disguise code, can result in substantial differences in binary code
(detailed in Section 2.2.2).

2.2.1. Compiler optimization
Compiler optimization, which is originally used to improve the

software performance (e.g., function inline) or reduce the binary size
(e.g., dead-code elimination), has the potential to substantially modify
the binary code, thereby exerting a significant impact on its differences.
The binary code compiled from the same source code with different
optimizations can exhibit a remarkably distinct code layout. Therefore,
previous works have regarded compiler optimization as one of the key
challenges to address in the BCSD task. For example, both Zeek [30]
and jTrans [28] consider evaluating whether their methods can with-
stand the binary differences caused by different compiler optimization
levels (including O0/1/2/3 and Os) as an important setup.

Except for the default compiler options, which integrate several
optimization techniques, non-default optimization options also have a
large effect on changing the binary code. Recent works have found they
can expand the binary code difference significantly, which can be larger
than the difference between O0 and O3 [31,40].

2.2.2. Software obfuscation
Software obfuscation transforms the program without changing its

functionality to make it hard to analyze. There is an arms race between
software obfuscation and BCSD. Software obfuscation does not want
BCSD techniques to match un-obfuscated with obfuscated code success-
fully, and vice versa. There have been various techniques proposed for
software obfuscation. For ease of introduction, we categorize them by
obfuscation granularity:

• Instruction level: Instruction substitution (SUB) [33,35] replaces
the original instruction with equivalent instruction(s). O-LLVM [35
designed 10 different strategies for arithmetic and logical opera-
tions.

• Basic block level: Bogus control flow (BCF) [33,35,63] inserts
dead code into the original control flow and often utilizes per-
manent true or false predicates to prevent these codes from
being executed, thereby ensuring the original functionality of the
program.

• Function level: Control flow flattening (FLA) [33,35] converts
the control flow of the function into the ‘‘switch-case’’ form,
which is hard to analyze, and maintains the original jump rela-
tionship by controlling the values of the cases.

• Module level: Function fission [39] splits a function into multiple
sub-functions. Conversely, function fusion [39] combines two
functions into a single function. These code obfuscation tech-
niques have proved their potential to alter function semantics
significantly.

2.3. Motivation

We first conducted a comprehensive analysis of 22 BCSD works
published in top venues over the past decade. These works were
summarized based on their dataset characteristics and their ability to
handle different code transformations during evaluations.

Our findings, as summarized in Table 1, reveal that there is a lack
of a standardized dataset for BCSD techniques. Instead, the evaluated
datasets were scattered across 36 different datasets or programs. It is
worth noting that none of the 22 BCSD works utilized an identical
dataset for evaluation. Each work employed its own self-constructed
dataset, which allowed for detailed design considerations but lacked
persuasiveness in terms of dataset consistency.

Since code transformation is a common source contributing to bi-
nary code differences, testing the resilience against transformation has

become a common evaluation step for BCSD. As shown in Table 1,
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Table 1
BCSD works from top venues in the last decade, summarized by their dataset characteristics and code transformation adaptability in their evaluations.

Approach Year Venue Dataseta Code transformation adaptability Diffing characteristics

Compilerb Optionsc Obfuscationd Grane Metric Platformf

1 DiEmph [29] 2023 ISSTA 2, 7, 8, 18, 27,
➊➋ G# – F Precision ①29, 32

2 sem2vec [56] 2023 TOSEM 2, 7, 10, 11, 20,
➊➋ G# SUB, BCF, FLA F Precision ①24, 27, 36

3 VulHawk [57] 2023 NDSS 7-11, 22, 25, 27,
➊ G# – F AUC ① ② ③29, 32, 35

4 OPTango [40] 2023 ISSRE 9, 30, 31 ➊  – F Recall ①

5 TIKNIB [58] 2022 TSE 9, 16 ➊➋➌ G# SUB, BCF, FLA F self-defined ① ② ③

6 jTrans [28] 2022 NDSS 1, 9 ➊➋ G# – F Recall ①

7 ISRD [59] 2021 ICSE 5, 28, 36 ➊➋ G# – F, B, I Precision, Recall ①

8 Asteria [60] 2021 DSN 3, 12, 27 ➊ # – F ROC, AUC ① ② ④

9 DeepBinDiff [10] 2020 NDSS 7, 10, 11 ➊ G# – B Recall, Precision ①

10 Asm2Vec [12] 2019 S&P 4, 7, 9, 18-20, 24,
➊➋ G# SUB, BCF, FLA F Precision ①27, 29, 32, 36

11 SAFE [41] 2019 DIMVA 2, 6-10, 15, 21,
➊➋ G# – F ROC, AUC,

① ②26, 27, 34 Precision, Recall

12 InnerEye [13] 2019 NDSS 2, 7, 10, 11, 27 ➋ G# – B ROC, AUC ① ②

13 alphaDiff [27] 2018 ASE 9, 14 ➊➋ G# – P Recall ① ②

14 VulSeeker [14] 2018 ASE 4, 7, 9, 12, 27 ➊ G# – F Precision ① ② ③

15 FirmUp [61] 2018 ASPLOS 9, 12 – # – F Precision ① ② ③

16 BinSequence [62] 2017 ASIACCS 23, 36 ➌ # – F Precision ①

17 IMF-SIM [46] 2017 ASE 7 ➊➋➍ G# SUB, BCF, FLA F Precision ①

18 BinGo [6] 2016 FSE 9 ➊➋ G# – F Precision ① ②

19 Genius [43] 2016 CCS 4, 7, 9, 12, 27 ➊➋ G# – F Recall, FPR ① ② ③

20 Multi-k-MH [16] 2015 S&P 4, 7, 12, 27 ➊➋ G# – B TP, FP ① ② ③

21 CoP [44] 2014 FSE 13, 17, 27, 33 ➊➍ G# BCF, FLA P self-defined ①

22 BinSlayer [11] 2013 PPREW 7 ➊ # – P Precision ①

a Including 36 micro-datasets. 1: ArchLinux repositories, 2: Binutils, 3: Buildroot, 4: BusyBox, 5: Bzip2, 6: CCV, 7: Coreutils, 8: Curl, 9: CVEs, 10: Diffutils, 11: Findutils, 12:
Firmwares, 13: Gecko, 14: GitHub repositories, 15: GNU Scientific Library, 16: GNU software packages, 17: Gzip, 18: ImageMagick, 19: Libcurl, 20: Libgmp, 21: Libhttpd, 22:
Libmicrohttpd, 23: Libpng, 24: LibTomCrypt, 25: Mtools, 26: OpenMPI, 27: OpenSSL, 28: PreComp, 29: PuTTY, 30: SPEC CPU 2006, 31: SPEC CPU 2017, 32: SQLite, 33: Thttpd,
34: Valgrind, 35: Wget, 36: zlib.
b Including 4 compilers. ➊: GCC, ➋: Clang, ➌: MSVC, ➍: ICC.
c Consideration of compiler options. #: None, G#: Only default options,  : Both default and non-default options.

Consideration of code obfuscations. -: None, SUB: instruction substitution, BCF: bogus control flow, FLA: control flow flattening, IBV: Insert bogus variables, SSO: split structure
bject.
Granularity for BCSD. P: program, F: function, B: basic block, I: instruction.
The implementation platform of the BCSD works. ①: x86, ②: ARM, ③: MIPS, ④: PowerPC.
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any BCSD works have considered binaries compiled with different
ainstream compilers, and most of them concentrate on the GCC and
lang.

Under a specific compiler, most of them only considered the default
ptimization options such as O0 to O3, but failed to explore non-
efault optimization options (only 1 work). However, the trend of
ompiling binaries using non-default options settings other than the
efault options has been increasing in recent years [31], for example,
he virus binaries used non-default options to hide their binary code
eatures. To this end, it is essential to evaluate the adaptability of the
CSD tools under non-default compiler options.

In terms of code obfuscation, only a few works have considered it,
nd the evaluation is often limited to intra-procedural obfuscation tech-
iques (e.g., at the statement, basic block, or function level), which do
ot fundamentally change the semantics of each function. Thus existing
CSD techniques can still capture the obfuscation effect. However,
ecent advancements in code obfuscation techniques have increasingly
ocused on inter-procedural obfuscations, which have shown the ability
o alter function semantics [39], which is a crucial factor in defeating
CSD techniques.

As for the granularity, most works focus on function-level, while
ome also consider basic block and instruction-level differences for
11
heir specific detection purpose. Besides, the matrix that measures the
ccuracy of BCSD works also varies. Some of them use standard metrics
ike true positive (TP) or false positive (FP). Precision@k and Recall@k
re also used to measure the proportion of relevant results among the
op k retrieved items. Some works also define the metric based on their
pecific features, which does not apply to others.

In the BSCD tool landscape, most tools are primarily developed
or the x86 platform, with some considering cross-platform compat-
bility. While it is theoretically possible to adapt x86-focused tools
o other platforms, such adaptations would involve additional efforts
uch as integrating disassembler backends and platform-specific API
onstruction.

As BCSD techniques continue to improve in feature extraction and
inary code representation, particularly with the application of deep
earning, their ability to capture semantics becomes more robust. Con-
equently, while many of these works claimed superiority over others,
he lack of dataset standardization raises the possibility that dataset
ismatch could be a contributing factor to their comparative results.
herefore, there is a need for a unified dataset that covers a wide range
f representative programs and datasets. A standardized dataset would
acilitate fair comparisons among different BCSD techniques, enabling
esearchers to make more reliable and meaningful claims about their
ffectiveness.
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Table 2
The detail of BinCodex dataset, including the origin of the dataset and the detail of multi-level workloads.

Dataset Multi-level setting

Info Statistics Workloads Task #Binaries Compiler Metrics Options/Tools

Coreutils 113 progs
BIN-Default

Adaptability to default
whole dataset

GCC
Precision@1

O0-O3, Os, Ofast
SPEC CPU 2006 2.0M LOC compiler options. Clang O0-O3

SPEC CPU 2017 7.8M LOC
BIN-Nondefault

Adaptability to non-default
whole dataset GCC Precision@1 BinTuner [31]Libraries 522K LOC compiler options.

Firmwares 418K LOC
BIN-Obfuscated

Adaptability to different
whole dataset Clang Precision@1 O-LLVM [35], Khaos [39]#CVE 69 obfuscation methods.

#Binaries 3.1K
BIN-Vulnerable

Vulnerable function
CVEs only Clang Precision@1/10/50 O-LLVM [35], Khaos [39]#Functions 68.9M searching.
Besides, the dataset should be able to cover different kinds of trans-
formations to fully measure the adaptability of BCSD techniques against
possible transformations, including non-default compiler options and inter-
procedural code obfuscations. This viewpoint aligns with the literature
published from both offensive and defensive perspectives:

• Many BCSD works have acknowledged the impact of inter-
procedural optimizations (e.g., function inlining) on diffing ac-
curacy [7,43,59,61,62,64–68].

• Existing research has demonstrated that inter-procedural obfus-
cation can decrease the accuracy of BCSD tools (up to 60%) with
minimal overhead (less than 5%) [39].

• Existing research [31,40] has also proved that non-default options
can decrease the accuracy of BCSD tools.

Given that all current BCSD tools only have a common implementa-
tion on the x86 platform, this paper follows the same setting to evaluate
as many BCSD tools as possible. By concentrating on this specific
instruction set, the dataset can provide a more targeted assessment of
the capabilities and limitations of BCSD tools.

3. Methodology

Considering the above factors, this paper proposes a unified dataset
that incorporates a wide range of programs and possible transforma-
tions, particularly non-default compiler options, and inter-procedural
code obfuscation techniques, and uses it to explore and evaluate exist-
ing BCSD techniques.

3.1. Challenges

Designing a dataset for BCSD poses several challenges, which can
be summarized as follows:

• Creating a representative dataset (C1): On the one hand, the
dataset’s codebase should be extensive enough to encompass a
wide range of code features. On the other hand, the dataset needs
to encompass representative programs from various application
scenarios commonly encountered in BCSD.

• Generating diverse code variants efficiently (C2): Enumerat-
ing all possible code variants is impractical due to the numerous
change points discussed in Section 2.2. For instance, even a single
change point, such as compiler options in GCC, includes over 200
options resulting in more than 2200 combinations. Exhaustively
combining these options to compile the same source code would
result in an infeasible number of binary variants. How to generate
a dataset with diverse features without exhaustively enumerating
all possible combinations is challenging.

• Normalizing features and similarity calculation (C3): BCSD
tools differ in the granularity of their features and the represen-
tation of those features. Furthermore, the similarity calculation
methods employed by each tool may vary. How to normalize

these disparities without deducing their accuracy is challenging.
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The following subsections detail the design of BinCodex and address
the above challenges. By doing so, a meticulously designed BCSD
dataset can be constructed, enabling accurate evaluation of BCSD tools.

3.2. The BinCodex dataset

The Origin of Datasets (C1). To overcome the C1 challenge, we con-
ducted an extensive analysis of widely used software across different
domains and carefully selected representative programs from various
application scenarios commonly encountered in BCSD. As Table 2
shows, our dataset includes programs from diverse domains, such as
utility programs (e.g., Coreutils), compilers (e.g., GCC in SPEC CPU),
language interpreters (e.g., Perl interpreter in SPEC CPU), JavaScript
engines (e.g., QuickJS), network protocols (e.g., LibCurl), web ap-
plications, libraries (OpenSSL), embedded firmware (e.g., BusyBox),
and artificial intelligence applications (e.g., alpha-beta tree search and
Monte Carlo tree search).

By including programs from such diverse domains, our dataset
accurately reflects the challenges and complexities faced by BCSD tech-
niques in real-world scenarios. It provides a comprehensive evaluation
of the accuracy of BCSD tools, as it encompasses all the types of
programs used in existing BCSD works in Table 1. This ensures that
BinCodex serves as a valuable dataset for evaluating and comparing
different BCSD techniques.
Searching Space Reduction (C2). The enumeration of all compiler
options and obfuscation techniques for all compilers is impossible
because of the large searching space. To this end, our reduction mainly
contains the following 3 steps.

Inter-compiler reduction. In our dataset, we first chose to focus
on the GCC and Clang compilers for alignment with existing BCSD
research and their widespread usage with extensive optimization ca-
pabilities. Based on that, we reduce the inter-compiler searching space
by concentrating binary variants under their default compiler options. For
example, as shown in Table 2, GCC and Clang are both used when
considering the default compiler options (BIN-Default workload), and
only GCC is used when considering the non-default compiler options
(BIN-Nondefault workload).

The exclusion of Clang in the BIN-Nondefault workload was a delib-
erate decision made for the purpose of introducing a specific challenge
and evaluating the adaptability of BCSD tools to non-default compiler
options using a single compiler. By concentrating on GCC for the non-
default compiler options, we aimed to isolate and assess the challenges
posed by non-default options in binary code analysis. This approach
allowed us to investigate the specific impact of non-default options on
BCSD without the additional variability introduced by using multiple
compilers in this particular workload.

Intra-compiler reduction. Exhaustively combining non-default op-
tions to compile the same source code would result in an infeasible
number of binary variants. Besides, different programs are likely to use
different combinations of options since their code patterns are different.
For example, the funroll-loops option can change binary for
programs with loops but has no effect on those programs without loops.
To acquire the program-specific combinations, we tailor search-based
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iterative compilation for the auto-tuning of non-default compiler options.
Specifically, we utilize the BinTuner [31] tool, which uses the genetic
algorithm to reveal the optimal effects on binary code differences. By
adopting such an efficient approach, we can strategically select a subset
of compiler flags, optimization levels, and code transformations to
generate a diverse set of code variants without the need for exhaustive
enumeration.

Obfuscation reduction. In our dataset, we have included obfus-
cation techniques as an important aspect of evaluation, considering
the sensitivity of BCSD techniques to code obfuscation. To represent
this, we selected two well-known obfuscation tools based on the LLVM
infrastructure.

The first obfuscation tool is O-LLVM [35], a popular compiler-
based obfuscation tool widely used in software engineering, systems
security, and programming language research. O-LLVM offers three
intra-procedural obfuscation methods of different granularity: SUB, BCF,
and Fla.

Additionally, we incorporated the inter-procedural obfuscation tool
alled Khaos [39] in our dataset. Khaos focuses on changing function
emantics, a key factor in defeating BCSD techniques. It provides two
bfuscation primitives named Fission and Fusion.

When generating obfuscated binaries, we established a baseline
y using the commonly used compiler option instead of generating
bfuscated binaries for all options. Specifically, we chose the O2 op-
imization level as the baseline. This decision was made because O0
nd O1 optimization levels are less commonly used in real-world appli-
ations, while the O3 optimization level may remove the obfuscation
ffect of O-LLVM (further discussed in Section 6).
etrics (C3). To overcome the disparities of evaluation metrics, it

s crucial to establish a standardized metric for similarity calculation.
rom our observation, these disparities come from the online searching
tage (introduced in Section 2.1). Specifically, after the feature is
xtracted from the binary file and the distance is calculated, different
ools use diversity methods to explain the accuracy. To this end,
e abandon the different metrics of different BCSD tools and use a

onsistent measurement for the accuracy — precision@k, which is also
ommonly used in several BCSD works [12,28,29,31,56].

