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A B S T R A C T

The mixed relational algebra (RA) and linear algebra (LA) pipelines have become increasingly common in
recent years. However, contemporary widely used frameworks struggle to support both RA and LA operators
effectively, failing to ensure optimal end-to-end performance due to the cost of LA operators and data
conversion. This underscores the demand for a system capable of seamlessly integrating RA and LA while
delivering robust end-to-end performance. This paper proposes TensorTable, a tensor system that extends
PyTorch to enable mixed RA and LA pipelines. We propose TensorTable as the unified data representation,
storing data in a tensor format to prioritize the performance of LA operators and reduce data conversion costs.
Relational tables from RA, as well as vectors, matrices, and tensors from LA, can be seamlessly converted
into TensorTables. Additionally, we provide TensorTable-based implementations for RA operators and build a
system that supports mixed LA and RA pipelines. We implement TensorTable on top of PyTorch, achieving
comparable performance for both RA and LA operators, particularly on small datasets. TensorTable achieves
a 1.15x-5.63x speedup for mixed pipelines, compared with state-of-the-art frameworks—AIDA and RMA.
1. Introduction

In recent years, mixed pipelines that integrate both relational alge-
bra (RA) and linear algebra (LA) operators have become increasingly
prevalent in fields like data science, artificial intelligence, and real-time
analysis. For instance, analytical queries [1–4], which heavily rely on
RA operators, leverage LA operators such as matrix multiplication for
statistical computations. Meanwhile, machine learning pipelines [5–7],
primarily built upon LA operators, utilize RA operators such as join
for preprocessing. Real-time tasks [8–10] frequently switch between
RA and LA operators to facilitate swift data processing and analysis.
However, as shown in Fig. 2, currently widely-used frameworks are
unable to support both RA and LA operators while ensuring optimal
performance. RA systems [11–13] lack the optimizations for LA oper-
ators while LA systems [14–16] do not offer adequate support for RA
operators. Cross-framework implementations [17–20] bring extra costs
due to data copying and transformations between frameworks and limit
optimizations.

The need arises for a system capable of seamlessly integrating RA
and LA while delivering robust performance. Many previous works [17,
18,21–30] attempt to address this issue. However, most of them prior-
itize the performance of RA operators but have high execution costs
on LA operators and data conversion, thus leading to poor end-to-end
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performance. Our experiments shown in Fig. 3 corroborate this point.
To tackle this problem, we aim to develop a system that seamlessly
integrates mixed pipelines and provides a good end-to-end perfor-
mance. We prioritize ensuring the performance of LA operators while
supporting RA operators with comparable performance and reducing
frequent data conversion.

Unfortunately, it is not a trivial task due to the inherent dispar-
ities between RA and LA. Specifically, RA and LA reflect distinct
characteristics from the perspectives of data abstraction, data types,
and implementation. In terms of data abstraction, RA operates on
relational tables, whereas LA deals with vectors, matrices, and tensors.
Regarding data types, RA accommodates both numerical and non-
numerical data, whereas LA exclusively handles numerical data. From
the perspective of implementation, to ensure the optimal performance
of LA operators, frameworks should make full use of parallelism, keep
good temporal and spatial locality, and utilize extended instructions
properly. However, whether relational tables used in RA systems or
DataFrames and RDDs used in general-purpose systems often fall short
in guaranteeing optimal locality and instruction utility. Consequently,
these frameworks tend to exhibit suboptimal performance when dealing
with LA operators.
).http://creativecommons.org/licenses/by-nc-nd/4.0/Y-NC-ND license (
772-4859/© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of
vailable online 7 March 2024

E-mail address: wenxu@ict.ac.cn.

https://doi.org/10.1016/j.tbench.2024.100161
Received 18 December 2023; Received in revised form 17 January 2024; Accepted

1

KeAi Communications Co. Ltd. This is an open access article under the CC

7 February 2024

https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
mailto:wenxu@ict.ac.cn
https://doi.org/10.1016/j.tbench.2024.100161
https://doi.org/10.1016/j.tbench.2024.100161
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tbench.2024.100161&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


BenchCouncil Transactions on Benchmarks, Standards and Evaluations 4 (2024) 100161Wen
Fig. 1. A public bicycle sharing system leveraging mixed relational algebra (RA) and linear algebra (LA) pipelines to forecast user ride duration.
To prioritize ensuring the performance of LA operators, support RA
operators with comparable performance, and reduce data conversion
costs, we propose TensorTable as the unified abstraction for both RA
and LA, which stores data in a tensor format. For LA, we directly
encapsulate vectors, matrices, and tensors within TensorTable. For
relational tables used in RA, we convert those non-numerical data
into numerical data and use auxiliary dictionaries to preserve the
mapping relations, subsequently storing the data in a tensor format. We
provide TensorTable-based implementations for RA operators, covering
selection, projection, join, group by, and aggregation. We establish a
system capable of supporting the mixed pipelines of RA and LA, built
on top of a typical LA system—PyTorch. Our work supports both RA
and LA operators and achieves comparable performance.

This paper makes the following three contributions:

• We propose an abstraction—TensorTable, to represent both rela-
tional and linear algebra.

• We present TensorTable-based implementations for relational al-
gebra operators and achieve comparable performance, especially
for small datasets.

• We build a system for combining relational and linear algebra
and achieve a 1.15x-5.63x speedup on mixed pipelines, compared
with state-of-the-art frameworks—AIDA and RMA.

The remainder of the paper is organized as follows. Section 2
shows the background, motivation, and challenges. Section 3 shows the
system overview. Section 4 introduces the design and implementation.
Section 5 presents our evaluation. Section 6 illustrates the related work.
Finally, we draw a conclusion in Section 7.

2. Background, motivation, and challenges

2.1. Background

Mixed relational algebra (RA) and linear algebra (LA) pipelines
are becoming more and more common in recent years. Analytical
queries [1–4], which heavily rely on RA operators, leverage LA oper-
ators such as matrix multiplication for statistical computations. Mean-
while, machine learning pipelines [5–7], primarily built upon LA op-
erators, utilize RA operators such as join for preprocessing. Real-time
tasks [8–10] frequently switch between RA and LA operators to fa-
cilitate swift data processing and analysis. Fig. 1 illustrates a typical
real-time system—public bicycle sharing system [31] as an example.
It leverages mixed LA and RA pipelines to forecast user ride duration
and is a latency-sensitive task that requires optimal end-to-end per-
formance. 𝑆𝑡𝑎𝑡𝑖𝑜𝑛 stores station information and 𝑇 𝑟𝑖𝑝 stores user trip
history. The system uses RA operators such as select and join to process
𝑆𝑡𝑎𝑡𝑖𝑜𝑛 and 𝑇 𝑟𝑖𝑝, then uses LA operators such as calculate Euclidean
distance and linear regression to train the predicting model. When
users query the system, it uses RA operators such as select and LA
operators such as linear regression to forest ride duration. Finally, new
trip records are stored in 𝑇 𝑟𝑖𝑝. This system integrates both RA and LA

operators and requires optimal end-to-end performance.

2

2.2. Motivation

Despite the popularity of mixed pipelines, contemporary widely-
used frameworks cannot support those pipelines and guarantee per-
formance. As demonstrated in Fig. 2, our experiments encompass four
typical relational operators – selection, projection, inner join, and group
by, and two typical linear operators – matrix covariance and linear
regression. Our findings reveal that LA systems like PyTorch cannot
support many RA operators such as join and group by. Meanwhile, RA
systems like MonetDB exhibit limited support for LA operators with
subpar performance. General-purpose systems like Spark and pandas
can handle both RA and LA operators, but their performance falls short
of the ideal. Cross-framework implementations bring extra costs due
to data copying and transformations between frameworks and limit
optimizations. The last two columns in Fig. 2 display the conversion
time from Spark DataFrame to Matrix and from pandas DataFrame
to Tensor, respectively. This process incurs a substantial cost, even
6.7x-18.9x larger than that of RA operators over the same data sizes.

Additionally, we analyze the mixed pipeline introduced in Sec-
tion 2.1, Fig. 3 shows the performance breakdown. We find that many
previous works prioritize the performance of RA operators but have
high execution costs on LA operators and data conversion, thus leading
to poor end-to-end performance. Hence, there is a pressing need for
a system capable of supporting mixed RA and LA pipelines, ensuring
the performance of LA and RA operators and reducing data conversion
costs, finally delivering optimal end-to-end performance.

2.3. Challenges

There are several challenges to overcome.
(1) Data abstraction. Data abstraction should fit the memory access

patterns of its computation. RA computations are primarily based on
column-based access, and some computations also rely on row-based
access. LA computations are more complex, involving row-based access,
column-based access, block-based access, and stride-based access. New
data abstraction needs to be compatible with the different memory
access patterns mentioned above. RA operators handle both numerical
and non-numerical data, whereas LA operators exclusively consist of
numerical data. New data abstraction should be able to handle both
numerical and non-numerical data. The question that arises is: What
constitutes the appropriate data abstraction for such mixed pipelines?

(2) Expressiveness. Mixed pipelines contain RA operators including
selection, projection, join, group by, and aggregation as well as LA
operators such as matrix multiplication. Existing algorithms may not
be suitable for the new data abstraction. In this scenario, it is essential
to propose new algorithms tailored to effectively express RA and LA
operators.

(3) Performance. Many mixed pipelines are latency-sensitive tasks,
which have high-performance requirements. A proper data abstraction
that can fit the memory access patterns of its computation is necessary
but not sufficient for achieving optimal performance. We should also
consider hardware-related and dataflow graph optimizations, as well

as data conversion costs.
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Fig. 2. The performance of popular frameworks on LA operators, RA operators, and data conversion. MatCov and LinearReg are short for matrix covariance and linear regression,
respectively. ‘‘x’’ means unsupported. Currently widely-used frameworks are unable to support both RA and LA operators while ensuring optimal performance. Cross-framework
implementations face large data conversion costs.
Fig. 3. The performance breakdown of the mixed pipeline in the bicycle sharing
system. Many previous works have high execution costs on LA operators and data
conversion, thus leading to poor end-to-end performance.

3. The system overview

This section shows the overview of our system.

3.1. Design choices

First, we analyze our design choices.
(1) The core objective is to ensure end-to-end performance for

mixed pipelines. As analyzed in Section 2.2, many previous works
have high execution costs on LA operators and data conversion, thus
leading to poor end-to-end performance. Thus we prioritize ensuring
the performance of LA operators, then support RA operators with
comparable performance and reduce data conversion costs.

(2) Store all data in tensor formats. Tensors, with their data stored
contiguously in the same memory block, enable access to data by
computing offsets within the continuous memory block. This char-
acteristic makes tensors suitable for accommodating all memory ac-
cess patterns used in RA and LA computations, including row-based,
column-based, block-based, and stride-based access. Besides, LA oper-
ators benefit significantly from key factors such as good parallelism,
good temporal and spatial locality, and proper utilization of extended
instructions—all of which are inherently tied to tensor abstractions. As
a solution, we introduce a tensor-based abstraction called TensorTable,
designed to represent both tensors and relational tables, while encoding
non-numeric data into numeric representations.

(3) Utilize existing implementations and optimizations for LA op-
erators and propose compatible algorithms and implementations for
RA operators. We encapsulate LA operators without modifying their
3

core functionality and supplement them with auxiliary functions to
enable their seamless integration within mixed pipelines, not influenc-
ing existing hardware-related and dataflow graph optimizations. To
support mixed pipelines, we offer TensorTable-based algorithms and
implementations for RA operators, successfully achieving comparable
performance without compromising the performance of LA operators.

(4) Perform data conversion during initialization instead of run-
time to reduce data conversion costs. Frequent data conversion during
runtime markedly impacts performance and should be minimized. The
only necessary data conversion occurs during initialization, where we
transform the original data into TensorTables. No additional data con-
versions are needed throughout the execution phase. To ensure optimal
performance, each operator within mixed pipelines takes TensorTables
as input and produces them as output without the need for extra data
conversion.

3.2. System architecture

Fig. 4 illustrates the architecture of our system. We utilize Ten-
sorTable as the unified abstraction, as defined in Section 4.1. We
convert the origin data to TensorTable during initialization and store
them in memory. We propose Directed Acyclic Graph (DAG) Interme-
diate Representation(IR) to represent mixed pipelines, as detailed in
Section 4.3.1. The Parser is responsible for translating mixed pipelines
into DAG IRs, as elaborated in Section 4.3.2. The Optimizer makes
graph-level optimizations, as discussed in Section 4.3.3. The Code
Generator generates TensorTable-based operators, as shown in Sec-
tion 4.3.4. For LA operators, we call PyTorch operators, while for RA
operators, we provide TensorTable-based implementations, as defined
in Section 4.2. Finally, those operators are executed on top of PyTorch
Runtime, as described in Section 4.3.5.

4. The system design and implementation

4.1. The data abstraction: TensorTable

This section introduces our proposed abstraction—TensorTable.
TensorTable represents relational tables in a tensor format, allowing for
seamless processing. By taking TensorTables as both input and output,
all RA and LA operators can be efficiently implemented on tensors.
There are two notable benefits to storing data in a tensor format: Firstly,
tensors exhibit better data locality compared to row-oriented and
column-oriented tables, particularly benefiting LA operators. Secondly,
tensors can leverage hardware features and compilation optimiza-
tions more effectively. TensorTable seamlessly encapsulates vectors,
matrices, and tensors for LA operations, eliminating the need for
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Fig. 4. The TensorTable Framework.

dditional data conversions. As for RA operators, we convert rela-
ional tables to TensorTables and furnish them with TensorTable-based
mplementations.

TensorTable comprises four essential elements: 𝑐𝑜𝑙𝑢𝑚𝑛_𝑛𝑎𝑚𝑒𝑠,
𝑐𝑜𝑙𝑢𝑚𝑛_𝑡𝑦𝑝𝑒𝑠, 𝑑𝑎𝑡𝑎_𝑡𝑒𝑛𝑠𝑜𝑟, and 𝑠𝑡𝑟_𝑑𝑖𝑐𝑡_𝑙𝑖𝑠𝑡. Among these, 𝑐𝑜𝑙𝑢𝑚𝑛_𝑛𝑎𝑚𝑒𝑠
and 𝑐𝑜𝑙𝑢𝑚𝑛_𝑡𝑦𝑝𝑒𝑠 are string lists used for storing column names and
data types, respectively. All data, whether numeric or non-numeric,
is stored within the tensor 𝑑𝑎𝑡𝑎_𝑡𝑒𝑛𝑠𝑜𝑟. Numeric data from relational
tables can be directly stored in 𝑑𝑎𝑡𝑎_𝑡𝑒𝑛𝑠𝑜𝑟. For non-numeric data,
TensorTable encodes them into numeric representations and then stores
them in the same tensor. Non-numeric data in relational tables fall
into four categories: 𝑑𝑎𝑡𝑒, 𝑏𝑜𝑜𝑙𝑒𝑎𝑛, 𝑠𝑡𝑟𝑖𝑛𝑔, and 𝑡𝑒𝑥𝑡. For 𝑑𝑎𝑡𝑒 data, we
convert them into timestamps, represented as integers. 𝐵𝑜𝑜𝑙𝑒𝑎𝑛 data
is converted into 0 or 1. For 𝑠𝑡𝑟𝑖𝑛𝑔 and 𝑡𝑒𝑥𝑡 data, we encode them as
integers and maintain mapping relationships in dictionaries referred to
as 𝑠𝑡𝑟_𝑑𝑖𝑐𝑡𝑠.

𝑆𝑡𝑟𝑖𝑛𝑔 is usually used to represent categories, and RA operators
such as join can operate on them. For 𝑠𝑡𝑟𝑖𝑛𝑔 data, we sort them,
get their unique elements, and then convert them to integers. As
for 𝑡𝑒𝑥𝑡 data, which typically has larger lengths, we map them di-
ectly to integers based on their order. Note that 𝑠𝑡𝑟_𝑑𝑖𝑐𝑡𝑠 are utilized

solely for storing the mapping relations and preserving data order after
complex relational transformation, without sophisticated processing
such as embedding. Each string column maintains its own 𝑠𝑡𝑟_𝑑𝑖𝑐𝑡,
while 𝑠𝑡𝑟_𝑑𝑖𝑐𝑡_𝑙𝑖𝑠𝑡 is a list containing these 𝑠𝑡𝑟_𝑑𝑖𝑐𝑡𝑠, with its length
orresponding to the number of string columns.

Fig. 5 showcases a TensorTable structure. The left in Fig. 5 shows
he original relational table, with m rows and n columns. The right in
ig. 5 presents the corresponding TensorTable. Both 𝑐𝑜𝑙𝑢𝑚𝑛_𝑛𝑎𝑚𝑒𝑠 and

𝑐𝑜𝑙𝑢𝑚𝑛_𝑡𝑦𝑝𝑒𝑠 have a length of n, while 𝑑𝑎𝑡𝑎_𝑡𝑒𝑛𝑠𝑜𝑟 has a shape of m×n.
Numeric data, such as that in the 𝑐𝑜𝑑𝑒, 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒, and 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 columns,
is directly stored in 𝑑𝑎𝑡𝑎_𝑡𝑒𝑛𝑠𝑜𝑟. The 𝑛𝑎𝑚𝑒 column contains string data,
which we map to integers. The mapping relation is retained in 𝑠𝑡𝑟_𝑑𝑖𝑐𝑡1.

s this relational table has only one string column, the corresponding
ensorTable has just one 𝑠𝑡𝑟_𝑑𝑖𝑐𝑡, namely 𝑠𝑡𝑟_𝑑𝑖𝑐𝑡1, and the 𝑠𝑡𝑟_𝑑𝑖𝑐𝑡_𝑙𝑖𝑠𝑡

consists of a single element, represented as [𝑠𝑡𝑟_𝑑𝑖𝑐𝑡1].

4.2. TensorTable-based RA operators

This section introduces the implementations of RA operators based
on the TensorTable abstraction. The supported RA operators include se-
lection, projection, inner-join, outer-join, left-join, right-join, cross-join,

group by, and aggregation.

4

4.2.1. Selection
The selection operator takes rows from a TensorTable that satisfy

specified selection conditions.
There are three types of selection conditions:
(1) Comparison between two columns, as shown in Algorithm 1.

The input is one TensorTable: 𝐼𝑛𝑇 𝑎𝑏𝑙𝑒, two columns 𝑐𝑜𝑙1 and 𝑐𝑜𝑙2 to
compare, and one comparison function 𝐶𝑜𝑚𝑝𝐹𝑢𝑛𝑐. Comparison func-
tions include 𝑒𝑞𝑢𝑎𝑙, 𝑔𝑟𝑒𝑎𝑡𝑒𝑟, 𝑙𝑒𝑠𝑠, 𝑔𝑟𝑒𝑎𝑡𝑒𝑟_𝑒𝑞𝑢𝑎𝑙, 𝑙𝑒𝑠𝑠_𝑒𝑞𝑢𝑎𝑙, and 𝑛𝑜𝑡_𝑒𝑞𝑢𝑎𝑙.
Initially, we extract the corresponding tensors, 𝑡𝑒𝑛𝑠𝑜𝑟1 and 𝑡𝑒𝑛𝑠𝑜𝑟2, from
InTable based on the specified columns. Both tensors have a shape
of [m, 1], where m represents the number of rows. Subsequently, we
perform element-wise comparisons between these two tensors, resulting
in a mask tensor that utilizes 1 and 0 to indicate whether rows meet
the selection condition. Finally, we use 𝑛𝑜𝑛𝑧𝑒𝑟𝑜 operators to get the
indices that satisfy the selection condition based on the mask tensor and
use the 𝑖𝑛𝑑𝑒𝑥_𝑠𝑒𝑙𝑒𝑐𝑡 function to extract rows from 𝐼𝑛𝑇 𝑎𝑏𝑙𝑒.𝑑𝑎𝑡𝑎_𝑡𝑒𝑛𝑠𝑜𝑟
and assign them to the 𝑑𝑎𝑡𝑎_𝑡𝑒𝑛𝑠𝑜𝑟 of the output TensorTable: 𝑂𝑢𝑡𝑇 𝑎𝑏𝑙𝑒.
The 𝑐𝑜𝑙𝑢𝑚𝑛_𝑛𝑎𝑚𝑒𝑠, 𝑐𝑜𝑙𝑢𝑚𝑛_𝑡𝑦𝑝𝑒𝑠, and 𝑠𝑡𝑟_𝑑𝑖𝑐𝑡_𝑙𝑖𝑠𝑡 of 𝑂𝑢𝑡𝑇 𝑎𝑏𝑙𝑒 remain the
same as 𝐼𝑛𝑇 𝑎𝑏𝑙𝑒.

(2) Comparison between one column and a threshold. This type
entails a broadcast comparison between the corresponding tensor and
the specified threshold. The subsequent steps mirror those in Algorithm
1.

(3) Combination of multiple conditions. These conditions are orga-
nized using logical operators such as 𝑎𝑛𝑑, 𝑜𝑟, and 𝑛𝑜𝑡. We compute each
condition’s mask tensor and use their 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛, 𝑢𝑛𝑖𝑜𝑛, and 𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡
to get the combined mask. This combined mask is then used to build
the index and extract rows.

Algorithm 1 Selection
Input: InTable: Input TensorTable; col1, col2: Two columns to compare;

CompFunc: Comparison function.
Output: OutTable: Output TensorTable.
1: tensor1 ← get_tensor(InTable, col1)
2: tensor2 ← get_tensor(InTable, col2)
3: mask ← CompFunc(tensor1, tensor2)
4: index ← nonzero(mask)
5: OutTable.data_tensor ← index_select(InTable.data_tensor, dim=0, index)
6: OutTable.column_names ← InTable.column_names
7: OutTable.column_types ← InTable.column_types
8: OutTable.str_dict_list ← InTable.str_dict_list

4.2.2. Projection
The projection operator takes columns from the input TensorTable:

𝐼𝑛𝑇 𝑎𝑏𝑙𝑒 based on the specified 𝑛𝑎𝑚𝑒_𝑙𝑖𝑠𝑡, which contains the selected
column names, as shown in Algorithm 2. First, we parse the 𝑛𝑎𝑚𝑒_𝑙𝑖𝑠𝑡
to obtain the list of corresponding indices. Then we use the 𝑖𝑛𝑑𝑒𝑥_𝑠𝑒𝑙𝑒𝑐𝑡
function to select columns according to these indices and assign them to
the 𝑑𝑎𝑡𝑎_𝑡𝑒𝑛𝑠𝑜𝑟 of the output TensorTable: 𝑂𝑢𝑡𝑇 𝑎𝑏𝑙𝑒. The 𝑐𝑜𝑙𝑢𝑚𝑛_𝑛𝑎𝑚𝑒𝑠
of 𝑂𝑢𝑡𝑇 𝑎𝑏𝑙𝑒 is set as 𝑛𝑎𝑚𝑒_𝑙𝑖𝑠𝑡, while the 𝑐𝑜𝑙𝑢𝑚𝑛_𝑡𝑦𝑝𝑒𝑠 and 𝑠𝑡𝑟_𝑑𝑖𝑐𝑡_𝑙𝑖𝑠𝑡
of 𝑂𝑢𝑡𝑇 𝑎𝑏𝑙𝑒 are the subsets of 𝐼𝑛𝑇 𝑎𝑏𝑙𝑒 based on 𝑛𝑎𝑚𝑒_𝑙𝑖𝑠𝑡.

Algorithm 2 Projection
Input: InTable: Input TensorTable; name_list: Column names.
Output: OutTable: Output TensorTable.
1: index ← parse(name_list)
2: OutTable.data_tensor ← index_select(InTable.data_tensor, dim=1, index)
3: OutTable.column_names ← name_list
4: OutTable.column_types ← subset(InTable.column_types, name_list)
5: OutTable.str_dict_list ← subset(InTable.str_dict_list, name_list)

4.2.3. Join

The join operator combines columns from two or more input Ten-
sorTables, producing a new output TensorTable. We take inner-join as

an example, as shown in Algorithm 3. The input is two TensorTables:
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Fig. 5. TensorTable stores a relational table in a tensor format, mapping non-numeric values to numeric ones. For a relational table with m rows and n columns, the corresponding
TensorTable consists of two string lists 𝑐𝑜𝑙𝑢𝑚𝑛_𝑛𝑎𝑚𝑒𝑠 and 𝑐𝑜𝑙𝑢𝑚𝑛_𝑡𝑦𝑝𝑒𝑠, used to store the column names and data types, a m×n tensor 𝑑𝑎𝑡𝑎_𝑡𝑒𝑛𝑠𝑜𝑟 to store data, and a list of auxiliary
dictionaries, 𝑠𝑡𝑟_𝑑𝑖𝑐𝑡_𝑙𝑖𝑠𝑡, used to preserve the mapping relationships.
Fig. 6. The illustration of inner_join_index algorithm. Full lines represent operators, dotted lines represent indices.
𝑠
𝑘
k
𝑢
𝑢

Algorithm 3 Inner Join
Input: T1, T2: Input TensorTables; key1, key2: Join keys.
Output: OutTable: Output TensorTable.
1: key_tensor1 ← get_tensor(T1, key1)
2: key_tensor2 ← get_tensor(T2, key2)
3: left_index, right_index ← inner_join_index(key_tensor1, key_tensor2)
4: left_tensor ← index_select(T1.data_tensor, dim=0, left_index)
5: right_tensor ← index_select(T2.data_tensor, dim=0, right_index)
6: OutTable.data_tensor ← concatenate(left_tensor, right_tensor)
7: OutTable.column_names ← T1.column_names ∪ T2.column_names
8: OutTable.column_types ← T1.column_types ∪ T2.column_types
9: OutTable.str_dict_list ← T1.str_dict_list ∪ T2.str_dict_list

𝑇 1 and 𝑇 2, and two keys to join: 𝑘𝑒𝑦1 from 𝑇 1 and 𝑘𝑒𝑦2 from 𝑇 2. The
utput TensorTable is 𝑂𝑢𝑡𝑇 𝑎𝑏𝑙𝑒. First, we extract key tensors from two
ensorTables. Then we use the 𝑖𝑛𝑛𝑒𝑟_𝑗𝑜𝑖𝑛_𝑖𝑛𝑑𝑒𝑥 function to parse key
ensors and return left and right indexes, which are used to select rows
rom two input TensorTables, as defined in Algorithm 4.

Next, we provide a detailed explanation of the 𝑖𝑛𝑛𝑒𝑟_𝑗𝑜𝑖𝑛_𝑖𝑛𝑑𝑒𝑥
lgorithm in detail, as depicted in Fig. 6. This algorithm takes two
ey tensors as inputs and produces two indices used for selecting rows
rom two TensorTables. The process begins with the utilization of
he 𝑠𝑡𝑎𝑏𝑙𝑒_𝑠𝑜𝑟𝑡 function to sort the two keys and get the sorted keys
5

𝑜𝑟𝑡𝑒𝑑_𝑘𝑒𝑦1 and 𝑠𝑜𝑟𝑡𝑒𝑑_𝑘𝑒𝑦2, and their respective indices 𝑘𝑒𝑦_𝑖𝑛𝑑𝑒𝑥1 and
𝑒𝑦_𝑖𝑛𝑑𝑒𝑥2, which represent the positions of elements in the original
eys (lines 1–2 in Algorithm 4 and ➊➋ in Fig. 6). Subsequently, the
𝑛𝑖𝑞𝑢𝑒 function is applied to obtain the unique keys 𝑢𝑛𝑖𝑞𝑢𝑒_𝑘𝑒𝑦1 and
𝑛𝑖𝑞𝑢𝑒_𝑘𝑒𝑦2, along with their corresponding counts 𝑐𝑜𝑢𝑛𝑡1 and 𝑐𝑜𝑢𝑛𝑡2

(lines 3–4 and ➌➍). Following this, we employ the 𝑐𝑢𝑚𝑠𝑢𝑚 function to
calculate the cumulative sum of counts, marked as 𝑐𝑢𝑚𝑠𝑢𝑚_𝑐𝑜𝑢𝑛𝑡1 and
𝑐𝑢𝑚𝑠𝑢𝑚_𝑐𝑜𝑢𝑛𝑡2 (lines 5–6 and ➎➏). We add 0 as the first element to both
𝑐𝑢𝑚𝑠𝑢𝑚_𝑐𝑜𝑢𝑛𝑡1 and 𝑐𝑢𝑚𝑠𝑢𝑚_𝑐𝑜𝑢𝑛𝑡2. Moving forward, we compute the
intersection, denoted as 𝑖𝑛𝑡𝑒𝑟, along with corresponding indices, 𝑖𝑛𝑑1
and 𝑖𝑛𝑑2, of the unique keys(lines 7 and ➐).