In the BCSD scenario, the search results are presented as a ranked
ist. Consider two binary files 𝑃 and 𝑄 that are compiled from the same
ource code but with different options. Each of them has 𝑁 functions,
here 𝑃 = {𝑝1, 𝑝2,… , 𝑝𝑖,… , 𝑝𝑁} and 𝑄 = {𝑞1, 𝑞2,… , 𝑞𝑖,… , 𝑞𝑁}. The
round truth is 𝑝𝑖 matches 𝑞𝑖, where 𝑝𝑖 ∈ 𝑃 and 𝑞𝑖 ∈ 𝑄. For each
unction 𝑝𝑖 ∈ 𝑃 , the BCSD tools identify the top-k functions in 𝑄
hat are most similar to 𝑝𝑖. These functions are ordered by a similarity
core, indicating their rank 𝑅𝑎𝑛𝑘𝑞𝑖 in the list. Utilizing the definitions
f precision, the precision ratio 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 is determined using the
ollowing metric:

𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 = 1
𝑁

∑

𝑝𝑖∈𝑃 (𝑅𝑎𝑛𝑘𝑞𝑖 ≤ 𝑘) × 100% (1)

For example, if the 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@10 of a specific BCSD tool exceeds
80%, it means over 80% functions in 𝑃 are matched correctly in the
top-10 candidate functions from 𝑄. By normalizing the metrics of dif-
ferent BCSD tools and mapping the results to a common representation
space, the dataset can facilitate fair and consistent evaluation.
Multi-level workloads. As shown in Table 2, BinCodex contains 4
different workloads. The BIN-Default workload aims to evaluate the
adaptability to default compiler options, which is commonly used
in real-world programs. The BIN-Nondefault workload is specifically
designed for the emerging use of non-default options, which are con-
firmed by security analysts that these options can make reverse en-
gineering analysis complicated [31,69]. Obfuscation often introduces
challenges to existing BCSD tools, given that they extract syntactic-
or graph-level information, which does not necessarily reflect the real
functionality, thus the BIN-Obfuscated workload is used to evaluate if
these tools are vulnerable to assembly codes with similar functional-
ity but the differing appearance. Considering the diverse application
13
Algorithm 1: Dataset generation algorithm.
Input: Program source code set 𝑝𝑟𝑜𝑔𝑆𝑒𝑡, 𝑁𝑑𝑒𝑓 , 𝑁𝑛𝑜𝑛𝑑𝑒𝑓 , 𝑁𝑟,

𝑁𝑜𝑏𝑓
Output: Binary variants dataset 𝑏𝑖𝑛𝑆𝑒𝑡
𝑏𝑖𝑛𝑆𝑒𝑡 ← {}
for each program 𝑝𝑟𝑜𝑔 ∈ 𝑝𝑟𝑜𝑔𝑆𝑒𝑡 do

for 𝑖 = 1 to 𝑁𝑑𝑒𝑓 do
𝑑𝑒𝑓 ← 𝑔𝑒𝑡𝐷𝑒𝑓𝑎𝑢𝑙𝑡𝑂𝑝𝑡𝑖𝑜𝑛(𝑖);
𝑏𝑖𝑛𝑑𝑒𝑓 ← Compile 𝑝𝑟𝑜𝑔 with option 𝑑𝑒𝑓 ;
𝑏𝑖𝑛𝑆𝑒𝑡[𝑝𝑟𝑜𝑔].𝑎𝑝𝑝𝑒𝑛𝑑(𝑏𝑖𝑛𝑑𝑒𝑓 );

end
for 𝑖 = 1 to 𝑁𝑛𝑜𝑛𝑑𝑒𝑓 do

𝑑𝑒𝑓 ← 𝑔𝑒𝑡𝐷𝑒𝑓𝑎𝑢𝑙𝑡𝑂𝑝𝑡𝑖𝑜𝑛(𝑖);
𝑏𝑖𝑛𝑑𝑒𝑓 ← Compile 𝑝𝑟𝑜𝑔 with option 𝑑𝑒𝑓 ;
𝑚𝑎𝑥𝑑𝑖𝑓𝑓 ← 0;
𝑏𝑖𝑛𝑚𝑎𝑥 ← 𝑏𝑖𝑛𝑑𝑒𝑓 ;
for 𝑖 = 1 to 𝑁𝑟 do

𝑏𝑖𝑛𝑛𝑜𝑛𝑑𝑒𝑓 ← 𝐵𝑖𝑛𝑇 𝑢𝑛𝑒𝑟(𝑏𝑖𝑛𝑑𝑒𝑓 );
𝑑𝑖𝑓𝑓 ← 𝐵𝑖𝑛𝐷𝑖𝑓𝑓 (𝑏𝑖𝑛𝑑𝑒𝑓 , 𝑏𝑖𝑛𝑛𝑜𝑛𝑑𝑒𝑓 );
if 𝑚𝑎𝑥𝑑𝑖𝑓𝑓 < 𝑑𝑖𝑓𝑓 then

𝑚𝑎𝑥𝑑𝑖𝑓𝑓 ← 𝑑𝑖𝑓𝑓 ;
𝑏𝑖𝑛𝑚𝑎𝑥 ← 𝑏𝑖𝑛𝑛𝑜𝑛𝑑𝑒𝑓 ;

end
end
𝑏𝑖𝑛𝑆𝑒𝑡[𝑝𝑟𝑜𝑔].𝑎𝑝𝑝𝑒𝑛𝑑(𝑏𝑖𝑛𝑚𝑎𝑥);

end
for 𝑖 = 1 to 𝑁𝑜𝑏𝑓 do

𝑜𝑏𝑓 ← 𝑔𝑒𝑡𝑂𝑏𝑓𝑂𝑝𝑡𝑖𝑜𝑛(𝑖);
𝑏𝑖𝑛𝑜𝑏𝑓 ← Compile 𝑝𝑟𝑜𝑔 with option 𝑜𝑏𝑓 ;
𝑏𝑖𝑛𝑆𝑒𝑡[𝑝𝑟𝑜𝑔].𝑎𝑝𝑝𝑒𝑛𝑑(𝑏𝑖𝑛𝑜𝑏𝑓 )

end
end
return 𝑏𝑖𝑛𝑆𝑒𝑡;

scenarios of BCSD, BinCodex also adopts 69 CVEs to form the BIN-
Vulnerable workload for the specific vulnerable code searching scenario
and normalizes the measurement using precision@k.

The workloads are designed in increasing order of difficulty for
BCSD tools, with the first three of them representing a progression
from easier to harder transformations. For instance, most BCSD tools
can handle transformations between O0 and O3, but only a few con-
sider non-default options, and they all face challenges when deal-
ing with inter-procedural obfuscation [39]. The BIN-Obfuscated work-
load presents similar difficulties to BCSD tools as the BIN-Vulnerable
workload, as the vulnerable codes in the latter are also obfuscated.
To precisely measure the vulnerability search result, it uses more
comprehensive measurements — precision@1/10/50.

3.3. Workflow of BinCodex

For the dataset listed in Table 2, algorithm 1 outlines the workflow
of BinCodex to generate their binary variants. For each program 𝑝𝑟𝑜𝑔 in
the 𝑝𝑟𝑜𝑔𝑆𝑒𝑡, three types of variants, namely default compiler options,
non-default compiler options, and code obfuscation, are applied to 𝑝𝑟𝑜𝑔
to produce a set of binary variants, which are then added to 𝑏𝑖𝑛𝑆𝑒𝑡.
𝑁𝑑𝑒𝑓 , 𝑁𝑛𝑜𝑛𝑑𝑒𝑓 , and 𝑁𝑜𝑏𝑓 denote the number of default compiler options,
non-default compiler options, and code obfuscation techniques that
need to be generated for each 𝑝𝑟𝑜𝑔, respectively.

Firstly, when generating the binary variants with default compiler
options, we choose all default compiler options (2 compilers, 10 options
in all) in Table 2 to apply. Secondly, to ensure the diversity of the
generated samples under non-default compiler options, we perform 𝑁𝑟

rounds of generating binary variants by the BinTuner [31] tool and use
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Table 3
Summary of the chosen diffing works.

BCSD Diffing Symbol Time/memory Call-graph
works granularity relying consuming lacking

Asm2Vec [12] function N N Y
SAFE [41] function N N Y
DeepBinDiff [10] basic block N Y N
jTrans-0 [28] function N Y Y
jTrans [28] function N Y Y
BinDiff [42] all Y N N
DiEmph [29] function N Y Y
VulSeeker [14] function N Y Y

the BinDiff [42] to select the most different variant 𝑏𝑖𝑛𝑚𝑎𝑥. Thirdly, for
each selection of the obfuscation technique, we generate all obfuscated
variants from them under the same baseline. After the above process,
the BinCodex contains 68,930,974 binary functions (3,627,946 functions
in the source code, with 19 variants for each function), which is the
largest dataset to our best knowledge.

4. Implementation and evaluation

The BinCodex is implemented under the Linux operating system. The
evaluation is conducted on Ubuntu 22.04 (Kernel v5.15.0) which runs
on the x86_64 platform (Intel Xeon Gold 6148 CPU with 160 cores
and 1.5TB memory) since all current BCSD tools only have common
implementation in the x86 platform. This section aims to answer the
following questions:

• (Q1) How do the state-of-the-art BCSD works perform on
BinCodex?

• (Q2) What is the impact of the three levels of code transformation
techniques, namely default compiler options, non-default com-
piler options, and code obfuscation, on the effectiveness of BCSD
works?

• (Q3) What kinds of code transformation have the greatest impact
on the BCSD works?

Corresponding to the four workloads in BinCodex, the evaluation
consists of four parts, including the adaptability to the default compiler
options using GCC and Clang (Section 4.1), the non-default compiler
options using GCC (Section 4.2), the code obfuscation using Clang
(Section 4.3), and a specific application scenario of BCSD — vulnerable
function searching (Section 4.4).
Confrontation targets. We leverage 8 state-of-the-art BCSD tools to
evaluate BinCodex. Their characteristics are summarized in Table 3.
All learning-based tools among them are retrained on BinCodex. The
column ‘‘symbol relying ’’ means whether the un-stripped binaries have
side-effects or not, for example, BinDiff [42] uses function names
to reduce the searching space. The column ‘‘time/memory consuming ’’
means the diffing process takes a long time (e.g., over one 1 month) or
requires a lot of memory (e.g., more than 1 TB). The column ‘‘call-graph
lacking ’’ means whether the call-graph is used as the feature. Their
detailed techniques are as follows:

• Asm2Vec [12] employs random walks on the function CFG to
sample instruction sequences and then uses the PV-DM model to
learn function and instruction token embedding jointly.

• SAFE [41] utilizes a word2vec model to generate instruction
embeddings and proposes a recurrent neural network for function
embedding generation.

• DeepBinDiff [10] is a learning-based work for diffing the seman-
tic similarity in basic block granularity.

• jTrans-0 [28] incorporates control flow information from binary
code into transformer-based language models for function embed-
ding. jTrans [28] fine-tunes the pre-trained model to generate
function embedding for the supervised learning task of binary
diffing.
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• BinDiff [42] is an industry-standard binary diffing tool, which
diffs the semantic similarity in different granularity (e.g., instruc-
tion, basic block, function, call graph).

• DiEmph [29] detects undesirable instruction distribution biases
caused by specific compiler conventions and repairs them by
removing them from the dataset and fine-tuning the models.

• OPTango [40] is a transformer-based multi-central representa-
tion learning approach, which purely explores the solution to
build a compiler optimization-agnostic tool.

• VulSeeker [14] is a vulnerability seeker that integrates function
semantic emulation with semantic learning.

The selection of the eight BCSD tools for evaluation was carefully
considered to cover a diverse range of techniques and approaches in
the field. The rationale behind their selection can be summarized as
follows:

1) Representation of Different Techniques. The chosen tools represent
a variety of techniques employed, which ensures a compre-
hensive evaluation of BinCodex’s performance across different
methodologies, allowing us to analyze its effectiveness in various
scenarios.

2) Learning-Based Approaches. Given almost all state-of-the-art diff-
ing tools are learning-based, we included 6 learning-based tools.
By evaluating BinCodex with these tools, we can assess its com-
patibility with learning-based approaches and compare its per-
formance against state-of-the-art models.

3) Industry-Standard Tool. BinDiff, known as an industry-standard
binary diffing tool, is included to provide a benchmark for
comparison. Its comprehensive analysis capabilities, including
instruction-level, basic block-level, function-level, and call
graph-level comparisons, make it a valuable tool for evaluating
BinCodex.

4) Compiler Optimization-Agnostic Tools. Tools like OPTango were
selected to evaluate BinCodex’s robustness against different com-
piler optimization variants. These tools focus on building
optimization-agnostic models to overcome the challenges posed
by variations in compiler optimization levels.

5) Vulnerability Detection. VulSeeker, a vulnerability seeker tool, is
included to assess BinCodex’s effectiveness in detecting vulner-
abilities in binary code. This tool incorporates semantic emula-
tion and learning techniques to identify potential vulnerabilities,
providing a specific use case for evaluation.

Overall, the selection of these eight BCSD tools ensures a com-
prehensive assessment of BinCodex. By including tools with diverse
techniques, learning-based approaches, industry-standard benchmarks,
optimization-agnostic models, and vulnerability detection capabilities,
we can thoroughly evaluate BinCodex’s performance, compatibility,
and effectiveness across different dimensions of binary code similarity
analysis.

Each BCSD tool has its own specific application scenario and ca-
pabilities. In the evaluation process, the tools were selected and used
based on their suitability for the respective tasks. For instance, Deep-
BinDiff [10] focuses on diffing binaries at the basic block level. There-
fore, it was specifically evaluated in the code obfuscation part, where
obfuscation methods can alter the basic blocks of the code. DiEmph [29]
on the other hand, relies on jTrans [28] as its underlying tool. As a
result, DiEmph was solely used in the code obfuscation part of the ex-
periment, where jTrans was evaluated comprehensively. OPTango [40]
was evaluated in the compiler-option-relevant parts of the experiment,
aligning with its claim of being specifically designed for compiler
options.

4.1. Adaptability to default compiler options

To evaluate the adaptability of BCSD tools under default compiler
options, the experiment used the BIN-Default workload in the BinCodex.
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Fig. 3. The precision@1 results of chosen binary diffing works for binaries generated by default compiler options.
Space reduction. To avoid the exhaustive enumeration of different op-
timization levels, we defined a baseline by selecting binaries generated
with the O0 and O2 options (including Os and Ofast for GCC). These
baseline binaries were used for the targets of diffing, where binaries
generated with the O1 and O3 options were sequentially compared.
For example, the binary 400.perlbench-O1 would be compared with
both 400.perlbench-O0 and 400.perlbench-O2 binaries. Similarly, the
400.perlbench-O3 binary would also be compared with them. The results
of these comparisons were then averaged.

This experimental setup allowed for efficient exploration of all
default compiler options. From the optimization perspective, all the
binaries can be regarded as two groups: unoptimized and optimized.
The baseline contains the unoptimized and optimized binaries at the
same time (e.g., O0 as the unoptimized, O2 as the optimized), as well
as the binaries used for querying (e.g., O1 as the unoptimized, O3 as
the optimized). In this way, the number of options is reduced from 210

(10 options in all) to 2 (optimized and unoptimized).
Results. The experiment’s results are shown in Fig. 3. The precision@1
means the BCSD tool can match the optimized function with the
unoptimized function on the first candidate in its rank list, and higher
accuracy means higher adaptability. For example, the results indicate
that all the BCSD tools achieved a precision rate higher than 50%,
which means all the BCSD tools can match over half of the functions as
the first candidate. OPTango [40] demonstrated the best adaptability,
followed by jTrans/jTrans-0 [28], Asm2Vec [12], and SAFE [41].

An interesting observation was made during the experiment: larger
binary sizes tended to yield lower accuracy. This phenomenon can be
attributed to the relationship between the searching space and the num-
ber of functions. As the number of functions increases, the searching
space expands, and the likelihood of finding similar functions within
the same binary also grows. Consequently, the false positive ratio
increases. This observation was also noted in subsequent evaluations
involving non-default compiler options and code obfuscations, which
is discussed further in Section 6. Additionally, the OpenMP-related
programs in SPEC CPU 2017 are slightly harder for the BCSD tools to
achieve a high precision compared with non-OpenMp binary variants.

4.2. Adaptability to non-default compiler options

In this subsection, the adaptability of BCSD tools under non-default
compiler options is evaluated using the BIN-Nondefault workload. Bin-
Tuner [31] is utilized to generate binaries with non-default options
effectively.
The BinTuner tool. BinTuner [31] follows a specific procedure to
generate binaries. Initially, it selects a baseline binary, such as the one
generated with the O0 option. Then, it iteratively searches for the target
binary by combining non-default options. During the search process,
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BinTuner leverages the differences between the baseline binary and
the target binary to guide the selection of the next combination of
options. This iterative approach allows BinTuner to effectively explore
the vast space of non-default compiler options and generate binaries
for evaluation purposes.

However, BinTuner is not a panacea, especially when the different
optimization levels are considered. For example, we first set the O0 as
the baseline for BinTuner, after it generated the binaries, we utilized
BinDiff [42] to calculate the difference with the baseline. As depicted in
Fig. 4, we observed that a significant portion of the generated binaries
exhibited similarity to the O3 variants, indicating a lack of diversity.
This outcome suggests that BinTuner may not effectively explore the
entire optimization space when only one baseline is considered.
Multi-baseline setting. Firstly, to enhance the diversity of the evalua-
tion, different default optimization levels (O0, O1, O2, O3) were chosen
as the baselines to generate binaries using BinTuner. This approach
resulted in the creation of four groups of binaries (Ot0, Ot1, Ot2, Ot3)
where each group was based on a specific default optimization level.
Secondly, in addition to the individual groups, a fifth group of binaries
(Ot4) was generated by setting all four default optimization levels as
the baseline simultaneously. This group’s binaries were distinct from
those generated by any of the default options alone. Lastly, to provide
a comprehensive evaluation, all five groups of binaries (Ot0, Ot1, Ot2,
Ot3, Ot4) were also merged into a single group (Ot). This merged
group encompasses the entire range of binary variations generated by
BinTuner.
Overlap in default and non-default options. There is an overlap
between default and non-default compiler options, for example, both
of them have -funroll-loop and -finline options. However, the
default option binds options in the specific combination (for example,
O3 enables -funroll-loop and -finline at the same time), while
the non-default option does not bind the combination (for example,
enable -finline option but disable -funroll-loop option at the
same time), which can enlarge the binary difference. The detailed
options used by BinTuner are shown in Table 6.

It is important to note that each binary was created by incorporating
over 100 different non-default option configurations. The details of
these configurations can be found in Table 7. By merging the different
groups of binaries and conducting binary similarity detection on the
combined dataset, the evaluation aimed to assess the adaptability and
performance of the BCSD tools across a wide range of non-default
compiler option configurations.
Result. The results are shown in Fig. 5, where every group shows the
same trends of accuracy. Consider the Ot2 set as an example, where the
target binaries are generated by searching for the maximum difference
from the O2-based binary, Asm2Vec achieves the precision@1 scores
of 0.537, SAFE and jTrans-0 demonstrate similar diffing accuracy,
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Fig. 4. The similarity score (normalized) of binaries generated by BinTuner [31] by only using the O0 as the baseline.
Fig. 5. The precision@1 results of chosen binary diffing works for binaries generated
by non-default compiler options in GCC compiler. Higher similarity means higher
adaptability.

achieving 0.571 and 0.563, respectively. jTrans outperforms jTrans-0
by 12.1% but falls 4.1% behind OPTango, which stands out with a
precision of 0.726.

We also put the accuracy result of binaries generated by the default
options in the rightmost group in Fig. 5(Default). By comparing it
with the Ot4 group, we can notice a significant decrease in accu-
racy under the non-default option settings compared to the default
option settings for these binary diffing methods, which highlights the
motivation of BinCodex.

4.3. Adaptability to code obfuscation

Obfuscators. As discussed in Section 3.2, we used the commonly used
compiler option O2 as the baseline, and generated the obfuscated and
un-obfuscated binaries in the BIN-Obfuscated workload. We keep all
the binaries un-stripped to get the ground truth of paring. Besides, the
Khaos [39] changes the number of functions because it is an inter-
procedural obfuscation tool, thus we followed its evaluation setting
to relax the requirements for Precision@1. The O-LLVM [35] remains
unchanged since it does not change the function count. To ensure the
consistency of the evaluation environment for the obfuscation tools,
we upgrade the LLVM version of O-LLVM [35] to 9.0.1, which is the
same as the Khaos [39]. All the existing BCSD tools adopted the old
version of LLVM, which loses the obfuscation effect when facing a high
optimization level (e.g., O3).
Histogram of Opcodes. We collected some internal information on
the dataset to reveal the details of BinCodex. We used the objdump
tool to disassemble all the binaries in BinCodex and calculated the
histogram of opcodes. By comparing the vectors of opcodes between the
original and obfuscated binaries, we can calculate the vector similarity.
Since different programs may have varying numbers of instructions,
we normalized the distances using the maximum similarity among all
obfuscated programs. As depicted in Fig. 6, the distribution of opcodes
varies in different obfuscation methods, in which Fission generates
the binaries with the longest opcode distance and SUB generates the
shortest. It demonstrates that BinCodex contains a diverse range of
opcodes, and thus can fully cover the obfuscated binary scenario.
Results. After the binary is generated, we evaluated the accuracy of
the selected BCSD tools by comparing obfuscated and un-obfuscated
binaries. As depicted in Fig. 7, the result is divided into different groups
by different obfuscation methods. The precision@1 means the BCSD
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tool can match the obfuscated function with the unobfuscated function
on the first candidate in its rank list, and higher accuracy means
higher adaptability. Among these obfuscation methods, compared with
inter-procedural code obfuscation (Fission and Fusion), the BCSD
tools are more adaptive to intra-procedural obfuscation (e.g., SUB and
BCF). Besides, while the control flow flattening (FLA) archives a strong
obfuscation effect, it also brings extremely high runtime overhead (2.8x
slowdown), which is undesirable in real-world scenarios.

Binary variants that are obfuscated by the instruction substitution
(SUB) are the easiest to pair, mainly because it does not change the
function’s control flow but only replace the opcodes of instructions,
which are easy to adopt since these opcodes belong to the same opcode
family, e.g., ALU. Although the bogus control flow (BCF) inserts dead
code in the function, it has merely interfered with the original function
control flow, thus also bringing limited obfuscated effect.

Inside each obfuscation method, different BCSD tools show different
adaptability. We discuss them as follows:

• VulSeeker [14] takes more than 1 day to diff two large binaries
and often gets killed due to memory limit. To speed up VulSeeker,
we group the related functions into small groups to manually
reduce the searching space.

• SAFE [41] and Asm2Vec [12] showed their advantages on intra-
procedural obfuscation by capturing the semantics of functions.

• Because DeepBinDiff [10] uses the basic block as its granularity,
its searching space is much larger than others and brings the
time/memory consuming issue (e.g., requiring more than 10TB
memory, waiting several weeks to compare two binaries). To
this end, We reduced the dataset for DeepBinDiff [10] by only
using programs with less than 40k lines of code. In this setting, it
achieved higher accuracy in inter-procedural obfuscation meth-
ods (e.g., Fusion). This is because Khaos [39] uses original
functions to obfuscate each other, lacking material reduces the
obfuscation effect.

• Since we retrained the model of jTrans on BinCodex, it is more
accurate than the pre-trained model jTrans-0.

• After DiEmph [29] detected the undesirable instruction distri-
bution biases, it fine-tuned the models of jTrans [28], thus its
adaptability is slightly higher than jTrans [28].

• Since BinDiff [42] takes advantage of function names of the
symbols, its results are a little higher than others.

4.4. The ability to search vulnerable code

We use the BIN-Vulnerable workload in BinCodex to evaluate the
ability to search real-world vulnerable code, each program contains at
least one vulnerability (detailed in Table 5). In this experiment, we used
Asm2Vec [12], VulSeeker [14] and SAFE [41] to calculate the preci-
sion@n ratio (the rank of truly matched pair in the matched result) of
vulnerable functions. The reason why other tools were not used is that
they only give top-1 matched results. We calculated precision@1/10/50
ratio of vulnerable functions.
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Fig. 6. The heat map of opcode histogram distance (normalized) of obfuscated binaries in BinCodex.
Fig. 7. Similarity results of chosen binary diffing works and tools. Diffing works use
precision@1, and BinDiff uses its normalized scores. Higher similarity means a higher
adaptability.

Table 4
Comparison with other BCSD datasets.

Dataset Statistics Transformationsa

Source #Funcs Def Non-Def Obf

Esh [3] 8 CVE 1.5K ✔ ✘ #
BINKIT [70] GNU packages 36M ✔ ✘ G#
BinaryCorp [28] GNU packages 25M ✔ ✘ #

BinCodex

GNU packages,

69M ✔ ✔  
libraries, SPEC
CPU, firmware,
69 CVE

The possible transformations that the dataset considered, including default compiler
ptions (Def), non-default compiler options (Non-Def), and code obfuscations (Obf,
: none, G#: only intra-procedural obfuscation methods,  : both intra-procedural and

nter-procedural obfuscation methods).

Fig. 8 gives the experimental results, which are divided into three
roups as precision@1/10/50. The precision@1 means the BCSD tool
an match the obfuscated function with the unobfuscated function on
he first candidate in its rank list, while the precision@10 means it can
atch them in the top-10 candidates in its rank list, thus the accuracy

s ascending in from precision@1 to precision@50. For example, the
recision@50 ratio of Fission on Asm2Vec is around 0.5, which
eans about 50% of vulnerable functions can be found within the

op-50 ranked functions using Asm2Vec.
Inside the same group, the precision ratio can reflect the vulnerable

unction searching ability of different BCSD tools. For example, for the
recision@1 group, Asm2Vec [12] is more accurate than SAFE [41],
nd both of them are better than VulSeeker [14]. Besides, it can
lso reveal the ability to hide the vulnerable function with different
bfuscation methods. For example, under the same precision and binary
iffing tool (e.g., precision@50-Asm2Vec), Fission and Fusion are
etter than SUB, BCF, and FLA.

. Related works

Existing research often lacks transparency when it comes to disclos-
ng their datasets. Among the few open datasets available, as shown
n Table 4, Esh [3] proposed a dataset purely for vulnerability search-
ng but with only 8 vulnerabilities. BinKit [70] claims as the largest
inary dataset, however, it only consists of software from GNU pack-
ges like GNUtils and coreutils. Additionally, it only includes variants
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of compiler options for default optimization levels ranging from O0
to Ofast, which are fully covered in our proposed BinCodex dataset.
Although BinKit considers code obfuscation, it only focuses on intra-
procedural methods, which have been proven ineffective in both our
evaluation and other works [39]. Another recent open-source dataset,
Binarycorp [28], claims to offer diversity in terms of project size and
application scenarios compared to BinKit. However, it only utilizes five
compile options from O0 to Os, which are also included in our BinCodex
dataset.

In contrast, our newly proposed BinCodex dataset provides a more
comprehensive and realistic foundation. To the best of our knowledge,
it encompasses the largest code base, including a diverse range of
code sources such as GNU software packages, JS engines, firmware,
and common libraries. Importantly, BinCodex incorporates 69 real-
world vulnerable functions to cover more vulnerability patterns when
facilitating the vulnerability searching scenario. Furthermore, it in-
cludes full-scale transformations such as non-default options and inter-
procedural code obfuscation techniques, which have been neglected in
other datasets but have been proven effective both in our evaluation
and other works [39,40].

By incorporating these diverse factors, BinCodex offers valuable
insights for BCSD techniques to learn from and evaluate the resilience
of binary diffing methods against a wide range of compilation opti-
mization variants and code obfuscation techniques. As mentioned in the
introduction section, we are committed to contributing to the research
community by making our dataset and trained models openly available.
This will enable other researchers to utilize and build upon our work,
fostering collaboration and further advancements in the field of binary
code similarity and vulnerability analysis.

6. Discussion

Cross-platform consideration. As shown in Table 1, all current BCSD
tools have their implementation in the x86 platform, thus the current
dataset construction process primarily focuses the dataset specifically
on evaluating BCSD techniques on the x86. Future work aims to in-
corporate cross-platform binaries to assess the accuracy of BCSD tech-
niques across different architectures. This will require addressing the
unique characteristics of each instruction set to ensure fair and mean-
ingful comparisons. Including cross-platform binaries in the dataset is
a valuable direction for future research.
Existing obfuscators. Aside from obfuscation techniques, we found
that existing obfuscators have limitations in their implementation. In
O-LLVM [35], In the process of implementing the SUB method, we
found that the substituted instructions are usually optimized back to the
original instructions, which would lose the obfuscation effect. To this
end, we additional add strategies to prevent the de-obfuscation effect,
including basic block splitting, adding reference or inline assemble
nop instructions in the middle, etc. Besides, BCF and FLA skip the
exception-relevant functions.

As for the inter-procedural obfuscation techniques, after it separates
and aggregates these features, the searching difficulty increases, and
the searching accuracy decreases. From our conclusion in table Table 3,
the lack of call-graph consideration makes them unable to adopt inter-
procedural obfuscation. We believe our study will raise awareness of
inter-procedural obfuscation on binary diffing.
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Fig. 8. Precision ratio for top@1/10/50 of vulnerable functions. Higher means stronger vulnerable function searching ability.
Table 5
Vulnerable code detail in BinCodex.

Program CVE Funtion Program CVE funtion

JerryScript CVE-2020–13991 opfunc_spread_arguments

libcurl

CVE-2016–5421 close_all_connections

QuickJS CVE-2020–22876 compute_stack_size_rec CVE-2016–7167 curl_easy_unescape

BusyBox1.33.1

CVE-2021–42378 getvar_i_int CVE-2016–8615 get_line
CVE-2021–42380 clrvar CVE-2016–8616 ConnectionExists
CVE-2021–42381 hash_init CVE-2016–8617 Curl_base64_encode
CVE-2021–42382 getvar_s CVE-2016–8618 alloc_addbyter
CVE-2021–42379 next_input_file CVE-2016–8621 parsedate
CVE-2021–42384 handle_special CVE-2016–8622 unescape_word
CVE-2021–42386 nvalloc CVE-2016–8623 Curl_cookie_getlist
CVE-2021–42383 evaluate CVE-2016–8624 parseurlandfillconn
CVE-2021–42385 evaluate CVE-2016–8625 curl_version

OpenSSL 1.1.1

CVE-2022–0778 BN_mod_sqrt CVE-2016–9586 dprintf_formatf
CVE-2021–3712 EC_GROUP_new_from_ecparameters CVE-2017–1000100 tftp_send_first
CVE-2021–3711 sm2_plaintext_size CVE-2017–1000254 ftp_statemach_act
CVE-2021–3450 check_chain_extensions CVE-2017–1000257 imap_state_fetch_resp
CVE-2021–3449 init_sig_algs CVE-2017–8817 setcharset
CVE-2020–1971 GENERAL_NAME_dup CVE-2018–1000007 Curl_http_output_auth
CVE-2020–1967 tls1_check_sig_alg CVE-2018–1000120 ftp_state_list
CVE-2019–1563 cms_RecipientInfo_ktri_decrypt CVE-2018–1000120 ftp_done
CVE-2019–1547 EC_GROUP_set_generator CVE-2018–1000120 ftp_parse_url_path
CVE-2019–1543 chacha_init_key CVE-2018–1000122 readwrite_data
CVE-2018–0734 dsa_sign_setup CVE-2018–1000301 Curl_http_readwrite_headers
CVE-2018–0735 ec_scalar_mul_ladder CVE-2019–5436 tftp_connect

libcurl

CVE-2014–0138 ConnectionExists CVE-2019–5482 tftp_connect
CVE-2014–3613 Curl_cookie_add CVE-2020–8231 conn_is_conn
CVE-2014–3620 Curl_cookie_add CVE-2020–8231 curl_easy_duphandle
CVE-2014–3707 FormAdd CVE-2020–8231 curl_multi_add_handle
CVE-2014–8150 parseurlandfillconn CVE-2020–8231 Curl_open
CVE-2015–3143 ConnectionExists CVE-2020–8231 curl_multi_remove_handle
CVE-2015–3145 sanitize_cookie_path CVE-2020–8285 init_wc_data
CVE-2015–3148 Curl_http_done CVE-2021–22876 Curl_follow
CVE-2015–3153 Curl_init_userdefined CVE-2021–22898 suboption
CVE-2016–0755 ConnectionExists CVE-2021–22924 create_conn
CVE-2016–5419 Curl_clone_ssl_config CVE-2021–22925 suboption
CVE-2016–5420 Curl_ssl_config_matches
Advancing BCSD. Reducing the cost of diffing in binary code similarity
detection is a challenge, particularly when dealing with smaller diffing
granularity. Context information can be leveraged to narrow down
the searching space and mitigate the associated costs. While previous
works have predominantly focused on capturing and encoding control
flow information, data flow has received less attention from the BCSD
perspective. However, considering that data flow is harder to change
during obfuscation, there is untapped potential in exploring data flow
representation for improved BCSD techniques.

Furthermore, as observed in Section 4, larger binary sizes can lead
to decreased diffing accuracy. To address this, one approach is to
merge functions into groups, effectively reducing the searching space.
An example of such an approach is FirmUp [61], which emphasizes
optimizing the searching process rather than solely focusing on feature
generation. This highlights the potential for further optimization in the
searching process to enhance the accuracy of BCSD techniques.

7. Conclusion

We present a paper that addresses the challenges in the binary code
similarity detection dataset and introduces the implementation and
18
evaluation of a novel dataset called BinCodex. The primary objective
of the dataset is to provide a standardized framework for evaluating
BCSD techniques. To ensure the dataset’s effectiveness, several factors
are carefully considered during its construction, including diverse code
types, a wide range of code samples, incorporating multiple aspects of
binary change points, and different levels of workloads in similarity
detection tasks. The implementation of BinCodex on a Linux system
enables the evaluation of eight state-of-the-art BCSD tools. The results
indicate that most BCSD works perform well when default compiler op-
tions or intra-procedural code obfuscation are used but face challenges
with non-default options and inter-procedural obfuscation techniques.
These findings provide valuable insights into the current state of BCSD
works and highlight opportunities for future optimizations in the field.
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Appendix
See Tables 5–7.
Table 6
All compiler options in GCC, classified and incremental by the default optimization level. BinTuner uses all these options with all possible combinations.
-O1 (compared with O0) -O2 (compared with -O1) -O3 (compared with -O2) Others

auto-inc-dec branch-count-reg
compare-elim

align-functions align-jumps align-labels gcse-after-reload early-inlining-insns

combine-stack-adjustments
cprop-registers

caller-saves code-hoisting crossjumping loop-interchange gcse-cost-distance-
ratio

defer-pop delayed-branch
forward-propagate

cse-follow-jumps cse-skip-blocks gcse-lm loop-unroll-and-jam iv-max-considered-
uses

dce guess-branch-probability
if-conversion

delete-null-pointer-checks devirtualize predictive-commoning reorder-blocks-
algorithm=stc

if-conversion2
inline-functions-called-once

devirtualize-speculatively finite-loops tree-partial-pre prefetch-loop-arrays

tree-ter ipa-pure-const align-loops tree-ch gcse inline-functions indirect-inlining tree-loop-distribution
ipa-reference-addressable
merge-constants

inline-small-functions ipa-bit-cp ipa-cp tree-loop-vectorize

move-loop-invariants omit-frame-pointer optimize-strlen partial-inlining ipa-ra tree-slp-vectorize
reorder-blocks dse shrink-wrap-separate isolate-erroneous-paths-dereference unswitch-loops
split-wide-types ssa-backprop ssa-phiopt ipa-icf reorder-blocks-algorithm=stc vect-cost-model
tree-bit-ccp tree-ccp tree-dce shrink-wrap reorder-blocks-and-partition ipa-sra vect-cost-

model=dynamic
tree-copy-prop tree-dominator-opts
tree-dse

lra-remat rerun-cse-after-loop tree-vrp version-loopsor-strides

tree-forwprop tree-fre tree-phiprop
tree-pta

sched-interblock sched-spec
store-merging

split-loops split-paths

tree-scev-cprop tree-sink tree-slsr tree-sra thread-jumps tree-builtin-call-dce
tree-pre

ipa-cp-clone

ipa-profile unit-at-a-time ipa-reference tree-switch-conversion tree-tail-merge peel-loops
tree-coalesce-vars hoist-adjacent-loads peephole2 ipa-vrp

expensive-optimizations strict-aliasing
schedule-insns2 optimize-sibling-calls
reorder-functions schedule-insns
Table 7
Top-5 non-default optimization settings generated from BinTuner [31].