Finally, we iterate through 𝑖𝑛𝑑1 and 𝑖𝑛𝑑2 to construct 𝑙𝑒𝑓 𝑡_𝑖𝑛𝑑𝑒𝑥 and
𝑟𝑖𝑔ℎ𝑡_𝑖𝑛𝑑𝑒𝑥 (lines 8–17 and ➑). We utilize 𝑐𝑢𝑚𝑠𝑢𝑚_𝑐𝑜𝑢𝑛𝑡1
and 𝑐𝑢𝑚𝑠𝑢𝑚_𝑐𝑜𝑢𝑛𝑡2 as indices to get elements from 𝑘𝑒𝑦_𝑖𝑛𝑑𝑒𝑥1 and
𝑘𝑒𝑦_𝑖𝑛𝑑𝑒𝑥2 and assign their values to 𝑙𝑒𝑓 𝑡_𝑖𝑛𝑑𝑒𝑥 and 𝑟𝑖𝑔ℎ𝑡_𝑖𝑛𝑑𝑒𝑥 appro-
priately. Specifically, We take 𝑐𝑢𝑚𝑠𝑢𝑚_𝑐𝑜𝑢𝑛𝑡1[𝑖𝑛𝑑1[𝑖]] and 𝑐𝑢𝑚𝑠𝑢𝑚_𝑐𝑜𝑢𝑛𝑡1
[𝑖𝑛𝑑1[𝑖] + 1] as the index to get elements from 𝑘𝑒𝑦_𝑖𝑛𝑑𝑒𝑥1, that is
𝑘𝑒𝑦_𝑖𝑛𝑑𝑒𝑥1[𝑐𝑢𝑚𝑠𝑢𝑚_𝑐𝑜𝑢𝑛𝑡1[𝑖𝑛𝑑-1[𝑖]], 𝑐𝑢𝑚𝑠𝑢𝑚_𝑐𝑜𝑢𝑛𝑡1[𝑖𝑛𝑑1[𝑖] + 1]], marked
as 𝑙𝑒𝑓 𝑡_𝑡𝑚𝑝. We then repeat each element in 𝑙𝑒𝑓 𝑡_𝑡𝑚𝑝 for 𝑐𝑜𝑢𝑛𝑡2[𝑖𝑛𝑑1[𝑖]]
times and append them to 𝑙𝑒𝑓 𝑡_𝑖𝑛𝑑𝑒𝑥. Similarly, we take
𝑐𝑢𝑚𝑠𝑢𝑚_𝑐𝑜𝑢𝑛𝑡2[𝑖𝑛𝑑2[𝑖]] and 𝑐𝑢𝑚𝑠𝑢𝑚_𝑐𝑜𝑢𝑛𝑡2[𝑖𝑛𝑑2[𝑖] + 1] as the index to
get elements from 𝑘𝑒𝑦_𝑖𝑛𝑑𝑒𝑥2, that is 𝑘𝑒𝑦_𝑖𝑛𝑑𝑒𝑥2[𝑐𝑢𝑚𝑠𝑢𝑚_𝑐𝑜𝑢𝑛𝑡2[𝑖𝑛𝑑2[𝑖]],
𝑐𝑢𝑚𝑠𝑢𝑚_𝑐𝑜𝑢𝑛𝑡2[𝑖𝑛𝑑-2[𝑖] + 1]], marked as 𝑟𝑖𝑔ℎ𝑡_𝑡𝑚𝑝. We repeat 𝑟𝑖𝑔ℎ𝑡_𝑡𝑚𝑝
for 𝑐𝑜𝑢𝑛𝑡1[𝑖𝑛𝑑2[𝑖]] times, and append them to 𝑟𝑖𝑔ℎ𝑡_𝑖𝑛𝑑𝑒𝑥. An example
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Algorithm 4 inner_join_index
Input: key_tensor1, key_tensor2: Two keys in tensor formats.
Output: left_index, right_index: The indices to select rows from two

TensorTables.
1: sorted_key1, key_index1 ← stable_sort(key_tensor1)
2: sorted_key2, key_index2 ← stable_sort(key_tensor2)
3: unique_key1, count1 ← unique(sorted_key1, return_counts=True)
4: unique_key2, count2 ← unique(sorted_key2, return_counts=True)
5: cumsum_count1 ← cumsum(count1)
6: cumsum_count2 ← cumsum(count2)
7: inter, ind1, ind2 ← intersection(unique_key1, unique_key2)
8: left_index ← Empty list
9: right_index ← Empty list
0: for i ← 0 to len(ind1) do
1: left_tmp ← key_index1[cumsum_count1[ind1[i]],

cumsum_count1[ind1[i]+1]]
2: Repeat each element in left_tmp for count2[ind1[i]] times
3: Append left_tmp to left_index
4: right_tmp ← key_index2[cumsum_count2[ind2[i]],

cumsum_count2[ind2[i]+1]]
5: Repeat right_tmp for count1[ind2[i]] times
6: Append right_tmp to right_index
7: end for

is illustrated in Fig. 6; the gray part shows where 𝑘𝑒𝑦1 and 𝑘𝑒𝑦2
are all 0, which means the variable i used in line 10 and step ➑ is
0. 𝐶𝑢𝑚𝑠𝑢𝑚_𝑐𝑜𝑢𝑛𝑡1[0] and 𝑐𝑢𝑚𝑠𝑢𝑚_𝑐𝑜𝑢𝑛𝑡1[1] are 0 and 2, so we take
the first two elements from 𝑘𝑒𝑦_𝑖𝑛𝑑𝑒𝑥1, that is [0, 3]. Count2[0] is
3, so each element in [0, 3] is repeated three times, yielding [0, 0,
0, 3, 3, 3], which is appended to 𝑙𝑒𝑓 𝑡_𝑖𝑛𝑑𝑒𝑥. 𝐶𝑢𝑚𝑠𝑢𝑚_𝑐𝑜𝑢𝑛𝑡2[0] and
𝑐𝑢𝑚𝑠𝑢𝑚_𝑐𝑜𝑢𝑛𝑡2[1] are 0 and 3, so we take the first three elements from
𝑘𝑒𝑦_𝑖𝑛𝑑𝑒𝑥2, that is [0, 2, 3]. Count1[0] is 2, so [0, 2, 3] is repeated
twice, yielding [0, 2, 3, 0, 2, 3], which is appended to 𝑟𝑖𝑔ℎ𝑡_𝑖𝑛𝑑𝑒𝑥.

After the 𝑖𝑛𝑛𝑒𝑟_𝑗𝑜𝑖𝑛_𝑖𝑛𝑑𝑒𝑥 function, we select rows from two Ten-
sorTables based on 𝑙𝑒𝑓 𝑡_𝑖𝑛𝑑𝑒𝑥 and 𝑟𝑖𝑔ℎ𝑡_𝑖𝑛𝑑𝑒𝑥, concatenate them, and
assign them to 𝑂𝑢𝑡𝑇 𝑎𝑏𝑙𝑒.𝑑𝑎𝑡𝑎_𝑡𝑒𝑛𝑠𝑜𝑟. The 𝑐𝑜𝑙𝑢𝑚𝑛_𝑛𝑎𝑚𝑒𝑠, 𝑐𝑜𝑙𝑢𝑚𝑛_𝑡𝑦𝑝𝑒𝑠,
and 𝑠𝑡𝑟_𝑑𝑖𝑐𝑡_𝑙𝑖𝑠𝑡 of 𝑂𝑢𝑡𝑇 𝑎𝑏𝑙𝑒 are the union of that of two input Ten-
sorTables. Outer-join, left-join, right-join, and cross-join have similar
implementations, using their specific 𝑗𝑜𝑖𝑛_𝑖𝑛𝑑𝑒𝑥 algorithms to replace
𝑖𝑛𝑛𝑒𝑟_𝑗𝑜𝑖𝑛_𝑖𝑛𝑑𝑒𝑥.

4.2.4. Groupby
The groupby operator groups rows based on one or more columns.

The input is one TensorTable 𝐼𝑛𝑇 𝑎𝑏𝑙𝑒 and a 𝐺𝑟𝑜𝑢𝑝𝑏𝑦𝐶𝑜𝑙 which marks
the column names to make groups. The output is one TensorTable
𝑂𝑢𝑡𝑇 𝑎𝑏𝑙𝑒. First, we parse the 𝐺𝑟𝑜𝑢𝑝𝑏𝑦𝐶𝑜𝑙 and get the list of indices.
Then we utilize the 𝑖𝑛𝑑𝑒𝑥_𝑠𝑒𝑙𝑒𝑐𝑡 function to select the column based
on indices and assign the values to 𝐺𝑟𝑜𝑢𝑝𝑏𝑦𝑇 𝑒𝑛𝑠𝑜𝑟. Subsequently, we
utilize the 𝑢𝑛𝑖𝑞𝑢𝑒 function to get the unique elements and generate
𝐺𝑟𝑜𝑢𝑝𝑏𝑦𝐼𝑑𝑥, which marks the group to which each row belongs.
Finally, we append 𝐺𝑟𝑜𝑢𝑝𝑏𝑦𝐼𝑑𝑥 to 𝑑𝑎𝑡𝑎_𝑡𝑒𝑛𝑠𝑜𝑟, append ‘‘group’’ to
𝑜𝑙𝑢𝑚𝑛_𝑛𝑎𝑚𝑒𝑠, and append int32 to 𝑐𝑜𝑙𝑢𝑚𝑛_𝑡𝑦𝑝𝑒𝑠 of 𝑂𝑢𝑡𝑇 𝑎𝑏𝑙𝑒. The
𝑠𝑡𝑟_𝑑𝑖𝑐𝑡_𝑙𝑖𝑠𝑡 of 𝑂𝑢𝑡𝑇 𝑎𝑏𝑙𝑒 remains the same as that of 𝐼𝑛𝑇 𝑎𝑏𝑙𝑒.

Algorithm 5 Groupby
Input: InTable: Input TensorTable; GroupbyCol: Groupby column name.
utput: OutTable: Output TensorTable.

1: index ← parse(GroupbyCol)
2: GroupbyTensor ← index_select(InTable, dim=1, index)
3: UniqueElement, GroupbyIdx ← unique(GroupbyTensor, return_inverse=True)
4: OutTable.data_tensor ← concatenate(GroupbyIdx, InTable.data_tensor)
5: OutTable.column_names ← InTable.column_names
6: OutTable.column_names ← ["group"] ∪ InTable.column_names
7: OutTable.column_types ← [int32] ∪ InTable.column_types
8: OutTable.str_dict_list ← InTable.str_dict_list
6

4.2.5. Aggregation
The aggregation operator collects one or more columns and returns

their aggregated values. The input is one TensorTable 𝐼𝑛𝑇 𝑎𝑏𝑙𝑒, one ag-
gregation function 𝐴𝑔𝑔𝐹𝑢𝑛𝑐, and the 𝑛𝑎𝑚𝑒_𝑙𝑖𝑠𝑡 which marks the column
names. The output is one TensorTable 𝑂𝑢𝑡𝑇 𝑎𝑏𝑙𝑒. Aggregation functions
include 𝑐𝑜𝑢𝑛𝑡, 𝑠𝑢𝑚, 𝑎𝑣𝑔, 𝑚𝑖𝑛, 𝑚𝑎𝑥, etc. First, we parse the 𝑛𝑎𝑚𝑒_𝑙𝑖𝑠𝑡 and
get the list of indices. Then we use the 𝑖𝑛𝑑𝑒𝑥_𝑠𝑒𝑙𝑒𝑐𝑡 function to select
the columns based on these indices and assign them to 𝐴𝑔𝑔𝑇 𝑒𝑛𝑠𝑜𝑟.
Finally, we make aggregation on 𝐴𝑔𝑔𝑇 𝑒𝑛𝑠𝑜𝑟 and assign the results to
𝑂𝑢𝑡𝑇 𝑎𝑏𝑙𝑒.𝑑𝑎𝑡𝑎_𝑡𝑒𝑛𝑠𝑜𝑟. The 𝑐𝑜𝑙𝑢𝑚𝑛_𝑛𝑎𝑚𝑒𝑠 of 𝑂𝑢𝑡𝑇 𝑎𝑏𝑙𝑒 is set as 𝑛𝑎𝑚𝑒_𝑙𝑖𝑠𝑡.
The 𝑐𝑜𝑙𝑢𝑚𝑛_𝑡𝑦𝑝𝑒𝑠 and 𝑠𝑡𝑟_𝑑𝑖𝑐𝑡_𝑙𝑖𝑠𝑡 of 𝑂𝑢𝑡𝑇 𝑎𝑏𝑙𝑒 are the subsets of 𝐼𝑛𝑇 𝑎𝑏𝑙𝑒
according to 𝑛𝑎𝑚𝑒_𝑙𝑖𝑠𝑡.

Algorithm 6 Aggregation
Input: InTable: Input TensorTable; AggFunc: Aggregation function; name_list:

Column names.
Output: OutTable: Output TensorTable.
1: index ← parse(name_list)
2: AggTensor ← index_select(InTable.data_tensor, dim=1, index)
3: OutTable.data_tensor ← AggFunc(AggTensor)
4: OutTable.column_names ← name_list
5: OutTable.column_types ← subset(InTable.column_types, name_list)
6: OutTable.str_dict_list ← subset(InTable.str_dict_list, name_list)

4.3. The mixed RA and LA pipeline implementation

This section presents the implementation of mixed RA and LA
pipelines.

4.3.1. DAG IR
First, we introduce the Directed Acyclic Graph (DAG) Intermedi-

ate Representation (IR), which serves as the representation for mixed
pipelines. The DAG IR comprises a list of operators, variables, and
utility functions used to build pipelines and execute them. The variables
are all TensorTables, as defined in Section 4.1. These TensorTables form
the fundamental data units within the representation. The operators
take TensorTables as both input and output, including both linear and
relational operators. Within the DAG IR, nodes represent operators,
while edges represent variables and mark the data dependencies be-
tween operators. In this way, this unified abstraction allows for the
seamless representation of mixed RA and LA pipelines.

4.3.2. Parser
Parser traverses the source codes and transforms them into DAG IRs.

Operators are initialized as nodes within the DAG IR, marking their
input and output variables, along with an implementation instance
used to lower and execute operators. Variables are established as
edges within the DAG IR, facilitating connections between nodes. This
comprehensive process results in the construction of a corresponding
DAG IR, which encapsulates the entire representation once all source
code statements have been traversed.

4.3.3. Optimizer
Optimizer performs a series of functionally equivalent transforma-

tions for DAG IRs aimed at achieving optimizations. These optimiza-
tions primarily fall into two categories: 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑠𝑤𝑎𝑝 and 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟
𝑓𝑢𝑠𝑖𝑜𝑛.

𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑠𝑤𝑎𝑝 involves altering the order of operators within the
DAG, which can reduce computation and create more opportunities for
𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑓𝑢𝑠𝑖𝑜𝑛. RA operators such as 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 and 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 can be
swapped with other RA and LA operators without affecting the result.
This optimization is similar to 𝑝𝑢𝑠ℎ𝑑𝑜𝑤𝑛 used in the RA systems [32,
33], but is expended to LA. For instance, consider a scenario where
users calculate the reciprocal of one column and then make a selection.
By rearranging the sequence to perform selection first and then the
reciprocal operation, we can reduce the computation.
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𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑓𝑢𝑠𝑖𝑜𝑛 fuses two operators to reduce memory footprint
and computation. This optimization is similar to that in the LA sys-
tems [34,35], but is expended to RA operators. We can effectively
harness PyTorch to fuse linear operators and, simultaneously, apply
fusion techniques to RA operators based on our TensorTable-based
implementations. For instance, multiple selections or projections on
a single TensorTable can be fused into a single operation. Similarly,
multiple join operations can be consolidated into a single operation.
For example, if users initially join A and B, and then join the result
with C, we can fuse these operations into a single join. This involves
calculating the indices for A, B, and C, as detailed in Section 4.2.3.
Subsequently, we select rows from A, B, and C and concatenate them
without generating intermediate tables.

4.3.4. Code generator
Code Generator converts those optimized DAGs to TensorTable-

based operators based on the implementation instances of operators
in DAG IRs. When dealing with RA operators, we adhere to the im-
plementations outlined in Section 4.2 and translate them into a list
of tensor operations as well as some simple auxiliary functions to
handle TensorTables. In the case of LA operators, we translate them
into PyTorch LA operators to handle the 𝑑𝑎𝑡𝑎_𝑡𝑒𝑛𝑠𝑜𝑟 in TensorTables
and do not deal with other proprieties.

4.3.5. Executor
We construct the Executor on top of PyTorch, orchestrating the exe-

cution flow through a series of carefully sequenced program calls. In the
case of RA operators, we employ PyTorch to execute the TensorTable-
based operators. Meanwhile, auxiliary functions are executed using
native Python. For LA operators, we call PyTorch to handle TensorTa-
bles and keep other proprieties just the same. We use an interpreted
mode in PyTorch to reduce compilation time.

5. Evaluation

5.1. Experimental setup

We deploy a server node equipped with two Xeon E5-2620 V3
(Haswell) CPUs and 64 GB memory to conduct the experiments. Each
CPU contains six physical cores. The operating system is Ubuntu 16.04,
and the other software includes PyTorch 1.13, pandas 1.3.5, Spark
3.3.0, MonetDB 11.39.17, AIDA [18], and RMA [29].

5.2. The RA operator performance

This section evaluates RA operators. We use the BIXI dataset [31]
and test the results on 1k, 10k, 100k, 1 m, and 10 m rows. We compare
our work against MonetDB, Spark, and pandas.

Fig. 7(a) shows the performance of the selection operator. Ten-
sorTable outperforms the other frameworks on both small and large
data sizes for two reasons. First, TensorTable stores data in a ten-
sor format, allowing for faster data access compared to row-oriented
or column-oriented data structures. Additionally, TensorTable utilizes
element-wise comparison based on vector instructions to accelerate.

Fig. 7(b) presents the performance of the projection operator. Ten-
sorTable achieves noticeable speedup on small datasets due to better
data locality and faster data access. However, TensorTable’s perfor-
mance diminishes on larger datasets due to the use of the 𝑖𝑛𝑑𝑒𝑥_𝑠𝑒𝑙𝑒𝑐𝑡
function, which reassigns the tensor data structure to ensure data
contiguity and causes redundant computation. Utilizing the 𝑖𝑛𝑑𝑒𝑥_𝑠𝑒𝑙𝑒𝑐𝑡
function is essential, as it can maintain a good data locality and guar-
antee the performance of other operators, especially linear operators.

Fig. 7(c) displays the performance of the inner join operator. Mon-
etDB and Spark use hash-based join, while pandas and TensorTable
use sort-based join. TensorTable continues to outperform the others on
small datasets. However, hash-based joins have lower complexity than
7

Fig. 7. The execution time of RA operators on TensorTable, MonetDB, Spark, and
pandas over different data sizes.

sort-based joins, giving Spark and MonetDB an advantage as the dataset
size increases. We are actively exploring the integration of hash-based
joins into TensorTable without compromising the performance of other
tensor computations.

Fig. 7(d) demonstrates the performance of the groupby operator,
which exhibits similarities to the inner join operator. TensorTable
excels on small datasets but lags behind on larger datasets due to limi-
tations of the sort-based implementation. We are actively investigating
the implementation of hash-based groupby operator in TensorTable.
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Fig. 8. The normalized performance of the distance-duration linear regression pipeline on different data sizes. Using the performance of TensorTable to normalize other frameworks,
a smaller number has worse performance. ‘‘Cross’’ represents the cross-framework implementation using pandas for RA operators and PyTorch for LA operators.
Fig. 9. The execution time breakdown of the distance-duration linear regression pipeline on different data sizes. It consists of three primary parts: data conversion, LA operators,
and RA operators.
Fig. 7(e) illustrates the performance of the aggregation operator.
This operator relies more on linear algebra computations than other
relational operators, which benefits TensorTable on both small and
large datasets.

In summary, TensorTable achieves superior performance on selec-
tion and aggregation operators across all data sizes. For projection, in-
ner join, and group by operators, TensorTable performs better on small
datasets while worse on large datasets. TensorTable achieves competi-
tive performance on RA operators compared to RA and general-purpose
systems.

5.3. Mixed pipeline performance

This section evaluates two mixed pipelines consisting of RA and LA
operators.

5.3.1. Distance-duration linear regression
The first case derives from a public bicycle sharing system [18]

that involves linear regression between distance and duration, utilizing
the BIXI dataset [31]. There are two tables: 𝑡𝑟𝑖𝑝 contains start stations,
end stations, and duration; 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 contains station codes, names, and
coordinates. This pipeline comprises five steps: (1) Select rows from 𝑡𝑟𝑖𝑝
where the start station does not equal the end station. (2) Join 𝑡𝑟𝑖𝑝 with
𝑠𝑡𝑎𝑡𝑖𝑜𝑛 to retrieve the coordinates of start and end stations. (3) Calculate
the distance. (4) Train a linear regression model between distance and
duration. (5) Test the model on the test dataset. Steps (1)(2) involves
RA operators, and steps (3)-(5) involves LA operators. We do not
use any built-in linear regression algorithms to avoid bias from these
algorithms’ implementation differences. We use those basic LA oper-
ators, such as matrix multiplication, to implement linear regression,
guaranteeing consistency in computation for different frameworks.

We compare TensorTable with pandas, Spark, AIDA, RMA, and
cross-framework implementation, which uses pandas for RA operators
8

and PyTorch for LA operators. We use the performance of TensorTable
to normalize the other five approaches, as illustrated in Fig. 8. Note
that a value smaller than 1 indicates a worse performance compared
to TensorTable and the smaller the value, the worse the performance.
TensorTable achieves a 2.57x-32.33x speedup compared with pandas, a
20.77x-390.55x speedup compared with Spark, a 1.15x-2.53x speedup
compared with AIDA, and a 1.04x-2.29x speedup compared with cross-
framework implementation. Although TensorTable lags behind RMA
by 2% when dealing with small datasets, it outperforms RMA as the
dataset size grows, with a speedup ranging from 1.71x to 2.84x.

Fig. 9 provides a detailed breakdown of the results. The execution
time of this mixed pipeline is divided into three primary components:
data conversion, LA operators, and RA operators. Our work converts
relational tables into TensorTables during initialization and does not
need other data conversion in later computation, whose data conver-
sion time is not apparent. Pandas handles DataFrames for both LA
and RA operators without explicit data conversion, resulting in nearly
zero conversion time. TensorTable achieves a 3.04x-41.71x speedup for
LA operators and a 1.11x-2.09x speedup for RA operators compared
with pandas. Spark implements RA operators using DataFrames and
LA operators using matrices, necessitating frequent data conversion.
While Spark excels in RA operators for sizable datasets, it lags in LA
operators and involves more data conversion, resulting in the worst
performance among the six implementations. TensorTable achieves a
41.44x-491.96x speedup for LA operators and an 868.25x-4546.49x
speedup for data conversion compared with Spark. AIDA handles Tabu-
larData for both LA and RA operators without explicit data conversion,
resulting in almost negligible conversion time. RMA handles RA opera-
tors and simple LA operators like addition based on binary association
tables and executes complex LA operators such as matrix multiplica-
tion by calling external libraries like MKL [36]. This incurs notable
data conversion costs, particularly with complex LA operators. AIDA
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Fig. 10. The normalized performance of the conference covariance pipeline on different data sizes. Using the performance of TensorTable to normalize other frameworks, a smaller
number has worse performance. ‘‘Cross’’ represents the cross-framework implementation using pandas for RA operators and PyTorch for LA operators. ‘‘x’’ means unsupported.
Fig. 11. The execution time breakdown of the conference covariance pipeline on different data sizes. It consists of three primary parts: data conversion, LA operators, and RA
operators. ‘‘x’’ means unsupported.
uses numpy for LA operators and RMA uses MKL for LA operators.
These two libraries provide better optimizations for small-scale LA
computations over PyTorch. Therefore, AIDA and RMA outperform
TensorTable and cross-framework implementation for LA operators
over smaller datasets. However, as the dataset grows, PyTorch demon-
strates superior operator-level and graph-level optimizations, ensur-
ing TensorTable and cross-framework implementation’s superiority in
LA operators for larger datasets. TensorTable achieves a 1.76x-4.12x
speedup for LA operators and a 1.82x-3.54x speedup for RA operators
compared with AIDA. TensorTable achieves a 1.58x-3.72x speedup
for LA operators and a 78.22x-344.62x speedup for data conversion
compared with RMA. While RMA exhibits slightly better performance
on RA operators compared with TensorTable, its data conversion and
LA operators compromise its end-to-end performance. The LA per-
formance of TensorTable and cross-framework implementation have
no significant differences. However, cross-framework implementation
requires frequent data conversion between DataFrames and tensors
during runtime. TensorTable achieves a 1.03x-2.61x speedup for RA
operators and a 5.14x-39.43x speedup for data conversion compared
with cross-framework implementation.

5.3.2. Conferences–covariance computation
The second case derives from an academic conference management

system [29], it computes the covariance between A++ conferences and
other conferences based on the number of publications per author and
conference, using the DBLP dataset [37]. There are two tables: 𝑟𝑎𝑛𝑘𝑖𝑛𝑔
stores conferences and their ratings, and 𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 stores the number
of publications per author and conference. The pipeline involves three
main steps: (1) Compute the covariance matrix on 𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛. (2) Join
the result with 𝑟𝑎𝑛𝑘𝑖𝑛𝑔. (3) Select the A++ conferences. Step (1) uses
LA operators, and Steps (2)(3) use RA operators.
9

Fig. 10 displays the normalized performance of TensorTable com-
pared to pandas, Spark, AIDA, RMA, and cross-framework imple-
mentation using pandas for RA operators and PyTorch for LA op-
erators. TensorTable achieves a 1.5x-1.88x speedup compared with
pandas, a 2.51x-31.31x speedup compared with Spark, a 1.27x-5.63x
speedup compared with RMA, and a 1.13x-1.58x speedup compared
with cross-framework implementation. AIDA loses contextual infor-
mation when performing LA operators on TabularData containing
non-numeric columns. This results in some RA operators failing to
execute after LA operators. As a result, this mixed pipeline can only
execute the first half, encountering errors in the latter part for AIDA.

Fig. 11 offers a breakdown of execution time into three primary
parts: data conversion, LA operators, and RA operators. TensorTable
achieves a 1.36x-1.93x speedup for LA operators and a 1.97x-3.47x
speedup for RA operators compared with pandas. TensorTable achieves
a 2.01x-44.1x speedup, a 1.5x-3.33x speedup, and a 21.62x-249.57x
speedup for LA operators, RA operators, and data conversion, re-
spectively, compared with Spark. TensorTable achieves a 1.1x-2.42x
speedup for LA operators compared with AIDA, with AIDA’s RA op-
erators encountering errors due to contextual information loss caused
by preceding LA operators. Against RMA, TensorTable achieves a 1.1x-
2.56x speedup for LA operators, a 3.02x-8.4x speedup for RA operators,
and a 7.27x-31.66x speedup for data conversion. The LA performance
of TensorTable and cross-framework implementation have no signifi-
cant differences. However, TensorTable achieves a 2.22x-3.62x speedup
for RA operators and a 1.23x-4.96x speedup for data conversion in con-
trast to cross-framework implementation. In summary, TensorTable at-
tains optimal end-to-end performance by leveraging high-performance
LA operators, minimizing data conversion overhead, and achieving
competitive performance on RA operators.
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6. Related work

There are four categories of system implementations to support the
ixed RA and LA pipelines.

(1) Extending SQL for LA [24–26,38–42]. These works leverage
he mature ecosystem of Relational Database Management Systems
RDBMS) and compile LA computations into SQL statements or RA
xpressions. While they can ensure good performance for RA opera-
ors, the SQL statements often limit the optimization potential for LA
omputations, leading to suboptimal performance. Additionally, certain
A operators, such as matrix inversion and determinant computation,
annot be implemented using this method.

(2) Using User-Defined Actions (UDAs) or User-Defined Functions
UDFs) to implement LA in RDBMS [27,28,43–45]. However, it requires
ignificant effort and lacks flexibility. UDAs or UDFs provide technical
nterfaces but do not offer ready-made implementations, leaving users
o create high-performance implementations themselves, which can be
hallenging. Furthermore, these interfaces may struggle to handle the
arious shapes and dimensions of LA operators effectively, and hinder
he users’ incremental developments, such as changing algorithms and
uning parameters.

(3) Building cross-framework applications [17–20]. These appro-
ches utilize different systems for specific tasks, combining scientific
omputing systems for LA operators, and RDBMS for RA operators, and
hen integrating them. While this method can cover a wide range of
A and RA operators, it introduces extra costs due to data copying and
ransformations between frameworks and may limit cross-framework
ptimizations.

(4) Proposing new abstractions for both LA and RA operators. Some
f them [22,23,46] propose new abstractions and build dedicated data
nalysis frameworks from scratch. Others [29,30] propose new abstrac-
ions and extend existing frameworks. Most of these systems are based
n RDBMS, prioritizing performance for RA operators. However, they
ften lack optimizations for LA operators, which cover more execution
ime. In contrast, our work proposes a new abstraction and implements
he system on the LA framework, ensuring optimal performance for LA
perators while still accommodating RA operators.

. Conclusion

This paper introduces TensorTable, a novel abstraction designed
o seamlessly accommodate mixed pipelines encompassing both rela-
ional algebra (RA) and linear algebra (LA) operators. TensorTable
an represent relational tables from RA, as well as vectors, matrices,
nd tensors from LA. we provide TensorTable-based implementations
or RA operators and build a system that supports mixed LA and
A pipelines. Built on top of PyTorch, our implementation ensures
omparable performance across both RA and LA operators, especially
n small datasets. Besides, TensorTable achieves a 1.15x-5.63x speedup
or mixed pipelines, outperforming state-of-the-art frameworks—AIDA
nd RMA.
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A B S T R A C T

Evaluation is a crucial aspect of human existence and plays a vital role in each field. However, it is often
approached in an empirical and ad-hoc manner, lacking consensus on universal concepts, terminologies,
theories, and methodologies. This lack of agreement has significant consequences. This article aims to formally
introduce the discipline of evaluatology, which encompasses the science and engineering of evaluation.
We propose a universal framework for evaluation, encompassing concepts, terminologies, theories, and
methodologies that can be applied across various disciplines, if not all disciplines.

Our research reveals that the essence of evaluation lies in conducting experiments that intentionally
apply a well-defined evaluation condition to individuals or systems under scrutiny, which we refer to as the
subjects. This process allows for the creation of an evaluation system or model. By measuring and/or testing
this evaluation system or model, we can infer the impact of different subjects. Derived from the essence
of evaluation, we propose five axioms focusing on key aspects of evaluation outcomes as the foundational
evaluation theory. These axioms serve as the bedrock upon which we build universal evaluation theories and
methodologies. When evaluating a single subject, it is crucial to create evaluation conditions with different
levels of equivalency. By applying these conditions to diverse subjects, we can establish reference evaluation
models. These models allow us to alter a single independent variable at a time while keeping all other variables
as controls. When evaluating complex scenarios, the key lies in establishing a series of evaluation models that
maintain transitivity. Building upon the science of evaluation, we propose a formal definition of a benchmark
as a simplified and sampled evaluation condition that guarantees different levels of equivalency. This concept
serves as the cornerstone for a universal benchmark-based engineering approach to evaluation across various
disciplines, which we refer to as benchmarkology.
1. Introduction

Evaluation, a fundamental and significant undertaking in human
existence, possesses a multifaceted nature. It spans a wide spectrum of
domains, encompassing the assessment of computer performance, the
evaluation of societal interventions to determine their efficacy [1], the
ranking of educational institutions, and even the appraisal of political
leaders through electoral processes. As a result, evaluation assumes a
pivotal role that permeates every discipline. Nevertheless, it is pertinent

∗ Corresponding author.
E-mail address: jianfengzhan.benchcouncil@gmail.com (J. Zhan).

to recognize that evaluation practices often adopt ad-hoc and empirical
approaches, displaying inherent variations among various disciplines.

Collectively, evaluations within diverse disciplines lack universal
concepts, terminologies, theories, and methodologies. In the disciplines
of computer science, social sciences, and psychology, the communities
develop different methodologies that design experiments to deliber-
ately impose conditions on individuals or systems under scrutiny, which
we refer to as the subject, to measure and analyze their responses [2].
In the field of computer science, a benchmark is utilized as a tool
vailable online 30 April 2024
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Fig. 1. The universal concepts, theories, and methodologies in evaluatology.

and methodology [3–6] to evaluate the effectiveness and efficiency of
system designs and implementations. In the realm of social sciences,
evaluation assumes the application of social research methodologies to
systematically investigate the effectiveness and efficiency of interven-
tion programs aimed at enhancing societal conditions, as defined by
Rossi et al. [1]. Within the psychology domain, social and personality
psychologists often employ scales such as psychological inventories,
tests, or questionnaires [7] to quantify psychometric variables [7].

Conversely, evaluations in the business, finance, and education
domains take different observational study methodologies [2]. The
field of business embraces the concept of benchmarking as a means
to identify exemplary practices that can propel companies towards
superior performance [8]. In the realms of finance and education,
evaluation often utilizes a tool named index. Widely employed to gauge
13
the overall performance of the system, the index is derived through the
meticulous calculation of the weighted average, utilizing a select group
of representative individuals [9].

Discussions concerning the true essence of evaluation are seldom
found, which often results in confusion with measurement and testing
and lacks clear differentiation. A critical consequence of this absence
is the lack of previous endeavors to establish universally applicable
foundational evaluation principles and methodologies that cut across
diverse disciplines, ultimately giving rise to significant ramifications.

Even within computer sciences and engineering, it is not uncommon
for evaluators to generate greatly divergent evaluation outcomes for the
same subject. These discrepancies can range from significant variations
to the extent of yielding contradictory qualitative conclusions. An ex-
ample of this phenomenon can be observed when using multiple widely
recognized CPU benchmark suites to assess the performance of the same
processor. This often leads to greatly divergent evaluation outcomes
that are incomparable across different benchmarks. Such circumstances
give rise to valid concerns surrounding the reliability, effectiveness,
and efficiency of these approaches when appraising the subject that is
critical to safety, missions, and businesses. Further details on this issue
can be found in Section 5.

To the best of our knowledge, this article, for the first time, formally
introduces the discipline of evaluatology, encompassing the science and
engineering of evaluation. We present an all-encompassing concept, ter-
minology, theory, and methodology framework for evaluation that can
be universally applied across diverse disciplines if not all disciplines.

We highlight that the essence of evaluation lies in conducting
deliberate experiments where a well-defined Evaluation Condition (EC)
is applied to a well-defined subject. The purpose is to establish a well-
defined Evaluation Model (EM). By measuring and/or testing this EM,
we can then infer the impacts of the subjects being evaluated. Derived
from the core essence of evaluation, we present five axioms as the
foundational principles of evaluation theory. The five axioms focus
on key aspects of evaluation outcomes, including true quantity (The
first and second axioms), traceability of discrepancy (the third axiom),
comparability (the fourth axiom), and estimate (the fifth axiom).

Based on the five evaluation axioms, we present the universal
evaluation theories and methodologies from two distinct dimensions:
evaluating a single subject and complex scenarios.

A well-defined EC serves as a prerequisite for meaningful compar-
isons and analyses of the subjects. We propose a universal hierarchical
definition of an EC and identify five primary components of an EC from
the top to the bottom.

In the process of evaluating subjects, it is of utmost importance to
prioritize the use of the equivalent ECs (EECs) across diverse subjects.
This means that in order to establish two EECs, it is crucial to ensure
that the corresponding components within the same layer of the two
ECs are equivalent. By maintaining equivalency at each layer, we can
ensure fair and unbiased evaluations, enabling meaningful comparisons
and assessments between different subjects.

In certain cases, achieving complete equivalence between two ECs
at all levels can be a challenging or even unattainable task. In such
cases, we propose a minimum requirement of ensuring uniformity in
the most essential components of the two ECs, which we refer to as
the least equivalent evaluation conditions (LEECs). To establish the
LEECs, we identify the most governing component within an EC that
must exhibit equivalency. This component, known as the evaluation
standard, plays a crucial role in defining the LEECs.

We apply ECs with different levels of equivalency to diverse subjects
to constitute EMs. An EM element refers to a specific point within the
EM state space, and each EM element may have many independent
variables. To eliminate confounding, we propose a new concept named
a reference evaluation model (REM). An REM mandates that each
element of an EM change only one independent variable at a time while
keeping the other independent variables as controls. Subsequently, we
utilize the measurement and/or testing to gauge the functioning of the
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REM. Finally, from the amassed measurement and testing data of the
evaluation systems, we then deduce the cause–effect impacts of the
different subjects.

Addressing the complexities that arise in more intricate scenarios,
e reveal that the key to effective and efficient evaluations in various

omplex scenarios lies in the establishment of a series of EMs that
aintain transitivity.

In real-world settings, we refer to the entire population of real-world
ystems that are used to evaluate specific subjects as the real-world
evaluation system (ES). Assuming no safety concerns are present, the
real-world ES serves as a prime candidate for creating an optimal
evaluation environment, enabling the assessment of diverse subjects.
However, there are several significant obstacles to consider, i.e., the
presence of numerous confounding, the challenges of establishing an
REM, prohibitive evaluation costs resulting from the huge state spaces,
multiple irrelevant concurrent problems or tasks taking place, and the
inclination to exhibit bias towards certain clusters within the EC state
space.

We posit the existence of a perfect EM that replicates the real-world
S with utmost fidelity. A perfect EM eliminates irrelevant problems or
asks, has the capability to thoroughly explore and comprehend the en-
ire spectrum of possibilities of an EC, and facilitates the establishment
f REMs.

However, the perfect EM possesses huge state space, entails a vast
umber of independent variables, and hence results in prohibitive
valuation costs. To address this challenge, it is crucial to propose a
ragmatic EM that simplifies the perfect EM in two ways: reducing
he number of independent variables that have negligible effect and
ampling from the extensive state space. A pragmatic EM provides a
eans to estimate the parameters of the real-world ES.

We put forth four fundamental issues in the evaluations and for-
ally formulate the problems mathematically: ensure the transitivity of
Ms; perform a cost-efficient evaluation with controlled discrepancies;
nsure the evaluation traceability; connect and correlate evaluation
tandards across every discipline.

Building upon the science of evaluation, we formally define a
enchmark as a simplified and sampled EC, specifically a pragmatic
C, that ensures different levels of equivalency. Based on this concept,
e propose a benchmark-based universal engineering of evaluation
cross different disciplines, which we aptly term ‘‘benchmarkology’’.
ig. 1 presents the universal concepts, theories, and methodologies in
valuatology.

The article is structured as follows: Section 2 elucidates the back-
round. Section 3 introduces a comprehensive theoretical and method-
logical framework for evaluatology. Section 4 outlines the principles
nd methodologies of benchmarkology. Section 5 reviews the state-
f-the-art and state-of-the-practice evaluations and benchmarks and
xpounds upon the imperative to cultivate the science and engineer-
ng of evaluation. Ultimately, Section 6 manifests the overarching
onclusion.

. Background

This section provides an overview of the background.

.1. Basic concepts

This subsection presents several concepts, like individual, systems,
opulations, samples, variables, models, confounding, and control based
n several undergraduate textbooks [2,10,11].
An individual can be defined as the object that is described by a

iven set of data. A system is an interacting or interdependent group of
individuals, whether of the same or different kinds, forming a unified
whole [12,13]. A system could be a recursive structure. That is to say,
a high-level system could consist of an interacting or interdependent
14
group of low-level systems, whether of the same or different kinds,
forming a unified whole.

A population is the entire group of individuals or systems we wish
o study and understand, while a sample represents a smaller subset of

individuals or systems from the population [2]. A variable or quantity is
any property of an individual or system. A parameter is a number that
describes some property of the population, while a statistic is a number
that describes some property of a sample. Inference is the process of
drawing conclusions about a parameter of a population on the basis of
the statistic of sample data [2].

According to [11], a function, denoted as f, is a rule that assigns
a unique element, referred to as 𝑓 (𝑥), from a set 𝑅 to each element
in a set 𝐷. In this context, the domain, denoted as 𝐷, refers to the
set of all possible values for which the function is defined. On the
other hand, the range of the function, denoted as 𝑓 (𝑥), consists of all
the possible values that 𝑓 (𝑥) can take as 𝑥 varies within the domain.
The independent variable is represented by a symbol that encompasses
any arbitrary number within the domain of the function. A dependent
variable, represented by a symbol, is used to denote a number within
the range of the function.

A model is a simplified version of a system that would be too compli-
cated to analyze in full detail [10]. A model could be a physical model
or a mathematical model. A mathematical model is a mathematical
description, typically through functions or equations, of a system, the
purpose of which is to understand the system and to make predictions
about its behavior [11]. Throughout the remainder of this article,
we will use the terms ‘‘system’’ and ‘‘model’’ interchangeably unless
explicitly stated otherwise.

An observational study observes individuals or systems and measures
variables of interest without any attempt to influence their responses,
while an experiment is designed to deliberately impose conditions on
individuals or systems to measure and analyze their responses [2].

In the realm of understanding cause and effect, it is crucial to rely on
experiments rather than observational studies. Even if an observational
study is based on a random sample, it still falls short in effectively
measuring the impact of changes in one variable on another vari-
able [2]. Experiments, on the other hand, provide us with compelling
and conclusive data, making them the only source that truly convinces
us of cause-and-effect relationships.

Confounding arises when two independent variables are associated
in a manner that makes it challenging to differentiate their specific
effects on a dependent variable. In other words, the influence of these
independent variables becomes entangled, making it difficult to at-
tribute specific impacts to each one. In such cases, the independent
variable responsible for this confounding effect is referred to as a con-
founding variable. Control means keeping other independent variables
that might affect the response the same [2], and the main purpose of
a control group is to provide a baseline for comparing the effects of the
other treatments.

2.2. Metrology

Metrology is the science of measurement and its applications [14].
In this section, we present a simplified yet systematic framework for
understanding metrology concepts based on the works of [14,15].
To maintain conciseness, we focus only on the essential metrology
concepts (see Fig. 2).

The essence of metrology lies in quantities and their corresponding
measurements. A quantity is a property whose instances can be com-
pared by ratio or only by order [14]. Furthermore, Psychologist Stanley
Smith Stevens developed a well-known measurement classification with
four levels based on empirical operations, mathematical group struc-
ture, and permissible statistics (invariant): nominal, ordinal (based on
order [14]), interval, and ratio [16].1

1 In the original article, Stanley Smith Stevens used the term ‘‘levels or
scales of measurement’’. We have only used ‘‘levels’’ to avoid confusion with
the specific meaning of ‘‘scales’’ in psychology
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Fig. 2. A simplified yet systematic conceptual framework for metrology [14,15].

A nominal level is the most basic form of measurement, where
umbers are used as labels or type numbers to establish an equality
elation. An ordinal level, on the other hand, involves ranking the
tems in a particular order. An interval level exhibits an equality of
nterval relation, where (1) the choice of a zero point is a matter of
onvention or convenience, (2) there is rank ordering, and (3) the scale
emains invariant when a constant is added to all values, preserving
he differences between them. A ratio level allows for all four types of
elations: equality, rank-ordering, equality of intervals, and equality of
atios.

The international system of metrology encompasses seven funda-
ental quantities: time, length, mass, electric current, thermodynamic

emperature, amount of substance, and luminous intensity [14].
Consistent with the definition of a quantity, the true value of a

uantity represents the magnitude of a property or characteristic of an
ndividual or system, e.g., a phenomenon, body, or substance that is
15
independent of any observer. For example, it can be a specific circle’s
radius or a particular particle’s kinetic energy within a given system
[14,15]. For measurement, the true quantity value is an unknown
measurement target [14].

In the field of measurement, the unit of measurement [15] plays a
crucial role. It is a real scalar magnitude that is defined and adopted
by convention. Its purpose is to allow for the comparison of quantities
of the same kind.

Measurement standard [15] is a realization of the definition of
uality. It is characterized by a stated metric value and an associated
easurement uncertainty.

To establish a measurement standard, it is important to use a
easurement methodology that is both repeatable (performed by the

ame team) and reproducible (performed by different teams). This
nsures consistency and reliability in the reference for measurements.
uch measurements can be conducted using measuring instruments or
easuring systems [14], providing a reliable foundation for further
nalysis and comparison.
Measurement is experimentally obtaining one or more values at-

ributed to a quantity and other relevant information [14]. Another
idespread definition of measurement in the social sciences is ‘‘the
ssignment of numerals to objects or events according to some rule.’’
16], dating back to 1946. Quantity values obtained by the measure-
ent are measured (quantity) values, representing the measurement

esults [14].
The hierarchy of measurement standards follows a progression from

ower to upper levels, with increasing accuracy and cost. This progres-
ion starts from national measurement standards and extends to inter-
ational standards. As a property of a measurement result, measurement
raceability [14] establishes a connection between the result and a
eference (measurement standards, measuring instruments, and mea-
uring systems). This connection is established through a documented,
nbroken chain of calibrations, with each calibration contributing to
he measurement uncertainty. To ensure accuracy, each level of mea-
urement standards in the hierarchy should be calibrated using a higher
tandard with greater precision.

.3. Testing

A test oracle is a method used to verify whether an individual or
ystem being tested has performed correctly during a specific execu-
ion [17]. Test oracles can include, but are not limited to, specifications,
ontracts, reference products, previous versions of the same product,
nd relevant performance or quality of service criteria [18].

As shown in Fig. 3, testing is the process of executing an individual
r system to determine whether it (1) conforms to the specified be-
avior defined by the test oracles [19] (the first category) and/or (2)
perates correctly within its intended environment as defined by the
est oracles (the second category).

In the first category of testing, the test oracle compares the actual
utput with the specified output to identify incorrect behavior, which
s considered a failure [19]. Another type of failure is often encountered
n the second category of testing, where an individual or system fails
o meet environmental constraints or falls outside the specified re-
uirements. Examples of such failures include running out of memory,
low execution, and incompatibility with operating systems [17]. It
s important to note that these two types of failures are not isolated
ncidents. Failures in the second category can lead to failures in the
irst category, such as running out of memory, which results in incorrect
rogram execution.
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Fig. 3. A simplified yet systematic conceptual framework for testing [17,19].

. The science of evaluation

Within this section and the forthcoming one, we first propose the
niversal evaluation concepts and terminologies. Then, we elucidate
he theory and methodology governing the realm of evaluation, col-
ectively referred to as evaluatology.

We present the science of evaluation from two distinct perspectives:
valuating a single subject and evaluating complex scenarios.

We postpone the exposition of the principles and methodology
ertaining to benchmarkology, the benchmark-based engineering of
valuation, to Section 4.

.1. Basic evaluation concepts and terminology

In this subsection, we will examine an illustrative case study in
valuation and meticulously analyze the fundamental components inher-

ent in an evaluation. For the sake of convenience, henceforth, within
this article, each case study shall be assigned a unique case ID for
differentiation purposes.

In the first case, which we will call Case One, an organization is in
the process of acquiring a computer. To make an informed decision, the
organization decides to evaluate various computer options by executing
its applications on each one. During this evaluation, the organization
will collect extensive data on performance and energy efficiency.

Based on this data, the organization will then formulate an explicit
or implicit function to express its preferences for different computers.
This function will serve as a way to quantify and articulate the organi-
zation’s priorities and requirements in terms of performance and energy
efficiency. By doing so, the organization can make a well-informed
decision and choose the computer that best aligns with its needs and
preferences.

In any evaluation process, we refer to an individual or a system
under scrutiny as a subject. In the context of Case One, the computers
that are being considered for evaluation are the subjects.

Another important component of an evaluation is the presence of
stakeholders. A stakeholder is defined as an entity that holds a stake
of responsibility or interest in the subject matter. In this case, the
stakeholders involved in the procurement of computers include the
organization seeking to acquire the computers, the specific users, the
16
designers responsible for creating the computer specifications, and the
producers who manufacture the computers.

Each subject, in this case, the computer, has its own set of stakehold-
ers who will render judgments based on the data collected from mea-
surements. Metrology provides the foundational principles, methodol-
ogy, and instruments for measurements within this process. It ensures
that the measurements are accurate, reliable, and consistent, enabling
the stakeholders to make informed decisions based on the gathered
data.

In Case One, the prospect of measuring the mere attributes of a
subject, such as its weight and power consumption, possesses a certain
degree of utility. Nevertheless, such measurements fall considerably
short of meeting stakeholders’ evaluation requirements. The stake-
holder seeks comprehension of the subject’s effectiveness and efficiency
when applying a specific condition or intervention to the subject. In
this case, it is to execute the stakeholder’s primary or forthcoming
applications, which we informally label as an evaluation condition (EC).
The EC represents the third critical component of an evaluation, which
shall be formally expounded upon subsequently.

Within this framework, an important question arises: How can
organizations establish a framework to determine the preferences of
distinct subjects when they exhibit varying levels of performance across
different applications?

In the current state-of-the-practice, a more intuitive approach en-
tails executing applications on computers sequentially. Subsequently,
we proceed to measure the computers’ performance when operating
distinct applications individually. Following each execution, data is col-
lected encompassing factors such as the duration of each application’s
execution and its corresponding energy consumption.

It is imperative to establish a function that can map the compiled
measurement data to one or several composite evaluation metrics
capable of capturing the stakeholders’ concerns and interests. In the
rest of this article, we refer to this function as a value function. Once the
evaluation outcomes have been obtained, it becomes feasible to define
a reference subject and its reference evaluation outcome against which the
evaluation results of alternative subjects can be compared.

3.2. The essence of evaluation

From the aforementioned analysis in Section 3.1, it is evident that
the challenge in evaluation arises from the inherent fact that evaluating
a subject in isolation falls short of meeting the expectations of stake-
holders. Instead, it is crucial to apply a well-defined EC that reflects
the stakeholders’ concerns or interests. By doing so, evaluation can be
viewed as an intentional experiment that deliberately imposes a specific
EC on the subject itself.

Based on the definitions provided in Section 2.1, when a subject is
equipped with an EC, it forms an evaluation system (ES) or an Evaluation
Model (EM). An evaluation model (EM) is a simplified version of an ES
that would be too complicated to analyze in full detail [10].

Based on the analysis presented earlier, it becomes clear that the
ore essence of evaluation lies in conducting deliberate experiments where
quivalent ECs (EECs) are applied to a diverse range of subjects, resulting
n the establishment of equivalent EMs. Subsequently, we can effectively
valuate the subjects by measuring the equivalent EMs.

Therefore, we formally define evaluation as an experiment that ap-
lies EECs to diverse subjects and establishes equivalent EMs, enabling the
easurement of these equivalent EMs, the inference of the subjects’ impact,
nd the subsequent judgment of them.

.3. Five evaluation axioms

In this section, we present five evaluation axioms that are de-
ived from the core essence of evaluation, serving as the foundational
rinciples of evaluation theory. They focus on key aspects of evalua-
ion outcomes, including true quantity (The first and second axioms),
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traceability of discrepancy (the third axiom), comparability (the fourth
axiom), and estimate (the fifth axiom).

The First Axiom of Evaluation: The Axiom of the Essence of
omposite Evaluation Metrics. This axiom declares that the essence
f the composite evaluation metric either carries inherent physical
ignificance or is solely dictated by the value function.

In nature, a composite evaluation metric refers to a combined quantity
that is constructed using base quantities and other quantities that possess
physical significance. If a composite evaluation metric does not carry
nherent physical significance, the value function serves as a mecha-
ism that maps base quantities and other quantities carrying physical
eaning into a composite evaluation metric. The widespread accep-

ance of the composite evaluation metric relies on it being embraced
y the community of evaluators.
The Second Axiom of Evaluation: The Axiom of True Evalua-

ion Outcomes. This axiom declares that when a well-defined EC is
pplied to a well-defined subject, its evaluation outcomes, including its
uantities and composite evaluation metrics, possess true values.

‘‘The magnitude of a property of an individual phenomenon, body,
r substance is associated with a true quantity’’ [14,15]. Additionally,
ach testing procedure yields a definitive outcome relative to its respec-
ive test oracle. Building upon this inference, it is reasonable to presume
hat when a well-defined subject is equipped with a well-defined EC,
he quantities within the corresponding well-defined EM possess true
alues.

For a well-defined EM, each composite evaluation metric is derived
rom measurement and/or testing outcomes, utilizing a definite value
unction that translates the base quantities and other quantities into a
omposite evaluation metric. Consequently, the evaluation results are
xclusively determined by the measurements and/or testing procedures
mployed. It is reasonable to assume that for a well-defined EM, its
omposite evaluation metric possesses a true value.

The first and second axioms are concerned with the true evaluation
utcome. The first axiom provides the basis for defining value func-
ions. With a well-defined value function, a well-defined EM possesses
rue quantities of evaluation outcomes.
The Third Axiom of Evaluation: The Axiom of Evaluation Trace-

bility. This axiom declares that for the same subject, the divergence
n the evaluation outcomes can be attributed to disparities in ECs,
hereby establishing evaluation traceability. This axiom focuses on the
raceability of discrepancies in the evaluation outcomes.

For the same subject, this axiom is deemed rational as disparities
n evaluation outcomes can be rationalized as the consequence of
ariations in the ECs. In the absence of this axiom, the differences
bserved in evaluation outcomes would be inexplicable, contradicting
ur scientific and engineering intuitions.
The Fourth Axiom of Evaluation: The Axiom of Comparable

valuation Outcomes. This axiom declares when each well-defined
ubject is equipped with EECs, their evaluation outcomes are compara-
le. It goes without saying this axiom is related to the comparability of
he evaluation outcomes.

Only when each EC is well-defined, and two ECs achieve complete
quivalence at all levels can we refer to them as EECs. When each well-
efined subject is equipped with EECs, its evaluation outcomes possess
rue values. Additionally, when well-defined subjects are subjected
o EECs, their evaluation outcomes accurately reflect the impacts of
ifferent subjects under the same conditions, making them comparable.
The Fifth Axiom of Evaluation: The Axiom of Consistent Evalu-

tion Outcomes. This axiom asserts that when a well-defined subject
s evaluated using different samples from a population of ECs, their
valuation outcomes consistently converge towards the true evaluation
utcomes of the population of ECs. This axiom provides an estimate of
he true evaluation outcomes under the population of ECs.