-O0 -fauto-inc-dec -fforward-propagate -fcombine-stack-adjustments -fcompare-elim -fcprop-registers -fdce -fif-conversion2 -fno-delayed-branch
-fdse -fno-defer-pop -fno-merge-constants -fno-guess-branch-probability -ftree-dominator-opts -finline-functions-called-once -fno-ipa-pure-const
-fno-ipa-profile -fipa-reference -fbranch-count-reg -fno-move-loop-invariants -freorder-blocks -fno-shrink-wrap -fsplit-wide-types -ftree-copy-prop
-ftree-bit-ccp -fno-tree-ter -fssa-backprop -fno-tree-coalesce-vars -fipa-cp-clone -ftree-forwprop -ftree-fre -fno-tree-sink -fno-tree-sra -fsplit-paths
-ftree-pta -ftree-ccp -fno-ipa-cp -fno-unit-at-a-time -fno-omit-frame-pointer -ftree-phiprop -fno-tree-ch -ftree-slsr -fpeephole2 -fno-if-conversion
-fno-ssa-phiopt -fno-shrink-wrap-separate -fthread-jumps -fno-align-functions -fno-align-labels -fno-align-loops -fstore-merging -fstrict-aliasing
-fno-caller-saves -fno-crossjumping -fno-cse-follow-jumps -fcse-skip-blocks -fno-delete-null-pointer-checks -fno-devirtualize -fgcse -fno-gcse-lm
-fno-devirtualize-speculatively -fno-expensive-optimizations -fno-hoist-adjacent-loads -finline-small-functions -findirect-inlining -ftree-vectorize
-ftree-dce -fno-peel-loops -fno-isolate-erroneous-paths-dereference -fno-lra-remat -fno-optimize-sibling-calls -fno-optimize-strlen -fpartial-inlining
-fno-ipa-icf -freorder-blocks-and-partition -fno-reorder-functions -fno-rerun-cse-after-loop -fsched-interblock -fno-sched-spec -ftree-dse -fipa-sra
-fno-schedule-insns -fno-tree-partial-pre -fstrict-overflow -ftree-builtin-call-dce -ftree-switch-conversion -ftree-tail-merge -fno-tree-slp-vectorize
-fno-tree-pre -fno-tree-vrp -fno-ipa-ra -freorder-blocks -fno-schedule-insns2 -fno-code-hoisting -fvect-cost-model -fno-ipa-bit-cp -fno-ipa-vrp
-freorder-blocks-algorithm=simple -finline-functions -fno-unswitch-loops -fno-predictive-commoning -fno-gcse-after-reload -ftree-loop-vectorize
–param early-inlining-insns=295 –param gcse-cost-distance-ratio=52 –param iv-max-considered-uses=661 -fno-tree-loop-distribute-patterns

-O0 -fno-auto-inc-dec -fbranch-count-reg -fno-combine-stack-adjustments -fcompare-elim -fcprop-registers -fdce -fno-defer-pop -ftree-bit-ccp
-fipa-profile -fforward-propagate -fguess-branch-probability -fif-conversion2 -fif-conversion -fno-inline-functions-called-once -fno-ipa-pure-const
-fdse -fno-ipa-reference -fmerge-constants -fno-move-loop-invariants -fno-reorder-blocks -fno-shrink-wrap -fno-split-wide-types -fdelayed-branch
-ftree-ccp -fno-tree-ch -fno-tree-coalesce-vars -ftree-copy-prop -ftree-dce -ftree-dse -ftree-forwprop -fno-tree-fre -ftree-sink -ftree-slsr -ftree-sra
-ftree-pta -fno-tree-ter -fno-unit-at-a-time -fno-omit-frame-pointer -fcse-skip-blocks -ftree-dominator-opts -fssa-backprop -fno-align-functions
-fno-tree-phiprop -fno-ssa-phiopt -fno-shrink-wrap-separate -fno-thread-jumps -fno-align-labels -fno-align-loops -fcrossjumping -fno-ipa-sra
-fno-caller-saves -fno-cse-follow-jumps -fno-delete-null-pointer-checks -fdevirtualize -fno-devirtualize-speculatively -fno-expensive-optimizations
-fno-gcse -fgcse-lm -fhoist-adjacent-loads -finline-small-functions -ftree-pre -fno-ipa-cp -fipa-icf -fno-reorder-blocks-and-partition -fpeel-loops
-findirect-inlining -fno-isolate-erroneous-paths-dereference -flra-remat -fno-optimize-sibling-calls -foptimize-strlen -fpartial-inlining -fsched-spec
-fno-tree-tail-merg -freorder-functions -frerun-cse-after-loop -fsched-interblock -fschedule-insns -fstrict-aliasing -fno-peephole2 -fstore-merging
-fipa-ra -fno-tree-builtin-call-dce -fno-tree-switch-conversion -fno-strict-overflow -fno-tree-vrp -fno-reorder-blocks -fno-schedule-insns2 -fipa-vrp
-fno-code-hoisting -freorder-blocks-algorithm=simple -fno-ipa-bit-cp -fno-inline-functions -funswitch-loops -fno-gcse-after-reload -fno-split-paths
-fno-tree-partial-pre -ftree-slp-vectorize -ftree-loop-vectorize -ftree-loop-distribute-patterns -ftree-vectorize -fno-vect-cost-model -fipa-cp-clone
-fno-predictive-commoning –param early-inlining-insns=56 –param gcse-cost-distance-ratio=85 –param iv-max-considered-uses=874

-O0 -fno-auto-inc-dec -fno-branch-count-reg -fno-combine-stack-adjustments -fcompare-elim -fno-cprop-registers -fno-dce -fno-defer-pop -fdse
-fno-delayed-branch -fno-forward-propagate -fno-guess-branch-probability -fno-move-loop-invariants -fipa-profile -finline-functions-called-once
-fipa-pure-const -fif-conversion -fno-ipa-reference -fmerge-constants -fno-if-conversion2 -fno-reorder-blocks -fshrink-wrap -fno-split-wide-types
-fno-align-loops -fno-ssa-phiopt -ftree-pta -funit-at-a-time -fno-omit-frame-pointer -fno-tree-phiprop -fno-tree-dominator-opts -fno-ssa-backprop
-fno-devirtualize -ftree-slsr -fshrink-wrap-separate -fno-ipa-cp -falign-functions -fno-align-labels -fno-caller-saves -fno-thread-jumps -fno-ipa-sra

(continued on next page)
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Table 7 (continued).
-fcrossjumping -ftree-sra -fcse-follow-jumps -fno-cse-skip-blocks -fdelete-null-pointer-checks -fno-devirtualize-speculatively -fno-gcse -fgcse-lm
-fexpensive-optimizations -fno-hoist-adjacent-loads -fno-inline-small-functions -fpartial-inlining -fno-ipa-icf -fisolate-erroneous-paths-dereference
-fno-optimize-sibling-calls -ftree-pre -fno-sched-spec -fno-optimize-strlen -fno-indirect-inlining -fno-peephole2 -fno-reorder-blocks-and-partition
-fno-code-hoisting -ftree-ccp -ftree-ch -ftree-coalesce-vars -ftree-copy-prop -ftree-dce -ftree-dse -ftree-forwprop -ftree-fre -ftree-sink -fno-tree-ter
-fstore-merging -freorder-blocks-algorithm=simple -fno-ipa-bit-cp -fno-ipa-vrp -finline-functions -fno-tree-partial-pre -fno-predictive-commoning
-fno-tree-vectorize -fpeel-loops -fsplit-paths -fgcse-after-reload -fno-tree-loop-vectorize -fno-tree-loop-distribute-patterns -fno-tree-slp-vectorize
-fno-lra-remat -fno-rerun-cse-after-loop -freorder-functions -fno-strict-aliasing -fno-vect-cost-model -ftree-switch-conversion -fno-strict-overflow
-ftree-builtin-call-dce -fno-tree-tail-merge -ftree-vrp -fno-ipa-ra -fno-schedule-insns -fno-schedule-insns2 -fsched-interblock -fno-reorder-blocks
-fno-ipa-cp-clone -funswitch-loops -fno-tree-bit-ccp –param early-inlining-insns=846 –param gcse-cost-distance-ratio=14

-O3 -fno-auto-inc-dec -fno-branch-count-reg -fno-combine-stack-adjustments -fcompare-elim -fcprop-registers -fno-dce -fno-defer-pop -fno-dse
-fdelayed-branch -fforward-propagate -fguess-branch-probability -fif-conversion2 -fif-conversion -fno-inline-functions-called-once -fipa-profile
-fno-merge-constants -fno-ipa-reference -fno-tree-coalesce-vars -fmove-loop-invariants -fno-tree-copy-prop -fshrink-wrap -fno-split-wide-types
-fno-tree-slsr -freorder-blocks -ftree-bit-ccp -ftree-ccp -fno-tree-pta -fno-tree-dce -ftree-dse -ftree-forwprop -ftree-fre -fno-tree-sink -fno-tree-ch
-falign-labels -ftree-sra -fno-tree-ter -fomit-frame-pointer -ftree-phiprop -fno-tree-dominator-opts -fssa-backprop -fno-ssa-phiopt -fthread-jumps
-funit-at-a-time -fno-ipa-pure-const -fshrink-wrap-separate -falign-functions -fno-align-loops -fcaller-saves -fno-crossjumping -fcse-follow-jumps
-fcse-skip-blocks -fdelete-null-pointer-checks -fdevirtualize -fno-devirtualize-speculatively -fno-expensive-optimizations -fno-gcse -fno-gcse-lm
-fhoist-adjacent-loads -finline-small-functions -findirect-inlining -fno-ipa-cp -fno-ipa-icf -fno-isolate-erroneous-paths-dereference -fno-lra-remat
-fipa-sra -fno-optimize-sibling-calls -foptimize-strlen -fno-partial-inlining -fschedule-insns -freorder-blocks-and-partition -fno-reorder-functions
-ftree-switch-conversion -frerun-cse-after-loop -fno-sched-interblock -fsched-spec -fno-strict-aliasing -fno-strict-overflow -ftree-builtin-call-dce
-fno-peephole2 -ftree-tail-merge -fno-tree-pre -fipa-bit-cp -fno-ipa-ra -freorder-blocks -fschedule-insns2 -fno-code-hoisting -fno-store-merging
-ftree-vrp -freorder-blocks-algorithm=simple -fipa-vrp -fno-inline-functions -fno-predictive-commoning -fgcse-after-reload -ftree-loop-vectorize
-fipa-cp-clone -ftree-loop-distribute-patterns -fno-tree-slp-vectorize -fvect-cost-model -ftree-partial-pre -fpeel-loops -ftree-vectorize -fsplit-paths
-funswitch-loops –param early-inlining-insns=482 –param gcse-cost-distance-ratio=59 –param iv-max-considered-uses=105

-O0 -fno-auto-inc-dec -fno-branch-count-reg -fno-combine-stack-adjustments -fcompare-elim -fcprop-registers -ftree-forwprop -fdelayed-branch
-fipa-profile -fforward-propagate -fguess-branch-probability -fno-if-conversion2 -fif-conversion -fno-inline-functions-called-once -fipa-pure-const
-fno-dce -fipa-reference -fmerge-constants -fmove-loop-invariants -fno-reorder-blocks -fshrink-wrap -fno-split-wide-types -ftree-bit-ccp -ftree-ccp
-fno-tree-pta -fno-tree-coalesce-vars -fno-tree-copy-prop -fno-tree-dce -ftree-dse -ftree-slsr -fcrossjumping -fcaller-saves -fno-tree-sra -ftree-sink
-fdse -fno-tree-ch -fthread-jumps -fno-unit-at-a-time -fomit-frame-pointer -ftree-phiprop -ftree-dominator-opts -fno-ssa-backprop -fno-ssa-phiopt
-fshrink-wrap-separate -fno-gcse -fno-align-functions -falign-labels -fthread-jumps -fno-peephole2 -fno-tree-fre -fcse-follow-jumps -fno-defer-pop
-fno-align-loops -fno-hoist-adjacent-loads -fdelete-null-pointer-checks -fno-devirtualize -fdevirtualize-speculatively -fno-expensive-optimizations
-fno-cse-skip-blocks -fgcse-lm -finline-small-functions -fno-indirect-inlining -fipa-cp -fno-ipa-sra -fipa-icf -fisolate-erroneous-paths-dereference
-fno-lra-remat -fno-optimize-sibling-calls -foptimize-strlen -fno-partial-inlining -fschedule-insns -freorder-blocks-and-partition -fipa-vrp -ftree-ter
-fno-sched-interblock -fno-rerun-cse-after-loop -fno-reorder-functions -fno-sched-spec -fno-strict-aliasing -fno-tree-vrp -fno-tree-builtin-call-dce
-ftree-switch-conversion -fstrict-overflow -ftree-tail-merge -ftree-pre -fno-reorder-blocks -fschedule-insns2 -fno-code-hoisting -fno-peel-loops
-fipa-cp-clone -freorder-blocks-algorithm=simple -fno-ipa-bit-cp -finline-functions -funswitch-loops -fpredictive-commoning -fno-store-merging
-fno-gcse-after-reload -fno-tree-loop-vectorize -fno-tree-loop-distribute-patterns -fno-tree-slp-vectorize -fno-vect-cost-model -ftree-partial-pre
-fipa-ra -fno-split-paths -ftree-vectorize –param early-inlining-insns=798 –param gcse-cost-distance-ratio=46 –param iv-max-considered-uses=617
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A B S T R A C T

The study investigates the impact of opportunistic maintenance (OM) optimization on manufacturing industries,
especially in Bangladesh, to reduce maintenance costs. To that end, OM strategies have been proposed and
optimized for multi-unit manufacturing systems, whereas most of the existing research is for single- or two-unit
systems. OM strategies in this research cover one of the three policies: preventive replacement, preventive repair,
and a two-level maintenance approach. The proposed two-level maintenance approach is a combination of lower-
level maintenance, known as preventive repair, and higher-level maintenance, known as preventive replacement.
Simulation optimization (SO) techniques using Python were utilized to evaluate the strategies. Historical data
from two of Bangladesh’s most promising and significant sectors, the footwear and railway industries, was used
as the case study. Compared to the currently utilized corrective maintenance approach, the two-level mainte-
nance approach is the most effective for both case studies, demonstrating cost savings of 16.9 % and 22.4 % for
the footwear and railway industries, respectively. This study reveals that manufacturing industries can achieve
significant cost savings by implementing the proposed OM strategies, a concept that has yet to be explored in
developing countries like Bangladesh. However, the study considered the proposed approaches for major com-
ponents of the system, and more significant benefits can be achieved if it is possible to apply them to all critical
components of the system.

1. Introduction

Maintenance is the set of decisions and actions required by man-
agement, technical experts, and administrators to keep a system or asset
functioning properly or bring it back to its previous state [1]. Mainte-
nance has been treated as a neglected business function for many years,
especially in manufacturing and engineering [2]. Twomain reasons may
have initiated this situation about maintenance: the first reason is
thinking of the maintenance department as a support activity that has no
direct relation with production processes; the second reason relates to
the complexities of measuring maintenance contribution to firm profits.
Thus, maintenance is usually considered a cost rather than an invest-
ment. Therefore, it can be concluded that such earlier views of negli-
gence regarding maintenance are among the leading causes of low
maintenance efficiency in industries [3]. Adequate and proper mainte-
nance not only improves the company’s essential performance,

including product quality, reliability, and productivity, but also reduces
monetary losses by increasing manufacturing system availability,
keeping the standard of products, and maintaining workplace safety [4].
Also, a proper maintenance approach enhances system reliability, im-
proves overall effectiveness, and minimizes long-term costs [5].

Over several decades, researchers have gathered a wealth of data on
maintenance. According to them, maintenance can be broadly classified
into two primary categories: preventative maintenance (PM) and
corrective maintenance (CM). Preventive maintenance (PM) can be
described as planned actions to enhance the anticipated lifespan of
operational systems. In contrast, corrective maintenance (CM) addresses
unforeseen component or system failures to restore operational func-
tionality [6]. Researchers have emphasized on PM more than CM [7].
However, the existing maintenance practices in the manufacturing in-
dustries, especially in Bangladesh, are mainly failure-based, i.e.,
corrective maintenance. Sudden failures in a manufacturing system re-
sults in a great deal of production loss for the company here. However,
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other kinds of maintenance, like scheduled preventive maintenance
(PM) and condition-based maintenance (CBM), are practiced in some
industries to avoid such failures. Due to time and resource constraints,
this kind of maintenance is not always possible to fully implement in
practical situations. Moreover, the cost of preventive maintenance (PM)
activities in industries is rising due to the growing intricacy of industrial
systems and the broader implementation of PM [8]. So, most researchers
are now attempting to optimize PM actions to save expenses. Sudden
breakdowns of machines can be taken as an opportunity to implement
maintenance on other parts or machines in the system. This kind of
maintenance is known as opportunistic maintenance (OM). OM does not
occur at a predetermined time or condition. Instead, it occurs when an
"opportunity" arises [9]. Thus, OM saves time and money. The repairs of
failures in different system components are widely acknowledged as
potential opportunities to perform preventive maintenance on specific
components within the systems under consideration [10,11].