According to the Second Axiom of Evaluation, when a well-defined
ubject is equipped with a well-defined population of ECs, the resultant

M possesses the true evaluation outcomes. When a sample is taken

17
from a population of ECs, it serves as an approximation of the entire
population. As a result, different samples yield consistent evaluation
outcomes that gradually converge towards the evaluation outcomes of
the entire population of ECs. This convergence is influenced by the
sample’s ability, which is determined by the chosen sampling policy, to
represent the underlying characteristics of the population accurately.

3.4. Basic evaluation methodology

This section outlines the fundamental methodology for evaluating a
single subject. Drawing upon the discussion of the essence of evalua-
tion in Section 3.2, we propose a rigorous evaluation methodology to
determine the impacts of the subjects as follows.

We create equivalent ECs (EECs) and apply EECs to diverse subjects
to constitute equivalent EMs. An EM element refers to a specific point
within the EM state space, and each EM element may have many
independent variables. To eliminate confounding, we propose a new
concept named a reference evaluation model (REM). An REM mandates
that each element of an EM change only one independent variable
at a time while keeping the other independent variables as controls.
Subsequently, we utilize the measurement to gauge the functioning of
the REM. Finally, from the amassed measurement data of the evaluation
systems, we then deduce the cause–effect impacts of the different
subjects.

In this methodology, we emphasize five essential steps to ensure a
comprehensive evaluation, as shown in Fig. 4. These steps are crucial
in accurately determining the impacts of the subjects.

The first step is to establish a rigorous definition of an EC. According
to The Second and Three Axioms of Evaluation, when a well-defined
subject is equipped with a well-defined EC, its evaluation outcomes
possess true values; when the same subject is equipped with different
ECs, any divergence in the evaluation outcomes can be attributed to
disparities in these ECs. Therefore, the key focus in this phase is to
clearly present a well-defined EC.

The second step involves the establishment of EECs. As outlined
in the Fourth Axiom of Evaluation, when EECs are applied to diverse
subjects, their evaluation outcomes become comparable. Since the
primary objective of evaluation is to compare different subjects, the
establishment of EECs becomes an essential step in the process.

The third step involves the elimination of confounding variables.
Given that each element of an EM consists of multiple independent
variables, it becomes essential to establish an REM. An REM serves
as a controlled evaluation environment where only one independent
variable is altered at a time while the other independent variables
remain constant as the control. This approach helps in isolating the
effects of individual variables and ensures a more accurate evaluation
of the subject’s performance.

The fourth step is to define the value functions that map the base
quantities and other quantities to composite evaluation metrics that
represent the stakeholders’ primary concerns or interests. According to
the first axiom of evaluation, the essence of the composite evaluation
metric either carries inherent physical significance or is solely dictated
by the value function. So, when defining a value function, it is crucial
to make it become the consensus of the community.

Finally, we utilize the measurement to gauge the functioning of the
REM. From the amassed measurement data of the REM, we then deduce
the cause–effect impacts of the different subjects.

3.5. Basic evaluation theory

This subsection presents the basic evaluation theory, including the
hierarchical definition of an EC, universal concepts across different
disciplines, the establishment of EECs, LLECs, evaluation standards, and

the establishment of an REM.
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Fig. 4. Basic evaluation methodology.

3.5.1. The hierarchical definition of an EC
In the preceding subsection, we deduced that there exists solely

one feasible approach to evaluation: applying the EECs to diverse
subjects and establishing an REM. Regrettably, even within a rudi-
mentary evaluation setting such as Case One, an EC has multifarious
components.

To address the above challenges, in this subsection, we propose a
hierarchy definition of an EC. We start defining an EC from the prob-
lems or task spaces that these stakeholders face and need to address
with the following two reasons. First, the concerns and interests of the
relevant stakeholders are at the core of the evaluation. These concerns
and interests are best reflected through the problems or tasks they
must face and resolve, which provide a reliable means to define an EC.
18
Second, utilizing the same problem or task can ensure the comparability
of evaluation outcomes.

Taking Case One as an example, we observe that in Case One,
an EC encompasses numerous constituents. Notably, we identify four
primary components of an EC from the top to the bottom. The first top
component is a set of equivalent definitions of problems or tasks. While
the problem or task itself serves as the foundation for the evaluation
process, it cannot solely serve as the evaluation itself because the
problem or task is often abstract and requires further instantiation to
determine its specific parameters. The second component is the set of
a collective of equivalent problem or task instances, each of which is
instantiated from the element of the first component. Different from the
first component, an equivalent problem or task instance is specific and
could serve as the evaluation directly.

After a problem or task instance is proposed, it is necessary to
figure out a solution. The third component consists of the algorithms
or algorithm-like mechanisms, each of which provides the solution to a
specific problem or task instance. An algorithm-like mechanism refers
to a process that operates in a manner similar to an algorithm. This
term is proposed because, in numerous disciplines, such as social and
biological sciences, it is not currently feasible to formulate mathemat-
ical algorithms explicitly. These domains often involve complex and
nuanced phenomena that defy precise mathematical modeling.

The fourth component encompasses the implementation of an al-
gorithm or instantiation of an algorithm-like mechanism. Its imple-
mentation or instantiation involves understanding the algorithm or the
algorithm-like mechanism and implementing it in a specific system.
This process ensures that the algorithm or the algorithm-like mecha-
nism can effectively and efficiently solve the intended problem instance
or perform the desired task instance within the given context.

In addition to the four components of an EC that we discussed
above, other components can be involved in the other complex eval-
uation scenarios, which we will discuss later.

3.5.2. Universal concepts across different disciplines
In Section 3.1, we conducted an examination of the fundamental

constituents of an evaluation, which encompass ‘‘subjects’’ and ’’eval-
uation conditions’’. Additionally, we put forth definitions for various
fundamental concepts, namely ‘‘subject’’, ’’stakeholders’’, and ’’value
functions’’. Through this analysis, we unveiled that the core nature
of evaluation is to intentionally apply EECs to diverse subjects and
establish an REM to infer the impact of the subjects for judgments.

However, given the multiplicity of evaluation scenarios, two critical
questions must be addressed: (1) Do these concepts suffice for diverse
scenarios? (2) Can we formulate a comprehensive and universally appli-
cable conceptual framework? In this subsection, we delve deeper into
various evaluation cases across diverse disciplines, with the primary
aim of enhancing our comprehension of the evaluation process.

Evaluating an AI algorithm
In Case Two, the objective is to evaluate an AI algorithm, specif-

ically focusing on an Image Classification task as a case study. Real-
world images are gathered and annotated with accurate labels, such as
a cat or dog. A portion of these images is randomly selected to con-
struct the training, validation, and test datasets based on a designated
percentage. To assess the image classification algorithm (the subject in
this case), it must be implemented on a computer system utilizing a
specific programming framework, such as PyTorch or TensorFlow.

During the evaluation process, the test data is provided to the
algorithm, which generates an output. This output is then compared
to the ground truth labels. In Case Two, the ground truth can be
considered as a test oracle. Additionally, measurements are collected
for each run of the evaluation process.

The fundamental evaluation process in Case Two bears a resem-
blance to that of the baseline case. However, there exist three notable
distinctions. Firstly, an EC in Case Two differs. The presence of a
dataset labeled with ground truth constitutes a vital aspect of an EC.
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A dataset labeled with the ground truth represents a specific instance
of a problem or task. Regrettably, in Case Two, it is impractical to
define a problem or task mathematically. Hence, diverse problem or
task instances are devised in an ad-hoc manner, for example, selecting
images randomly to form training, validation, and test datasets based
on a predetermined percentage. This approach may introduce biases.

Secondly, both the subject and the algorithms must be implemented
n a computer, prompting the introduction of another concept called

‘a support system’’ to elucidate this facet, which may assume diverse
anifestations in alternative evaluation scenarios. The support system

epresents an additional essential constituent of an EC. Therefore, in
ase Two, we introduce two novel concepts: ‘‘the support system’’ and

‘the subject instantiation’’. Fig. 5 shows a hierarchy definition of an
C.

Thirdly, in Case Two, upon feeding the algorithm with the test data,
t generates an output that is then compared with the ground truth,
lso known as the test oracle. Apart from measurements, there exist
ther forms of activities in the evaluation process, namely testing, as
xpounded upon in Section 2.3. Hence, in this instance, we modify the
ssence and definition of evaluation, as delineated in Section 3.2, as
ollows. The essence of an evaluation lies in ‘‘conducting deliberate
xperiments where EECs are applied to a diverse range of subjects,
esulting in the establishment of equivalent EMs. Subsequently, we
an effectively evaluate the subjects by measuring and/or testing the
quivalent EMs’’. We formally define evaluation as ‘‘an experiment
hat applies EECs to diverse subjects and establishes equivalent EMs,
nabling the measurement and/or testing of these equivalent EMs,
he inference of the subjects’ impact, and the subsequent judgment of
hem’’.
Drug and policy evaluations
The Third Case (Case Three) and the Fourth Case (Case Four) exhibit

imilarities, as they involve evaluating a drug and evaluating a policy
imed at addressing drug addiction within a community. In these cases,
he subject refers to a specific drug or a policy aimed at addressing
rug addiction intervention, while the support system encompasses the
articipants targeted by these interventions.

When comparing Cases Three and Four with Cases One and Two,
e have made three observations. Firstly, the specific problem or task

nstances could be defined in a literal manner. Case Three focuses on
he cure of a specific illness, whereas Case Four aims to address drug
ddiction and improve the overall well-being of individuals within a
esignated community. Regrettably, we currently lack a mathematical
nderstanding of these problems or tasks, making it challenging to
rovide a mathematical definition of the abstract problem or task.
evertheless, even if the problems can only be defined in a literal sense,
aving detailed and comprehensive definitions of problem or task
nstances, as well as a profound comprehension of the interrelationships
etween different problem or task instances (from biological or social
erspectives), proves advantageous for the purposes of knowledge reuse
nd sharing. Furthermore, it is anticipated that in the future, we will
trive to gain a deeper understanding of the connections between
arious diseases or social issues, potentially through mathematical
eans.

The second observation revolves around the distinctions of the
upport systems found in Cases Two, Three, and Four, specifically
eferring to the substantial variability in conditions within the target
articipants. Evaluations commonly utilize a methodology known as
andomized controlled trials (RCT), which serves to eliminate con-
ounding.

In practical application, Randomized Controlled Trials (RCTs) are
idely recognized as the gold standard for conducting evaluations.

n an RCT, subjects and support systems in the treatment group and
ontrol group are randomly assigned. This random assignment helps
o minimize confounding variables that may arise from differences in

upport systems. Additionally, the allocation of participants to either
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the treatment or control group is kept concealed from the evaluator
and relevant stakeholders.

Lastly, when it comes to Cases Three and Four, the third component
of an EC often lacks a mathematical-form algorithm, although it relies
on a scientifically valid mechanism that includes biological, social, or
psychological interactions. That is the right reason for us proposing
the term ‘‘algorithm-like mechanism’’, which we have explained before.
Moreover, Case Four presents a significantly more intricate situation
compared to Case Three, as the instantiation of the algorithm-like
mechanism encounters challenges in maintaining consistent quality due
to diverse factors, such as different attitudes towards interventions
and varying levels of communication skills that hold considerable
importance.

In summarizing, across various evaluation scenarios in different
disciplines, such as Cases One, Two, Three, and Four, it is possible to
develop a comprehensive conceptual framework that can be universally
applied.

3.5.3. The establishment of EECs
To lay the groundwork for the formalization of an EC, it is essential

to establish a clear understanding of some crucial notations. The nota-
tions 𝐸′, 𝑆, and 𝑈 represent three crucial components. Specifically, 𝐸′

represents the problem or task space. 𝑆 represents the support system
space. Finally, 𝑈 represents the subject space. 𝑒′, 𝑠, 𝑢 is an element of

′, 𝑆, and 𝑈 respectively. We note 𝑒′ ∈ 𝐸′, 𝑠 ∈ 𝑆, 𝑢 ∈ 𝑈 .
In addition to the aforementioned notations, we also define several

other fundamental notations. For each problem or task, 𝑒′𝑖 ∈ 𝐸′, there
is a set of problem or task instances noted as 𝐸𝑖. For all problems or
tasks in 𝐸′, there is a collection of a set of problem or task instances,
which we noted as 𝑆𝐸 = (𝑒′𝑖 , 𝐸𝑖). We use the division notation 𝑆𝐸∕𝐸′

to denote 𝐸. 𝐸 can be defined as the union of all 𝐸𝑖.
We introduce the notation 𝑆𝐴′ to represent the algorithm-like

echanism space. This space, denoted as 𝑆𝐴′, consists of a set of
lgorithm-like mechanisms that are associated with each problem or
ask instance. Specifically, for a given problem or task 𝑒′𝑖 in the problem
r task space 𝐸′, and for each instance 𝑒𝑖𝑗 in the corresponding instance
pace 𝐸𝑖, we define a set of algorithm-like mechanisms as 𝑆𝐴′ =
𝑒′𝑖 , 𝑒𝑖𝑗 , 𝐴

′
𝑖𝑗 ).

To represent the algorithm-like mechanism space 𝑆𝐴′ in relation to
he problem or task space 𝐸′ and the problem or task instance space
, we use the division notation 𝑆𝐴′∕𝐸′∕𝐸 to denote 𝐴′. 𝐴′ is a union
f all 𝐴′

𝑖𝑗 .
We introduce the notation 𝑆𝐴 to represent the instantiations of the

algorithm-like mechanism space. This space, denoted as 𝑆𝐴, consists of
a set of instantiations of algorithm-like mechanisms that are associated
with each problem or task instance, algorithm-like mechanism, and
support system. Specifically, for a given problem or task 𝑒′𝑖 in the prob-
lem or task space 𝐸′, for each instance 𝑒𝑖𝑗 in the corresponding instance
space 𝐸𝑖, for each algorithm-like mechanism 𝑎′𝑖𝑗𝑘 in the algorithm-like
mechanism space 𝐴′

𝑖𝑗 , and for each support system 𝑠𝑙 in the support
ystem space 𝑆, we define a set of instantiations of algorithm-like
echanisms as 𝑆𝐴 = (𝑒′𝑖 , 𝑒𝑖𝑗 , 𝑎

′
𝑖𝑗𝑘, 𝑠𝑙 , 𝐴𝑖𝑗𝑘𝑙).

To represent the instantiations of the algorithm-like mechanism
pace 𝑆𝐴 in relation to the problem or task space 𝐸′, the problem or

task instance space 𝐸, the algorithm-like mechanism space 𝐴′, and the
support system space 𝑆, we use the division notation 𝑆𝐴∕𝐸′∕𝐸∕𝐴′∕𝑆
to denote 𝐴. 𝐴 is a union of all 𝐴𝑖𝑗𝑘𝑙.

By introducing these notations, we establish a comprehensive frame-
work that allows us to delineate the various components of an EC and
their respective roles. This formalization enhances our understanding of
the key components and their relationships within the EC framework.

We can formalize an EC as 𝐶 = 𝐸′ × 𝐸 × 𝐴′ × 𝐴 × 𝑆.
In the realm of EC spaces, the concept of EECs plays a significant

role. Two EC spaces, denoted as 𝐶1 and 𝐶2, are considered to be EECs
if and only if there exists a bijection, denoted as 𝛽, between the two
spaces: 𝛽 ∶ 𝐶1 ↦ 𝐶2; 𝛽−1 ∶ 𝐶2 ↦ 𝐶1. This equivalence is denoted as

𝐶1 ∼ 𝐶2.
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3.5.4. LEECs and evaluation standard
In certain cases, establishing EECs can be a challenging task. It

proves to be an arduous or unattainable task to ensure the equivalence
of two ECs at all levels. However, it is crucial to ensure the relative
comparability of evaluation outcomes.

In this section, we propose the concept of the least equivalent eval-
uation conditions (LEECs) as the foundation to attack this challenge. In
the event where we are unable to guarantee or establish the equivalence
of two ECs at all levels in the hierarchy, we propose a minimum
requirement of ensuring uniformity in the most essential components
of the two ECs, which we refer to as the least equivalent evaluation
conditions (LEECs).

We propose the establishment of LEECs at the levels of the first
and second top components of ECs. Firstly, the first and second top
components of an EC serve as the foundation upon which the other
two lower-level components are derived. Therefore, they provide the
most primitive components when setting ECs. Secondly, to enable
effective comparison of evaluation outcomes, it is crucial to establish
equivalence between the first high-level components of two ECs. If the
first high-level components are not equivalent, the evaluation outcomes
cannot be compared reliably. Thirdly, relying solely on the first com-
ponent may not provide enough specificity and certainty. To address
this, in addition to the equivalence of the first high-level component,
it is necessary for two ECs to possess two sets of definite and solvable
problem or task instances that are equivalent.

In certain situations, it is possible to relax the requirement of strict
equivalency between the second high-level component if the scale of
the problem or task instances can be defined. In such cases, we can
consider a scenario where two ECs have the same problem or task but
differ in the scales of problem or task instance as LEECs.

We formally define LEECs as follows:
For two ECs, denoted as 𝐶1 = 𝐸′

1 × 𝐸1 × 𝐴′
1 × 𝐴1 × 𝑆1 and 𝐶2 =

′
2 × 𝐸2 × 𝐴′

2 × 𝐴2 × 𝑆2, if there is equivalence between their first two
′
ubspaces (𝐸 and 𝐸), that is, if and only if there is a bijection, denoted a
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s 𝛽, between 𝐸′
1 × 𝐸1 and 𝐸′

2 × 𝐸2, we can establish that they are
EECs, denoted as 𝐶1 ≈ 𝐶2. In other words, 𝛽 is a function mapping
rom 𝐸′

1×𝐸1 to 𝐸′
2×𝐸2, and its inverse function 𝛽−1, maps from 𝐸′

2×𝐸2
o 𝐸′

1 ×𝐸1, denoted as 𝛽 ∶ 𝐸′
1 ×𝐸1 ↦ 𝐸′

2 ×𝐸2; 𝛽−1 ∶ 𝐸′
2 ×𝐸2 ↦ 𝐸′

1 ×𝐸1.
To effectively define the least equivalent ECs (LEECs), it is crucial

o identify the most governing component of ECs that must exhibit
quivalency. This component, known as the evaluation standard, plays
crucial role in defining the LEECs. By establishing and adhering to

his evaluation standard, we can ensure that the evaluation outcomes
re relatively comparable.

An evaluation standard should embody the characteristics that are
olvable, definite, and equivalent (abbreviated as SDE). First, it should
e amenable to a solvable framework, employing specific mechanisms.
hese mechanisms could encompass mathematical steps executed in a
echanical fashion [20] or incorporate biological, social, and psycho-

ogical mechanisms and interactions. It is noteworthy that algorithms
an be regarded as specific applications of mathematical steps executed
n a mechanical manner. If an evaluation standard does not lend itself
o a solvable framework, it becomes essentially meaningless. Second, it
hould possess definiteness, whereby there exists a unanimous under-
tanding among evaluators without any uncertainty. Third, it should
xhibit equivalence across multiple evaluators, ensuring consistency
mong their assessments.

We propose the establishment of an evaluation standard at the level
f the definition of an individual problem or task instance. There are
everal valid reasons for this approach.

Firstly, the first and second high-level components define LEECs,
nd they are the cornerstone of the evaluation conditions. These two
igh-level components serve as the foundation upon which the other
wo low-level components are derived.

Secondly, the first high-level component, which pertains to the
efinition of a problem or task, is not definite and specific, as it may
ncompass a population of different instances. To be precise, an equiv-

lent, definite, and solvable problem or task instance qualifies as ‘‘an
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Fig. 6. The relationships among evaluation configurations, evaluation conditions (C),
Evaluation models (M), and evaluation standards. Please note that 𝐶 = 𝑀∕𝑈 .

evaluation standard’’. This definition serves as the basis for conducting
evaluations on the subjects. Fig. 6 shows the relationships among the
evaluation standard, evaluation conditions, evaluation configuration,
and evaluation standard.

We discuss the subtle differences between LEECs and evaluation
standards. LEECs are defined on the first and the second high-level com-
ponents, while the evaluation standard is only defined at the second
high-level component, and they are closely related but with distinct
implications. Their shared objective is to guarantee the comparability
of evaluation outcomes. The aim of LEECs is to ensure the least equiva-
lence between two ECs, while the evaluation standard is to provide the
most governing component of an EC that ensures the comparability of
the evaluation outcomes. Second, LEECs imply a state space, while an
evaluation standard is an evaluation criterion.

3.5.5. The establishment of an REM
Based on the notations defined in Section 3.5.3, we formalize an EM

as 𝑀 = 𝐶 × 𝑈 = 𝐸′ × 𝐸 × 𝐴′ × 𝐴 × 𝑆 × 𝑈 .
An element of an EM, denoted as 𝑚 ∈ 𝑀 , can be expressed as

𝑚 = (𝑐, 𝑢) = (𝑒′, 𝑒, 𝑎′, 𝑎, 𝑠, 𝑢). Here, 𝑒′ ∈ 𝐸′ represents a given problem or
task, 𝑒 ∈ 𝐸 represents a specific instance of the problem or task, 𝑎′ ∈ 𝐴′

represents a particular algorithm-like mechanism, 𝑎 ∈ 𝐴 represents
an instantiation of the algorithm-like mechanism, 𝑠 ∈ 𝑆 represents a
support system, and 𝑢 ∈ 𝑈 represents a subject instantiation.

In addition, we will define how to establish an REM. We assume
that an EM element, denoted as 𝑚 ∈ 𝑀 , is made of 𝑛′ independent
variables, rewritten as 𝑚 = (𝑘1,… , 𝑘𝑛′ ) = (𝑒′, 𝑒, 𝑎′, 𝑎, 𝑠, 𝑢). We note
𝑀 = 𝐾1 × ⋯ × 𝐾𝑛 = 𝐶 × 𝑈 = 𝐸′ × 𝐸 × 𝐴′ × 𝐴 × 𝑆 × 𝑈 . Please bear
in mind that the number of variables 𝑛 is greater than 𝑛′.

For each EM element, represented as 𝑚 = (𝑘1,… , 𝑘𝑛′ ), we follow
a specific methodology in which only one independent variable at a
time, from the set 𝑘1, 𝑘2,… , 𝑘𝑛′ , is allowed to vary while keeping the re-
maining variables constant. This controlled experimentation approach
is referred to as an REM, as defined in Section 3.4.

We define the evaluation cost of an EM or ES as the costs of
constructing, traversing, and assessing its corresponding REM, where
‖𝑀‖ stands for the capacity of an EM or ES and 𝜇 stands for a constant
coefficient:

cost(𝑀) = 𝜇‖𝑀‖ = 𝜇‖𝐾1‖ × ‖𝐾2‖ ×⋯ × ‖𝐾𝑛‖
21
Fig. 7. Universal evaluation methodology in complex scenarios.

3.6. Universal evaluation methodology in complex scenarios

From the revealed essence of the evaluation, it seems that perform-
ing an evaluation is straightforward. Unfortunately, in reality, there are
evaluation scenarios with different levels of complexity. Fig. 7 presents
a universal evaluation methodology in complex scenarios.

We refer to the entire population of real-world systems that are used
to evaluate specific subjects as the real-world ES. Assuming no safety
concerns are present, the real-world ES serves as a prime candidate for
the assessment of the subjects of interest. Unfortunately, there are five
significant obstacles to consider when assessing diverse subjects within
a real-world ES.

Firstly, the presence of numerous confounding in the real-world ES
poses a considerable challenge. It is often difficult, if not impossible,
to completely eliminate these confounding. They can complicate the
evaluation process by introducing variables that make it challenging to
isolate the effects of different independent variables.

Secondly, manipulating the real-world ES is a formidable task, mak-
ing it virtually impossible to establish controlled environments, known
as REM, for evaluating subjects. Additionally, the interconnected nature
of subjects, support systems, and other components of ECs further
complicates the establishment of an REM.

Thirdly, the vast state spaces of ECs and the large populations of
subjects result in high evaluation costs. The sheer scale of these sys-
tems makes it expensive and time-consuming to thoroughly performing
assessment and analysis.
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Fourthly, within the real-world ES, multiple irrelevant concurrent
roblems or tasks may be taking place simultaneously, which may
ot directly align with the subject being assessed. This further adds
omplexity to the evaluation process and introduces confounding.

Lastly, it is important to acknowledge that the real-world ES, re-
ardless of the nature of its problems or tasks, tends to exhibit a
ias towards certain clusters. This bias can manifest through problem
r task instances, algorithm-like mechanisms, and their instantiations.
owever, this bias towards specific groups can limit our ability to fully
xplore and understand the entire range of possibilities available to us.

When assessing a specific quantity of interest in an evaluation
xperiment, it is crucial to closely examine the relationship between
he quantity of the EM and the corresponding quantity of the real-world
S. The ratio between these two quantities serves as a key indicator of
ccuracy. Ideally, a ratio closer to 100% signifies higher accuracy in
he EM’s modelling of the real-world ES.

In our research, we propose the concept of a ‘‘perfect EM’’ that
ims to replicate the real-world ES with the highest level of fidelity,
chieving a remarkable ratio of 100%. In theory, a perfect EM would
ossess several characteristics that enhance the evaluation of subjects
ithin the EC framework.

Firstly, it would eliminate irrelevant problems or tasks that may be
sed to establish ECs, ensuring that the evaluation focuses on specific
nd directly applicable contexts. This targeted approach would enhance
he relevance and applicability of the evaluation process.

Secondly, a perfect EM would facilitate easy manipulation, allowing
or the free and artificial configuration of different evaluation settings.
his flexibility would enable researchers to explore various scenarios
nd assess subjects under a range of conditions, enhancing the depth
nd breadth of the evaluation process.

Thirdly, a perfect EM would support the establishment of an REM,
ffectively eliminating confounding. By isolating and controlling vari-
bles of interest, researchers could gain more accurate insights into the
mpact of specific factors on the subjects being evaluated.

Furthermore, a perfect EM would have the capability to thoroughly
xplore and understand the entire spectrum of possibilities within
n EC. This would include problem or task instances, algorithms-like
echanisms, and their instantiations. By encompassing this comprehen-

ive range, researchers could gain deeper insights into the behavior and
erformance of subjects within the EC framework.

However, it is important to note that achieving a truly ‘‘perfect EM’’
ay be challenging, if not impossible. The real-world ES is complex and
ynamic, and replicating it with absolute fidelity is a monumental task.
hile we can strive to create more accurate and representative evalu-

tion environments, it is crucial to recognize the inherent limitations
nd constraints that exist in the real world.

Nevertheless, by considering the concept of a perfect EM and its
ccompanying characteristics, we can strive to improve the evaluation
f subjects within the EC framework and enhance our understanding of
heir performance within real-world contexts.

The characteristics of the perfect EM, such as encompassing large
opulations of problem or task instances, algorithm-like mechanisms,
nstantiations, and support systems, as well as a vast number of inde-
endent variables, can lead to significant evaluation costs. However, to
ddress this challenge, it is important to propose a pragmatic EM that
implifies the perfect EM in two key ways.

Firstly, to reduce the evaluation costs associated with a large num-
er of independent variables, it is crucial to identify and focus on the
ariables that have a significant impact on the evaluation outcomes. By
dentifying and prioritizing these variables, researchers can streamline
he evaluation process and allocate resources more efficiently. Negligi-
le variables that have a minimal effect can be excluded or controlled
or, reducing complexity and costs. It is worth emphasizing that the
implification involved in creating a pragmatic EM will inevitably lead
o a decrease in the accuracy of the evaluation model.
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Secondly, sampling techniques can be employed to manage the
extensive populations of problem or task instances, such as algorithm-
like mechanisms, their instantiations, and support systems. Rather than
evaluating every single possibility, researchers can select representative
samples that capture the diversity and range of the population. This
approach allows for a more manageable evaluation process while still
maintaining a good level of coverage and representation.