OM has mainly been followed in the industries of developed coun-
tries, especially in the power sectors [12–15], gas [16], and railway
sectors [17,18]. In South Asia, Bangladesh is one of the few emerging
countries that has made such an exciting promise of economic growth
[19]. Like all other developing countries, Bangladesh needs to indus-
trialize more and more for its economy and society to grow quickly and
steadily. However, the large and significant investment in the industrial
and manufacturing sectors exposes many difficulties in achieving the
lowest maintenance and operational costs. To lower these expenses to
the greatest extent, exploring and implementing more intelligent and
affordable maintenance strategies is essential for ensuring the country’s
sustained development. So, the industries of developing countries like
Bangladesh can benefit significantly from adopting such OM strategies.
The subsequent steps advance by answering the following research
questions (RQ):

RQ1: Can opportunistic maintenance strategies reduce costs in
manufacturing industries compared to corrective maintenance?

RQ2:Which OM strategy (replacement, repair, two-level) is the most
cost-effective for manufacturing industries, especially Bangladesh’s
footwear and railway industries?

This paper offers a novel contribution by proposing and evaluating
opportunistic maintenance strategies for multi-unit manufacturing in-
dustries, whereas most of the existing research is for single or two-unit
systems. Moreover, the concept has yet to be explored for
manufacturing industries in developing countries like Bangladesh and
OM has many challenges here due to resource constraints and lack of
advanced predictive maintenance technologies. Three OM strategies
(preventive replacement, preventive repair, and a two-level mainte-
nance approach) are proposed as solutions to optimize maintenance

practices and reduce costs. The proposed two-level approach is a unique
maintenance approach that distinguishes between a lower-level
approach called preventive repair and a higher-level approach called
preventive replacement. These two maintenance levels are intended to
be carried out at distinct stages of the equipment’s lifespan. Two case
studies, (i) the footwear and (ii) the railway industries, are employed to
verify the proposed OM strategies and demonstrate the potential impact
of OM on cost savings. The feasibility of implementing OM strategies has
been checked by comparing them to the currently used corrective
maintenance approach and doing a sensitivity analysis. The study
identifies the two-level maintenance approach as the most cost-effective
option in the footwear and railway industries, providing valuable in-
sights for decision-makers.

The rest of the paper is divided into subsequent sections. Section 2
comprehensively analyzes the contemporary literature on maintenance
and opportunistic maintenance. Problem description and proposed
opportunistic maintenance policy formulation are covered in Sections 3
and 4, respectively. Solution methodologies to assess the costs associ-
ated with suggested OM policies are presented in Section 5. Section 6
validates the proposed strategies through two different Bangladeshi
manufacturing industry case studies, a comparative study, and a sensi-
tivity analysis. Section 7 encompasses a summary of the research’s
findings, an evaluation of its limitations, and recommendations for po-
tential areas of future research.

2. Literature review

Opportunistic maintenance offers numerous benefits that signifi-
cantly boost the efficiency and cost-effectiveness of maintenance oper-
ations. Simultaneously maintaining several components, companies can
reduce labor and material costs while minimizing total downtime, thus
enhancing operational availability. This method ensures the optimal use
of resources such as tools, spare parts, and personnel and facilitates
better planning and scheduling. Regular maintenance based on oppor-
tunity helps to prevent unexpected failures, extending the lifespan of
equipment and improving reliability, thereby decreasing the chances of
sudden breakdowns [20]. Additionally, routine checks and maintenance
ensure equipment meets safety standards, enhancing worker protection.
Predictable maintenance activities also enable better financial planning
and budget allocation, and well-maintained equipment operates more
efficiently, leading to energy savings. Regular maintenance helps ensure
compliance with industry regulations and standards, and data-driven
insights from maintenance activities can inform future strategies [21].
Reliable operations resulting from consistent maintenance led to better
service delivery and higher customer satisfaction. Maintenance intervals

Notations

θ component scale parameter for the Weibull distribution
β component shape parameter for the Weibull distribution
N number of machines in the system
Z number of parts in a machine
CA estimated daily average cost of maintenance of a machine
p component age percentage
r age restoration factor
CPV cost of preventative replacement
CPF fixed cost of preventive maintenance
CP cost of preventive maintenance
CR replacement cost of failed component
CPD predetermined labor cost rate for maintenance action (in

Tk./hour)
CTR total replacement cost of failed component
Csupport supportive cost for preventive maintenance in a machine in

the system
RL cost of lost production (per unit)
TC total cost of maintenance
Tk. Tk. is a Bangladeshi currency. At the time of the study, the

exchange rate was 1 USD = 117.09 Tk.
MTTCA mean time to corrective action
MTTPM mean time to preventive maintenance
MTTPRA mean time to preventive replacement action
MTTPrA mean time to preventive repair action
PR production rate (units per hour)
LFz,n lifetime that is generated for component z in machine n.
FAz,n actual age of failure of part z in machine n
IRz,n indicator value for failure replacement
IPz,n preventive maintenance action value
ISn an indicator value that signifies whether the system has

undergone any maintenance.
tI the total length of the iteration
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provide opportunities to integrate new technologies or improvements
into existing systems, fostering innovation. Properly maintained equip-
ment is less likely to leak or emit harmful substances, benefiting the
environment. Finally, regular maintenance builds a more resilient
operation capable of handling unexpected disruptions [20,21].

Manufacturing-based industrial sectors in Bangladesh typically
struggle to make a proper profit due to higher maintenance and opera-
tional costs. Consequently, most industries view maintenance as a cost
rather than an investment. However, maintenance significantly impacts
multiple operational aspects such as production quantity, expenses,
asset reliability, equipment availability, quality of the finished products,
environmental sustainability, worker and end-user health and safety,
and social welfare [22]. Due to limited time and resources, many in-
dustries in developing countries like Bangladesh cannot fully realize
these benefits. A more adaptable and less expensive maintenance system
is needed to address these issues. Opportunistic maintenance (OM) is
one approach to achieve this, particularly for multi-component systems
[23]. Implementing opportunistic maintenance in multi-stage
manufacturing systems can yield substantial benefits [24].

The paper [12] presented an opportunistic maintenance strategy for
wind turbines, addressing challenges posed by stochastic weather con-
ditions and spare parts management. Using a Markov chain model to
simulate wind speed time series, the study calculated maintenance wait
times due to weather constraints. The economic benefits are demon-
strated through numerical examples, showing a reduction in life cycle
operation and maintenance costs by 10.92 % and 18.30 % compared to
static-opportunistic and non-opportunistic maintenance strategies,
respectively. According to Wang et al. [25], the maintenance policy that
includes OM activities is the most effective, resulting in significantly
lower average costs compared to other policies. Adopting a policy that
incorporates condition-based and age-based OM measures can decrease
maintenance expenses and enhance efficiency of a two-unit system. The
model has potential for expansion to systems with more than two units
[25]. Another study showed that employing a condition-based oppor-
tunistic maintenance strategy in offshore wind farms saves 32.46 % of
costs compared to corrective and preventive maintenance strategies
(CPM). However, this study did not consider maintenance time, which
significantly impacts average maintenance costs [26]. In another study,
Wang et al. [27] showed that a strategy utilizing the downtime of a unit
to opportunistically repair other components resulted in savings of
£130.0 per month and £25.2 per month compared to two policies where
OM is not followed. In a comparative analysis, Li et al. [28] demon-
strated that age-based OM can reduce the annual cost by 2.6 % and 1.5
%, respectively, when compared to two traditional opportunistic
maintenance strategies. Bakhtiary et al. [17] introduced a novel
approach to scheduling tamping interventions to minimize total main-
tenance costs. The proposed policy establishes an Opportunistic Main-
tenance Threshold (OMT) for preventive tamping on railway segments,
leveraging a steady-state genetic algorithm to find the optimal OMT and
tamping schedule. Using data from a railway line in Sweden, the study
demonstrates that implementing an OMT can reduce machine prepara-
tion costs by approximately 46 %.

The paper [29] presented an advanced OM strategy tailored for
multi-component systems in wind turbines, considering seasonal varia-
tions. It analyzed the impact of minimal repair, imperfect repair, and
replacement on a component’s effective age. A dynamic maintenance
threshold is established to minimize the life-cycle maintenance cost of
wind turbines. The strategy used a genetic algorithm for optimization
and was validated through a case study, suggesting that higher
component reliability and maintainability reduce the frequency of re-
pairs and replacements. Research [30] concluded that opportunistic

production-maintenance synchronization offers a viable solution for
optimizing PM scheduling. Companies can achieve substantial cost
savings and operational improvements by using production breaks for
maintenance activities. The proposed model and algorithm provided a
robust framework for future research and practical applications in
various industrial settings. A study highlights the trade-offs between
different maintenance approaches, noting the fixed costs of planned
maintenance, the benefits of OM, and the expenses related to premature
part replacements. When the cost of replacing premature parts is very
high, OM may not be advantageous [31]. The timeframe of OM is often
set to a constant value [28,32]. However, since different components are
maintained in different OM windows, the total time required for main-
tenance varies. Thus, a static maintenance window is unrealistic [28,
32]. Table 1 displays the literature review summary and a comparison
with the current work.

2.1. Research gaps, novelty, and contributions

Table 1 provides a summary of the most recent literature that has
investigated OM. Only a handful of studies dealt with manufacturing
industries; only one dealt with multi-component and multi-unit
manufacturing systems. To fill this research gap, our paper makes the
following contributions:

• Our study incorporated three strategies to determine the best cost
optimization method. The application of OM in Bangladesh presents
unique challenges and opportunities compared to other countries.
Bangladesh’s manufacturing industries often face resource con-
straints and a lack of advanced maintenance infrastructure, hinder-
ing the implementation of sophisticated OM strategies. However, the
potential for cost savings is significant due to the high failure rates
and maintenance costs in these industries. Unlike in developed
countries where OM strategies are supported by advanced predictive
maintenance technologies, in Bangladesh, the focus is on optimizing
existing resources and processes to achieve similar benefits. Our
study shows that, with appropriate adaptation, OM strategies can be
highly effective even in resource-limited settings.

• Most existing studies have proposed and implemented OM for single-
or two-unit systems. Our study deals with more than two units as
well as multi-component systems.

• Unlike most previous studies that avoided or ignored the consider-
ation of maintenance duration [25,26], our study considers main-
tenance duration. In real life, the average maintenance cost is
primarily impacted by maintenance duration, regardless of the
maintenance crew’s experience and expertise, which also indirectly
reflects production loss.

• Our simulation-optimization approach has been implemented for
two different types of manufacturing industries with uncertain OM
time windows, whereas most literature studies considered deter-
ministic OM time windows.

3. Problem description

Techniques for maintenance based on opportunity are distinguished
by the component age percentage values where a decision on the com-
ponent’s maintenance can be made. Typically, the proposed policy is
displayed in Fig. 1. Imagine that there has been a failure in a
manufacturing system. The maintenance team is sent out to replace the
malfunctioning component, and they take advantage of the situation to
do preventative maintenance on the remaining components of the ma-
chine that will meet the condition. Assume that component i failed and
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component x will have to go through a preventative maintenance
operation since its age is greater than the limit, which is now p×MTTFx.
Where p is the component age percentage andMTTF stands for the mean
time to failure.

On the other hand, because the age of the component y is smaller
than the p×MTTFy, there will be nomaintenance work done on it, and it
will continue to function either until the next opportunity arises or it
may break down first.

The following presumptions provide the foundation for the suggested
policies:

• The rate of failure for each individual component in a manufacturing
system follows a Weibull distribution.

• Each component in a machine degrades independently.
• Failure of the machine results from any component failure.
• Assume that there are N number of machines in the system and each
machine has Z important components.

• Any machine downtime due to a failure or maintenance action will
result in production losses for the manufacturing plant.

4. Proposed Opportunistic Maintenance (OM) optimization
strategies

The following section presents the methods followed in this study
and details of the proposed OM optimization strategies.

4.1. Preventive repair and age restoration factor

The preventive repair approach is a novel maintenance methodology
that has gained popularity in recent decades as an alternative to the
conventional categorization of maintenance [33]. It will not make
components as good as new. It will reduce the starting age of the
component with a probability represented by r, where r is the age
restoration factor. The age restoration factor represents the degree of
improvement a component will experience following a repair action,
specifically a decrease in age. It is used to find the component’s age
following a preventive repair. Here, 0 ≤ r ≤ 1.

Componentʹ sage aftermaintenance, Agenew = Ageold − Ageold × r (1)

Failure age after maintenance = r × LFnew + (1 − r) × LFOld (2)

Assume, for instance, that the age restoration factor, r=0.6, a hy-
draulic pipe’s lifetime is 10 months (LFOld) and that it has an age of 4
months (Ageold) before maintenance. And if it is replaced by a new one
with a lifespan of 12 months (LFnew). As a result, according to Eq. (1),
this hydraulic pipe will have a new age of 4-4 × 0.6=1.6 months after
preventive repair, whereas, according to Eq. (2), maintenance activity
with a preventive repair approach renews its failure age to 12× 0.6+ 10
× 0.4=11.2 years.

4.2. Maintenance cost functions

In this study, the cost models include the various maintenance costs
along with production losses during downtime. The detailed cost func-
tions used in this paper are given in the following subsections:

4.2.1. Failure replacement and cost of corrective maintenance
When a failure occurs in the manufacturing system, a failure

replacement action must be performed. If an industry follows only a
failure replacement strategy, it will be regarded as a corrective main-
tenance action. The costs of Corrective maintenance are as follows:

TC = CR × IRz,n + (CPD +PR ×RL) ×MTTCAz (3)

Here, IRz,n is the indicator of failure. Due to failure, other costs, such
as labor costs and production loss, also occured, which will be described
in the next sections.Ta
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4.2.2. Opportunistic preventive maintenance costs
If preventive maintenance is performed at an opportunity, the cost

will be updated as follows:

CPM =
∑Z

z=1
CP,Z × IPz + CSupport × ISN (4)

For the preventive replacement approach, the cost of opportunistic
preventive maintenance will be updated as follows:

CP,Z = CPV + CPF (5)

For preventive repair approach, the total cost of opportunistic pre-
ventive maintenance will be updated by assuming that the cost of pre-
ventive repair is dependent on the variable r, as in the following
equation:

CP,Z = r2CPV + CPF where 0 ≤ r ≤ 1 (6)

In this context, CPV represents the preventive replacement cost, while
CPF stands for the fixed cost for preventive maintenance. The entire
preventative cost is CPV+CPFwill occur when the age restoration factor is
1 i.e., 100 % age restoration which is practically impossible.

4.2.3. Labor cost
Total labor costs depend on the total maintenance time and the

predetermined labor cost rate i.e.,

CL = CPD ×

(

MTTCAz +
∑Z

z=1
MTTPM

)

(7)

Here, MTTPM will be MTTPRA for preventive replacement and
MTTPrA for preventive repair action.

4.2.4. Cost of lost production
Production losses may occur for several reasons. It will occur in two

ways at a time. Production loss will be calculated due to failure
replacement action and opportunistic preventive maintenance action.
As opportunistic maintenance in the model will be implemented at the
same time of corrective maintenance, calculating production loss has
some considerations in this case. When, the total mean time to preven-
tive maintenance (MTTPM) will be larger than MTTCA, considering
MTTPM is enough to calculate the cost of lost production and vice versa.

So, the cost of lost production,

CLP = PR × RL ×
∑Z

Z=1
MTTPMwhen

∑Z

Z=1
MTTPM ≥ MTTCA (8)

Here, MTTPM will be MTTPRA for preventive replacement and
MTTPrA for preventive repair action.

4.2.5. Total maintenance cost
The total cost due to failure replacement and opportunistic mainte-

nance will be the sum of all maintenance-related costs, which is given as:

TC = CR + CPM + CL + CLP (10)

So, the total cost of maintenance will be as follows:

Here, MTTPM is used to calculate the cost of lost production as in
most of the cases, totalMTTPM is larger thanMTTCA. However,MTTCA
can also be used if it becomes larger according to Section 4.2.4. To
simplify the model representation, this approach of using MTTPM is
followed in the whole study but real scenario has been considered in the
simulation process.

The average maintenance cost per machine per day will be:

CA =
TC

tI × N
(12)

4.3. Opportunistic maintenance strategies

Opportunistic maintenance procedures are covered in three ways, as
described in the following subsections.

4.3.1. Strategy 1: maintenance based on opportunities with a preventive
replacement approach

The maintenance policy includes the implementation of corrective
replacements as necessary. Additionally, this provides an opportunity to
perform preventative replacements on various components within the
same machine and other machines in the system. Replacement action
will bring the component as good as new. Maintenance selection is
dependent upon the component’s age at the moment of failure. As soon
as a failure occurs in machine n (n=1,..., N), do preventive replacement
of component z (z=1,..., Z) if agekz,n ≥MTTFz × p. Without preventative
replacement, the component will continue to function until the machine
fails again.

The objective function is

MinCA(p)=

⎡

⎢
⎢
⎢
⎢
⎣

CR× IRz,n+
∑N

n=1

(
∑Z

z=1
CP,Z× IPz+CSupport× ISN

)

+

CPD×

(

MTTCAz+
∑Z

z=1
MTTPRA

)

+PR×RL×
∑Z

Z=1
MTTPRA

⎤

⎥
⎥
⎥
⎥
⎦

tI×N
(13)

subject to

TC = CR × IRz,n +
∑N

n=1

(
∑Z

z=1
CP,Z × IPz + CSupport × ISN

)

+ CPD ×

(

MTTCAz +
∑Z

z=1
MTTPM

)

+PR × RL ×
∑Z

Z=1
MTTPM

(11)

Similarly, cost of lost productionCLP = PR × RL ×
∑Z

Z=1
MTTCAwhen

∑Z

Z=1
MTTCA ≥ MTTPM (9)
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0 ≤ p ≤ 1

Where variable p is the component age percentage, CA represents the
estimated daily average cost of machine maintenance. Other notations
are described earlier. The goal is to obtain the optimum age percentage,
p in order to lower the anticipated daily average cost of maintenance.