In nature, a pragmatic EM is a subject equipped with a simplified and
sampled EC. It can be considered as a sample of a perfect EM without
taking into account any potential decrease in its accuracy. In order to
measure the extent to which the statistics of a pragmatic EM can infer
the parameters of a perfect EM, we employ the criterion of confidence
interval and confidence level. The confidence level provides us with
the probability that the estimated parameters of a perfect EM fall
within a specific range of values. Meanwhile, the confidence intervals
establish a range of values within which we can reasonably expect the
true parameters of a perfect EM to fall. By utilizing these statistical
measures, we can assess the degree of alignment between the statistics
of a pragmatic EM and the parameters of a perfect EM. This allows us
to gauge the effectiveness and validity of the pragmatic EMs.

By implementing these simplifications in a pragmatic EM,
researchers can strike a balance between comprehensiveness and fea-
sibility. The pragmatic EM allows for a more practical and efficient
evaluation of subjects within the EC framework, mitigating the chal-
lenges posed by evaluation costs and the complexity of the perfect
EM.

In representing different ECs, we use specific symbols. The symbol
𝐶𝑟 denotes the EC in a real-world ES (a real-world EC), which can be
calculated as 𝐸′

𝑟 × 𝐸𝑟 × 𝐴′
𝑟 × 𝐴𝑟 × 𝑆𝑟. Similarly, the EC in a perfect EM

(a perfect EC) is denoted by 𝐶𝑝, calculated as 𝐸′
𝑝 × 𝐸𝑝 × 𝐴′

𝑝 × 𝐴𝑝 × 𝑆𝑝.
Lastly, the EC in a pragmatic EM (a pragmatic EC) is represented by
𝐶𝑔 , calculated as 𝐸′

𝑔 × 𝐸𝑔 × 𝐴′
𝑔 × 𝐴𝑔 × 𝑆𝑔 .

Likewise, we use symbols to denote a real-world ES (𝑀𝑟), a perfect
EM (𝑀𝑝), and a pragmatic EM (𝑀𝑔). These are represented as:

𝑀𝑟 = 𝐸′
𝑟 × 𝐸𝑟 × 𝐴′

𝑟 × 𝐴𝑟 × 𝑆𝑟 × 𝑈𝑟

𝑀𝑝 = 𝐸′
𝑝 × 𝐸𝑝 × 𝐴′

𝑝 × 𝐴𝑝 × 𝑆𝑝 × 𝑈𝑝

𝑀𝑔 = 𝐸′
𝑔 × 𝐸𝑔 × 𝐴′

𝑔 × 𝐴𝑔 × 𝑆𝑔 × 𝑈𝑔

These symbols help us distinguish and calculate the various compo-
nents of ECs and EMs in different contexts.

3.7. Fundamental issues in evaluatology

This subsection presents three fundamental issues in Evaluatology.

3.7.1. Ensure transitivity of EMs
The key to the effectiveness and efficiency of evaluations in different

scenarios is to establish a series of EMs that ensure the transitivity of
the primary characteristics.

In Section 3.6, we have effectively examined and described a real-
world ES, along with its corresponding EM, which we call a perfect EM,
and their interconnections.

The real-world ES system presents three notable obstacles. Firstly,
the presence of numerous confounding creates a challenge as they
cannot be completely eliminated. Secondly, the existence of multiple
irrelevant problems or tasks adds another layer of complexity. Lastly,
regardless of the nature of the problems or tasks involved, there is
a tendency for the system to exhibit bias towards certain clusters
exhibited by problem or task instances, algorithmic mechanisms, and
their instantiations.

To overcome these obstacles, a perfect EM, which possesses several
key characteristics, is proposed. Firstly, the model eliminates any irrele-
vant problems or tasks that may be used to derive evaluation standards
for assessing different subjects. Secondly, the model enables the free

setting of an REM. Thirdly, the model allows for a comprehensive
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Fig. 8. A perfect EM resembles a real-world ES.

exploration and understanding of the entire spectrum of possibilities in
terms of problem or task instances, algorithmic mechanisms, and their
instantiations.

Compared to a real-world ES 𝑀𝑟 = 𝐸′
𝑟 × 𝐸𝑟 × 𝐴′

𝑟 × 𝐴𝑟 × 𝑆𝑟 × 𝑈𝑟,
a perfect EM eliminates its irrelevant problems or tasks, represented
by 𝑀𝑝 = 𝐸′

𝑝 × 𝐸𝑝 × 𝐴′
𝑝 × 𝐴𝑝 × 𝑆𝑝 × 𝑈𝑝. Transforming a real-world

ES into a perfect EM should ensure the transitivity of the following
characteristics (see Fig. 8).

𝐸′
𝑝 ⊂ 𝐸′

𝑟

𝑆𝐸𝑝∕𝐸′
𝑝 ⊃ 𝑆𝐸𝑟∕𝐸′

𝑝

𝑆𝐴′
𝑝∕𝐸

′
𝑝∕𝐸𝑝 ⊃ 𝑆𝐴′

𝑟∕𝐸
′
𝑝∕𝐸𝑝

𝑆𝐴𝑝∕𝐸′
𝑝∕𝐸𝑝∕𝐴′

𝑝∕𝑆𝑝 ⊃ 𝑆𝐴𝑟∕𝐸′
𝑝∕𝐸𝑝∕𝐴′

𝑝∕𝑆𝑝.

The perfect EM encompasses large populations of problem or task
instances, algorithm-like mechanisms, their instantiations, and support
systems. Also, it entails a vast number of independent variables.

To overcome this difficulty, it becomes essential to propose a prag-
matic EM that simplifies the perfect EM in two ways: (1) reducing
the number of independent variables and (2) sampling from the ex-
tensive populations of support systems, problem or task instances,
algorithm-like mechanisms, and their instantiations.

A pragmatic EM adopts a sampling approach on the perfect EM,
resulting in a smaller space to work with. To formalize this process,
we introduce the notation 𝑠(⋅) to represent the sampling function.
Additionally, the pragmatic EM streamlines the independent variables
within the perfect EM by excluding those that have minimal impact.

For each element 𝑚𝑔 in the sampled space 𝑀𝑔 , which is a subset of
the perfect EM 𝑀𝑝, we denote the corresponding element in 𝑀𝑝 as 𝑚𝑝.
When transforming a perfect EM into a pragmatic EM, it is essential to
maintain the transitivity of the following characteristics:

𝑀𝑔 = 𝑠(𝑀𝑝): The sampled space 𝑀𝑔 is obtained through the
application of the sampling function 𝑠 on the perfect EM 𝑀𝑝.

𝑀𝑔 ⊂ 𝑀𝑝: The sampled space 𝑀𝑔 is a subset of the perfect EM 𝑀𝑝.
𝑚𝑔 = (𝑘1,… , 𝑘𝑛′ ) ∈ 𝑀𝑔 : Each element 𝑚𝑔 in the sampled space 𝑀𝑔

consists of a set of independent variables (𝑘 ,… , 𝑘 ).
1 𝑛′
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𝑚𝑝 ∈ 𝑀𝑝 is the matched element in the perfect EM 𝑀𝑝 correspond-
ing to 𝑚𝑔 . 𝑚𝑝 consists of a set of independent variables (𝑘1,… , 𝑘𝑛′′ ).
𝑛′′ is greater than 𝑛′, ensuring that the corresponding element in the
perfect EM includes at least as many independent variables as that of
the element in the pragmatic EM.

3.7.2. Perform cost-efficient evaluation with controlled discrepancies
By disregarding the accuracy of an EM, conducting evaluations

solely through the establishment of an REM within a perfect EM may
indeed result in maximum confidence. However, this approach also
comes with a significant drawback — the exorbitant cost it entails. The
process of creating an REM within a perfect EM can be prohibitively
expensive, making it impractical for many organizations. Therefore,
it is crucial to strike a balance between ensuring the discrepancy
threshold of the evaluation outcomes and managing the associated costs
when implementing evaluation processes.

When creating a pragmatic EM from a perfect EM, the discrepancy
threshold 𝜖, which is a discrepancy limit that can be tolerated in an
evaluation scenario, holds the potential to exert a profound influence
on the evaluation results and, in certain instances, it would give rise to
grave concerns, particularly in the context of safety-critical tasks where
failure could lead to detrimental side effects such as harm, loss of life, or
significant environmental damage. So, after thoroughly understanding
the stakeholders’ evaluation requirements, a risk function 𝛾(⋅) could
be predefined. When the stakes are high, and there is a greater risk
associated with the evaluation outcomes, it becomes imperative to have
a lower discrepancy threshold between the evaluation outcomes of a
pragmatic EM and a perfect EM. This is because the potential conse-
quences of making a wrong decision or drawing inaccurate conclusions
become more significant.

In Section 3.7.1, we use the notation 𝑠(⋅) to represent the sampling
function. In creating a pragmatic EM from a perfect EM, the accuracy
of EM decreases. We use the notation 𝑚(⋅) to represent this modeling
process. We use the notation 𝑒(⋅) to represent the process of ensuring
different equivalency levels of EC.

We introduce a discrepancy function of the evaluation outcomes
disc(⋅) between 𝑀𝑔 and 𝑀𝑝. When the discrepancy is 0, it indicates that
𝑀𝑔 and 𝑀𝑝 are equivalent.

The discrepancy function of the evaluation outcomes disc(⋅) between
𝑀𝑔 and 𝑀𝑝 is defined as follows. In the formulation, 𝜌(⋅) is a mea-
surement function, and 𝑣(⋅) is a value function. Besides, we define the
evaluation cost as the product of a constant 𝜇 and the space capacity of
𝑀𝑔 . This cost factor allows us to incorporate the resource constraints
and practical considerations associated with the evaluation process.

⎧

⎪

⎨

⎪

⎩

discrepancy threshold 𝜖 = 𝛾(⋅),

disc(Mg,MP) = disc(𝑣(𝜌(𝑒(𝑚(𝑠(𝑀𝑝)))))), 𝑣(𝜌((𝑀𝑝))),

cost(Mg) = 𝜇‖𝑀𝑔‖.

Based on the above formulation, the evaluation issue of balancing
evaluation cost and the discrepancies in the evaluation outcomes can
be framed as an optimization problem. The objective is to minimize the
evaluation cost, represented by cost while ensuring the discrepancies
in the evaluation outcomes, denoted as disc(𝑀𝑔 ,𝑀𝑝), do not exceed a
predefined discrepancy threshold 𝜖 (see Fig. 9).

The optimization problem can be formulated as follows:

argmin cost(Mg) subject to (disc(𝑀𝑔 ,𝑀𝑝) < 𝜖).

3.7.3. Ensure evaluation traceability
According to the third axiom of evaluation, for a well-defined

subject, the divergence in the evaluation outcomes can be attributed
to disparities in ECs, thereby establishing evaluation traceability.

Conceptually, traceability asks for a quantified mapping between
the differences in the input and output of the value function 𝑣(⋅) de-
cided by the evaluation community and the measurement function 𝜌(⋅)
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Fig. 9. Proposing a pragmatic EM based on the evaluation risk function.

Fig. 10. Evaluation traceability.

through the evaluation process, described by the mathematical model
we formulated above, and the model in the following formulation
is a perfect EM. We discover that this concept aligns well with the
mathematical notation of the gradients of a function, which gives the
rate of changes in the output for each input variable. Fig. 10 shows how
to ensure the evaluation traceability. In the context of evaluation, the
gradient of evaluation outcomes can be written as follows, which is a
matrix or tensor:

∇𝑣(𝜌(𝑒(𝑚(𝑠(𝑀𝑝))))) = ∇𝑣(𝜌(𝑒(𝑚(𝑠(𝑀𝑝(𝑘1,… , 𝑘𝑛))))))

= ( 𝜕𝑣
𝜕𝜌

𝜕𝜌
𝜕𝑒

𝜕𝑒
𝜕𝑚

𝜕𝑚
𝜕𝑠

𝜕𝑠
𝜕𝑀𝑝

𝜕𝑀𝑝

𝜕𝑘1
,… , 𝜕𝑣

𝜕𝜌
𝜕𝜌
𝜕𝑒

𝜕𝑒
𝜕𝑚

𝜕𝑚
𝜕𝑠

𝜕𝑠
𝜕𝑀𝑝

𝜕𝑀𝑝

𝜕𝑘𝑛
).

The closed-form mathematical expression is not always available
for various EC components in evaluation. Nevertheless, we can follow
the method of acquiring gradients in numerical methods by creating
perturbations in the ECs for various input variables and observing the
differences in the composite evaluation outcomes, thus approximating
the gradients.

3.7.4. Connect and correlate evaluation standards across diverse disciplines
While the constituents comprising ECs may differ across distinct

evaluation scenarios, a governing fundamental component of ECs
24
emerges as the evaluation standard. The shared qualities of evaluation
standards, as denoted by the SDE characteristics, indicate the potential
for establishing a correlation between evaluation standards across
diverse disciplines.

The evaluation standard serves as a fundamental pillar within any
evaluation model. By establishing connections between evaluation stan-
dards across various disciplines, we have the potential to construct
a comprehensive framework encompassing evaluation issues in all
fields. This holistic framework, known as the grand unified theory of
evaluatology, allows for a thorough exploration of evaluation-related
matters.

Before defining an evaluation standard, it is essential to understand
the nature of the stakeholders’ primary problems or tasks. In the rest
of this article, a problem or task refers explicitly to a computational
problem. Make sure to distinguish between a problem and a problem
instance: A problem is an infinite collection of problem instances, each
of which is a problem with concrete configurations, which we have
elaborated in Section 3.5.1.

Computational complexity theory provides the basis for understand-
ing the nature of primary problems. For example, complexity classes –
that are defined by bounding the time or space used by the algorithm
– can be used to understand the problem’s nature [21]. Computability
theory [22] seeks a more general question about all possible algorithms
that could be used to solve the same problem. That is to say, the
computability theory provides a viable solution to answer whether a
problem is solvable. In understanding the problem instance, the theory
of analysis of algorithms [23] can be used to analyze the amount of
resources needed by a particular algorithm to solve a problem instance.

While the computational complexity and other theories mentioned
above lay the foundation, the formulation of evaluation standards
introduces novel concerns. The first challenge lies in addressing sce-
narios where articulating a mathematical model explicitly becomes an
insurmountable task. Regrettably, this circumstance is not uncommon,
as numerous problems defy expression through a mathematical model
at present.

To ensure the definitiveness and equivalency of the evaluation stan-
dard, it is imperative to establish a rigorous problem space definition
and a problem instance space definition, which provides the quanti-
tative foundation for the comparability and traceability of different
EMs.

The representativeness of the evaluation standard is a crucial aspect
that warrants discussion. Understanding the composition of problems is
crucial in identifying the problem or task that best represents the whole.
For instance, across various scientific and engineering disciplines, prob-
lems often exhibit a hierarchical structure, where a significant problem
can be broken down into several smaller problems commonly referred
to as ‘‘dwarfs’’ [24]. This pattern can be considered one of the foun-
dational structures within problem domains. Gaining profound insights
into the structural aspects of problems proves immensely valuable when
assessing complex and multifaceted subjects.

Fig. 11 shows how to correlate evaluation standards across diverse
disciplines. In an optimal scenario, we can identify evaluation stan-
dards that embody the SDE characteristics across various disciplines.
Ultimately, we can establish connections and correlations between eval-
uation standards from different fields, giving rise to the grand unified
theory of evaluatology. The objective of this theory is to present a hier-
archical framework of evaluation standards. Within this framework, we
can identify a minimal set of fundamental evaluation standard ‘‘dwarfs’’
along with their respective variations. Complex evaluation standards
are formed by combining two or more of these evaluation standard
dwarfs and their variants. This hierarchical structure of evaluation
standards will greatly facilitate the reuse and sharing of knowledge.

4. Benchmarkology: the engineering of evaluation

This section unveils the core essence of a benchmark and introduces
the benchmark-based engineering of evaluation, which we call bench-
markology. Furthermore, we provide guidelines and workflows within
the realm of benchmarkology.
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Fig. 11. Correlating evaluation standards across diverse disciplines.
4.1. The essence of a benchmark

Benchmarks are extensively employed across various disciplines,
albeit lacking a formal definition. Based on the science of evaluation,
we propose a precise delineation of a benchmark as a simplified and
sampled EC, specifically a pragmatic EC, that ensures different levels of
equivalency, ranging from LEECs to EECs.

Within the framework of this definition, a benchmark comprises
three essential constituents. The first constituent is the stakeholder’s
evaluation requirements, which encompass various factors. These include
the risk function, which evaluates the potential risks associated with
the benchmark. Additionally, the discrepancy threshold of the evalua-
tion outcomes, which determines the acceptable level of deviation in
evaluation outcomes, is considered. The evaluation confidence interval
plays a crucial role in predicting the parameter of a perfect EM. Lastly,
the evaluation cost of EM is taken into account, and the resources
required for conducting the evaluation are assessed. By considering
these elements, the benchmark can effectively address the evaluation
requirements of stakeholders.

The second constituent of the benchmark framework is the EC
configuration and mechanisms. This includes several elements crucial for
he benchmark’s effectiveness. Firstly, it involves defining the set of
roblems or tasks that the stakeholders face when addressing them.
dditionally, it encompasses the set of equivalent problem or task

nstances, which helps ensure specificity in the evaluation process. The
enchmark also considers algorithm-like mechanisms and their instan-
iations, which play a significant role in solving the defined problems
r tasks. The support systems, which provide necessary resources and
nvironments, are also taken into account.

Moreover, the benchmark provides the means to eliminate con-
ounding variables that may affect the evaluation outcomes. Also, the
enchmark provides the mechanism to ensure varying levels of EC
quivalency, determining the extent to which different benchmark
nstances can be considered equivalent.

By considering these EC configurations and mechanisms, the bench-
ark can provide a comprehensive and standardized approach to eval-
ating problems or tasks.

The third constituent is the metrics and reference, including the defi-
itions of quantities, the value function, composite evaluation metrics,
he reference subject, and the reference evaluation outcomes.

In the subsequent sections of this article, we will refer to these three
onstituents as the complete constituents of a benchmark. Fig. 12 shows
he three essential constituents of a benchmark.

.2. The goal of benchmarkology

As expounded upon in Section 3, the science and engineering of
valuation, known as evaluatology, aims to apply the EECs to various
ubjects and establish an REM. A benchmark can be viewed as a
implified and sampled EC, specifically a pragmatic EC, that ensures
ifferent levels of equivalency, ranging from LEECs to EECs. In this
ontext, a benchmark-based approach to the evaluation problem is
onsidered a feasible engineering methodology, given the widespread
se of benchmarks across various disciplines. Consequently, we propose
25
the formal definition of benchmarkology as an engineering discipline
concerned with the quantitative assessment of diverse subjects using
benchmarks.

Undoubtedly, the theory of evaluatology serves as the foundation
for benchmarkology. Nevertheless, benchmarkology has its unique ob-
jective — to furnish guiding principles and engineering evaluation
methodologies.

4.3. The principles in building benchmarks

In Section 3, we have extensively discussed the fundamental axioms
of evaluatology. Nonetheless, this particular subsection delves deeper
into the principles that underpin the creation of benchmarks derived
from these four evaluation axioms.

The first principle focuses on the validity of metrics within a
benchmark. According to the First Axiom of Evaluation, also known
as the Axiom of the Essence of Composite Evaluation Metric, there are
three criteria to determine the validity of metrics in benchmarks. If a
metric does not meet these criteria, it is considered invalid. The three
criteria are as follows:

1. The metric should be a base quantity.
2. The metric should represent another quantity that has inherent

physical significance.
3. The metric should be a composite evaluation metric that is

explicitly defined by a value function.

The second principle pertains to the comprehensiveness of the
configurations of a valid benchmark. According to the Second Axiom
of Evaluation, known as the Axiom of True Evaluation Outcomes,
when a well-defined subject is equipped with a well-defined EC, its
evaluation outcomes possess true values. A well-defined EC should
reveal all its well-defined components. Each component within the EC
plays a critical role in determining the evaluation outcomes. When the
components of the EC are not well-defined, uncertainty is introduced
into the evaluation process. Without clear and specific components, the
evaluation outcomes become unpredictable and lack reliability.

The evaluation outcome using a benchmark should reveal the com-
plete evaluation configurations. Unfortunately, many contemporary
benchmarks, both in terms of state-of-the-art and state-of-the-practice,
have failed to disclose their comprehensive evaluation configurations
fully.

Some benchmarks, like the widely-used CPU benchmark SPECCPU,
may omit certain constituents or their components, e.g., the support
system. In such cases, it becomes essential to clearly define the con-
ditions under which the simplification is made, ensuring that the
benchmark can still provide meaningful and valid results. By provid-
ing these detailed evaluation configurations, we can ensure that the
benchmark remains a reliable tool for evaluation purposes.

The third principle centers around the concept of benchmark
traceability. In accordance with the Third Axiom of Evaluation, also
known as the Axiom of Evaluation Traceability, it is crucial to establish
benchmark traceability to enable the comparison of different bench-

marks. This means that it is a top priority to trace the discrepancies
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Fig. 12. A benchmark comprises three essential constituents.
in evaluation outcomes back to variations in the configurations of
different benchmarks.

The fourth principle encompasses the validity of the speedup of
two evaluations obtained using the benchmark. It emphasizes the
importance of understanding the implications of the speedup obtained
in different pragmatic EMs in relation to those of the real-world ES or
perfect EM.

Comparison is a common practice using benchmarks. In practice,
the speedup is often a key metric of interest that is obtained in dif-
ferent pragmatic EMs. When we compare two evaluations, we use the
benchmarks as a means to infer the true speedup in the real-world ES
or pefect EM.

To illustrate this principle, let us consider a specific example where
we compare two subjects, Subjects A and B, and obtain a speedup
(either greater than or less than 1).

In a simulated CPU scenario (a pragmatic EM), the reported speedup
is 1.3, indicating an improvement in performance for Subject A com-
pared to Subject B. However, the ratio between the speedup in the
EM and the corresponding speedup in the real-world ES has a 90%
confidence interval of [0.7, 1.9]. This means that the ratio could be
any value within this interval, including 1.6.

If the ratio of speedup is indeed 1.6, the actual speedup in the real-
world ES would be 1.3 divided by 1.6, resulting in a value of 0.8.
This indicates a degraded performance for Subject A in comparison to
Subject B, reported on the real-world ES, which is contradicted by an
improvement in performance reported on a simulated system.

It is crucial to note that relying solely on the reported speedup
in the EM without considering its implication in the real-world ES
can lead to misleading interpretations and decisions. To ensure the
validity of evaluation outcomes, it is essential to take into account the
confidence interval associated with the speedup ratio between the EMs
and real-world ES.

4.4. The universal methodology in benchmarkology

The aforementioned principles offer valuable insights into the fun-
damental components of a benchmarkology workflow, as shown in
Fig. 13.
26
4.4.1. Understand stakeholders’ evaluation requirements
During the initial phase, it is essential for evaluators to gain a

comprehensive understanding of the stakeholders’ evaluation require-
ments, the first constituent of the benchmark, which we discussed in
detail in Section 4.1. This crucial step allows for the alignment of these
requirements with the overall purpose of the evaluation.

During this phase, a thorough examination of the evaluation risk
function, the discrepancy threshold of evaluation outcomes, and the
evaluation cost should be conducted. Additionally, for quantities or
variables of interest, it is crucial to establish their evaluation confidence
interval when using the benchmark. This quantification allows for an
assessment of how effectively the benchmark can infer or predict the
parameters of a perfect EM.

Unfortunately, in state-of-the-art or state-of-the-practice
benchmarks, the importance of this phase is often overlooked. There
are two possible reasons for this oversight.

Firstly, in certain evaluation scenarios, the discrepancy in evalua-
tion outcomes, whether intermediate or large, may not have significant
consequences. However, it is crucial to note that this is not the case in
scenarios involving safety-critical, mission-critical, and business-critical
applications. In these situations, even minor deviations can have severe
impacts on the overall outcome.

Secondly, the benchmark process itself is an engineering practice
that emphasizes iterative and refined operation. As a result, it implicitly
incorporates some procedures of this phase.

Therefore, it is imperative to recognize the significance of under-
standing stakeholders’ evaluation requirements, particularly in scenar-
ios where the stakes are high and any discrepancy from expected
outcomes can have critical implications.

4.4.2. Design and implement intricate evaluation mechanisms and policies
This phase plays a crucial role, particularly in complex evaluation

scenarios, and can be quite costly. Its primary aim is to provide a solid
foundation for generating a benchmark.

The real-world ES reflects the complexities and nuances of ac-
tual evaluation environments. In this phase, the evaluator takes on
the crucial task of building and investigating the real-world ES. The
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methodology discussed in Section 3.6 can serve as a helpful guide for
this process.

During the investigation, evaluators need to consider several aspects
arefully. One aspect involves identifying and eliminating irrelevant
roblems or tasks that may not be applicable to the assessment of the
ubjects under evaluation. This ensures that the evaluation focuses on
elevant and meaningful aspects of the subject. Another important con-
ideration is that evaluators must recognize any constraints or factors
hat may impact the evaluation process. This understanding lays the
roundwork for creating a perfect EM that explores all the possibilities.
perfect EM serves as an ideal evaluation model, and the design and

mplementation of this model are also key focus in this phase. We have
iscussed its main concerns in Section 3.6.

Additionally, in this phase, two key policies and their accompanying
rocedures are of utmost importance. Firstly, the modeling policy and
rocedure guide the process of transforming the real-world ES into
n EM, striking a balance between accuracy and cost. This involves
apturing the essential elements and characteristics of the real-world
S in the model while ensuring that the modeling process is efficient
nd cost-effective.

Secondly, the sampling policy and procedure play a vital role in
ransitioning from a perfect EC to a pragmatic EC. This transition aims
o save on evaluation costs while still maintaining a high level of
onfidence in the evaluation results. The sampling policy and proce-
ure guide the selection of representative samples from the perfect
C, ensuring that the pragmatic EC captures the essential aspects
nd characteristics of the perfect EC while being more practical and
esource-efficient.

By following these policies and procedures, the evaluation process is
dapted to real-world conditions and constraints. The modeling policy
nd procedure enable the creation of an EM that accurately represents
he real-world ES, while the sampling policy and procedure ensure
hat the pragmatic EC reflects the essential elements of the perfect EC.
his allows for a more effective and efficient evaluation process that
alances accuracy, cost, and confidence.

Overall, with the facilitation of the study of real-world ES and
he perfect EM, these modeling and sampling policies and procedures
re essential in this phase to guide the modeling and sampling pro-
esses, ensuring that the evaluation process is well-suited to real-world
onditions and constraints.

.4.3. Decide representative evaluation standards
The third phase is to decide the representative evaluation standards

hat guarantee the least EECs, ensuring the comparability of the evalua-
ion outcomes. The main objective of this phase is to carefully consider
he relevant stakeholders involved and gain a deep understanding of
heir principal interests and concerns. This phase requires evaluators
o identify and comprehend the primary problems or tasks that need to
e addressed.

It is important to note that each stakeholder has a unique perspec-
ive, leading to subtle differences in the problems or tasks they face.
herefore, it is crucial for evaluators to recognize and take into account
hese varying perspectives, ensuring that the evaluation standards are
omprehensive and reflective of the diverse interests of the stakeholders
nvolved.