4.3.2. Strategy 2: maintenance based on opportunities with a preventive
repair approach

In this action, corrective replacements are carried out when needed,
and we use the occasion as an opportunity to carry out preventive repair
on other parts of the same machine and other machines in the system.
The age of the machine part at the time of failure dictates the mainte-
nance strategy used. If agez, n≥MTTFz× p, then preventive repair should
be conducted at the moment of failure by decreasing the age of the
component by r on component z (z = 1,...,Z) in machine n (n = 1,...,N).
The preventive repair techniques described in section (4.1) are put into
reality. In the event that the component does not meet the condition, it
will be utilized until a subsequent breakdown occurs.

The objective function in this regard is

MinCA(p, r)=

⎡

⎢
⎢
⎢
⎢
⎣

CR×IRz,n+
∑N

n=1

(
∑Z

z=1
CP,Z×IPz+CSupport×ISN

)

+

CPD×

(

MTTCAz+
∑Z

z=1
MTTPrA

)

+PR×RL×
∑Z

Z=1
MTTPrA

⎤

⎥
⎥
⎥
⎥
⎦

tI×N
(14)

subject to

0 ≤ p ≤ 1
0 ≤ r ≤ 1

Where p and r are design variables. p represents the age percentage
for a component, and r represents the age restoration factor and other
notations are the same as before. It is crucial to identify the optimum p
and r to achieve the minimum daily maintenance cost per machine.

4.3.3. Strategy 3: maintenance based on opportunities with a two-level
approach

In this model, corrective replacements are carried out as needed
under this maintenance strategy, and we use the occasion to carry out
two-level preventive maintenance procedures on other parts of the same
machine and other machines of the system. Two age thresholds,MTTF×
pL and MTTF × pH where pH > pL, define preventive repair and pre-
ventive replacement actions, respectively. The choice of maintenance is
based on the component’s age at the time of failure. If MTTFz × pH ≥

agez,n ≥ MTTFz × pL, then preventive repair should be conducted at the
moment of failure by decreasing the age of the component by r on
component z (z= 1,...,Z) in machine n (n= 1,...,N). And if agez,n≥MTTFz
× pH, replace this component preventively. It is assumed here that older
components are replaced more frequently than younger ones. If the
component is not subjected to preventative maintenance, it will
continue to function until the system experiences its subsequent
breakdown.

The objective function in this regard is

Fig. 1. The idea of opportunistic maintenance.
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Fig. 2. Flow chart of the simulation process

MinCA(pL, pH) =

⎡

⎢
⎢
⎢
⎢
⎣

CR × IRz,n +
∑N

n=1

(
∑Z

z=1
CP,Z × IPz + CSupport × ISN

)

+

CPD ×

(

MTTCAz +
∑Z

z=1
MTTPM

)

+ PR × RL ×
∑Z

Z=1
MTTPM

⎤

⎥
⎥
⎥
⎥
⎦

tI × N
(15)
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subject to

0 < pL < pH < 1

where the design parameters are pL, pH, correspond to component age
percentage at two levels. The goal is to identify optimal age percentage
to reduce the overall anticipated maintenance expense per machine per
day. In case of preventive replacement and preventive repair, MTTPRA
and MTTPrA will be used, respectively, in place of MTTPM in Eq. (15).
The optimal value of r, found in strategy 2, will be used in this action to
simplify the simulation process.

5. Solution methodologies

Simulation approaches have been developed to determine the
average cost for all three models to evaluate the OMmodel. Assume that
failure distributions of components are known, and it is possible to
determine the ages of each component at the time of failure. The
following steps have been performed for the simulation process, as
shown in Fig. 2.

Step 1: Initialize the simulation. Define the total number of itera-
tions, I. The total number of machines in the system (N) and the number
of parts in the machine (Z) also have to be specified. Set the limits and
values of the design variables p, r, pL and pH. Define the cost values for
each component, encompassing failure replacement cost (CR), variable
replacement cost due to preventive maintenance (CPV), fixed cost due to
preventive maintenance (CPF), predetermined labor cost rate (CPD), and
supportive cost for preventive maintenance in a machine in the system
(CSupport). The total cost (TC), initially set to zero and will be revised
throughout the simulation. Define the θz and βz values for the Weibull
distribution for each part. Determine MTTF from Eq. (16), stated by
Ebeling, which is regulated by the Weibull distribution [34].

MTTFz = θzΓ
(

1+
1
βz

)

(16)

Generate component lifetimes (LFz) by sampling the Weibull distri-
bution parameters, θz and βz. Initially, set the age values (Agez) for all
components to zero as all are new. Set initially the iteration time interval
value ti = 0. After ith iteration, the time interval ti = min (LFz). At that
time, the other active component’s age will also be equal to min (LFz)
because first failure will be occurred then.

Step 2: Calculating the failure age of the components, FA. At the
beginning, the failure age of component z, FAz is set to the value of LFz.
This means that initially, the failure age, i.e., real lifetime of the
component (FAz) is assumed to be equal to the generated lifetime (LFz).

• For failure replacement:

If failure replacement occurs to component z, the new failure age of
this component after replacement is updated as:

FAz = LFz (17)

For strategy 1, preventive replacement approach:
If preventive replacement is applied to component z, the new failure

age of this component after maintenance is updated in the same way as
Eq. (17).

For strategy 2, preventive repair approach:
If preventive repair is applied to component z, the failure age of this

component is updated as described in Section 4.1 as follows:

FAz = r × LFz + (1 − r) × FAz (18)

Eq. (18) is similar to Eq. (2). Here, FAz in the right side is equal to the
old lifetime of the component and component’s new lifetime, LFz will be
generated at the time of preventive repair action.

For strategy 3, two-level approach:

Failure age will be updated according to Eqs. (17) and (18)
depending on maintenance action. However, age restoration factor r is
an optimal fixed value obtained in strategy 2.

Step 3: Updating the component age and iteration length, tI. Firstly,
the minimum lifetime will be searched from the list of LFz. A component
with a minimum lifetime will fail first. Then, the failure replacement
cost, CR will be calculated. The indicator value, IRz indicates failure.

TC = TC+ CR × IRz,n (19)

The minimum LFz will be the updated age for the other components.
These ages will be used to check the condition of opportunistic pre-
ventive maintenance.

Agez = min(LFz) (20)

ti = ti + Agez (21)

Age after opportunistic maintenance will be updated as follows:
For strategy 1, preventive replacement approach:
As in preventive replacement, the component will be replaced, and

its age after maintenance will be zero.

Agez = 0 (22)

The component that will not fulfill the condition will have no pre-
ventive maintenance and will wait for the next failure. The lifetime will
be updated as follows. It is applicable to all those components that will
not undergo preventive maintenance for all strategies.

LF = LFold − Agez (23)

For strategy 2, preventive repair approach:
The age of the components and failure age after maintenance will be

updated as described in Section 4.1, which is actually Eqs. (1) and (2),
respectively.

For strategy 3, two-level approach:
Depending on maintenance action, component age will also be

updated according to Eqs. (1) and (22) for preventive repair and pre-
ventive replacement approaches.

Step 4: The preventive maintenance action value, IPz, will be
determined by checking the condition described in section 4.3. This
value determines whether preventive maintenance should be performed
on a machine component or not. Set IPz to 1 if the conditions are ful-
filled, indicating that preventive maintenance is required for this
component. Otherwise, set IPz to 0 (indicating no preventive mainte-
nance is required).

After finding the preventive maintenance action value, IPz, the cost
of opportunistic preventive maintenance (CPM), labor cost (CL), and cost
of lost production (CLP) have to be determined as described in Section
4.2. These costs are added to the total cost (TC), and the overall total cost
(TC) is found in the next step.

Step 5: Calculating total cost, TC. The total cost due to opportunistic
maintenance can be found by summing failure replacement costs and all
kind of maintenance costs as described in Section 4.2.5. These total costs
will be calculated until Ith iteration occurs, and the updated costs will be
as follows.

TCI =
∑I

i=1

⎡

⎢
⎢
⎢
⎢
⎣

CR× IRz,n+
∑N

n=1

(
∑Z

z=1
CP,Z× IPz+CSupport× ISN

)

+CPD×

(

MTTCAz+
∑Z

z=1
MTTPM

)

+PR×RL×
∑Z

Z=1
MTTPM

⎤

⎥
⎥
⎥
⎥
⎦

(24)

After completing opportunistic preventative maintenance on all of
the parts in each iteration, set I=i+1. Repeat steps 2 through 5 if the
value of I is less than the highest number of iterations allowed by the
simulation. In our case studies, I=100000 was used.

Step 6: Calculating the average maintenance cost, CA. Maintenance
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cost per machine per day (CA) is calculated as follows.

CA =
TCI
tI × N

(25)

In case study I, N=4, and in case study II, N=1. In the case of study I,
all similar machines are from the same brand and connected in series. In
case study II, all machines are similar of the same brand and connected
in parallel. Look for the optimum variables at which the related esti-
mated maintenance cost per machine per day, CA, can be reduced to its
lowest possible value. The optimal maintenance techniques are found
when the ideal values of the variables p, r, pL, and pH have been
discovered.

6. Case study

This section provides two different case studies to validate the pro-
posed OM strategies for Bangladeshi manufacturing industries.

6.1. Data source

Case Study I: A Footwear and Leather Industry in Bangladesh
A renowned state-owned footwear and leather factory (FWLF) in

Bangladesh has been selected for the first case study. As a developing
country, Bangladesh has a huge opportunity to benefit from this sector,
as raw leather is cheap here. So, if it is possible to lower the maintenance
cost of this sector, it will be more profitable for the country. In this case
study, a production line consisting of four distinct machines is consid-
ered, which makes a series system, as shown in Fig. 3. Only the major
components of each machine are considered to simplify the simulation
procedure. There are five (05) similar production lines. Similar ma-
chines are from the same brand. Maintenance costs can vary slightly
depending on brand variations. But it is very negligible. Historical data
from the last three years (2021–2023) was used in the case study.

Case Study II: A railway industry in Bangladesh
A state-owned railway company, which is also the largest railway

industry in Bangladesh, has been selected as the second study area. The
railway industry mainly manufactures and repairs railway parts. The
industry’s busiest C&W shop is filled with 10 similar wheel lathe ma-
chines from the same brand. Historical data from the last five years
(2019–2023) was used in the case study. Maintenance costs vary very
slightly for brand variations. It has a very low impact on average
maintenance costs. Only five important components named hydraulic
pipe, solenoid valve, driving pinion, hydraulic pump, and clamping jaw
are considered for the simulation process.

In this case study, all machines are connected in parallel, and the
failure of any machine will not affect the production of other machines.
Thus, the value of N is one in this case. As failure of any component will
stop the whole machine, the components can be considered a series
system, as shown in Fig. 4.

6.1.1. Data collection of the case study
The data was collected from a footwear and leather factory (FWLF)

and a railway industry in Bangladesh. The Weibull parameters of failure
distribution were set based on the historical failure data of the machines
with the consultancy of the industry’s specialists. The data tables include
information regarding the costs of the individual components. The costs
include the replacement cost of the failed component (CR), the variable
cost of preventative replacement (CPV), the fixed cost of preventive
maintenance (CPF), the predetermined cost rate for a maintenance team
(CPD), and the supportive cost for preventive maintenance for each
component in a machine in the system (CSupport). Data on lost revenue
due to downtime (RL), production rate (PR), and mean time of corrective
and opportunistic maintenance action has also been collected to mea-
sure the cost of lost production and total labor costs.

6.1.2. Data for case study I
Data for various costs of major components of the machines of a

FWLF in Bangladesh are presented in Table 2, Table 3, Table 4, Table 5.

6.1.3. Data for case study II
Data for various costs of major components of the wheel lathe in the

railway industry are presented in Table 6.

6.2. Results of applying opportunistic maintenance in the manufacturing
industry in Bangladesh

In this part, numerical examples are used to represent the benefit and
comparison of the suggested maintenance optimization model incor-
porating opportunistic maintenance. A Python 3.9 code was written for
the simulation procedure and was run on a Windows machine with an
AMD Ryzen 7 5700U processor having a frequency of 2.20 GHz and
16GB of RAM. Optimization results are presented graphically, and
comparisons among suggested maintenance optimization models are
discussed.

6.2.1. Case study I
Strategy 1. With preventive replacement approach
As Fig. 5 shows, the ideal age percentage for a component in strategy

Fig. 3. Series system of machines in a FWLF in Bangladesh.

Fig. 4. Series system of components of wheel lathe in a railway industry.

Table 2
Costs and parameters for failure distributions of major components of the Toe Lasting Machine (Tk.).

Machine Part θ (Day) β (Day) CR CPV CPF CPD CSupport MTTCA (hrs) MTTPRA (hrs) MTTPrA (hrs) PR (/hr) RL

Toe Band 120 2 8000 4000 1000 500 1000 0.5 0.5 0.3 100 150
Pincher 150 2 65000 32500 4000 0.5 0.5 0.16
Timer 400 3 4000 2000 500 0.2 0.20 0.20
Wiper Plate 220 3 16000 8000 800 0.5 0.5 0.33
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1 is 30 %, and the minimum cost is Tk. 411.4 per day per machine. So,
according to this strategy, preventive replacement will be performed at
30 % and above of the age of the components. It is noted that OM will
not be beneficial if the pre-mature equipment replacement cost is
significantly high. But, in this study, the replacement costs of various
machine parts are relatively low, which is usual for such kinds of
manufacturing industries. Rather, the best strategy is the two-level
maintenance approach for both of the case studies, where preventive
replacements have been done from 110 % and 100 % or above of the
component’s age for case studies I and II, respectively, which will be
discussed in the upcoming sections.

Strategy 2. With a preventive repair approach
As represented in Figs. 6, 7, and 8, the optimal point for maintenance

entails conducting maintenance with a preventive repair approach on
the part when its age becomes p=20 % of its lifetime, while the age
restoration factor, r = 35 %. So, according to this strategy, preventive
repair will be performed from 20 % and above of the components’
lifespan or age. It is noted that opportunistic preventive repair at the
early ages of the components is not impractical. For example, preventive
repairs are usually done after buying a machine to increase the lifetime
of the components regularly or at an opportunity.

Using a preventive repair approach, the study finds the minimum
daily maintenance cost to be Tk. 376 per machine, according to these
graphs.

Strategy 3. With two-level approach
Figs. 9 and 10 demonstrate that implementing the two-level

approach results in a minimal cost of Tk. 366.5 per machine per day.
This is the most cost-effective strategy among the three OM strategies.

Given the requirement pH>pL in this proposed policy, it is essential to
highlight that the costs associated with an area where pH<pL in Figs. 9

and 10 are set to zero and need not require any consideration in this
study. The age restoration factor of 35% is used in this strategy as a fixed
value, which was found to be the optimal value in strategy 2. The pro-
posed two-level approach in the footwear and leather industry imple-
ments preventative repair for components aged from 20 % to 110 % of
their lifespan, replacing them if they are aged from 110 % and above.

6.2.2. Case study II
Strategy 1. With a preventive replacement approach
Fig. 11 illustrates that the optimal age percentage for a component is

40 %, and the minimal cost is Tk. 610.1 per day per machine for pre-
ventive replacement approach. So, according to this strategy, preventive
replacement will be performed from 40 % and above of the lifespan or
age of the components.

Strategy 2. With a preventive repair approach
As depicted in Figs. 12, 13, and 14, optimal maintenance occurs at

p=20 % of the part’s lifespan with an age restoration factor of r=55 % in
the preventive repair approach. So, according to this strategy, preven-
tive repair will be performed from 20 % and above of the components’
lifespan.

Using a preventive repair approach, the study finds the minimum
daily maintenance cost to be Tk. 572.8 per machine as illustrated in the
plots.

Strategy 3. With two-level approach
As illustrated in Figs. 15, 16 and 17 that employing the two-level

approach achieves a minimal daily cost of Tk. 569.6 per machine,
which is the minimum among the three strategies.

In this proposed policy, as pH>pL is the optimization constraint,
areas with pH<pL in Figs. 15–17 are set to null. A fixed age restoration
factor of 55 % from strategy 2 is used here. The two-level approach

Table 3
Costs and parameters for failure distributions of major components of the Heel Lasting Machine (Tk.).

Machine Part θ (Day) β (Day) CR CPV CPF CPD CSupport MTTCA (hrs) MTTPRA (hrs) MTTPrA (hrs) PR (/hr) RL

Wiper Plate 220 2 8000 4000 1000 500 1000 0.5 0.5 0.20 100 150
Heel Band 220 2 3500 1750 500 0.25 0.25 0.33
Relay 220 3 300 150 100 0.2 0.2 0.33
Hydraulic Solenoid Bulb 400 3 6000 3000 1000 1 1 0.16

Table 4
Costs and parameters for failure distributions of major components of the Polishing Machine (Tk.).

Machine Part θ (Day) β (Day) CR CPV CPF CPD CSupport MTTCA (hrs) MTTPRA (hrs) MTTPrA (hrs) PR (/hr) RL

Electrical Motor 220 2 16000 8000 1000 500 1000 1 1 0.5 100 150
Brush 52 3 1050 525 200 0.25 0.25 0.16
Switch 220 2 1200 600 200 0.33 0.33 0.20
Magnetic Conductor 220 3 2000 1000 400 0.33 0.33 0.33

Table 5
Costs and parameters for failure distributions of major components of the Sole Pressing Machine (Tk.).