In Section 3.5.4, we have explored the concept of evaluation stan-
ards and how they are derived from the abstract problem or task at
and. Building upon this understanding, the evaluator’s next step is to
etermine the specific evaluation standards by selecting representative
nstances of the primary problems or tasks faced by the stakeholders.

It is important to recognize that different stakeholders will have
istinct evaluation standards. This is because their perspectives and
riorities vary based on their unique roles and interests. As a result,
t is essential for evaluators to consider these differences and tailor
he evaluation standards accordingly to ensure that they capture the

pecific needs and concerns of each stakeholder involved.
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It is true that previous evaluation and benchmark practices have
often lacked consistent discussions on what qualifies as an evalua-
tion standard. However, we believe that our universal definition of
evaluation standards has the potential to be applicable across various
evaluation scenarios in different disciplines. Our aim is to provide a
comprehensive framework that can guide evaluators in establishing
effective evaluation standards.

Furthermore, we acknowledge the importance of recognizing that a
realistic benchmark can only capture a small sample of huge popula-
tions of instances that are derived from a large population of problems
or tasks. Despite the challenges that may arise when explicitly stating
the problem or task, we remain committed to adopting a systematic
approach to our thinking. This allows us to navigate through such
complexities and develop meaningful evaluation standards that align
with the objectives of the evaluation process.

4.4.4. Design and implement ECs with different levels of equivalency
Based on the outputs from Phases Two and Three, the subsequent

stage involves the design and implementation of ECs with different
levels of equivalency. This task varies from different subjects. In gen-
eral, this phase needs to consider algorithm-like mechanisms and their
instantiations, as well as the support systems.

Furthermore, in this phase, it is essential to address the levels of EC
equivalency. This involves determining the extent to which different
benchmark instances can be considered equivalent. It requires careful
consideration of which components can be disregarded or simplified
in order to streamline the benchmark process while maintaining its
validity and reliability.

Additionally, the benchmark needs to establish mechanisms to elim-
inate confounding that may impact the evaluation outcomes. Confound-
ing variables can introduce biases or distortions into the evaluation
results, affecting their accuracy and reliability. One approach to address
confounding is by employing our proposed REM methodology. This
methodology provides a systematic framework to identify and eliminate
confounding variables and ensure that the evaluation outcomes are not
influenced by extraneous factors.

4.4.5. Perform measurement and/or testing
The fourth phase encompasses measurements and/or testing, guided

by the principles and practices of the metrology and testing theory.
The measurement and testing process serves multiple purposes. Firstly,
evaluators must determine which properties or quantities to measure,
keeping in mind what base quantities and other quantities that carry
physical meaning are.

Furthermore, evaluators must also consider the cost of measure-
ment and testing, ensuring that it aligns with budgetary constraints. It
becomes imperative for them to make informed decisions on various
aspects, such as how, when, and to what extent to perform testing,
sampling, and measuring these properties or quantities. By doing so,
they can effectively manage resources while still obtaining valuable
data for their research.

4.4.6. Perform assessments
The fifth phase entails assessment, wherein the defining of a value

function takes precedence. The rationale behind establishing a value
function lies in the aim of encapsulating numerous quantities that
surpass our capacity for recognition into a singular metric. This value
function serves as a proposed function, mapping the target properties or
quantities measured during the preceding phase to the evaluation out-
comes in order to reflect the concerns or interests of the stakeholders.
Given that stakeholders often possess varying concerns or interests, it
is common to propose multiple value functions from different perspec-
tives. Different communities may reach a consensus on how to define a
value function. Generally, evaluators must engage in consultation with

the stakeholders to define a composite evaluation metric in the form of
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Fig. 13. The universal methodology in benchmarkology.

value function that truly encapsulates the stakeholders’ concerns or
nterests.

Subsequently, evaluators can compare the obtained evaluation out-
omes to the reference evaluation outcomes, ultimately enabling judg-
ent on different subjects, such as performance, value, merit, weak-
esses, worth or significance, as well as positive or negative effects.

.4.7. Perform meta-evaluation
The last phase involves conducting meta-evaluations. The eval-

ators are tasked with reviewing all the evaluation processes and
etermining whether the theory, data, or evidence produced can sub-
tantiate the conclusions drawn in the evaluations. In this phase of
eta-evaluation, various perspectives are taken into account, including

he dimensionality of measurement data [7], the reliability of measure-
ent results, the validity of evaluation outcomes, the traceability of

enchmarks, as well as the cost and cost-efficiency of the evaluation
tself [1].

The ‘‘dimensionality’’ of measurement data refers to the number
nd nature of variables that are reflected in the assessment [7]. The
eliability of measurement results pertains to the extent to which the
easured values accurately reflect the true values. The validity of the

valuation outcome denotes the degree to which the statistics of the
enchmark can infer the parameter of the real-world evaluation setting
r a perfect evaluation model in terms of the metrics of confidence level
nd confidence interval.

Two approaches can be undertaken to manage benchmark trace-
bility. Firstly, it is essential to develop a comprehensive mathematical
28
model capable of capturing the influence of the discrepancies of the
evaluation configurations on the evaluation results. This model will
serve as a foundation for interpreting and comprehending the evalu-
ation outcomes. Additionally, the community must engage in contin-
ual benchmark comparisons. Drawing inspiration from the calibration
practices in the field of metrology, this consistent comparison and align-
ment of different benchmarks will ensure consistency and accuracy in
evaluation procedures.

Constrained by the limitations of the budget, the aforementioned
six phases can be carried out iteratively, employing a trial-and-error
methodology.

5. Why it is essential to develop evaluatology?

In this section, we will begin by conducting a comprehensive review
of the state-of-the-art and state-of-the-practice evaluation methods and
benchmarks. This review will provide us with a solid understanding of
the current landscape and help identify areas where advancements are
needed.

To illustrate the importance of advancing the science and engineer-
ing of evaluation, we will focus on the evaluation of CPU performance
as a prime example. Meanwhile, we will critically reflect on the ex-
isting state-of-the-art and state-of-the-practice evaluation methods and
benchmarks. This reflection will enable us to identify any limitations
or gaps that need to be addressed for more accurate and meaningful
evaluations.

Furthermore, we will explore the advantages that the field of eval-
uatology brings to the table. To ensure clarity and understanding, we
will provide a concise summary of the distinctions between evaluation,
measurement, and testing.

To ensure consistency and alignment with our proposed universal
terminology, we will utilize our established terminology framework
when discussing state-of-the-art and state-of-the-practice evaluation
and benchmark cases.

5.1. Evaluations across different academic fields

This subsection presents a concise overview of the cutting-edge
evaluations in a range of academic disciplines, as well as the prevailing
evaluation practices.

5.1.1. Observation study methodologies
Observational study methodologies are widely used in the fields

of business science, finance, and education. Even based on a random
sample, an observational study still falls short of effectively revealing
the cause-and-effect relationships.

Evaluations in the field of business science:
Camp [8] defines benchmarking as ‘‘the search for those best prac-

tices that will lead to the superior performance of a company’’. Bench-
marking consists of two primary steps [8]: (1) establishes operation
targets based on industry best practices; (2) ‘‘a positive, proactive,
structured process leads to changing operations and eventually achiev-
ing superior performance and competitive advantage’’. In the study
conducted by Andersen et al. [25], the essence of benchmarking is
summarized as the quest for knowledge and learning from others.

Evaluations in the fields of finance and education:
In the fields of finance and education, indices are widely used

as benchmarks to assess the overall performance of the individuals
or systems under study. These indices are derived by calculating the
weighted average of a selected group of individuals or systems [9].

For example, stock market indices are used as benchmarks to assess
the stock market’s performance in the finance field. These indices are
derived by calculating the weighted average of a selected group of
representative stocks [9]. Some widely recognized stock market indices
include the Dow Jones Industrial Average, the S&P 500, the NASDAQ



BenchCouncil Transactions on Benchmarks, Standards and Evaluations 4 (2024) 100162J. Zhan et al.

o
p
s
b
i
a

m
o
t

5

s

E

h
c
d

s
‘
b
e
m
(
i

w
p
S
b
w

t
o

Table 1
The base quantity, value function, and the reference machine specified in different CPU benchmark suites in Section 5.

Benchmark Category Base quantity Value function Reference machine

SPEC CPU2006

SPECspeed Execution time 𝑥𝑖 = time on a reference machine/time on the

evaluation machine [27]; 𝑥 = 𝑛

√

𝑛
∏

𝑖
𝑥𝑖 The Ultra Enterprise 2 with 296 MHz

UltraSPARC II chips [28]
SPECrate Execution time 𝑥𝑖 = number of copies * (time on a reference

machine/time on the evaluation machine) [27];

𝑥 = 𝑛

√

𝑛
∏

𝑖
𝑥𝑖

SPEC CPU2017

SPECspeed Execution time 𝑥𝑖 = time on a reference machine/time on the

evaluation machine [27]; 𝑥 = 𝑛

√

𝑛
∏

𝑖
𝑥𝑖 The Sun Fire V490 with 2100 MHz

UltraSPARC-IV+ chips [27]
SPECrate Execution time 𝑥𝑖 = number of copies * (time on a reference

machine/time on the evaluation machine) [27];

𝑥 = 𝑛

√

𝑛
∏

𝑖
𝑥𝑖

PARSEC Execution time 𝑥𝑖 = time on the evaluation machine
Composite, and the Shanghai Stock Exchange Composite Index. Dif-
ferent indices employ varying calculation methods. The most common
approach is the weighted average method, which determines the index
value based on the weighted average of the constituent stock prices.
Another method is the geometric mean method, which calculates the
geometric average of the stock prices and adjusts it using a base period
price. Typically, stock market indices are published at the close of each
trading day. Some index providers offer real-time index data, enabling
investors to stay informed about the latest market conditions.

The Brent benchmark is used to determine the price of Brent crude
il [26]. Brent crude oil is a type of light and low-sulfur crude oil
roduced from oil fields in the North Sea region. Due to its relatively
table supply and high quality, Brent crude oil has become a significant
enchmark in the international oil market. Traders, investors, and
ndustry participants worldwide reference the Brent benchmark to track
nd evaluate the price of Brent crude oil.

In the finance discipline, indexes or benchmarks serve as reference
easurements or evaluation results. However, these practices often pri-

ritize data collection and processing over building a solid evaluation
heory framework.

.1.2. Experimental methodologies
Experimental methodologies are widely used in the fields of social

ciences, computer sciences, psychology, and medicine.

valuations in the field of social sciences:
According to Rossi et al. [1], at the earliest, Thomas Hobbes and

is contemporaries tried to ‘‘use numerical measures to assess social
onditions and identify the cause of mortality, morbidity, and social
isorganization in the discipline of social science’’.

Rossi et al. [1] define program evaluation as the process of using
ocial research methods to systematically assess programs aimed at
‘improving social conditions and our individual and collective well-
eing’’, with the goal of providing answers to the stakeholders. Rossi
t al. [1] summarize the five domains of evaluation questions and
ethods that exhibit strong interplays: (1) the need for the programs,

2) program theory and design, (3) program process, (4) program
mpacts, and (5) program efficiency.
Evaluations in the Field of Computer Science:
The SPEC CPU benchmark suite, known as SPEC CPU [29], is

idely recognized as the most renowned benchmark suite for CPU
erformance evaluation. Throughout its history, six versions of the
PEC CPU benchmark suite have been released, with the latest version
eing SPEC CPU2017, which can be found in Table 1. The SPEC CPU
orkloads cover a broad range of CPU-intensive tasks.

The performance evaluation metric used in SPECCPU is based on
he execution time. The reported score of SPECCPU represents the ratio

f its execution time compared to that of a reference machine. The

29
specific details of a reference machine can be found in Table 1. To
ensure the credibility of the results, the overall metrics are calculated
as the geometric mean of each respective ratio. Each ratio is based on
the median execution time from three runs or the slower of the two
runs.

Dongarra et al. [30] proposed the LINPACK benchmark for evaluat-
ing high-performance computing (HPC) systems. The LINPACK Bench-
mark is designed to solve dense linear systems of equations of order n,
represented by the equation 𝐴𝑥 = 𝑏. It originated from the development
of the LINPACK software package in the 1970s.

The LINPACK benchmark is commonly used to evaluate HPC sys-
tems, and the measurement metric is the number of floating-point
operations per second (FLOPS). FLOPS represents the count of floating-
point operations (FLOPs) performed by the solving algorithm of the
LINPACK benchmark, which is calculated as (2 ∗ 𝑛3∕3 + 2 ∗ 𝑛2)
operations divided by the execution time of the benchmark.

As shown in Fig. 14, ImageNet is a significant benchmark in the
field of computer vision, consisting of 14,197,122 high-resolution im-
ages manually annotated across 21,841 distinct categories, commonly
known as ImageNet-21K [31]. These categories encompass a wide
range of objects, animals, and scenes. The ILSVRC (ImageNet Large
Scale Visual Recognition Challenge) is an annual computer vision com-
petition that focuses on a subset of ImageNet-21K called ImageNet-
1K [32]. It aims to evaluate the performance of deep learning models
in tasks such as image classification and object detection, providing
specific task configurations and evaluation criteria. ImageNet-1K is
primarily used for image classification tasks and consists of 1,281,167
training images, 50,000 validation images, and 100,000 test images.
The evaluation metrics commonly used in ILSVRC include Top-1 accu-
racy, which measures the match between the predicted category and
the true category of the image, and Top-5 accuracy, which indicates
if the true category of the image is among the top five predicted
categories by the model.

Evaluations in the field of medicine:
The evaluation in the field of medicine can be traced back to

the early medical eras, although there are no documented records.
A rigorous modern medical evaluation methodology and system were
established as early as 1938 [34]. Clinical trials, with a history spanning
over 250 years, are the primary and widely recognized method for med-
ical evaluation. They are defined as experimental designs to evaluate
the potential impact of medical interventions on human subjects [35].

Currently, clinical trials based on experimental designs can be cat-
egorized into various types, including randomized trials, double-blind
trials, prospective trials, and retrospective trials [36].

As illustrated in Fig. 15, Randomized Controlled Trials (RCTs),
considered the gold standard for medical evaluation, possess a rig-

orous and reliable theoretical framework [37]. However, their high
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Table 2
The evaluation outcomes of the Intel Xeon Gold 5120T Processor using different CPU benchmarks show significant discrepancies. SPEC CPU2017 includes two sub-suites: SPECrate
and SPECspeed. The results derived from SPECrate and SPECspeed are further categorized into two groups, known as floating-point (FP) and int.

Benchmark Support platform Workload Time (s) Score Result Score meaning
503.bwaves_r 1483 379.0
508.namd_r 636 83.7
510.parest_r 1742 84.1
511.povray_r 1128 116.0
519.lbm_r 1420 41.6
521.wrf_r 1682 74.6
526.blender_r 787 108.0
527.cam4_r 998 98.2
538.imagick_r 1479 94.2
544.nab_r 893 106.0
549.fotonik3d_r 2001 109.0
554.roms_r 1429 62.3

500.perlbench_r 926 96.3

96.9 (FP)

502.gcc_r 758 105.0
505.mcf_r 1059 85.5
520.omnetpp_r 1217 60.4
523.xalancbmk_r 786 75.3
525.x264_r 1179 83.2
531.deepsjeng_r 715 89.8
541.leela_r 1197 77.5
548.exchange2_r 1338 110.0

SPECrate

Unix
(AIX,
HP-UX,
Linux,
Mac OS X,
Solaris),
Windows [27]

557.xz_r 824 73.4

84.3 (INT)

Higher scores mean that more work is
done per unit of time [27]

603.bwaves_s 224 263.0
619.lbm_s 182 28.8
621.wrf_s 522 25.4
627.cam4_s 155 57.2
628.pop2_s 532 22.3
638.imagick_s 507 28.4
644.nab_s 191 91.5
649.fotonik3d_s 244 37.3
654.roms_s 245 64.2

600.perlbench_s 832 2.1

48.7 (FP)

602.gcc_s 823 4.8
605.mcf_s 1369 3.5
620.omnetpp_s 815 2.0
623.xalancbmk_s 444 3.2
625.x264_s 703 2.5
631.deepsjeng_s 651 2.2
641.leela_s 999 1.7
648.exchange2_s 807 3.6

SPECspeed

Unix
(AIX,
HP-UX,
Linux,
Mac OS X,
Solaris),
Windows [27]

657.xz_s 492 12.6

3.2 (INT)

Higher scores mean that less time is needed [27]

blackscholes 133 133
bodytrack 346 346
canneal 258 258
facesim 771 771
fluidanimate 974 974
freqmine 776 776
streamcluster 2037 2037
swaptions 424 424
x264 144 144
dedup 58 58
raytrace 245 245

PARSEC3.0

Linux/i386,
Linux/AMD64,
Linux/Itanium,
Solaris/Sparc [33]

vips 179 179
400.perlbench 742 13.2
401.bzip2 603 16.0
403.gcc 373 21.6
429.mcf 283 32.2
445.gobmk 567 18.5
456.hmmer 433 21.6
458.sjeng 880 13.7
462.libquantum 409 50.6
464.h264ref 983 22.5
471.omnetpp 434 14.4

CINT2006
(speed)

Unix
(AIX,
HP-UX,
Linux,
Mac OS X,
Solaris),
Windows [28]

473.astar 553 12.7

19.6 Higher scores mean that less time is needed [27]

(continued on next page)
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Table 2 (continued).
410.bwaves 406 33.5
433.milc 549 16.7
434.zeusmp 400 22.8
435.gromacs 334 21.4
436.cactusADM 385 31.1
437.leslie3d 229 41.0
444.namd 485 16.5
450.soplex 278 30.0
453.povray 276 19.2
454.calculix 963 8.57
459.GemsFDTD 354 30.0
465.tonto 497 19.8
470.lbm 337 40.8

CFP2006
(speed)

Unix
(AIX,
HP-UX,
Linux,
Mac OS X,
Solaris),
Windows [28]

482.sphinx3 665 29.3

23.9 Higher scores mean that
less time is needed [27]
Fig. 14. The ImageNet evaluation working process.

ime and financial costs limit their application. To compensate for the
hortcomings of RCTs, emerging clinical evaluation methods, such as
eal-World Data (RWD) assessment and digital clinical trials, have
een proposed [38,39]. These novel medical assessments are still in
heir early stages and have noticeable deficiencies in their theoretical
oundations, such as lacking rigor and reliability.

valuations in the field of psychology:
In the field of psychology, social and personality psychologists often

ely on scales, such as psychological inventories, tests, or question-
aires [7], to evaluate psychometric variables [7]. These variables
nclude attitudes, traits, self-concept, self-evaluation, beliefs, abilities,
otivations, goals, social perceptions, and more [7].

It is important to note that cognitive biases, which are systematic
atterns of deviation from norm or rationality in judgment [41], may
ntroduce distortions in self-report style evaluations.

.2. A case study on CPU benchmarks

Within this scenario, we assess the same CPU utilizing diverse
PU benchmarks, namely SPEC CPU2006 [28], PARSEC 3.0 [33], and
PEC CPU2017 [27], which are proposed by distinct entities employing

iverse methodologies.

31
Fig. 15. The randomized controlled trials (RCT) evaluation process [40].

Employing these benchmark suites, we evaluate the performance of
a subject, the Intel Xeon Gold 5120T processor, and proceed to compare
the resultant evaluation outcomes. During the experiments, apart from
the processor itself, we provide the support system in the following
manner: a 384 GB of memory, a 16TB disk, and the utilization of
Ubuntu 20.04 as the operating system. To facilitate the compilation
process, we employ the GNU Compiler Collection (GCC) version 9.4.
We also use the largest data set of each benchmark suite (for SPEC
CPU, it is a ‘ref’ data set, and for PARSEC, it is a ‘native’ data set) and
run each workload three times for a comprehensive evaluation. For the
SPEC CPU2006 benchmark suite, we use the default configuration file
of SPECspeed Metric.

The evaluation outcomes are presented in Table 2. The discernible
discrepancies observed in the evaluation outcomes can be compre-
hensively elucidated by taking into account the significant disparities
inherent in different benchmark suites. The variations encompass the
selection of distinct problem or task instances, the algorithms, the im-
plementation of algorithms, the value functions utilized, the composite
metrics employed for evaluation, the reference support system, and the
reference subject, which is witnessed by Table 1.
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The experimental findings illustrated in Table 2 reveal significant
iscrepancies in the evaluation outcomes of the same CPU when as-
essed using different CPU benchmark suites (the SPEC CPU and PAR-
EC benchmark suites). Furthermore, comparing evaluation outcomes
rom different evaluators becomes challenging when they employ dif-
erent benchmarks. There are several reasons as follows. Firstly, they
tilize different value functions. Secondly, the SPEC CPU benchmark
uite encompasses a reference machine, whereas the PARSEC bench-
ark suite lacks such a basis for comparison. Moreover, the EECs can-
ot be ensured even when using the same value function and reference
achine. This is because different benchmark suites introduce varia-

ions in problem or task instances, algorithms, and the implementation
f algorithms.

Moreover, there are significant differences in evaluation outcomes
f the same CPU, even when using the same benchmark suite with
ifferent versions. It stems from the different implementations of al-
orithms on varied support systems. Let us take the gcc workload in
he SPEC CPU benchmark suite as an example. When evaluated under
he CPU2006 benchmark suite, the CPU achieved a score of 21.6 in the
03.gcc workload, while it scored 4.8 in the 602.gcc_s workload under
he SPECspeed benchmark of SPEC CPU2017. These scores show a dis-
arity of nearly five-fold. The discrepancies in evaluation outcomes can
e mainly attributed to variations in the reference machine used by the
espective benchmark suites, as outlined comprehensively in Table 1.
oreover, the two workloads utilize different GCC compiler versions,
ith the 403.gcc workload utilizing GCC version 3.2 and the 602.gcc_s
orkload utilizing GCC version 4.5. Although the command flag of both
orkloads is ‘ref,’ the input data of the 403.gcc workload consists of
ine C-code workloads, while the input data of the 602.gcc_s workload
s the preprocessed GCC compiler code. Additionally, 403.gcc is not
ulti-threaded, while the multi-threaded is permitted for 602.gcc_s.

Furthermore, when being implemented with the same version of
CC compiler and using the same input data, the variances in eval-
ation outcomes for the gcc workload between the 502.gcc_r workload
n SPECrate benchmark suite and 602.gcc_s in SPECspeed benchmark
uite are more than twentyfold, which stem from the adoption of
isparate value functions and the distinct implementations of the same
lgorithm. The SPECrate benchmark suite workloads are designed to
ssess throughput, employing multiple copies of a single-thread imple-
entation during evaluations, while the SPECspeed benchmark suite
orkloads solely measure execution time, and the utilization of mul-

iple threads is optional throughout the evaluation process. For the
valuation condition, 502.gcc_r workload makes fifty-six copies, run-
ing with a single thread, while 602.gcc_s workload has only one copy
ut runs with fifty-six threads.

The observed variations in evaluation outcomes for a particular
PU across different benchmark suites underscore the necessity of
dvancing the science and engineering of evaluation. While state-of-
he-art CPU benchmarks have made significant progress, they do have
ertain drawbacks that need to be addressed. Firstly, the lack of com-
arability among evaluation results from different evaluators is a sig-
ificant concern. Secondly, the significant discrepancies in evaluation
utcomes cannot be traceable. Lastly, state-of-the-art CPU benchmarks
ften struggle to provide a realistic estimate of the parameters of
eal-world systems (ES) with a high level of confidence.

According to the comprehensive elements of a benchmark dis-
ussed in Section 4.1, many CPU benchmarks, such as the SPEC CPU
enchmark suites, primarily focus on the reference implementation of
lgorithms, metrics, and references while neglecting other essential
onstituents and components. In the following section, we will care-
ully analyze and highlight the shortcomings of state-of-the-art and
tate-of-the-practice evaluation and benchmarks, employing our own

erminology.

32
5.3. The reflections on state-of-the-art and state-of-the-practice benchmarks
and evaluation

To further illustrate the limitations of existing evaluation and bench-
marking practices, we present Fig. 16, which showcases these short-
comings within the evaluatology framework. By examining this figure,
we can gain a clearer understanding of the areas where state-of-the-art
and state-of-the-practice evaluation and benchmarks fall short.

It is evident that a lack of consensus exists regarding concepts and
terminologies across different areas of study. This lack of consensus often
leads to confusion and misinterpretation, especially when the same
terms are used in different disciplines with varying meanings.

For example, the term ‘‘benchmark’’ is commonly employed in
computer science, finance, and business disciplines but without a for-
mal definition. Moreover, even within these fields, the definition of
‘‘benchmark’’ can be vague and subject to interpretation. In contrast,
psychology may use the term ‘‘scale’’ as a concept similar to benchmark,
while social science and medicine may not have an analogous concept
at all.

Recognizing this challenge, our work has aimed to propose universal
concepts and terminologies that can bridge these disciplinary gaps. By
establishing clear and standardized definitions, we seek to promote
a shared understanding and facilitate effective communication and
collaboration across different areas of study.

Few works discuss the essence of evaluation, let alone reaching a consen-
sus on it. Evaluation is often mistakenly equated with measurement or
testing without clear differentiation. For instance, in computer science
and psychology, evaluation and measurement are often used inter-
changeably. In the context of testing, where the goal is to determine
whether an individual or a system aligns with the expected behavior
defined by test oracles, evaluation is often conflated with testing. For
instance, according to the SPEC terminology, a benchmark refers to
‘‘a test, or set of tests, designed to compare the performance of one
computer system against the performance of others’’ [42,43]. SPEC is a
highly influential benchmark organization. Our work has revealed the
essence of the evaluation.

The proposed evaluation theories and methodologies are often domain-
specific, with a lack of universally applicable foundational principles and
evaluation methodologies that transcend diverse disciplines. Different dis-
ciplines do not delve into the underlying principles of evaluation.
Instead, they adopt a pragmatic approach and prioritize guidelines for
conducting evaluations within specific contexts.

For instance, in the medical discipline, the focus is primarily on
eliminating confounding variables within the specific groups or cohorts
being studied. In the business discipline, efforts are concentrated on
searching the state of the practice.

The most rigorous theoretical foundation can be found in the field
of clinical trials. For instance, Randomized Controlled Trial (RCT)
techniques are employed to rule out the effect of confounding variables.
However, there is a lack of universal problem formulations or funda-
mental solutions that fully consider the intricate interactions among the
key components of EMs in diverse scenarios.

There are two serious drawbacks to the RCT methodology and its
variants. Firstly, there is a lack of a stringent hierarchical definition of
EC and EECs. The variations in ECs can introduce confounding that may
affect the results and make meaningful comparisons difficult. Without
ensuring EECs, it becomes an illusion to expect comparable evaluation
outcomes.

Secondly, when it comes to studying complex systems such as
human beings or experimental animals, which we refer to as support
systems, the RCT methodology and its variants may struggle to establish
an REM. This kind of support system is characterized by a multitude
of independent variables, making it difficult to isolate and control all
relevant factors in a controlled experimental setting. Consequently, it
becomes challenging to eliminate confounding variables and ensure

unbiased evaluation outcomes completely.
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Fig. 16. The reflections on state-of-the-art and state-of-the-practice benchmarks and evaluation are based on the science and engineering of evaluation.
In the realms of business and finance, different observational study
methodologies are widely used, and we have revealed their inherent
limitations in Section 2.1. An observational study is not even an exper-
iment. Certainly, it cannot eliminate confounding variables and reveal
the cause-and-effect relationships. In the business discipline, bench-
marking assumes the state-of-the-art instantiation of the algorithm-like
mechanism and the reference evaluation outcomes. In finance and edu-
cation disciplines, benchmarks or indexes assume the role of reference
evaluation outcomes in an observational study that measures variables
of interest but does not attempt to influence the response [2].