Machine Part θ (Day) β (Day) CR CPV CPF CPD CSupport MTTCA (hrs) MTTPRA (hrs) MTTPrA (hrs) PR (/hr) RL

Rubber Pad 66 3 1300 750 200 500 1000 0.5 0.5 0.20 100 150
Sensor 85 3 1200 600 200 0.33 0.33 0.33
Selector Switch 130 3 650 325 100 0.5 0.5 0.33
Air Regulator 400 2 5000 2500 500 1 1 0.2
Limit Switch 220 2 600 300 50 0.33 0.33 0.33

Table 6
Costs and parameters for failure distributions of major components of a wheel lathe in a railway industry in Bangladesh (Tk.).

Machine Part θ (Day) β (Day) CR CPV CPF CPD CSupport MTTCA (hrs) MTTPRA (hrs) MTTPrA (hrs) PR (/hr) RL

Hydraulic Pipe 400 2 10000 5000 1000 2000 1 1 0.5 0.625 30000
Solenoid Valve 280 3 10000 5000 1000 1 1 0.5
Driving Pinion 950 3 10000 5000 1000 1000 2 2 1
Hydraulic Pump 1500 2 137000 68500 5000 4 4 2
Clamping Jaw 180 3 30000 15000 1000 1 1 0.5
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employs preventive repair for components aged between 30 % and 100
% of their lifespan, with replacement from and beyond 100 %.

6.3. Comparative study

The proposed approaches are also examined in comparison to the
currently followed corrective maintenance policy, which involves
replacing a component only when it fails.

Fig. 5. Maintenance cost versus component age threshold value, p (%).

Fig. 6. Maintenance cost versus component age percentage (p) and age restoration factor (r).
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Fig. 7. Cost versus age restoration factor (r) plot at p = 20 %.

Fig. 8. Maintenance cost versus component age percentage (p) plot at r = 35 %.
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Fig. 9. Maintenance cost versus component age percentage, pL (pH = 110 %).

Fig. 10. Maintenance cost versus component age percentage, pH (pL=20 %).
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6.3.1. Cost of corrective maintenance
The overall mean cost of implementing corrective action only for

both case studies is calculated using the data from Tables 2 through 6.
Employing corrective maintenance only, the maintenance cost per ma-
chine per day was found to be Tk. 440.92 and Tk. 733.97 for case studies
I and II, respectively.

6.3.2. Comparison results
Table 7 summarizes the results and compares them with the in-

dustries’ existing maintenance approaches (corrective maintenance).
In Section 6.2.1, the optimization findings demonstrate that the

proposed techniques yield an ideal average cost of Tk. 411.4 per day, Tk.
376 per day, and Tk. 366.5 per day for preventive replacement,

Fig. 11. Maintenance cost versus component age threshold value, p (%).

Fig. 12. Maintenance cost versus component age percentage (p) and age restoration factor (r).
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Fig. 13. Cost versus age restoration factor (r) plot at p=20 %.

Fig. 14. Maintenance cost versus component age percentage (p) plot at r=55 %.
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Fig. 15. Maintenance cost versus component age percentage, pL and pH.

Fig. 16. Maintenance cost versus component age percentage, pL (pH=100 %)
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preventive repair, and two-level approach, respectively, for case study I.
The two-level approach seems the best, showing 16.9 % cost savings
compared to the current corrective maintenance approach. However,
the preventive repair approach, which is simpler than two-level action,
also showed a good result, with 14.7 % cost savings. In contrast, the
preventive replacement approach indicates only 6.7 % cost savings
compared to corrective action.

However, Case Study II showed better performance than Case Study
I. The optimization results in Section 6.2.2 show that the proposed
strategies achieve an optimal average cost of Tk. 610.1 per day, Tk.
572.8 per day, and Tk. 569.6 per day for preventative replacement,
preventive repair, and the two-level approach, respectively, in case
study II. The two-level technique appears superior, demonstrating a 22.4
% reduction in costs compared to the existing corrective maintenance
approach. Nevertheless, implementing preventive repair, which is less
complex than two-level action, also yielded a favorable outcome with a
21.9 % cost reduction. However, compared to corrective maintenance,
the preventive replacement approach demonstrates a cost savings of
16.9 %.

The reason for the better performance of Case Study II is the long
lifetime of its components. The components of the leather industry

experience more frequent breakdowns compared to the railway in-
dustry. Thus, opportunistic preventive maintenance reduced less costs in
the leather industry than in the railway industry. In spite of that, both of
the case studies showed significant cost reductions per machine per day,
which will be a very large amount for the whole industry annually.
Moreover, OM strategies were applied only for major components. If it is
possible to implement it for all components, more cost savings will be
possible.

So, the evaluation results of the model for both of the case studies
show significant cost savings in compared with corrective maintenance
(CM). Thus, the proposed OM strategies will be beneficial for the
manufacturing industries, especially in developing countries like
Bangladesh.

6.4. Sensitivity analysis considering the effect of varying CPV on the
average maintenance cost

This section conducts a sensitivity analysis to clearly identify the
impact of the OM strategies on the average maintenance cost and to
achieve more validated evaluation results for the proposed OM
strategies.

• Case Study I:

As shown in Fig. 18, when the cost of preventive replacement (CPV) is
between 50 % and 75 % of CR (cost of replacement), strategy 3, i.e., the
two-level maintenance approach, is the best of all three strategies. But
when the CPV decreases to 25 % of CR, strategy 1, i.e., preventive
replacement, has the lowest maintenance cost. Although such a level of
decreasing of CPV is not possible, this is happening because preventive
replacement is advantageous for low replacement costs as well as the
shorter lifetime of the components, as is happening in case study I.

Fig. 17. Maintenance cost versus component age percentage, pH (pL=30 %)

Table 7
Comparison of optimal maintenance costs with corrective maintenance strategy.

Proposed opportunistic
Maintenance strategy

Case study I: A FWLF in
BD

Case study II: Railway
industry of BD

Optimal
cost

Cost
savings

Optimal
cost

Cost
savings

Preventive replacement
approach

Tk. 411.4 6.7 % Tk.610.1 16.9 %

Preventive repair approach Tk. 376 14.7 % Tk. 572.8 21.9 %
Two level approach Tk. 366.5 16.9 % Tk. 569.6 22.4 %
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• Case Stuy II:

As shown in Fig. 19, strategy 3, the two-level maintenance approach
remains the best strategy at all varying CPV. Here, strategy 2, i.e., pre-
ventive repair, is very close and next better OM strategy. This is
occurring due to the high replacement costs of the wheel lathes’ com-
ponents, which is a practical consideration.

7. Conclusions and future work

In this empirical study, the impact of opportunistic maintenance
(OM) optimization has been analyzed for manufacturing-based

industries in developing countries like Bangladesh. For this purpose,
three OM strategies have been proposed for multi-unit manufacturing
systems, where preventative maintenance is viewed as replacement,
repair, and a two-level approach. The significance of the proposed OM
strategies has been assessed by applying those strategies to two impor-
tant industrial sectors: leather and railways in Bangladesh. The costs
associated with the suggested strategies are evaluated using simulation
optimization (SO) techniques. Graphical results illustrate the signifi-
cance of OM strategies in lowering the average cost of maintenance. The
proposed two-level maintenance approach is the best option among the
three proposed OM strategies for both case studies, which show cost
savings of 16.9 % and 22.4 % compared with the current CM approach

Fig. 18. Sensitivity analysis of maintenance costs for case study I with varying CPV.

Fig. 19. Sensitivity analysis of maintenance costs for case study II with varying CPV.
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for the footwear and railway industries, respectively. However, these
approaches are universal and can be implemented at any opportunity
due to failures or stoppages of the machines because of any other rea-
sons. Also, the main things that matter to the industry when making
maintenance decisions are the cost and availability of the system. This
study presents a simulation optimization approach that will help deci-
sion makers to implement the best strategy for maintenance at the right
time. It is anticipated that the leather and railway industries as well as
other manufacturing industries will benefit from the proposed OM
strategies.

A multi-component multi-unit manufacturing system has many
important components, but to avoid complexity of the simulation pro-
cess, the study only focused on the major components of each unit or
machines. For future research, implementing OM strategies for almost
all significant components can bring more cost savings. The research
adopted a simulation optimization technique to evaluate the OM stra-
tegies. So, future research can be done via analytical techniques to assess
costs and expenses more precisely. It would also be interesting to
consider alternative maintenance policies with distinct reliability im-
plications and investigate the impact of those policies on cost, avail-
ability, or any other decision parameters.

CRediT authorship contribution statement

Md. Ariful Alam: Writing – review & editing, Writing – original
draft, Visualization, Validation, Software, Resources, Project adminis-
tration, Methodology, Investigation, Formal analysis, Data curation,
Conceptualization. Md. Rafiquzzaman: Writing – review & editing,
Supervision, Methodology, Investigation, Conceptualization. Md.
Hasan Ali: Writing – review & editing, Writing – original draft, Visu-
alization, Validation, Software, Methodology, Formal analysis. Gazi
Faysal Jubayer: Visualization, Validation, Software, Resources, Meth-
odology, Formal analysis, Data curation.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

The authors would like to thank the FWLF and Bangladesh Railway
Authority for giving the opportunity to collect the necessary data for the
research. The authors are also grateful to the Khulna University of En-
gineering & Technology, Bangladesh for supporting throughout the
work and offering high-performance computing facilities.

References

[1] S.H.A. Rahmati, A. Ahmadi, K. Govindan, A novel integrated condition-based
maintenance and stochastic flexible job shop scheduling problem: simulation-based
optimization approach, Ann. Oper. Res. 269 (2018) 583–621.

[2] B. Basker, A. Manan, T. Husband, Simulating maintenance work in an engineering
firm: a case study, Microelectr. Reliab. 16 (5) (1977) 571–581.

[3] L. Wang, J. Chu, W. Mao, An optimum condition-based replacement and spare
provisioning policy based on Markov chains, J. Qual. Maint. Eng. 14 (4) (2008)
387–401.

[4] I. Alsyouf, The role of maintenance in improving companies’ productivity and
profitability, Int. J. Prod. Econ. 105 (1) (2007) 70–78.

[5] C. Zhang, F. Qi, N. Zhang, Y. Li, H. Huang, Maintenance policy optimization for
multi-component systems considering dynamic importance of components, Reliab.
Eng. Syst. Saf. 226 (2022) 108705.

[6] A. Syamsundar, V.N.A. Naikan, S. Wu, Estimating maintenance effectiveness of a
repairable system under time-based preventive maintenance, Comput. Ind. Eng.
156 (2021) 107278.

[7] C. Stenström, P. Norrbin, A. Parida, U. Kumar, Preventive and corrective
maintenance–cost comparison and cost–benefit analysis, Struct. Infrastruct. Eng.
12 (5) (2016) 603–617.

[8] H. Dui, C. Zhang, T. Tian, S. Wu, Different costs-informed component preventive
maintenance with system lifetime changes, Reliab. Eng. Syst. Saf. 228 (2022)
108755.

[9] H. Ab-Samat, S. Kamaruddin, Opportunistic maintenance (OM) as a new
advancement in maintenance approaches: a review, J. Qual. Maint. Eng. 20 (2)
(2014) 98–121.

[10] H. Saranga, Opportunistic maintenance using genetic algorithms, J. Qual. Maint.
Eng. 10 (1) (2004) 66–74.

[11] H. Abdollahzadeh, K. Atashgar, M. Abbasi, Multi-objective opportunistic
maintenance optimization of a wind farm considering limited number of
maintenance groups, Renew. Energy 88 (2016) 247–261.

[12] C. Zhang, W. Gao, T. Yang, S. Guo, Opportunistic maintenance strategy for wind
turbines considering weather conditions and spare parts inventory management,
Renew. Energy 133 (2019) 703–711.

[13] D. Wang, et al., An opportunistic maintenance strategy for wind turbines, IET
Renew. Power Gener. 15 (16) (2021) 3793–3805.

[14] J. Nilsson, A. Wojciechowski, A.-B. Strömberg, M. Patriksson, L. Bertling, An
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A B S T R A C T

This study presents a high-accuracy deep learning-based decision support system for kidney cancer detection. 
The research utilizes a relatively large dataset of 10,000 CT images, including both healthy and tumour-detected 
kidney scans. After data preprocessing and optimization, various deep learning models were evaluated, with 
DenseNet-201 emerging as the top performer, achieving an accuracy of 99.75 %. The study compares multiple 
deep learning architectures, including AlexNet, EfficientNet, Darknet-53, Xception, and DenseNet-201, across 
different learning rates. Performance metrics such as accuracy, precision, sensitivity, F1-score, and specificity are 
analysed using confusion matrices. The proposed system outperforms different deep learning networks, 
demonstrating superior accuracy in kidney cancer detection. The improvement is attributed to effective data 
engineering and hyperparameter optimization of the deep learning networks. This research contributes to the 
field of medical image analysis by providing a robust decision support tool for early and rapid diagnosis of kidney 
cancer. The high accuracy and efficiency of the proposed system make it a promising aid for healthcare pro
fessionals in clinical settings.

Introduction

Kidney cancer, also known as renal cancer, is a serious and poten
tially life-threatening disease that affects thousands of people worldwide 
each year. Exploring the nature of kidney cancer, its causes, symptoms, 
diagnosis, treatment options, and ongoing research efforts are one of the 
most important research topic in nowadays [1].

Kidney cancer primarily develops in the renal cells, which line the 
small tubes within the kidneys. The most common type is renal cell 
carcinoma (RCC), accounting for about 90 % of all kidney cancers [2]. 
According to global statistics, kidney cancer is among the top 10 most 
common cancers in both men and women, with a higher incidence in 
developed countries. The exact cause of kidney cancer remains un
known, but several risk factors have been identified as follows [3]. The 
risk increases with age, with most cases diagnosed in people over 50. 
Tobacco uses significantly increases the risk of developing kidney can
cer. Excess body weight is associated with a higher kidney risk. High 
blood pressure may contribute to kidney cancer development. Certain 
inherited genetic conditions can increase susceptibility. Long-term 
dialysis patients have a higher risk [4] and certain chemicals, like 
trichloroethylene, may increase risk [5].

Early-stage kidney cancer often presents no symptoms. As the 
tumour grows, potential signs may include; blood in urine (hematuria), 
persistent pain in the side or lower back, unexplained weight loss, fa
tigue, Fever not associated with an infection and Anemia [6]. Diagnosis 
of kidney cancer typically involves a combination of methods; physical 
examination, imaging tests (CT scans, MRIs, ultrasounds), blood and 
urine tests and if definite results cannot be obtained with all these 
methods, it is necessary to apply Biopsy. Recent advancements in 
medical imaging and the application of artificial intelligence, particu
larly deep learning algorithms, have significantly improved the accuracy 
and speed of kidney cancer detection [7]. The prognosis for kidney 
cancer varies greatly depending on the stage at diagnosis. Early detec
tion significantly improves survival rates. The five-year survival rate for 
localized kidney cancer (confined to the kidney) is about 93 %, but this 
drops to about 17 % for cases where the cancer has spread to distant 
parts of the body [8]. Therefore, early diagnosis of kidney cancer is very 
important, like all other types of cancer.

In the early years, machine learning algorithms were used for pre
diction systems [9,10]. However, deep learning methods have been 
developed to make predictions directly from images [11]. Deep learning 
techniques have emerged as powerful tools for detecting kidney cancer 
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in medical imaging [12]. These advanced artificial intelligence methods, 
particularly convolutional neural networks (CNNs), can analyse CT 
scans, MRI images, and ultrasounds to identify potential tumours with 
high accuracy [13]. By training on large datasets of labelled kidney 
images, deep learning models learn to recognize subtle patterns and 
features associated with cancerous growths. This approach offers ad
vantageous of improved accuracy and reduced false positives, faster 
analysis of medical images, potential for earlier detection of small or 
atypical tumours and assistance to radiologists in their diagnostic 
workflow.

In this work, a deep learning-based kidney cancer detection system is 
designed to contribute faster diagnosis, higher accuracy and comparison 
of deep learning systems. First of all, enhanced deep learning system 
applied on a relatively large dataset that diagnoses very quickly after 
completing the training on the dataset. The proposed system is more 
successful than all studies in the literature and achieved classification 
success of over %99 with the help of data pre-processing and hyper
parameter tunings. Finally, the superiority of the study is shown by 
comparing it with similar studies.

Related works

Kidney cancer, known as renal cell carcinoma (RCC), represents a 
prevalent type of cancer originating in the renal organs. Conventional 
diagnostic techniques, like imaging modalities and biopsies, often face 
constraints in terms of accuracy and effectiveness. The emergence of 
deep learning, a subset of artificial intelligence, has significantly trans
formed medical diagnostics by introducing innovative improvements in 
the recognition and categorization of renal cancer. This article in
vestigates the application of deep learning in the detection of renal 
cancer, focusing on its methodologies, advantages, and challenges.

Deep learning systems, notably convolutional neural networks 
(CNNs), are heavily utilized in the analysis of medical images [14]. 
Because their ability to operate directly on raw image data is quite high 
[15]. Trained on vast assortments of annotated medical pictures, these 
structures can recognize patterns and abnormalities linked to renal 
cancer. Deep learning is utilized in the examination of computed to
mography (CT) and magnetic resonance imaging (MRI) scans. Ap
proaches for ameliorating pictures, like Contrast Limited Adaptive 
Histogram Equalization (CLAHE) and Contrast Stretching, boost the 
quality of these scans, thereby amplifying the accuracy of tumor 
recognition and categorization[16].

The incorporation of profound learning into the identification of 
renal carcinoma presents a multitude of benefits, such as enhanced ac
curacy. These structures have showcased efficacy levels similar to that of 
medical imaging specialists in identifying renal neoplasms, thereby 
diminishing the incidence of incorrect identifications [17]. Automated 
examination of medical images decreases the duration needed for 
diagnosis, enabling timely clinical judgments. Advanced learning ad
vances non-destructive diagnostic methods, lessening the necessity for 
tissue samplings and their linked hazards. Furthermore, through iden
tifying genetic indicators and tumor subgroups, advanced learning as
sists in formulating individualized treatment tactics for individuals [18]. 
The diagnosis of kidney cancer using deep learning faces several chal
lenges, with one major hurdle being the need for carefully annotated 
datasets to train these models. Creating and annotating such datasets is 
both time-consuming and costly. The lack of transparency in deep 
learning models makes it difficult to understand how they make de
cisions, which complicates the process of validating and accepting them 
for clinical use. The training of deep learning architectures demands 
substantial computational capabilities and resources, which may not be 
readily accessible in all healthcare environments. Ensuring the gener
alizability of models across diverse patient cohorts and imaging pro
tocols is crucial for broad clinical adoption [19,20].

Gujarathi et al. provides a comprehensive survey of the application 
of machine learning and deep learning algorithms in kidney cancer 

analysis. It highlights various deep learning models, particularly con
volutional neural networks (CNNs), that have achieved radiologist-level 
performance in diagnosing kidney cancer [17].

Lu et al. employs a Deep Q-Network (DQN) to combine reinforce
ment learning with deep neural networks for identifying potential risk 
genes associated with clear cell renal cell carcinoma (ccRCC). The study 
highlights the integration of genetic factors in cancer diagnosis using 
deep learning and uses HPRD dataset [21].

Yanto et al. examines the impact of Contrast Limited Adaptive His
togram Equalization (CLAHE) on the classification of kidney tumours 
using CT scans. The enhancement technique significantly improves the 
accuracy of deep learning models in diagnosing kidney cancer and get % 
99.12 accuracy [22].

Uhm et al. proposes a Lesion-Aware Cross-Phase Attention Network 
(LACPANet) for renal tumour subtype classification using multi-phase 
CT scans. The network focuses on lesion characteristics across 
different phases to enhance subtype classification accuracy. Authors use 
Seoul St Marry Hospital CT image dataset and get %94,26 accuracy [23].

Abdulwahhab et al. discusses various deep learning applications in 
medical imaging, with a focus on lung and skin cancer in the review 
article. It highlights how deep learning models, such as convolutional 
neural networks (CNNs), have improved diagnostic accuracy. They 
found significant advancements in the literature in the accurate detec
tion and classification of lung and skin cancers [24].

Rossi et al. explored the benefits of risk-stratified screening for kid
ney cancer. Their research indicates that personalized screening pro
tocols, based on individual risk assessments, can significantly enhance 
early detection rates. This approach may involve genetic, environ
mental, and lifestyle factors [25].

Yang et al. developed novel near-infrared fluorescent dyes for optical 
imaging of kidney cancer. These dyes specifically target cancer cells, 
allowing for more precise detection in both preclinical and clinical set
tings. This method could revolutionize the visualization of kidney tu
mours during surgery [26].

Tuncer and Alkan developed a decision support system for detecting 
renal cell cancer using machine learning algorithms. This system can 
analyse medical images and clinical data to assist radiologists in iden
tifying kidney tumours more accurately. The accuracy of the work is % 
92 with SVM classifier [27].

Although all the studies have achieved success in line with their 
objectives, there are some shortcomings. First of all, the low accuracy 
rate in some studies is a deficiency, especially considering that 50 % 
success is achieved even in the case where no learning is performed in 
classification processes consisting of 2 classes. Secondly, the low number 
of medical images reduces the reliability of the systems. Finally, in some 
studies, it has been observed that the use of a single network and the 
tuning of hyperparameters by default reduces the system performance. 
In order to overcome all these deficiencies, it is tried to show the sta
bility of the system by comparing different networks with each other as 
well as comparing with the studies in the literature. The hyper
parameters with the highest performance of the networks at different 
learning rates were optimised to obtain the highest accuracy rates in the 
literature.

Kidney medical scan classification dataset

Medical Scan Classification Dataset that includes kidney images with 
tumour and healthy kidney images, can be found available online at 
Kaggle [28]. Dataset contain 5000 medical images of healthy patients 
and 5000 medical images of kidney tumour detected patients. When the 
images with a healthy image in Fig. 1 and a tumour detected in Fig. 2 are 
examined, it is seen that it is very difficult for non-experts to detect this 
tumour.

As in the examples, other than horizontal section images out of a 
total of 10,000 images were first removed from the dataset. All of the 
images have 512 × 512 pixels resolution. After deleting the vertical 
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versions of the same images, the study was carried out with a total of 
3251 healthy images and 3152 tumour images and all of the images are 
resized to 224 × 224 pixels for the efficiency of deep learning networks. 
Since vertical angle images are images of the same patients and reduce 
the success of the predictive system, it was deemed appropriate to 
perform training and testing only with horizontal section images. An 
example of removed vertical angle images is shown in Fig. 3.

Materials and method

In order to establish a successful system, classification was first 

carried out using different deep learning structures. AlexNet, Effi
cientNet, Darknet-53, Xception, DenseNet-201 networks offered the best 
performance for the proposed system.

AlexNet is considered the model that started the deep learning rev
olution and holds an important place as one of the cornerstones of 
modern artificial intelligence research. The most important factor in this 
progress was the emergence of GPU designs and computational opera
tions. AlexNet is an important model in the field of deep learning and 
image recognition. Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton 
worked to develop AlexNet in 2012, which gained significant recogni
tion for winning the ImageNet Large Scale Visual Recognition Challenge 
(ILSVRC) competition. AlexNet, with its 8 layers consisting of 5 con
volutional layers and 3 fully connected layers, is widely recognized as a 
groundbreaking model that effectively showcased the power of deep 
learning. The incorporation of the ReLU activation function in AlexNet 
led to improved learning speed and efficiency. To prevent overfitting, 
AlexNet utilizes the dropout technique, which enhances the model’s 
generalization by randomly deactivating specific neurons. Additionally, 
AlexNet leverages GPU parallel processing to optimize training on large 
datasets, resulting in enhanced speed and efficiency[29].

EfficientNet is created by Google and it presents an innovative 
strategy for scaling Convolutional Neural Network (CNN) architectures. 
The unique scaling technique of this model adjusts the width, depth, and 
resolution of various CNN models with great skill. EfficientNet achieves 
higher accuracy using fewer parameters and less computational re
sources. The EfficientNet series includes models ranging from B0 to B7, 
with B0 being the most compact and fastest, and B7 being the largest and 
most powerful. In our study, we used the EfficientNet-B0 model as the 
foundation, with the other versions being scaled adaptations of it. 
Compared to other popular CNN models, EfficientNet provides better 
accuracy and requires less computational resources, especially in eval
uations using the ImageNet dataset. These advantages have made Effi
cientNet a preferred choice for both academic research and industrial 
applications. The innovative scaling methodology and remarkable per
formance of EfficientNet render it exceptionally effective for a diverse 
array of deep learning assignments [30].

The Darknet-53 is a key CNN structure used in the YOLOv3 algo
rithm, developed by Joseph Redmon and Ali Farhadi. Known for its 

Fig. 1. Healthy Medical Image of a Patient.

Fig. 2. Tumour Detected Medical Image of a Patient.

Fig. 3. Vertical Angle Image Example in the Dataset.

T. ETEM and M. TEKE                                                                                                                                                                                                                        BenchCouncil Transactions on Benchmarks, Standards and Evaluations 4 (2024) 100174 

44



outstanding performance in object recognition tasks, the Darknet-53 
consists of 53 layers, enabling it to capture more complex features and 
achieve higher accuracy. To build a more profound network, Darknet-53 
incorporates Residual Blocks inspired by the ResNet architecture. These 
blocks effectively address the issue of vanishing gradients in deep net
works by using bypass connections, making it easier to train deeper 
models. In comparison to its predecessor, Darknet-19, Darknet-53 offers 
improved accuracy and increased Frames Per Second (FPS) efficiency.. 
Consequently, YOLOv3, which is constructed on Darknet-53, excels in 
executing prompt and effective object recognition [31].

Xception, short for "Extreme Inception," is a system designed to 
improve the structure of Convolutional Neural Networks (CNNs) in deep 
learning. Created by François Chollet and introduced in 2017, Xception 
builds upon Google’s Inception framework and introduces significant 
improvements. It employs depthwise separable convolutions to enhance 
the efficiency of the Inception framework, reducing computational costs 
while improving model accuracy. Xception represents a revolutionary 
approach to enhancing both efficiency and accuracy in deep learning 
frameworks, combining the strengths of the Inception framework with 
the benefits of depthwise separable convolutions to create faster and 
lighter models [32].

DenseNet-201 stands out as a version of the Dense Convolutional 
Network (DenseNet) structure, specifically distinguished by its 201 
layers. The team of Gao Huang, Zhuang Liu, Laurens van der Maaten, 
and Kilian Q. Weinberger introduced DenseNet-201 in 2016, with a 
focus on improving information flow and enhancing gradient propaga
tion through closely connected layers. This design ensures that each 
layer receives input from all previous layers, promoting weight reuse 
and improved information flow. The primary use of 3 × 3 filters in 
DenseNet-201 helps to reduce computational costs. Additionally, 
bottleneck layers in the form of 1 × 1 convolutional layers are integrated 
to further streamline computations and minimize parameter usage. 
Transition layers, consisting of a 1 × 1 convolutional layer and a 2 × 2 
average pooling layer, are incorporated to connect dense blocks and 
manage dimensions. The output of each layer in DenseNet is impacted 
by a specific growth rate, ensuring efficient and effective network per
formance. This dictates how many channels each layer’s output con
tributes. In DenseNet-201, the growth rate is typically set as 32. Dense 
connections among layers enable gradients to propagate more smoothly, 
thus mitigating the vanishing gradient issue. Due to dense connections, 
superior performance can be attained with fewer parameters. This en
ables weights to be reused and renders the model more concise. Den
seNet excels in various computer vision tasks, such as image 
categorization and object recognition, providing high accuracy and ef
ficiency. [33]. DenseNet-201, specifically, is preferred in scenarios that 
require accurate and effective deep learning architectures. It attained 
the highest accuracy level in the research.

A crucial element in network performance is the acquisition speed, a 
hyperparameter that governs the degree to which weights are modified 
during the instruction of a machine learning model. The speed of 
acquiring information specifically controls how much the weights 
change at each step of the instructions. Setting an appropriate acquisi
tion speed allows the model to learn quickly and effectively, while an 
incorrect speed can slow down the learning process. Improvement al
gorithms like gradient descent adjust the model’s weights based on the 
loss function’s derivative, and the acquisition speed determines the 
degree of these adjustments. This highlights the acquisition speed’s 
importance as a critical parameter in training deep learning models. A 
too small acquisition speed can slow down the training, while a too large 
speed can cause instability. Applying different optimization techniques 
to fine-tune the acquisition speed leads to a more efficient and effective 
training process [34].

Network performance metrics

A confusion matrix is a table used to assess the performance of 

classification algorithms by comparing the predicted class labels to the 
real class labels. It is particularly useful for dataset with multiple classes. 
The confusion matrix is comprised of four key components:

1. True Positives (TP): The number of instances correctly classified as 
positive.

2. True Negatives (TN): The number of instances correctly classified as 
negative.

3. False Positives (FP): The number of instances incorrectly classified as 
positive (Type I error).

4. False Negatives (FN): The number of instances incorrectly classified 
as negative (Type II error).

An Example of the Confusion Matrix is shown in Table 1.
To evaluate the confusion matrix, it is necessary to calculate various 

performance metrics. The metrics can be summarized as follows:

1. Accuracy: Proportion of samples that the model predicted correctly.
2. Precision: It shows how many of the positive predictions are actually 

positive.
3. Recall (Sensitivity or True Positive Rate): It shows how many of the 

true positives were predicted correctly.
4. F1-Score: It is the harmonic mean of Precision and Recall. It is a 

balanced performance measure.
5. Specificity (True Negative Rate): It shows how many of the true 

negatives were predicted correctly.

The use of different metrics is important in decision support systems 
such as cancer prediction in the study. For example, if healthcare pro
fessionals are required to examine medical images more carefully, 
especially those containing tumours, the Recall parameter used here will 
show how high the tumour detection rate is.

Proposed network designs

Flow chart of the proposed prediction system is shown in Fig. 4. 
Firstly, Kidney images were extracted from the dataset. Then, all med
ical images were resized to the same size and images with errors and low 
resolutions were deleted. Since there are both horizontal and vertical 
angle images of the same patient in the dataset and since it is difficult to 
detect most kidney tumours in vertical angle images, these images were 
excluded. It was also tested with deep learning systems that it is difficult 
to detect tumours from vertical angled images, and it was determined 
that vertical angled images decreased the success in the training of all 
networks.

After completing all the operations on the dataset, a balanced dataset 
containing 6404 images with approximately equal number of tumour 
and healthy images was obtained. The obtained dataset was randomly 
divided as 75 % training and 25 % test. Then, the most successful 5 
different networks are shown in the study results according to the 
validation results by training on many deep learning networks. Also, 
hyperparameter tuning plays a crucial role in optimizing deep learning 
networks. The choice of optimizer and loss function significantly im
pacts model convergence and performance. Learning rate, a key 
hyperparameter, influences the speed and stability of training; too high 
a rate may cause overshooting, while too low a rate can lead to slow 
convergence. Batch size affects both training speed and generalization, 
with larger batches potentially offering more stable gradients but at the 
cost of memory. The number of epochs determines how many times the 

Table 1 
An example of confusion matrix.

Real Positives Real Negatives

Predicted Positives TP FP
Predicted Negatives FN TN
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model sees the entire dataset, balancing between underfitting and 
overfitting. Careful tuning of these hyperparameters can dramatically 
improve a model’s accuracy, efficiency, and generalization capabilities.

Results

The performance metrics of the network models used in the study 
against the learning rate are given in the Table 2.

As seen in the Table 2 above, the DenseNet-201 network gave the 
highest performance. When the learning rate, one of the most important 
parameters affecting the network performance, was changed, different 
model Xception network gave higher results. While the effect of the 
learning rate on Alexnet is 0.001, it shows 50 % performance; When 
training is performed with a rate of 0.0001, the performance has 
increased up to 98 %. Confusion matrices were used to obtain metrics. 
The confusion matrices of the selected deep learning networks are given 
below in Fig. 5, 6, 7, 8, 9, 10 and 11.

According to all these analyses, it was determined that the best 
performance was obtained when the DenseNet-201 learning rate was 
shown as 0.0001. Apart from DenseNet-201 network, Xception LR=
0.001 and EfficientNet LR= 0.0001 networks can also be used in deci
sion support mechanisms by making improvements. When the confusion 
matrices of these networks are examined, it is very important for deci
sion support systems that the margin of error usually occurs in healthy 

individuals while detecting tumour images very accurately.

Benchmarking

The comparison table of the proposed method and other kidney 
cancer detection systems are shown in Table 3.

In the context of kidney cancer detection, deep learning techniques 
have shown varying degrees of success across different studies [41]. On 
public datasets, researchers like Türk et al. [40] employed a hybrid 
V-Net-based model, yielding an accuracy of 97.7 % with 210 CT images, 
while Ma et al. [39] proposed a Heterogeneous Modified Artificial 
Neural Network (HMANN) and achieved an accuracy of 97.5 % with 400 
CT scans.

In comparison, our proposed method utilizing the DenseNet-201 
architecture significantly outperformed these models, achieving an ac
curacy of 99.75 % on a much larger public dataset consisting of 10,000 
CT images. This improvement is attributed to the extensive dataset size, 
effective preprocessing steps, and hyperparameter optimization, making 
it one of the most reliable systems for kidney tumor detection to date. 
The results suggest that our model not only generalizes well to unseen 
data but also sets a new benchmark in terms of accuracy, making it a 
strong candidate for integration into clinical decision support systems.

Fig. 4. Proposed System Flow Chart.

Table 2 
Score of the deployed models.

Deep Learning Model Learning Rate Accuracy Precision Sensitivity F1-Score Specificity

AlexNet 0.001 0.5078 0.25 0.50 0.50 .050
EfficientNet-b0 0.001 0.9550 0.9581 0.9557 0.9550 0.9557
DarkNet-53 0.001 0.7820 0.8465 0.7854 0.7727 0.7854
DenseNet-201 0.001 0.9750 0.9758 0.9754 0.9750 0.9754
Xception 0.001 0.9950 0.9950 0.9951 0.9950 0.9951
AlexNet 0.0001 0.9813 0.9813 0.9814 0.9813 0.9814
EfficientNet-b0 0.0001 0.9582 0.9608 0.9588 0.9581 0.9608
DarkNet-53 0.0001 0.9663 0.9675 0.9667 0.9663 0.9667
DenseNet-201 0.0001 0.9975 0.9975 0.9975 0.9975 0.9975
Xception 0.0001 0.9794 0.9799 0.9797 0.9794 0.9797
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Fig. 5. Confusion matrice of AlexNet LR: 0,0001.

Fig. 6. Confusion matrice of DarkNet-53 LR: 0,0001.

Fig. 7. Confusion matrice of DenseNet-201 LR: 0,0001.
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Fig. 8. Confusion matrice of EfficientNet LR: 0,0001.

Fig. 9. Confusion matrice of DarkNet-53 LR: 0,001.

Fig. 10. Confusion matrice of DenseNet-201 LR: 0,001.
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Conclusions

The importance of early and rapid diagnosis of serious diseases such 
as cancer is increasing day by day. At this point, although artificial in
telligence systems are not yet in a position to take over completely, they 
offer great support to users even as a decision support system. In this 
study, a deep learning-based prediction system has been developed for 
kidney cancer. As can be seen in Table 3, the highest success was ob
tained in the comparison of the studies. The improvement of the accu
racy was achieved as a result of the data engineering done on the dataset 
and by optimising the hyper-parameters of the deep learning networks.

For future studies, it is planned to realise a system in which deep 
learning networks supported by larger datasets make fully automatic 
decisions with high success. Also, feature extraction methods can be 
applied to achieve the best results for the predictive system.
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