Rossi et al. [1] propose a valuable framework for evaluating
methodologies in the field of social science. However, they do not
provide a universal theory that can be applied to different disciplines.
Their limitations stem from their narrow focus on assessing social
programs without developing a generalized theory for evaluating other
subjects in complex conditions.

Rossi et al. indeed utilized or developed some approaches to iso-
late the social programs’ impacts, e.g., comparison group designs and
randomized controlled trials (RCT), but they failed to explicitly state
the underlying principles and methodology for universal science and
engineering of evaluation.

Within the computer science field, there are varying viewpoints and
perspectives. For example, Hennessy et al. [4] highlight the significance
33
of benchmarks and define them as programs specifically selected for
measuring computer performance. On the other hand, John et al. [3]
compile a book on performance evaluation and benchmarking without
providing formal definitions for these concepts. Kounev et al. [42]
present a formal definition of benchmarks as ‘‘tools coupled with
methodologies for evaluating and comparing systems or components
based on specific characteristics such as performance, reliability, or
security’’. The ACM SIGMETRICS group [5,6] considers performance
evaluation as the generation of data that displays the frequency and
execution times of computer system components, with a preceding
orderly and well-defined set of analysis and definition steps.

In psychology, social and personality psychologists often utilize
scales, such as psychological inventories, tests, or questionnaires, to
assess psychometric variables [7,7]. While these tools are commonly
used, it is important to recognize that they rely on virtual assess-
ments and self-report-style evaluations, which may introduce potential
distortions.

To overcome this limitation, we suggest implementing a physical
application of an EC to the subjects, supplemented with a variety of
measurement instruments. This approach aims to provide a more ob-
jective and accurate assessment of various aspects, including attitudes,
traits, self-concept, self-evaluation, beliefs, abilities, motivations, goals,
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and social perceptions [7], by incorporating tangible and observable
data.

Various disciplines have proposed engineering approaches to evalua-
ions. However, they fail to provide universal benchmark concepts, theories,
rinciples, and methodologies.

For instance, benchmarks are commonly utilized in finance, com-
uter science, and business, albeit with inconsistent meanings and
ractices. Regrettably, there have been limited discussions in previ-
us works regarding universal benchmark principles and methodolo-
ies that can be applied across different disciplines. From a com-
uter science standpoint, Kounev et al. [42] provide a comprehensive
oundation for benchmarking, including metrics, statistical techniques,
xperimental design, and more.

Most state-of-the-art and state-of-the-practice benchmarks overlook
n essential aspect: the stakeholders’ evaluation requirements. This
versight leads to a failure to consider different and diverse evaluation
equirements. For instance, they do not enforce the discrepancy thresh-
ld in evaluation outcomes, nor do they consider evaluation confidence,
mong other crucial factors. As a result, most CPU benchmarks are ill-
quipped to meet the evaluation requirements in scenarios involving
afety-critical, mission-critical, and business-critical applications.

Another issue is the lack of a stringent definition for similar con-
epts, such as an EECs or LEECs. For example, most CPU or AI (deep
earning) benchmarks, like ImageNet, fail to provide a clear definition
f an EECs or LEECs. Instead, they jump directly into the implementa-
ion of algorithms or a specific dataset labeled with the ground truth
ithout proper justification. Additionally, the support system, which
lays a crucial role in some cases, is omitted without any explanation of
he condition of simplifying the benchmarks. Furthermore, most of the
ethodologies fail to discuss the confounding elimination mechanism.
his oversight can potentially introduce bias and inaccuracies in the
valuation outcomes.

Not surprisingly, the intricate evaluation mechanisms and policies
ntroduced in Section 4.4.2 are not explicitly discussed in the de-
ign and implementation of most benchmarks. For instance, it fails
o address important aspects such as investigating and characterizing
eal-world ES, the design and implementation of a perfect EM, the
odeling policy and procedure from a real-world ES to an EM, and the

ampling policy and procedure from a perfect EC to a pragmatic EC.
his omission makes it difficult for the benchmark to adapt to intricate
valuation scenarios.

It is crucial to include these mechanisms and policies to ensure
he benchmark’s applicability and effectiveness in complex evaluation
cenarios. Without explicit discussion of the real-world ES, it is difficult
o establish an EC that captures the characteristics and requirements of
eal-world evaluations. Furthermore, exploring different sampling and
odeling policies is essential to gain the confidence of the evaluation

ommunity in using the benchmark for inferring parameters of real-
orld ES. By carefully designing these policies, we can strike a balance
etween achieving high accuracy in evaluation outcomes and managing
he associated evaluation costs.

There are many widely used AI (deep learning) benchmarks. Taking
he ImageNet dataset as an illustrative example [31], we reveal their
imitations. Firstly, a specific AI benchmark like ImageNet cannot
e traced back to an explicit formulation of a problem or task and
nstead manifests itself in the form of a dataset containing ground
ruth, which may possess certain biases. In other scenarios, we also
ncounter challenges in identifying a precise mathematical function
hat accurately models the chemical and biological activities within
he human body (Case Three in Section 3.5.2) or the social dynamics
ithin the target population (Case Four in Section 3.5.2). Secondly, the
enchmark relies on an unverified assumption that the data distribution
ithin the real world closely aligns with that of the collected dataset

o a considerable extent. Thirdly, in real-world applications, we use the
tatistic of a sample – a specific benchmark – to infer the parameters
f the entire population. However, we do not know their confidence

evels and intervals.
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5.4. What is the benefit of evaluatology?

Evaluatology serves as the foundational theory that encompasses
evaluations in various fields of study. It provides a universal framework
for optimizing the evaluation process, with four fundamental axioms
serving as its basis. Formulating the core evaluation issues mathemat-
ically presents opportunities for seeking optimal solutions based on
theoretical grounds. As a subdivision of evaluatology, benchmarkology
offers a comprehensive engineering approach and methodology for
evaluation, applicable across diverse disciplines.

Together, evaluatology and benchmarkology contribute reusable
knowledge to different domains, encompassing universal terminology,
principles, and methodologies. By sharing this knowledge base, they
facilitate advancements in both the state-of-the-art and state-of-the-
practice of evaluation in various realms. This unification of commu-
nities embarks on a collective journey to address future challenges.

5.5. The differences between evaluation, measurement and testing

Drawing on the preceding analysis, this subsection elucidates the
marked disparity between evaluation, measurement, and testing.

First and foremost, it is important to acknowledge that measure-
ment or testing serves as a preliminary constituent within the broader
framework of evaluation. In addition to measurement and testing, an
evaluation encompasses a series of steps, which we have discussed
in Section 3. These steps involve defining and applying evaluation
conditions to a diverse range of subjects, which ultimately leads to
the creation of an evaluation model or system. Once the evaluation
model or system is established, the impacts of different subjects can
be inferred through the process of measuring and/or testing.

Furthermore, it is crucial to recognize that the measurement results
are of an objective nature, assuming the existence of an inherent truth
value for each measured quantity. Similarly, testing results also possess
an objective nature as they typically yield either a positive or negative
outcome for each test conducted.

Conversely, evaluation results possess a certain degree of subjectiv-
ity, such as the formulation of value functions based on the underlying
measurement data, which we have discussed in the first evaluation
axiom in Section 3.3.

By virtue of the aforementioned reasons, we can assert that metrol-
ogy or testing serves as but one foundational aspect in the realm of
evaluations.

6. Conclusion

This article formally introduces evaluatology, a discipline encom-
passing both the science and engineering of Evaluations. Our contribu-
tions are three-fold.

First, in order to promote consistency and facilitate cross-
disciplinary understanding, we propose the adoption of universal eval-
uation concepts and terminologies centered around evaluation condi-
tions.

Secondly, we reveal the essence of evaluation and propose five eval-
uation axioms as the foundational evaluation theory. Furthermore, we
introduce the universal evaluation theory, principles, and methodology
that govern the field of evaluation.

We create evaluation conditions with different levels of equivalency
and apply them to diverse subjects to establish reference evaluation
models that alter a single independent variable at a time while keeping
all other variables as controls. We discover that the key to effective and
efficient evaluations in various complex scenarios lies in establishing a
series of evaluation models that maintain transitivity.

Third, building upon the science of engineering, we formally define
a benchmark as a simplified and sampled evaluation condition that
ensures different equivalency levels. We present a benchmark-based
universal engineering of evaluation across different disciplines, which

we refer to as benchmarkology.
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A B S T R A C T

Modern data centers provide the foundational infrastructure of cloud computing. Workload generation, which
involves simulating or constructing tasks and transactions to replicate the actual resource usage patterns of
real-world systems or applications, plays essential role for efficient resource management in these centers.
Data center traces, rich in information about workload execution and resource utilization, are thus ideal
data for workload generation. Traditional traces provide detailed temporal resource usage data to enable
fine-grained workload generation. However, modern data centers tend to favor tracing statistical metrics to
reduce overhead. Therefore the accurate reconstruction of temporal resource consumption without detailed,
temporized trace information become a major challenge for trace-based workload generation. To address this
challenge, we propose STWGEN, a novel method that leverages statistical trace data for workload generation.
STWGEN is specifically designed to generate the batch task workloads based on Alibaba trace. STWGEN
contains two key components: a suite of C program-based flexible workload building blocks and a heuristic
strategy to assemble building blocks for workload generation. Both components are carefully designed to
reproduce synthetic batch tasks that closely replicate the observed resource usage patterns in a representative
data center. Experimental results demonstrate that STWGEN outperforms state-of-the-art workload generation
methods as it emulates workload-level and machine-level resource usage in much higher accuracy.
1. Introduction

With the rapid evolution of computing and networking technolo-
gies, modern data centers have become the primary infrastructural
of cloud computing [1–3]. A fundamental challenge in modern data
centers is how to efficiently utilize the resources through resource
management [4–7]. This encompasses various techniques, including
capacity planning, resource scheduling, and resource isolation [8–
13]. The essence of resource management is to schedule workloads
and allocate resources for maximized resource utilization. In order to
refine the strategy of resource allocation, we should always understand
the resource consumption of workload first. However, the diversity of
workloads and the restricted access to underlining source code prevent
us from in-depth analyzing of the hosted applications. As a result, the
generation of synthetic workloads which mimic the resource consump-
tion of cloud applications has become a critical research area [14–17].
The ultimate goal of workload generation is to replicate the resource
consumption patterns observed in real data center applications.

In cloud data centers, tracing systems can meticulously capture the
resource consumption and execution dynamics of workloads, subse-
quently producing the trace data [18–20]. Such trace collection has

∗ Corresponding author.

led to the prevailing role of trace-based workload emulations in the
domain [16,21]. The trace data thoroughly record resource utilization
of applications at each monitoring cycle, providing detailed temporal
insights to accurately emulate workloads. The trace-based workload
generation first extracts resource consumption patterns from trace data,
then constructs modular building blocks, and finally assembles building
blocks to emulate the original resource consumption patterns.

Previous research on workload generation are mainly conducted
in the coarse-grained manner [22–26]. They use some pre-defined
benchmark applications (e.g., TPC bench [27]) as building blocks to
generate the synthetic workloads that have the similar resource usage
statistics (such as the average, maximum statistics and the probability
distributions) as those recorded in trace data. Such approaches fall
short in faithfully replicate the workload’s resource usage sequence
along execution, hence are not good at accurately reproducing the
temporal resource utilization patterns in data centers. This limitation
hampers their capability in supporting fine-grained resource scheduling
in data centers.
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Fine-grained workload generation has emerged as a prominent so-
ution [28,29]. These methods strive to precisely replicate the intricate
etails of a workload’s resource utilization throughout every moment
f its runtime. They heavily depend on the trace data, which cap-
ures the workload’s explicit temporal resource usage patterns and
icro-architectural behaviors [18], to mimic workloads that exactly

orrespond to their recorded resource usage sequences in the trace.
owever, as the scales of data centers continue to expand, the com-
lexity of trace information rises exponentially, which often results in
ubstantial resource and time cost during the trace collection [30].
o minimize the overhead, modern data centers tend to trace statis-
ical metrics rather than detailed temporal consumption and granular
orkload behaviors. For instance, in the Alibaba clusterdata2018 trace

Alibaba trace, in short) [19], the most recent large-scale data center
race, the resource usage of batch workloads (namely, batch tasks)
s merely recorded as the maximum and average statistics. Conse-
uently, the challenge of accurately reconstructing temporal resource
onsumption of workloads without the detailed and temporalized trace
nformation remains an open issue.

To address the challenge, we propose Statistical Trace-based Work-
oad Generation (STWGEN) as the innovative method to leverage statis-
ical trace data for workload generation. STWGEN is originally designed
o generate batch task workloads based on Alibaba trace, it can also
asily be extended for more general workload generation based on
tatistical trace data. STWGEN is comprised of two components: a
uite of C program-based [31] flexible workload building blocks and a
euristic strategy to assemble building blocks for workload generation.
TWGEN integrates the two components with a sophisticated workload
ubmission mechanism, enabling the generation of synthetic work-
oads that can faithfully reproduce the observed resource consumption
atterns in modern data centers. Our main contributions are as follows:

Firstly, with in-depth analysis of Alibaba trace, we characterized
he resource usage patterns of batch task workloads and identified
ome typical and helpful features, including the weak correlation be-
ween CPU and Memory usage, the significant variation in CPU usage,
he stable memory consumption and the differentiated resource usage
eproduction demands among tasks.

Secondly, we developed fundamental workload building blocks to
imulate CPU and memory usage respectively. These blocks are de-
igned as C programs to do parameterized amount of computation and
emory allocation operations for replicating CPU and memory usage

f given scale. Moreover, the building blocks can dynamically adjust
esource utilization in execution.

Thirdly, we propose a heuristic strategy to reconstruct the temporal
esource usage of batch tasks. The strategy integrates the Simulated
nnealing algorithm and the JAYA algorithm to find the optimal solu-

ion for reconstructing the maximum and average resource utilization
tatistics of batch tasks and reproducing the machine-level resource
tilization.

Lastly, we performed a thorough evaluation on STWGEN. The ex-
erimental results demonstrate that, based on Alibaba trace, STWGEN
an generate batch task workloads with a average deviation of less than
4.1% on average and maximum task-level resource usage statistics,
nd a average deviation of less than 14.3% on machine-level total re-
ource usage. Compared to the state-of-art methods, STWGEN achieves
p to 98.6% reduction in the above deviations.

The remaining sections of the paper are organized as follows: Sec-
ion 2 introduces the Alibaba Trace and formulates the workload
eneration problem. Section 3 characterizes the workloads in Alibaba
race. Section 4 elaborates on the proposed STWGEN method. Section 5

s dedicated to the evaluation of STWGEN method. Section 6 reviews
he literature and Section 7 concludes the paper.

. Background and problem formulation

We take Alibaba trace as the target for the workload generation.
e first describe the detail information of Alibaba trace and formally
efine the trace-based workload generation problem. 𝑚
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2.1. Alibaba trace

Released in 2018, the Alibaba trace [18,32,33] captures the work-
load behavior and resource usage of a production cluster within Al-
ibaba, comprising approximately 4,000 physical servers, over a period
of eight days. Both online services and batch jobs are co-located in this
cluster. We focus on the batch workload generation in this paper. In
Alibaba cluster, one batch job consists of one or more batch tasks. A
batch task can be executed in parallel on multiple machines, known
as task instances in Alibaba trace. Batch tasks are the basic execution
units of a batch workload and also the resource consumption ele-
ments. Reproducing task-level resource utilization is the cornerstone for
conducting a fine-grained analysis of cluster resource usage patterns.

In Alibaba trace, the batch task, online service (hosted in containers)
and machine_usage resource usage data are recorded in batch_instance,
container_usage and machine-usage table, respectively. Among these
tables, machine-usage and container_usage capture the respective re-
source usage information every 30 s with the aligned timestamps.
However, batch_instance only logs the average and maximal statistics
of batch tasks’ resource usage during their executions. In addition to
the resource usage statistics for each individual batch task, the total
amount of resource usage of concurrent tasks executed on a machine
at a recording time point can be derived by substracting the container
resource usage data in container_usage table from the server resource
usage data in machine_usage table at that specific moment. These two
types of information constitute the basis for generating the batch task
workload.

2.2. Problem definition

Our work focuses on the batch task workload generation based
on Alibaba trace. We aim to reproduce the usage of two primary re-
sources that batch workload consume: CPU and memory. The problem
is formulated as follows.

Given a data center with massive machines, the resource usage
of an individual machine at time point 𝑖, can be described as 𝑢𝑛𝑖 =
(𝑢𝑐𝑖, 𝑢𝑚𝑖), where, 𝑢𝑐𝑖 and 𝑢𝑚𝑖 represent its CPU and memory usage at
ime 𝑖, respectively. During time period 𝑇 , there are 𝑁 batch tasks
xecuted on this machine, denoting as 𝑇𝑆 = (𝑡𝑠1, 𝑡𝑠2,… , 𝑡𝑠𝑁 ). Each task
an be represent as 𝑡𝑠𝑗 = (𝑐𝑎𝑣𝑔𝑗 , 𝑚𝑎𝑣𝑔𝑗 , 𝑐𝑚𝑎𝑥𝑗 , 𝑚𝑚𝑎𝑥𝑗 , 𝑠𝑡𝑗 , 𝑒𝑡𝑗 ), where,
𝑎𝑣𝑔𝑗 and 𝑚𝑎𝑣𝑔𝑗 are the average CPU and memory usage of task 𝑗,
espectively.𝑐𝑚𝑎𝑥𝑗 and 𝑚𝑚𝑎𝑥𝑗 are the maximal CPU and memory usage
f task 𝑗, respectively. 𝑠𝑡𝑗 and 𝑒𝑡𝑗 are the starting time and ending time
f task 𝑗, respectively. According to the starting and ending time of
asks, at any specific recording time point 𝑖, there is a subset of tasks
xecuted concurrently on a machine, denoted as 𝐶𝑇 𝑖, 𝐶𝑇 𝑖 ⊑ 𝐓𝐒.

Workload generation in this paper is to construct the synthetic
orkloads for tasks in 𝐓𝐒, each with a dynamic resource usage se-
uence during execution, denoted as 𝑟𝑠𝑖 = 𝑟𝑖,𝑠𝑡𝑖 ,… , 𝑟𝑖,𝑒𝑡𝑖 , where, 𝑟𝑖,𝑗 =
𝑟𝑐𝑖,𝑗 , 𝑟𝑚𝑖,𝑗 ). represent the CPU and memory usage of task 𝑖 at the 𝑗th
ime point. We define 𝐷𝐼𝑉 𝑡𝑎𝑠𝑘(⋅) as the deviation of the resource usage
tatistics of the generated batch task workload from the corresponding
tatistical data recorded in the trace, and 𝐷𝐼𝑉 𝑚𝑎𝑐ℎ𝑖𝑛𝑒(⋅) as the deviation
f the cumulative resource usage of all concurrently executed synthetic
atch task workloads on a machine from their corresponding machine-
evel total resource usage recorded in the trace. Our goal can be
xpressed as follows:

𝑖𝑛(𝐷𝐼𝑉 𝑡𝑎𝑠𝑘(𝑡𝑠𝑗 , 𝑟𝑠𝑗 )), 𝑗 ∈ [1, 𝑁] (1)
𝑖𝑛(𝐷𝐼𝑉 𝑚𝑎𝑐ℎ𝑖𝑛𝑒(𝑢𝑛𝑖, 𝐶𝑇 𝑖)), 𝑖 ∈ 𝑇 (2)
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Fig. 1. Correlation between CPU and memory Usage.

3. Insight from Alibaba trace

In this section, we first conduct quantitative observations on the
resource usage of batch tasks in Alibaba trace, and then extract insights
into workload generation from these observations. Our observations are
based on the batch_instance table in Alibaba trace.

Observation #1: Relatively Weak Correlation between CPU and
Memory Usage

To analyze whether the CPU and memory usage during batch task
executions exhibit a strong correlation, we adopt Pearson Correlation
Coefficient (PCC) measurement [34]. Specifically, we randomly parti-
tion all batch tasks recorded in Alibaba trace into groups, each with
around 50,000 tasks. Within each group, we measure the PCC between
the batch tasks’ average CPU usage and average memory usage. The
statistical result is shown in Fig. 1. The average absolute PCC value
across all groups is 0.09, and more than 97.2% groups have the absolute
PCC value less than 0.4 (which is the typical threshold for the moderate
correlation). The result statistically proves a weak correlation between
CPU usage and memory usage during the batch task execution.

Guide for design: This observation inspires us to employ CPU-
intensive and memory-intensive operations to independently simulate
the CPU and memory usage of batch tasks. By accurately simulating
the usage of each resource, we can generate a complete synthetic task
workload by assembling the employed operations and making some
slight refinements.

Observation #2: Significant Variation in the CPU usage
With only the statistical data available, we adopt the max-to-

average ratio to quantify the batch task’s CPU usage variation during
runtime. Intuitively, a higher ratio represents a greater variation. Fig. 2
demonstrates the CDF (Cumulative Distribution Function) of the max-
to-average ratio of all batch tasks in Alibaba trace, with the 82.5th
percentile being 3, the 90th percentile being 7.56, the 95th percentile
being 17.48 and the 99th percentile being 29.55. This result indicates
that a considerable portion of tasks experience significant fluctuations
in CPU resource usage during their runtime, and some tasks undergo a
surge in CPU resource utilization.

Guide for design: The significant variation of CPU usage neces-
sitates that the generated task workload be able to dynamically and
agilely produce the varying CPU resource consumptions during run-
time. Further, the great gap between the maximum and average statis-
tics points to a large search space when reconstructing the task’s
resource usage sequence. A computationally-efficient algorithm is thus
required to generate task workloads that conform to both workload and
machine-level resource usage patterns recorded in the trace.

Observation #3: Low and stable Memory Usage
In the Alibaba trace, the batch task’s average memory usage value

ranges from 0 to 100, representing the percentage of total memory
39
Fig. 2. Distribution of max-to-average ratio on CPU usage.

Fig. 3. Distribution of max-to-average ratio on memory usage.

utilized on its host machine. We analyzed its distribution and found
that the 90th, 95th, and 99th percentile values are 0.35, 0.77 and 2.85,
respectively. Furthermore, we collected data on the max-to-average
ratio of memory usage. As depicted in Fig. 3, less than 10% of batch
tasks exhibit a ratio exceeding 1.69, and the 95th percentile value
stands at 2.24. These findings indicate that, in comparison to CPU
usage, the batch task’s memory usage is relatively stable. Even though
some tasks have a max-to-average ratio greater than 9.56 (that is, at
the 99th percentile), their absolute variations in memory consumption
remains small due to the low average base.

Guide for design: Due to the low memory usage of batch tasks, we
should carefully select memory-intensive synthetic workload operations
with minimal resource overhead to prevent simulation deviations. In
addition, given the memory usage stability, the selected operations
should maintain consistent memory occupancy so as to minimize the
overhead associated with frequent memory allocation requests.

Observation #4: Differentiated Early Reproduction Demands
among tasks

To accurately replicate the resource usage pattern of the batch
task, it is crucial to explicitly reproduce the maximum statistic at
least once during the task’s execution. Specifically, in the context
of workload generation for concurrent tasks running on a particular
machine, tasks that exhibit high resource usage peaks and have short
execution times should strive to reproduce their peak resource usage
promptly during the early stages of their execution, so as to mitigate the
risk of such tasks being unable to reach their peak usage later on due
to the time point-wise machine-level total resource usage constraints
recorded in the trace. To analyze the demand for early peak resource
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Fig. 4. Distribution of ERD.

usage reproduction among batch tasks, we utilize a metric called Early
Reproducing Demand (ERD). ERD is defined as the ratio of the batch
task’s maximal resource usage to its execution duration. The formula
of ERD is as follows:

𝐸𝑅𝐷 =
𝑚𝑎𝑥_𝑢𝑠𝑎𝑔𝑒

𝑒𝑥𝑒𝑐_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (3)

Where, 𝑚𝑎𝑥_𝑢𝑠𝑎𝑔𝑒 is the batch task’s maximal resource usage, 𝑒𝑥𝑒𝑐_𝑡𝑖𝑚𝑒
is its execution duration (measured in second). Fig. 4 depicts the
distributions of the Early Reproducing Demand (ERD) for CPU and
memory resources. It clearly shows that 80% of the tasks have an ERD
for CPU resources falling below a threshold 31.33, suggesting a lower
need for prompt peak resource usage reproduction. The remaining
20% of tasks, however, exhibit a higher ERD ranging from 32 to 449,
indicating a more urgent demand to reproduce their peak resource
usage early on. A comparable trend is observed for memory resources,
where a substantial proportion of tasks demonstrate a high ERD within
the range of 0.015 to 0.399.

Guide for design: The workload generation should prioritizes the
tasks with the high ERD to reproduce their maximal resource usage,
thus alleviating the potential simulation deviations on the workload-
level resource usage statistics.

4. Workload construction and generation

Work in this paper focuses on how to generate synthetic batch task
workloads based on traces lacking explicit temporal information on
40
task-level resource usage. The objective is to ensure the generated task
workloads can not only accurately mirror their statistical resource us-
age characteristics extracted from the trace but also reproduce temporal
resource usage patterns at the machine level. To this end, STWGEN
is proposed in this paper. As shown in Fig. 5, there are two critical
parts in STWGEN: workload building block construction and workload
sequence generation. Workload building block construction aims to
develop parameterized program units that can precisely generate the
required resource usage based on parameter settings. With the absence
of explicit task-level temporal resource usage data in the trace, work-
load sequence generation centers on reconstructing the resource usage
time series formed during a batch task execution and taking the recon-
structed sequence as a foundation to generate the complete workload
program through assembling the pertinent building blocks. In addition,
STWGEN incorporates a workload submission mechanism, enabling the
practical replay of synthetic workloads reliant on information from
trace data.

4.1. Construction of workload building blocks

In our work, a workload building block is defined as a customized
C program segment that is capable of mimicing the desired resource
usage during batch task execution. Based on observation #1 outlined
in Section 3, we have designed workload building blocks to produce
CPU usage and memory usage separately. To ensure accurate and
efficient production of diverse resource usages, the designed building
blocks must fulfill two prerequisites: they must possess lightweight
computational logic, and their executions must be controllable. To
achieve lightweightness, we opt for the most simple and straightfor-
ward operations as the components of the workload building blocks.
To ensure controllability, we have designed the building blocks to
be parameterized, allowing us to adjust their resource consumption
through parameter settings.

4.1.1. Building block for CPU usage
This module is designed to simulate the batch task’s CPU resource

consumption. Its primary function is to use loop sum calculations to
mimic CPU resource usage. As a computationally intensive operation,
the sum operation can maximize the utilization of CPU resources. To
generate varying CPU resource utilization, we have integrated sleep
operations within the loop body to simulate idle states of CPU, thereby
adjusting the amount of CPU resource usage during a specific time
period. The number of loop iterations and the sleep durations are set as
the parameters of this building block. In the current implementation,
the parameters are adjusted on a one-second interval. The duration
of the sleep operation for a one-second period is determined based
on the targeted CPU utilization during that period. For instance, if
the desired CPU utilization is 70%, the sleep duration would be set
to 0.3 s. By tuning these parameters, we can precisely control the
synthetic workload’s CPU usage at any time point during execution.
Furthermore, if a batch task’s CPU usage surpasses the capacity of a
single core (i.e., exceeds 100%), this building block can automatically
create multiple threads, with each thread executing the same loop
operation and sharing the sleep duration setting. The accumulation of
CPU usage across multiple threads can accurately simulate the CPU
usage of the task.

4.1.2. Building block for memory usage
This module is responsible for simulating batch task’s memory

consumption recorded in trace data. This building block consists of a
loop program. Echoing Observation #3 outlined in Section 3, we adopt
GLIBC memory [35] management functions within the loop body to
simulate the occupation of various amounts of memory space during
the task execution. The loop iteration is executed every one second.

In particular, in the first loop iteration, the malloc and memset func-
tion is called to allocate the desired amount of memory space, referred
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o as the initial memory allocation. In the subsequent loop iterations,
he allocated memory space is adjusted/resized with realloc function. If
he desired amount of allocated memory is less than that in previous
teration, realloc function simply truncate the already allocated memory
pace. Conversely, if it is greater, the memset function is called to set
alues for the newly allocated space. The adoption of realloc function
tems from Observation #3 in Section 3. Since the memory usage of
asks undergoes minor changes during their execution, realloc function
ffectively makes slight adjustments to the existing allocated memory
pace to simulate such changes. This approach eliminates the time
verhead and the extra CPU consumption associated with frequently
llocating and releasing memory across loop iterations using malloc
nd free functions, thereby enhancing the efficiency of memory usage
eproduction and avoiding the bias in CPU usage simulation.

Furthermore, operations like malloc and realloc introduce additional
emory space overhead due to metadata recording, heap and stack

ccupation. This overhead becomes particularly significant when the
equired memory usage is comparatively small, such as in tasks from
libaba traces that utilize approximately 3% of the total machine
emory. This results in a considerable deviation between the memory
sage generated by our building block and the actual required usage.
o address this issue, we sample overhead data by invoking the malloc
nd realloc functions with varying amounts of required memory allo-
ation and reallocation. Subsequently, we utilize these sampled data to
onstruct a linear overhead prediction function. This function aids us
n precisely adjusting the building block parameters, thereby ensuring
hat the resulting memory resource usage aligns precisely with our
xpectations.

.2. Workload sequence generation

We describe the reconstruction method for batch task-level resource
sage sequence in this section and propose the mechanism to generate
he complete workload program in section 4.3.

The goal of sequence reconstruction is to restore resource usage
t each time point throughout the execution of a batch task. This
econstruction must guarantee that the statistical properties of resource

sage, specifically the average and maximum values, for a synthetic
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ask workload are in alignment with the corresponding information ex-
racted from the trace data. Additionally, it is crucial to ensure that the
ggregated resource usage of concurrent synthetic tasks running on a
pecific machine accurately reflects the overall resource usage observed
n that machine in the trace data. We thus formulate the resource
sage sequence reconstruction issue as a multi-objective optimization
roblem and adopt a heuristic algorithm to solve it.

We adopt the Simulated Annealing (SA) heuristic to find the op-
imized solution for resource sequence reconstruction. SA heuristic
lgorithm mimics the physical annealing process to search for optimal
olutions to complex problems [36,37].

When designing SA for a specific application, four key points should
e figured out: the cost function definition, the initial solution selec-
ion, the neighboring solution generation, and the acceptance criterion
etermination. Algorithm 1 proposes a detailed framework for batch
ask resource sequence reconstruction using Simulated Annealing (SA).
t commences with an initial workload resource sequence solution and
n initial temperature 𝑇0, and then iteratively explores the search
pace while gradually reducing the temperature according to a cooling
chedule. In each iteration, a new candidate solution (neighbor) is
enerated from the current solution, and its acceptance is determined
n a probabilistic manner based on a specified acceptance criterion.

The cost function in SA algorithm serves to evaluate the quality of
ach candidate solution during the optimization process. In our design,
he cost function is defined based on Eqs. (1) (2):

𝑜𝑠𝑡𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝐷𝐼𝑉 𝑡𝑎𝑠𝑘 +𝐷𝐼𝑉 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 (4)

In our work, the resource usage sequence reconstruction for CPU
nd memory resources is conducted separately. In each instance, the re-
onstruction deviation is solely calculated based on the target resource.
n addition, the task-level deviation 𝐷𝐼𝑉𝑡𝑎𝑠𝑘 primarily comprises two

components: deviations in both average and maximum resource usage
statistics. We incorporate these deviations linearly in the cost function.
Evidently, this cost function takes into account both the machine-
level and task-level resource sequence reconstruction errors, thereby
effectively guiding the algorithm towards finding an optimal solution.
The acceptance criterion is used to determine whether a newly gener-

ated solution should be accepted or rejected. We adopt the Metropolis
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Algorithm 1: SA-Based Workload Sequence Generation
Input : Batch task resource usage statistic list Task_list, Time

period TP, Machine resource usage sequence
Machine_seq, Initial temperature 𝑇0, Cooling rate CR,
Temperature threshold min_T

Output: Optimal solution for batch tasks’ resource usage
sequences Solution

1 Generate initial solutions for all batch tasks as 𝑖𝑛𝑖𝑡_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛.
2 Set 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 as 𝑖𝑛𝑖𝑡_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛.
3 Set Current Temperature 𝑇 as 𝑇0.
4 while T > min_T do
5 Calculate 𝑃𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒 as the acceptance probability.
6 Calculate 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑐𝑜𝑠𝑡 for 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛.
7 if 𝑟𝑎𝑛𝑑𝑜𝑚() > 0.8 then
8 generate 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 by naive search method.
9 else
10 generate 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 by JAYA algorithm with input

of 𝑃acceptance.
1 end
2 Calculate 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛’s cost as 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑐𝑜𝑠𝑡.
3 if neighbor_cost < current_cost then
14 set 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 as 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛.
5 else
16 if random() > 𝑃acceptance(𝑇 ) then
17 set 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 as 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛.
18 end
9 end
0 Decrease temperature 𝑇 by 𝐶𝑅.
1 end
2 Return Solution = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛.

criterion in our design which can be described as follows: if the cost of
the neighboring solution (that is, the newly generated solution) is less
than that of the current solution, it will be accepted. Otherwise, it will
be accepted with the probability of 𝑃𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒. 𝑃𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒 is calculated
based on the current annealing temperature 𝑇 .

𝑃𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒 = 𝑒
𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑐𝑜𝑠𝑡−𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑐𝑜𝑠𝑡

𝑇 (5)

The efficacy of the final resource usage sequence significantly de-
pends on the quality of the initial solution and the methodology for
generating neighboring solutions. We will delve into the specifics of
these aspects in the subsequent sections.

4.2.1. Initial solution selection
To enhance the reproducibility quality of the final solution, we

should strive to select an initial resource usage sequence for a batch
task that aligns with its corresponding statistics, particularly in terms
of the average and maximal resource usage recorded in trace data.
This selection must adhere to the constraint of the machine-level total
resource utilization.

Based on observation #4 in Section 3, the initial solution selection
algorithm is outlined in Algorithm 2. For each task, a preliminary
resource usage sequence is generated, following a normal distribution,
and derived from its statistical average (line #2). This preliminary
sequence constitutes the initial step towards the creation of the final
initial solution. Initially, all tasks are designated as ‘‘unallocated’’,
indicating that they have not yet reached their maximum resource
usage during any point of execution (line#3). Transitioning a workload
to the ‘‘allocated’’ state signifies that it has achieved its maximum
resource usage at a specific moment during its execution time.

By sequentially traversing each moment in time over the given
period, concurrent tasks executing at a specific time point are sorted
in descending order based on their Early Reproduction Demand (ERD),
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as defined in observation #4 (Line #8). These tasks are then examined
sequentially. If a task remains in the ‘‘unallocated’’ state and the ma-
chine’s remaining resource usage quotas is still sufficient, it is marked
as ‘‘allocated’’, and its resource usage is set to its maximum value for
that specific sampling point (Line #9 -#12). If not, the workload is
allocated the remaining resource usage quotas available on the machine
(line #14 - #15).

By utilizing an initial sequence generation based on average re-
source usage, the chosen initial solution for a batch task has a high
likelihood of aligning with its corresponding average statistic. Further-
more, by employing ERD as the task priority, the proposed method
ensures that tasks with higher maximum resource usage statistics and
shorter execution durations are prioritized for reproducing their peak
resource usage.
Algorithm 2: Initial Workload Sequence Solution Selection
Input : Batch task resource usage statistic list Task_list, Time

period TP, Machine resource usage sequence
Machine_seq.

Output: Initial solution for batch tasks’ resource usage
sequences Solution

1 for 𝑡𝑎𝑠𝑘𝑗 in 𝑇 𝑎𝑠𝑘_𝑙𝑖𝑠𝑡 do
2 set 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛[𝑡𝑎𝑠𝑘𝑗 ] for 𝑡𝑎𝑠𝑘𝑗 following normal distribution(𝜇

is the average resource usage of 𝑡𝑎𝑠𝑘𝑗).
3 Calculate ERD of 𝑡𝑎𝑠𝑘𝑗 and set 𝑡𝑎𝑠𝑘𝑗 state as ‘unallocated’.
4 end
5 for 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑖 in 𝑇𝑃 do
6 Set 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑙𝑒𝑓 𝑡 as the total resource usage at 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑖 in

𝑀𝑎𝑐ℎ𝑖𝑛𝑒_𝑠𝑒𝑞.
7 while 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑙𝑒𝑓 𝑡 > 0 do
8 Find the concurrent task at 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑖 with the maximal

ERD and ’unallocated’ state as 𝑇 𝑎𝑠𝑘𝑈𝑟𝑔 .
9 if 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑙𝑒𝑓 𝑡 > peak resource usage of 𝑇 𝑎𝑠𝑘𝑈𝑟𝑔 then
10 Set 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛[𝑇 𝑎𝑠𝑘𝑈𝑟𝑔] at 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑖 as the peak

resource usage of 𝑇 𝑎𝑠𝑘𝑈𝑟𝑔 .
11 Decrease 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑙𝑒𝑓 𝑡 by the peak resource usage of

𝑇 𝑎𝑠𝑘𝑈𝑟𝑔 .
12 Mark 𝑇 𝑎𝑠𝑘𝑈𝑟𝑔 state as ’allocated’.
13 else
14 Set 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛[𝑇 𝑎𝑠𝑘𝑈𝑟𝑔] at 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑖 as 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑙𝑒𝑓 𝑡.
15 Set 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑙𝑒𝑓 𝑡 to 0.
16 end
7 end
8 end
9 return 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛.

4.2.2. Neighboring solution generation
Neighboring solution generation plays a crucial role in enhancing

the diversity of solutions and preventing simulated annealing from
falling into the local optima. In our design, two strategies are randomly
employed in Neighboring solution generation:

• Naive Search Strategy: Based on the current solution, a task’s so-
lution sequence and a position within that sequence are randomly
selected. A random floating-point number within the range of
[−5, 5] is then added to the resource usage value on this selected
position, resulting in a new neighboring solution.

• Strategy based on JAYA Algorithm: The Jaya algorithm [38]
is a meta-heuristic optimization technique that operates on the
principle of continuous improvement by moving towards bet-
ter solutions and away from poorer ones. Specific steps of this
strategy are as follows:
1) Randomly select a task’s solution sequence and name it

𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝐶𝑢𝑟.
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2) Add a standard normal distribution random value at each
position of 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝐶𝑢𝑟. Repeat this operation 10 times to generate
10 candidate solutions.
(3) Calculate the cost values of the ten generated solutions and
find the solution with the minimum and maximum cost values as
𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝐵𝑒𝑠𝑡 and 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑊 𝑜𝑟𝑠𝑡.
(4) Use JAYA algorithm update formula to generate 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑁𝑒𝑤
by 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝐶𝑢𝑟, making it get close to the 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝐵𝑒𝑠𝑡 and staying
away from 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑊 𝑜𝑟𝑠𝑡.
5) If the cost value of 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑁𝑒𝑤 is less than that of 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝐶𝑢𝑟,
updating 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝐶𝑢𝑟 as 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑁𝑒𝑤. Otherwise, Combine with
the Simulated Annealing algorithm to accept 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑁𝑒𝑤 with a
certain probability.
6) Repeat step (2)–(5), until the designated iteration number is
reached, and choose 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝐶𝑢𝑟 as the final solution.

The naive search strategy commences with our carefully crafted
optimized initial solution and proceeds by making incremental adjust-
ments along the search trajectory. This strategy ensures the exploitation
capability of our neighboring solution generation. While the Jaya-based
strategy serves as a complement to enhance the exploration capability
of our neighboring solution generation. It strives to find beneficial solu-
tions by exploring new regions of the search space while simultaneously
avoiding solutions that are less promising. In addition, the design of
jaya-based search is intimately linked to the principles of simulated
annealing heuristic. As the rounds of simulated annealing progress, this
search’s tendency to explore new solutions diminishes, instead focusing
more on the exploitation and optimization of existing solutions. In
summary, by combining these two strategies, our neighboring solution
generation method ensures to output the high-quality solution. Experi-
mental results on Alibaba trace prove that adopting Jaya-based neigh-
boring solution searching helps to reduce the deviation on workload’s
maximal CPU resource usage by 34.2%.

4.3. Workload submission mechanism

We have implemented a workload submission mechanism that en-
ables the authentic generation of runnable batch task workloads, lever-
aging our proposed workload construction and generation methods.

This submission mechanism involves creating a Python script that
prompts users to specify a machine within the trace and the corre-
sponding time period for workload replay. Subsequently, the script
reconstructs the resource usage sequence for the designated batch tasks
within the trace. The synthetic workloads are then launched by execut-
ing the CPU and memory building blocks as concurrent threads, which
take the generated resource usage sequence as input and replicate the
resource usage pattern every second.

5. Performance evaluation

We introduce the experimental setup, followed by a detailed presen-
tation of the evaluation results in this section. Our evaluation primarily
comprises two parts: first, we evaluate the resource usage reproduc-
tion accuracy of STWGEN; second, we compare the performance of
STWGEN with state-of-the-art trace-based workload generation meth-
ods.

5.1. Experimental setup

From Alibaba cluster data 2018, we choose all task instances run-
ning on three representative machines: m_1935, m_1983 and m_1940,
specifically on the fourth day within the 8-day trace recording period
to evaluate STWGEN. Among the three selected machines, m_1935
has the high average and variance of resource usage, while m_1983
and m_1940 respectively have the medium and low levels during
the selected time period. The task-level resource usage statistics are
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derived from batch_instance table and the machine-level temporal re-
source usage data is obtained by subtracting the resource usage data in
container_usage table from the corresponding resource usage data from
machine_usage table, based on aligned timestamps. The experimental
environment was configured on Alibaba Cloud using Linux 3.2104
LTS 64-bit OS, with the system specifications set to ’ecs.hfc6.16xlarge’,
featuring 64 vCPUs and 128 GB of memory.

5.2. Metrics

According to the definition in Eqs. (1)(2), we formulate three met-
rics to evaluate the workload and machine-level resource usage repro-
duction accuracy achieved by STWGEN and other baselines.

𝐷𝑅𝑀𝑎𝑐ℎ𝑖𝑛𝑒(𝑖) =
|𝑆𝑢𝑚(𝐶𝑇 𝑖) − 𝑢𝑐𝑖|

𝑢𝑐𝑖
(6)

𝐷𝑅𝑇 𝑎𝑠𝑘_𝑚𝑎𝑥(𝑗) =
|𝑀𝑎𝑥(𝑟𝑠𝑗 ) − 𝑚𝑎𝑥𝑗 |

𝑚𝑎𝑥𝑗
(7)

𝐷𝑅𝑇 𝑎𝑠𝑘_𝑎𝑣𝑔(𝑗) =
|𝐴𝑣𝑔(𝑟𝑠𝑗 ) − 𝑎𝑣𝑔𝑗 |

𝑎𝑣𝑔𝑗
(8)

𝐷𝑅𝑀𝑎𝑐ℎ𝑖𝑛𝑒(𝑖) represents the deviation rate in the reproduction of
machine-level resource usage, where, 𝑆𝑢𝑚(⋅) function signifies the accu-

ulated resource usage produced with the generated concurrent batch
asks at a specific time point 𝑖 on a machine. 𝑢𝑣𝑖 stands for the observed

total resource usage of the machine at the corresponding time point
in the trace.𝐷𝑅𝑇 𝑎𝑠𝑘_𝑚𝑎𝑥(𝑗) and 𝐷𝑅𝑇 𝑎𝑠𝑘_𝑎𝑣𝑔(𝑗) represent the deviation
ates in the reproduction of the maximal and average resource usage
tatistics at task level, respectively. Where, 𝑀𝑎𝑥(⋅) and 𝐴𝑣𝑔(⋅) functions
ignify the statistical maximum and average values, respectively, of the
esource usage sequence generated by the synthetic workload for task 𝑗.
𝑚𝑎𝑥𝑗 and 𝑎𝑣𝑔𝑗 refer to the corresponding statistics recorded in the trace.

e use the aforementioned metrics for CPU and memory resources,
espectively.

.3. Resource usage reproduction accuracy with STWGEN

Figs. 6, 7, and 8 illustrate the distributions of deviation rates in the
eproduction of resource usage with STWGEN on machines m_1935,
_1983, and m_1940, respectively. At the machine level, the average
eviation rate for CPU usage across all recorded time points on a
pecific machine is under 6.4%, whereas for memory usage, it is less
han 14.3%. On the task level, the average deviation rate for the
aximum and average statistics of CPU usage among all batch tasks

s below 5.4% and 9.6%, respectively. Similarly, the average deviation
ate for the maximum and average statistics of memory usage is less
han 11.4% and 14.1%. Overall, the reproduction performance on CPU
esource usage surpasses that on memory resource usage. For instance,
n each of the selected machines, over 85% of the recorded time points
how deviation rates for CPU usage that are below 15%, whereas only
5% of the time points achieve such a deviation rate for memory usage.
his is due to that most batch tasks in Alibaba trace have 1 small
mount of memory usage, making them more sensitive to slight biases
n resource usage reproduction, which ultimately results in higher devi-
tion rates. However, given the low memory resource usage recorded in
libaba trace, even a deviation rate of 32.67% (exceeding those on the
5th percentile on all these machines) translates into a mere absolute
eviation of 0.67, which is negligible when compared to the memory
sage range of [0, 100]. Consequently, we deem the maximum average
eviation rate of 14.3% achieved by STWGEN in memory resource
sage reproduction as acceptable. In addition, among the three selected
achines, tasks on m_1940 achieve the best reproduction performance.
his is because the variation in total resource usage on m_1940 is less
han that of the other two machines, enabling the workload building
locks to adjust their CPU/memory usage less frequently and reduc-
ng the search cost of finding optimized reconstructed resource usage
equences for batch tasks.
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Fig. 6. Distribution of deviation rates on CPU and memory usage reproductions on m_1935.
Fig. 7. Distribution of deviation rates on CPU and memory usage reproductions on m_1983.
Fig. 8. Distribution of deviation rates on CPU and memory usage reproductions on m_1940.
5.4. Comparison to the state-of-art methods

To verify the superiority of STWGEN, we compare it with two
state-of-art methods: Tracie [25] and EdgeCloudBenchmark [24].

Tracie utilizes Parametric Density Estimation (PDE) to derive the
probability distribution function (PDF) of batch tasks’ resource uti-
lization characteristics. Following this, it randomly generates resource
usage sequences for batch tasks that adhere to the derived probability
distributions. Subsequently, Tracie selects applications from the TPC
benchmark suite( [27]) and the Rodinia benchmark( [39]) that ex-
hibit comparable resource utilization statistics, using them as building
blocks to craft synthetic workloads. EdgeCloudBenchmark employs a
clustering technique to categorize the batch tasks recorded in the trace
data into several groups, where tasks within the same group exhibit
similar resource usage statistics. It then randomly selects a task from
each group to represent the resource usage characteristics of the tasks
within that group. It utilized Apache Bench test tool as build blocks to
generate the synthetic workloads.

We conduct the experiments on machines m_1935, m_1983, and
m_1940, and the results are presented in Figs. 9 and 10. STWGEN
exhibits the most stable performance on all three machines, achieving
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the lowest average deviation rate of machine-level resource usage
reproduction, which stands below 14.3%, and the lowest average devia-
tion rate of task-level resource usage statistics reproduction is less than
14.1%. In contrast, Tracie and EdgeCloudBenchmark show significantly
higher deviation rates in terms of resource usage reproductions. Specif-
ically, Tracie demonstrates an average deviation rate of up to 302.6%
for machine-level resource usage across the three machines, while the
average deviation rate for task-level maximum and average resource
usage statistics reached to 756.4% and 432%, respectively. The cor-
responding rates of EdgeCloudBenchmark are 240.2%, 257.5%, and
206.4%, respectively. Overall, compared to the two baselines, STWGEN
can reduce the deviation rates of the resource usage reproductions by
up to 98.6% and a minimum of 77.1%.

The superiority of STWGEN lies in two aspects. Firstly, it introduces
lightweight and agile building blocks for task-level workload gener-
ation. Unlike the predefined benchmark applications used in Tracie,
which generate limited and relatively fixed temporal resource utiliza-
tion patterns, our proposed building blocks can dynamically generate
resource consumption profiles on demand, accommodating the diverse
resource utilization signatures of batch tasks in large-scale data centers.
Secondly, using the proposed heuristic algorithm, STWGEN can finely
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Fig. 9. Performance comparison on CPU usage reproduction.
Fig. 10. Performance comparison on memory usage reproduction.
reconstruct the resource usage of individual batch tasks, considering
both their resource usage statistics and machine-level resource con-
straints. Such time point-wise machine-level constraints, contributes to
the accurate reproduction of a task’s resource usage at any point during
its runtime. However, Tracie and EdgeCloudBenchmark fail to incor-
porate workload-level coarse-grained and machine-level fine-grained
resource usage characteristics. They merely characterize cluster-level
task resource usage statistics and use these statistics to randomly gener-
ate synthetic workloads, thus lacking the precision to mimic individual
tasks accurately.

6. Related works

Traces from large-scale production cloud platforms are pivotal in the
workload analysis and generation. Three prominent traces commonly
used for cloud workload generation are Google ClusterData2011 [18],
Azure PublicDataset2017 [40,41], and Alibaba Clusterdata2018 [19].
Google ClusterData2011 comprises extensive data on hundreds of thou-
sands of job-task-structured workloads, particularly the detailed re-
source usage tracked over time for each task and their micro-
architecture behavior information. Azure PublicDataset2017 represents
the workload of virtual machines (VMs) within Microsoft Azure, col-
lected in 2017. It documents the resource usage of approximately 2 mil-
lion monitored VMs, recorded every 5 min, resulting in comprehensive
time series data. Among these three traces, Alibaba Clusterdata2018
stands out as the most recent. It records resource usage information for
over 12 million batch tasks. Distinct from the other two traces, Alibaba
Clusterdata2018 simply captures statistical summaries for batch tasks’
resource usage, encompassing metrics like maximum and average
resource usage during task execution.

From the perspective of reproducing resource usage characteristics,
trace-based workload generation in data centers can be divided into
four levels: cluster-level, virtual machine-level, job-level, and task-
level. Cluster- and VM-level workload generations replicate overall
resource usage patterns of cloud clusters or individual VMs [23,26,42]
45
[29,43,44], but not individual workloads. Hence, they excel in data
center capacity planning, but lack precision in fine-grained resource
scheduling. Job-level generation aims to simulate the characteristics
of job workloads, such as the resource usage pattern [45], the job
structure [45], the task size and the execution duration of jobs [22] .
As the basic unit for cloud workload submission, Job-level workload
generation primarily targets workloads that meet average resource
usage and expected duration for jobs, but often neglects precise repli-
cation of resource usage for individual tasks within a job. Tasks serve
as the fundamental units for cloud workload execution and resource
usage [46]. Task-level workload generation aims to accurately replicate
resource usage characteristics from trace data, crucial for effective
resource scheduling and workload migration [24,25,28]. This paper
focuses on trace-based batch task workload generation in cloud data
centers.

From the technical view, trace-based workload generation can be
categorized into two types based on the granularity of reproducing
resource usage characteristics: coarse-grained and fine-grained genera-
tion. Coarse-grained workload generation involves extracting statistical
features of resource utilization from trace data, such as average and
peak resource usage, and synthesizing a comprehensive workload that
mirrors these characteristics using a combination of typical benchmark
applications as building blocks. For instance, Sfakianakis et al. [25]
employ techniques like Parametric Density Estimation (PDE), Non-
parametric Density Estimation (NDE), or Kernel Density Estimation
(KDE) to determine the probability distribution function (PDF) of re-
source utilization characteristics in Google trace batch tasks. Subse-
quently, it selects applications from the TPC benchmark suite [27] and
Rodinia benchmark [39] that exhibit comparable resource utilization
statistics to craft a holistic workload. Additionally, Koltuk et al. [23]
conduct a comprehensive analysis of resource utilization distribution
and structural attributes of batch jobs in Alibaba trace, leveraging
mapreduce tasks within BDGS to create synthetic workloads for simula-
tion and analysis purposes. Furthermore, Wen et al. [24] apply k-means
clustering to categorize batch tasks in Alibaba trace, randomly selecting
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representative tasks from each cluster. A distributed framework based
on microservices is then utilized to simulate the concurrent execution
of these tasks. Lastly, the Apache Bench test tool is used to gener-
ate resource consumption patterns for each individual task, ensuring
alignment with the characteristics of the selected representative tasks.
Although commonly employed, coarse-grained methods solely cap-
ture statistical resource usage, neglecting intricate temporal patterns,
thereby reducing workload reproduction precision. Benchmark appli-
cations, while representative, still differ from real-world workloads
in the temporal resource usage patterns, and this discrepancy widens
when multiple applications are combined to generate the synthetic
workloads.

Fine-grained workload generation involves constructing synthesized
orkloads that precisely match the temporal patterns of resource usage

ecorded in trace data. In contrast to coarse-grained generation, fine-
rained methods strive to accurately replicate the resource utilization
t every instant during the workload’s execution, encompassing not
ust statistical features but also the dynamic behavior. Using RWB
Reducible Workload Block) as the building block for workload gener-
tion, Han et al. [28] combine various RWBs to synthesize workload
or each task moment, drawing on the micro-architectural behavior
haracteristics of tasks captured in Google trace. Koltuk et al. [23,42]
im to replicate virtual machine workload resource usage based on
zure trace. It identifies a cumulative distribution function fitting

he trace samples and based on the periodic characteristics in VM’s
esource usage, it adjusts resource usage to align with the distribution
hile minimizing auto-correlation. Lin et al. [47] employ Generative
dversarial Networks to generate the time-dependent cloud workload,
hich does not require any prior knowledge to do distribution anal-
sis. However, the article fails to provide specific details about the
uilding blocks used for workload generation, rendering the application
f this method to the construction of authentic synthetic workloads
hallenging. In summary, while fine-grained load generation methods
xcel at generating intricate sequences of resource usage, they typically
epend on explicit temporal information extracted from traces to ac-
urately reconstruct resource usage characteristics at the workload or
achine level. Nevertheless, this approach presents difficulties when

pplied to large-scale traces with limited temporal information, such as
he Alibaba trace. Additionally, existing fine-grained methods tailored
or batch tasks rely heavily on assembly instructions, which restricts
heir portability and renders them unusable for traces lacking micro-
rchitectural metric information. Consequently, the challenge remains
f developing an efficient method for fine-grained batch task workload
eneration that can handle large-scale traces lacking both temporal
nformation on resource usage and detailed system-level behavior data.

. Conclusion

In light of the challenge posed by the absence of precise temporal
nformation of workload-level resource usage in modern data center
races, this paper proposes STWGEN, a novel trace-based batch task
orkload generation method based on the statistic-based Alibaba trace.
TWGEN accurately reproduces the batch task’s resource usage se-
uence by incorporating the task-level coarse-grained resource statistics
nd the machine-level fine-grained resource constraints. The extensive
xperimental results affirm the superiority of STWGEN method to the
tate-of-art baselines. In the future, our work will be extended to
onsider task dependencies in the workload generation.
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